A3972SB [ALLEGRO]

DUAL DMOS FULL-BRIDGE MICROSTEPPING PWM MOTOR DRIVER; 双DMOS全桥PWM微电机驱动器
A3972SB
型号: A3972SB
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

DUAL DMOS FULL-BRIDGE MICROSTEPPING PWM MOTOR DRIVER
双DMOS全桥PWM微电机驱动器

驱动器 运动控制电子器件 信号电路 光电二极管 电动机控制 电机
文件: 总12页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3972  
DUAL DMOS FULL-BRIDGE MICRO-  
STEPPING PWM MOTOR DRIVER  
Designed for pulse-width modulated (PWM) current control of  
bipolar microstepping stepper motors, the A3972SB is capable of  
continuous output currents to 1.5 A and operating voltages to 50 V.  
Internal fixed off-time PWM current-control timing circuitry can be  
programmed via a serial interface to operate in slow, fast, and mixed  
current-decay modes.  
VCP  
CP1  
CP2  
OSC  
23 SLEEP  
24  
1
2
3
4
VREG  
22  
OUT1B  
LOAD  
21 OUT2B  
The desired load-current level is set via the serial port with two 6-bit  
linear DACs in conjunction with a reference voltage. The six bits of  
control allow maximum flexibility in torque control for a variety of step  
methods, from microstepping to full-step drive. Load current is set in  
1.56% increments of the maximum value.  
LOAD  
SUPPLY  
20  
5
6
7
8
SUPPLY  
1
V
BB1  
V
BB2  
2
19  
18  
GROUND  
GROUND  
GROUND  
GROUND  
SENSE  
1
SENSE  
2
Synchronous rectification circuitry allows the load current to flow  
through the low rDS(on) of the DMOS output driver during the current  
decay. This feature will eliminate the need for external clamp diodes in  
most applications, saving cost and external component count, while  
minimizing power dissipation.  
17  
16  
9
OUT2A  
LOGIC  
OUT1A  
STROBE  
VDD  
15  
14  
13  
10  
11  
SUPPLY  
MUX  
CLOCK  
Internal circuit protection includes thermal shutdown with hyster-  
esis, transient-suppression diodes, and crossover-current protection.  
Special power-up sequencing is not required.  
REF  
DATA 12  
Dwg. PP-069-3  
The A3972SB is supplied in a 24-lead plastic DIP with a copper  
batwing power tab (suffix ‘B’). The power tab is at ground potential and  
needs no electrical isolation.  
ABSOLUTE MAXIMUM RATINGS  
at TA = +25°C  
Load Supply Voltage, VBB ................ 50 V  
Output Current, IOUT ...................... 1.5 A  
Logic Supply Voltage, VDD .............. 7.0 V  
Logic Input Voltage Range,  
VIN ................ -0.3 V to VDD + 0.3 V  
Reference Voltage, VREF ..................... 3 V  
Sense Voltage (dc), VS ................ 500 mV  
Package Power Dissipation,  
PD .......................................... 3.1 W  
Operating Temperature Range,  
TA .......................... -20°C to +85°C  
Junction Temperature, TJ ............. +150°C  
Storage Temperature Range,  
FEATURES  
I
1.5 A, 50 V Continuous Output Rating  
I Low rDS(on) DMOS Output Drivers  
I Optimized Microstepping via 6-Bit Linear DACs  
I Programmable Mixed, Fast, and Slow Current-Decay Modes  
I 4 MHz Internal Oscillator for Digital Timing  
I Serial-Interface Controls Chip Functions  
I Synchronous Rectification for Low Power Dissipation  
I Internal UVLO and Thermal Shutdown Circuitry  
I Crossover-Current Protection  
TS ......................... -55°C to +150°C  
I Precision 2 V Reference  
Output current rating may be limited by duty  
cycle, ambient temperature, and heat sinking.  
Under any set of conditions, do not exceed the  
specified current rating or a junction tempera-  
ture of 150°C.  
I Inputs Compatible with 3.3 V or 5 V Control Signals  
I Sleep and Idle Modes  
Always order by complete part number: A3972SB .  
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
FUNCTIONAL BLOCK DIAGRAM  
0.22 µF  
0.22 µF  
V
CP2  
CP1  
REG  
22  
3
2
LOGIC  
SUPPLY  
LOAD  
SUPPLY  
2 V  
V
V
CP  
UVLO AND  
FAULT  
DETECT  
REGULATOR  
BANDGAP  
1
5
CHARGE PUMP  
DMOS H-BRIDGE  
15  
14  
V
DD  
0.22 µF  
BB1  
MUX  
6-BIT  
LINEAR  
DAC  
SENSE  
1
V
CP  
+
-
OUT  
1A  
6
9
4
PROGRAMMABLE  
PWM TIMER  
OUT  
1B  
OSCILATOR  
OSC  
FIXED-OFF  
BLANK  
MIXED DECAY  
OSC SELECT/  
DIVIDER  
24  
SENSE  
1
8
11  
12  
10  
CLOCK  
DATA  
CONTROL  
LOGIC  
SERIAL  
PORT  
GATE  
DRIVE  
0.1 µF  
DMOS H-BRIDGE  
