A3935KE [ALLEGRO]

3-PHASE POWER MOSFET CONTROLLER; 3相电源MOSFET控制器
A3935KE
型号: A3935KE
厂家: ALLEGRO MICROSYSTEMS    ALLEGRO MICROSYSTEMS
描述:

3-PHASE POWER MOSFET CONTROLLER
3相电源MOSFET控制器

控制器
文件: 总16页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3935  
3-PHASE POWER MOSFET CONTROLLER  
— For Automotive Applications  
The A3935 is designed specifically for automotive applications that  
require high-power motors. Each provides six high-current gate drive  
outputs capable of driving a wide range of n-channel power MOSFETs.  
Package ED, 44-Pin PLCC  
A requirement of automotive systems is steady operation over a  
varying battery input range. The A3935 integrates a pulse-frequency  
modulated boost converter to create a constant supply voltage for  
driving the external MOSFETs. Bootstrap capacitors are utilized to  
provide the above battery supply voltage required for n-channel FETs.  
Package JP, 48-Pin LQFP  
Package LQ, 36-Pin SOIC  
Direct control of each gate output is possible via six TTL-compat-  
ible inputs. A differential amplifier is integrated to allow accurate  
measurement of the current in the three-phase bridge.  
Diagnostic outputs can be continuously monitored to protect the  
driver from short-to-battery, short-to-supply, bridge-open, and battery  
under/overvoltage conditions. Additional protection features include  
dead-time, VDD undervoltage, and thermal shutdown.  
The A3935 is supplied in a choice of three packages, a 44-lead  
PLCC with copper batwing tabs (suffix ED), a 48-lead low profile QFP  
with exposed thermal pad (suffix JP), and a 36-lead 0.8 mm pitch SOIC  
(suffix LQ).  
ABSOLUTE MAXIMUM RATINGS  
Load Supply Voltages, VBAT, VDRAIN,  
VBOOST, BOOSTD ... -0.6 V to 40 V  
Output Voltage Ranges,  
FEATURES  
GHA/GHB/GHC, VGHX .. -4 V to 55 V  
SA/SB/SC, VSX ............... -4 V to 40 V  
GLA/GLB/GLC, VGLX.... -4 V to 16 V  
CA/CB/CC, VCX .......... -0.6 V to 55 V  
Sense Circuit Voltages,  
CSP,CSN, LSS ............... -4 V to 6.5 V  
Logic Supply Voltage,  
VDD ........................... -0.3 V to +6.5 V  
Logic Input/Outputs and OVSET, BOOSTS,  
CSOUT, VDSTH ......... -0.3 V to 6.5 V  
Operating Temperature Range,  
! Drives wide range of n-channel MOSFETs in 3-phase bridges  
! PFM boost converter for use with low-voltage battery supplies  
! Internal LDO regulator for gate-driver supply  
! Bootstrap circuits for high-side gate drivers  
! Current monitor output  
! Adjustable battery overvoltage detection.  
! Diagnostic outputs  
!
Motor lead short-to-battery, short-to-ground, and  
bridge-open protection  
!
Undervoltage protection  
! -40 °C to +150 °C, TJ operation  
! Thermal shutdown  
TA ........................... -40°C to +135°C  
Junction Temperature, TJ ........... +150°C  
Storage Temperature Range,  
TS ........................... -55°C to +150°C  
* Fault conditions that produce excessive  
junction temperature will activate device  
thermal shutdown circuitry. These conditions  
can be tolerated, but should be avoided.  
Always order by complete part number, e.g., A3935KLQ .  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
Functional Block Diagram  
See pages 8 and 9 for terminal assignments and descriptions.  
115 Northeast Cutoff, Box 15036  
2
Worcester, Massachusetts 01615-0036 (508) 853-5000  
Copyright © 2003 Allegro MicroSystems, Inc.  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
A3935KED (PLCC)  
A3935KLQ (SOIC)  
* Measured on “High-K” multi-layer PWB per JEDEC Standard JESD51-7.  
† Measured on typical two-sided PWB with power tabs (terminals 1, 2, 11, 12, 22, 23, 34, and 35) connected to copper foil with an  
area of 3.8 square inches (2452 mm2) on each side. See Application Note 29501.5, Improving Batwing Power Dissipation, for  
additional information.  
www.allegromicro.com  
3
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TJ = -40°C to +150°C, VBAT = 7 V to 16 V,  
VDD = 4.75 V to 5.25 V, ENABLE = 22.5 kHz, 50% Duty Cycle, Two Phases Active.  
Limits  
Characteristics  
Symbol  
Conditions  
Min  
Typ Max  
Units  
Power Supply  
VDD Supply Current  
IDD  
IBAT  
VBAT  
VDBOOT  
All logic inputs = 0 V  
All logic inputs = 0 V  
7.0  
3.0  
40  
mA  
mA  
V
VBAT Supply Current  
Battery Voltage Operating Range  
Bootstrap Diode Forward Voltage  
7.0  
0.8  
1.5  
2.5  
-150  
10  
IDBOOT = -Icx = 10 mA, VDBOOT = VREG – VCX  
IDBOOT = -Icx = 100 mA  
2.0  
2.3  
7.5  
-1150  
30  
V
V
Bootstrap Diode Resistance  
Bootstrap Diode Current Limit  
Bootstrap Quiescent Current  
Bootstrap Refresh Time  
rDBOOT  
IDM  
rD(100 mA) = [VD(150 mA) – VD(50 mA)]/100 mA  
3 V < [VREG – VCX] < 12 V  
mA  
µA  
µs  
ICX  
VCX = 40 V, GHx = ON  
trefresh  
VSX = low to guarantee V = +0.5 V refresh of  
2.0  
0.47 µF Boot Cap at Vcx – Vsx = +10 V  
1
VREG Output Voltage  
VREG  
VREGDO  
IREG  
VBAT = 7 V to 40 V, VBOOST from Boost Reg  
VREGDO = Vboost – Vreg, Ireg = 40 mA  
12.7  
0.9  
14  
V
V
2
VREG Dropout Voltage  
Gate Drive Avg. Supply Current  
VREG Input Bias Current  
Boost Supply  
No external dc load at VREG, CREG = 10 µF  
Current into VBOOST, ENABLE = 0  
40  
4.0  
mA  
mA  
IREGBIAS  
VBOOST Output Voltage Limit  
VBOOST Output Volt. Limit Hyst.  
Boost Switch ON Resistance  
Max. Boost Switch Current  
Boost Current Limit Threshold Volt.  
OFF Time  
VBOOSTM  
VBOOSTM  
rDS(on)  
VBAT = 7 V  
14.9  
35  
16.3  
180  
3.3  
V
mV  
IBOOSTD < 300 mA  
Increasing VBOOSTS  
1.4  
IBOOSTSW  
VBI(th)  
300  
0.55  
8.0  
mA  
V
0.45  
3.0  
100  
toff  
µs  
ns  
Blanking Time  
tblank  
220  
NOTES: Typical Data and Typical Characteristics are for design information only.  
Negative current is defined as coming out of (sourcing) the specified device terminal.  
1. For VBOOSTM < VBOOST < 40 V power dissipation in the VREG LDO increases. Observe TJ < 150 °C limit.  
2. With VBOOST decreasing Dropout Voltage measured at VREG = VREGref – 200 mV where VREG(ref) = VREG at VBOOST = 16 V.  
Continued next page …  
115 Northeast Cutoff, Box 15036  
4
Worcester, Massachusetts 01615-0036 (508) 853-5