20  
PHASE 1/2  
SYNC. RECT. MODE  
SYNC. RECT. DISABLE  
MODE 1/2  
V
STROBE  
BB2  
23  
SLEEP  
OUT  
2A  
16  
21  
PROGRAMMABLE  
PWM TIMER  
OUT  
2B  
2 V  
FIXED-OFF  
BLANK  
MIXED DECAY  
6
BUFFER  
REF  
13  
+
-
SENSE  
6-BIT  
LINEAR  
DAC  
2
17  
0.1 µF  
6
7
18 19  
GROUND  
Dwg. FP-050-1  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
Copyright © 2000, Allegro MicroSystems, Inc.  
2
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
ELECTRICAL CHARACTERISTICS at TA = +25°C, VBB = 50 V, VDD = 5.0 V, VS = 0.5 V,  
fPWM < 50 kHz (unless otherwise noted).  
Limits  
Characteristic  
Symbol  
Test Conditions  
Operating  
Min.  
15  
0
Typ. Max.  
Units  
V
Load Supply Voltage Range  
VBB  
5.0  
50  
50  
During sleep mode  
Operating  
V
Logic Supply Voltage Range  
Load Supply Current  
VDD  
IBB  
4.5  
5.5  
8.0  
6.0  
20  
V
fPWM < 50 kHz  
mA  
mA  
µA  
mA  
mA  
mA  
µA  
Operating, outputs disabled  
Sleep or idle mode  
fPWM < 50 kHz  
Logic Supply Current  
IDD  
12  
Outputs off  
10  
Idle mode (D0 = 1, D18 = 0)  
Sleep mode  
1.5  
100  
Output Drivers  
Output Leakage Current  
IDSS  
rDS(on)  
VF  
VOUT = VBB  
<1.0  
<-1.0  
0.5  
50  
-50  
µA  
µA  
VOUT = 0 V  
Output On Resistance  
Source driver, IOUT = –1.5 A  
Sink driver, IOUT = 1.5 A  
Source diode, IF = 1.5 A  
Sink diode, IF = 1.5 A  
0.55  
0.315 0.35  
Body Diode Forward Voltage  
1.2  
1.2  
V
V
Control Logic  
Logic Input Voltage  
VIN(1)  
VIN(0)  
IIN(1)  
2.0  
0.8  
20  
V
V
Logic Input Current  
VIN = 2.0 V  
<1.0  
µA  
IIN(0)  
fOSC  
VIN = 0.8 V  
<-2.0  
-20  
6.0  
µA  
OSC Input Frequency Range  
Divide by one  
2.5  
MHz  
(D0 =1, D13 = 0, D14 = 1)  
OSC Input Duty Cycle  
Input Hysterisis  
40  
60  
%
V
VIN  
0.20  
0.40  
continued next page ...  
www.allegromicro.com  
3
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
ELECTRICAL CHARACTERISTICS at TA = +25°C, VBB = 50 V, VDD = 5.0 V, VS = 0.5 V,  
fPWM < 50 kHz (unless otherwise noted).  
Limits  
Characteristics  
Symbol  
fOSC  
Test Conditions  
Min.  
Typ. Max.  
Units  
Control Logic (continued)  
Internal Oscillator  
OSC shorted to ground  
ROSC = 51 kΩ  
3.0  
3.4  
4.0  
4.0  
1/2  
5.0  
4.6  
MHz  
MHz  
LSB  
DAC Accuracy (total error)  
ET  
Relative to DAC reference buffer  
output, D0 = 0, D17 = 0  
Reference Input Voltage Range  
Reference Buffer Offset  
VREF(EXT)  
VOS  
0.5  
10  
2.6  
V
mV  
µA  
V
Reference Divider Ratio  
VREF/VS  
D0 = 0, D18 = 0  
D0 = 0, D18 = 1  
VREF = 2.0 V  
8.0  
4.0  
Reference Input Current  
Internal Reference Voltage  
Gain (Gm) Error (note 3)  
IREF  
VREF(INT)  
EG  
0.5  
2.06  
1.94  
2.0  
D0 = 0, D17 = 0,  
D18 = 0, DAC = 63  
D18 = 0, DAC = 31  
D18 = 1, DAC = 63  
0
0
0
6
9
6
%
%
%
D18 = 1, DAC = 15  
VREF = 0 V  
0
10  
%
Comparator Input Offset Voltage  
Propagation Delay Times  
VIO  
tpd  
5.0  
mV  
50% to 90%:  
PWM change to source on  
PWM change to source off  
PWM change to sink on  
500  
50  
800  
150  
800  
1200  
350  
ns  
ns  
ns  
500  
1200  
PWM change to sink off  
50  
300  
150  
700  
165  
15  
350  
900  
ns  
ns  
°C  
°C  
V
Crossover Dead Time  
tdt  
TJ  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
UVLO Enable Threshold  
UVLO Hysteresis  
TJ  
VUVLO  
VUVLO  
Increasing VDD  
3.9  
0.05  
4.2  
4.45  
0.10  
V
NOTES: 1. Typical Data is for design information only.  
2. Negative current is defined as coming out of (sourcing) the specified device terminal.  
3. EG = [(VREF/Range) VS]/(VREF/Range).  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
4
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
FUNCTIONAL DESCRIPTION  
Serial Interface. The A3972SB is controlled via a 3-wire  
(clock, data, strobe) serial port. The programmable functions  
allow maximum flexibility in configuring the PWM to the  
motor drive requirements. The serial data is written as two  
19-bit words: 1 bit to select the word and 18 bits of data. The  
serial data is clocked in starting with D18.  
D13 Bridge 1 Phase. This bit controls the direction of  
output current for Load 1.  
D13  
OUT1A  
OUT1B  
0
1
L
H
H
L
D14 Bridge 2 Phase. This bit controls the direction of  
output current for Load 2.  
Word 0 Bit Assignments  
Bit  
Function  
D14  
OUT2A  
OUT2B  
D0  
Word select = 0  
0
1
L
H
H
L
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
Bridge 1, DAC, LSB  
Bridge 1, DAC, bit 2  
Bridge 1, DAC, bit 3  
Bridge 1, DAC, bit 4  
Bridge 1, DAC, bit 5  
Bridge 1, DAC, MSB  
Bridge 2, DAC, LSB  
Bridge 2, DAC, bit 2  
Bridge 2, DAC, bit 3  
Bridge 2, DAC, bit 4  
Bridge 2, DAC, bit 5  
Bridge 2, DAC, MSB  
Bridge 1 phase  
D15 Bridge 1 Mode.  
D15  
Mode  
0
1
Mixed-decay  
Slow-decay  
D16 Bridge 2 Mode.  
D16  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
Mode  
0
1
Mixed-decay  
Slow-decay  
Bridge 2 phase  
Bridge 1 mode  
Bridge 2 mode  
REF select  
D17 REF Select. This bit determines the reference input for  
the 6-bit linear DACs.  
D17  
Reference Voltage  
0
1
Internal 2 V  
External (3 V max)  
Range select  
D1 – D6 Bridge 1 Linear DAC. Six-bit word sets desired  
current level for Bridge 1. Setting all six bits to zero disables  
Bridge 1, with all drivers off (See current regulation section of  
functional description).  
D18 Gm Range Select. This bit determines the scaling factor  
(4 or 8) used.  
D18  
Divider  
Load Current  
0
1
1/  
1/  
8
4
TRIP = VDIAC/8RS  
TRIP = VDIAC/4RS  
D7 – D12 Bridge 2 Linear DAC. Six-bit word sets desired  
current level for Bridge 2. Setting all six bits to zero disables  
Bridge 2, with all drivers off (See current regulation section of  
functional description).  
continued next page ...  
www.allegromicro.com  
5
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
FUNCTIONAL DESCRIPTION (continued)  
Word 1 Bit Assignments  
For example, with a master oscillator frequency of 4 MHz, the  
fast-decay time will be adjustable from 1.75 µs to 63.75 µs in  
increments of 2 µs.  
Bit  
Function  
D0  
D1  
D2  
D3  
Word select = 1  
Blank-time LSB  
Blank-time MSB  
Off-time LSB  
D8 – D11 Fast Decay Time. These four bits set the fast-  
decay portion of fixed off-time for the internal PWM control  
circuitry. The fast-decay portion is defined by:  
D4  
Off-time bit 1  
tfd = [(1 + N) x 8/fOSC] - 1/fOSC  
D5  
D6  
Off-time bit 2  
Off-time bit 3  
where N = 0.15  
For example, with an oscillator frequency of 4 MHz, the fast-  
decay time will be adjustable from 1.75 µs to 31.75 µs in  
increments of 2 µs. For tfd > toff , the device will effectively  
operate in fast-decay mode.  
D7  
D8  
D9  
Off-time MSB  
Fast-decay time LSB  
Fast-decay time bit 1  
Fast-decay time bit 2  
Fast-decay time MSB  
C0 oscillator control  
C1 oscillator control  
SR control bit 1  
SR control bit 2  
Reserved for testing  
Reserved for testing  
Idle mode  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D12 – D13 Oscillator Control. A 4 MHz internal oscillator  
is used for the timing functions and charge-pump clock. If  
more precise control is required, an external oscillator can be  
input to the OSC terminal. To accommodate a wider range of  
system clocks, an internal divider is provided to generate the  
desired MO frequency according to the following table:  
D13  
D12  
OSC  
0
0
1
1
0
1
0
1
4 MHz internal clock  
External clock  
External clock/2  
External clock/4  
D1 – D2 Blank Time. These two bits set the blank time for  
the current-sense comparator. When a source driver turns on, a  
current spike occurs due to the reverse-recovery currents of the  
clamp diodes and/or switching transients related to distributed  
capacitance in the load. To prevent this current spike from  
erroneously resetting the source-enable latch, the sense com-  
parator is blanked. The blank timer runs after the off-time  
counter to provide the programmable blanking function. The  
blank timer is reset when PHASE is changed.  
D14 – D15 Synchronous Rectification.  
D15  
D14  
Synchronous Rectifier  
0
0
1
1
0
1
0
1
Active  
Disabled  
Passive  
Low side only  
D2  
D1  
Time  
The different modes of operation are in the synchronous  
rectification section of the functional description.  
0
0
1
0
1
0
4/fOSC  
6/fOSC  
8/fOSC  
D16, D17. These bits are reserved for testing and should be  
1
1
12/fOSC  
programmed to zero during normal operation.  
D18 Idle Mode. The device can be placed in a low power  
idlemode by writing a 0to D18. The outputs will be  
disabled, the charge pump will be turned off, and the device  
will draw a lower load supply currrent. The undervoltage  
monitor circuit will remain active. D18 should be programmed  
high for 1 ms before attempting to enable any output driver.  
D3 – D7 Fixed Off Time. These five bits set the fixed off-  
time for the internal PWM control circuitry. Fixed off-time is  
defined by:  
toff = [(1 + N) x 8/fOSC] - 1/fOSC  
where N = 0.31  
continued next page ...  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
6
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
FUNCTIONAL DESCRIPTION (continued)  
VREG. This internally generated supply voltage is used to run  
the sink-side DMOS outputs. VREG is internally monitored and  
in the case of a fault condition, the outputs of the device are  
disabled. The VREG pin should be decoupled with a 0.22 µF  
capacitor to ground.  
Shutdown. In the event of a fault due to excessive junction  
temperature, or low voltage on VCP or VREG, the outputs of the  
device are disabled until the fault condition is removed. At  
power up, or in the event of low VDD, the UVLO circuit  
disables the drivers and resets the data in the serial port to zeros.  
Current Regulation. The reference voltage can be set by  
analog input to the REF terminal, or via the internal 2 V  
precision reference. The choice of reference voltage and sense  
resistor set the maximum trip current.  
Synchronous Rectification. When a PWM off-cycle is  
triggered, either by a bridge disable command or internal fixed  
off-time cycle, the load current will recirculate according to the  
decay mode selected by the control logic. The A3972SB  
synchronous rectification feature will turn on the appropriate  
MOSFET(s) during the current decay and effectively short out  
the body diodes with the low rDS(on) driver. This will lower  
power dissipation significantly and can eliminate the need for  
external Schottky diodes for most applications.  
I
TRIPMAX = VREF/(Range x RS)  
Microstepping current levels are set according to the following  
equations:  
ITRIP = VDAC/(Range x RS)  
VDAC = [(1 + DAC) x VREF]/64  
Four distinct modes of operation can be configured with the two  
serial port control bits:  
where DAC input code equals 1 to 63 and Range is 4 or 8 as  
selected by Word 0, D18. Programming the DAC input code to  
zero disables the bridge, and results in minimum load current.  
1. Active Mode. Prevents reversal of load current by  
turning off synchronous rectification when a zero current  
level is detected.  
PWM Timer Function. The PWM timer is programmable via  
the serial port to provide fixed off-time PWM signals to the  
control block. In mixed-decay mode, the first portion of the off  
time operates in fast decay, until the fast-decay time count is  
reached, followed by slow decay for the rest of the fixed off-  
time period. If the fast-decay time is set longer than the off-  
time, the device effectively operates in fast-decay mode.  
2. Passive Mode. Allows reversal of current but will turn  
off the synchronous rectifier circuit if the load current  
inversion ramps up to the current limit.  
3. Disabled. MOSFET switching will not occur during load  
recirculation. This setting would only be used with four  
external clamp diodes per bridge.  
Oscillator. The PWM timer is based on an oscillator input,  
typically 4 MHz. The A3972SB can be configured to select  
either a 4 MHz internal oscillator or, if more precision is  
required, an external clock can be connected to the OSC  
terminal. If an external clock is used, three internal divider  
choices are selectable via the serial port to allow flexibility in  
choosing fOSC, based on available system clocks. If the internal  
oscillator option is used, the absolute accuracy is dependent on  
the process variation of resistance and capacitance. A precision  
resistor can be connected from the OSC terminal to VDD to  
further improve the tolerance. The frequency will be:  
4. Low Side Only. The low-side MOSFETs will switch on  
during the off time to short out the current path through the  
MOSFET body diode. With this setting, the high-side  
MOSFETs will not synchronously rectify so four external  
diodes from output to supply are recommended. This mode  
is intended for use with high-power applications where it is  
desired to save the expense of two external diodes per  
bridge. In this mode, the sink-side MOSFETs are chopped  
during the PWM off time. In all other cases, the source-  
side MOSFETs are chopped in response to a PWM off  
command.  
fOSC = 204 x 109/ROSC  
If the internal oscillator is used without the external resistor, the  
OSC terminal should be connected to ground.  
Sleep Mode. The input terminal SLEEP is dedicated to  
putting the device into a minimum current draw mode. When  
pulled low, the serial port will be reset to all zeros and all  
circuits will be disabled.  
continued next page ...  
7
www.allegromicro.com  
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
APPLICATIONS INFORMATION  
Current Sensing. To minimize inaccuracies in sensing the  
IPEAK current level caused by ground-trace IR drops, the sense  
resistor should have an independent ground return to the ground  
terminal of the device. For low-value sense resistors, the IR  
drops in the sense resistors PCB traces can be significant and  
should be taken into account. The use of sockets should be  
avoided as they can introduce variation in RS due to their  
contact resistance.  
Layout. The printed wiring board should use a heavy ground  
plane. For optimum electrical and thermal performance, the  
driver should be soldered directly onto the board. The ground  
side of RS should have an individual path to the ground pin(s) of  
the driver. This path should be as short as physically possible  
and should not have any other components connected to it. The  
load supply pin, VBB, should be decoupled with an electrolytic  
capacitor (>47 µF is recommended) placed as close to the driver  
as is possible.  
Thermal Protection. Circuitry turns off all drivers when the  
junction temperature reaches 165°C typically. It is intended  
only to protect the device from failures due to excessive  
junction temperature and should not imply that output short  
circuits are permitted. Thermal shutdown has a hysteresis of  
approximately 15°C.  
Serial Port Write Timing Operation. Data is clocked into a  
shift register on the rising edge of CLOCK signal. Normally,  
STROBE will be held high, and only will be brought low to  
initiate a write cycle. The data is written MSB first, followed  
by the word-select bit. Refer to serial port diagram for timing  
requirements.  
SLEEP  
H
STROBE  
E
C
D
F
G
CLOCK  
DATA  
A
B
D18  
D17  
D0  
Dwg. WP-038-1  
A. Minimum Data Setup Time ..................................... 15 ns  
B. Minimum Data Hold Time ...................................... 10 ns  
C. Minimum Setup Strobe to Clock Rising Edge...... 150 ns  
D. Minimum Clock High Pulse Width......................... 40 ns  
E. Minimum Clock Low Pulse Width ......................... 40 ns  
F. Minimum Setup Clock Rising Edge to Strobe ........ 50 ns  
G. Minimum Strobe Pulse Width............................... 150 ns  
H. Minimum Setup Sleep to Strobe Falling................. 50 µs  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
Dimensions in Inches  
(controlling dimesnions)  
0.014  
0.008  
NOTE 1  
24  
13  
0.430  
MAX  
0.300  
BSC  
0.280  
0.240  
1
6
7
12  
0.100  
BSC  
0.070  
0.045  
0.005  
MIN  
1.280  
1.230  
0.210  
MAX  
0.015  
MIN  
0.150  
0.115  
0.022  
0.014  
Dwg. MA-001-25A in  
NOTES:1. Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.  
2. Lead spacing tolerance is non-cumulative.  
3. Exact body and lead configuration at vendors option within limits shown.  
4. Supplied in standard sticks/tubes of 15 devices.  
www.allegromicro.com  
9
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
Dimensions in Millimeters  
(for reference only)  
0.355  
0.204  
NOTE 1  
24  
13  
10.92  
MAX  
7.11  
6.10  
7.62  
BSC  
1
6
7
12  
2.54  
BSC  
1.77  
1.15  
0.13  
MIN  
32.51  
31.24  
5.33  
MAX  
0.39  
MIN  
3.81  
2.93  
0.558  
0.356  
Dwg. MA-001-25A mm  
NOTES:1. Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.  
2. Lead spacing tolerance is non-cumulative.  
3. Exact body and lead configuration at vendors option within limits shown.  
4. Supplied in standard sticks/tubes of 15 devices.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
10  
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
The products described here are manufactured under one or more  
U.S. patents or U.S. patents pending.  
Allegro MicroSystems, Inc. reserves the right to make, from time to  
time, such departures from the detail specifications as may be  
required to permit improvements in the performance, reliability, or  
manufacturability of its products. Before placing an order, the user is  
cautioned to verify that the information being relied upon is current.  
Allegro products are not authorized for use as critical components  
in life-support devices or systems without express written approval.  
The information included herein is believed to be accurate and  
reliable. However, Allegro MicroSystems, Inc. assumes no responsi-  
bility for its use; nor for any infringement of patents or other rights of  
third parties which may result from its use.  
www.allegromicro.com  
11  
3972  
DUAL DMOS FULL-BRIDGE  
MICROSTEPPING PWM MOTOR DRIVER  
MOTOR DRIVERS  
Function  
Output Ratings*  
Part Number†  
INTEGRATED CIRCUITS FOR BRUSHLESS DC MOTORS  
3-Phase Power MOSFET Controller  
3-Phase Power MOSFET Controller  
3-Phase Power MOSFET Controller  
2-Phase Hall-Effect Sensor/Driver  
Bidirectional 3-Phase Back-EMF Controller/Driver  
2-Phase Hall-Effect Sensor/Driver  
3-Phase Back-EMF Controller/Driver  
3-Phase Controller/Drivers  
28 V  
50 V  
50 V  
26 V  
14 V  
14 V  
14 V  
45 V  
3933  
3932  
7600  
3626  
8906  
3625  
8902–A  
2936 & 2936-120  
400 mA  
600 mA  
900 mA  
900 mA  
2.0 A  
INTEGRATED BRIDGE DRIVERS FOR DC AND BIPOLAR STEPPER MOTORS  
Dual Full Bridge with Protection & Diagnostics  
PWM Current-Controlled Dual Full Bridge  
PWM Current-Controlled Dual Full Bridge  
PWM Current-Controlled Dual Full Bridge  
PWM Current-Controlled Dual Full Bridge  
PWM Current-Controlled Dual Full Bridge  
PWM Current-Controlled Dual Full Bridge  
PWM Current-Controlled Dual DMOS Full Bridge  
PWM Current-Controlled Full Bridge  
PWM Current-Controlled Dual Full Bridge  
PWM Current-Controlled Microstepping Full Bridge  
PWM Current-Controlled Microstepping Full Bridge  
PWM Current-Controlled Dual DMOS Full Bridge  
Dual Full-Bridge Driver  
500 mA  
650 mA  
650 mA  
750 mA  
750 mA  
750 mA  
800 mA  
1.0 A  
1.3 A  
1.5 A  
1.5 A  
1.5 A  
30 V  
30 V  
30 V  
45 V  
45 V  
45 V  
33 V  
35 V  
50 V  
45 V  
50 V  
50 V  
50 V  
50 V  
50 V  
50 V  
50 V  
3976  
3966  
3968  
2916  
2919  
6219  
3964  
3973  
3953  
2917  
3955  
3957  
3972  
2998  
3952  
3958  
3971  
1.5 A  
2.0 A  
2.0 A  
2.0 A  
PWM Current-Controlled Full Bridge  
DMOS Full Bridge PWM Driver  
Dual DMOS Full Bridge  
2.5 A  
UNIPOLAR STEPPER MOTOR & OTHER DRIVERS  
Voice-Coil Motor Driver  
Voice-Coil Motor Driver  
500 mA  
800 mA  
1 A  
1.2 A  
1.25 A  
1.8 A  
1.8 A  
3 A  
6 V  
16 V  
46 V  
46 V  
50 V  
50 V  
50 V  
46 V  
46 V  
8932–A  
8958  
7024 & 7029  
7042  
5804  
2540  
Unipolar Stepper-Motor Quad Drivers  
Unipolar Microstepper-Motor Quad Driver  
Unipolar Stepper-Motor Translator/Driver  
Unipolar Stepper-Motor Quad Driver  
Unipolar Stepper-Motor Quad Driver  
Unipolar Stepper-Motor Quad Driver  
Unipolar Microstepper-Motor Quad Driver  
2544  
7026  
3 A  
7044  
* Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits  
or over-current protection voltage limits. Negative current is defined as coming out of (sourcing) the output.  
Complete part number includes additional characters to indicate operating temperature range and package style.  
Also, see 3175, 3177, 3235, and 3275 Hall-effect sensors for use with brushless dc motors.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
12  

相关型号:

A3972SB-T

Dual DMOS Full-Bridge Microstepping PWM Motor Driver
ALLEGRO

A3973

Dual DMOS Full-Bridge Microstepping PWM Motor Driver
ALLEGRO

A3973KB

DUAL FULL BRIDGE PROTECTED MOTOR DRIVER
ALLEGRO

A3973SB

DUAL DMOS FULL-BRIDGE MICROSTEPPING PWM MOTOR DRIVER
ALLEGRO

A3973SB-T

Dual DMOS Full-Bridge Microstepping PWM Motor Driver
ALLEGRO

A3973SLB

DUAL DMOS FULL-BRIDGE MICROSTEPPING PWM MOTOR DRIVER
ALLEGRO

A3973SLB-T

Dual DMOS Full-Bridge Microstepping PWM Motor Driver
ALLEGRO

A3973SLBTR

Stepper Motor Controller, 1A, PDSO24, BATWING, PLASTIC, SOIC-24
ALLEGRO

A3973SLBTR-T

暂无描述
ALLEGRO

A3974

DMOS DUAL FULL-BRIDGE PWM MOTOR DRIVER
ALLEGRO

A3974SED

DMOS DUAL FULL-BRIDGE PWM MOTOR DRIVER
ALLEGRO

A3974SED-T

DMOS DUAL FULL-BRIDGE PWM MOTOR DRIVER
ALLEGRO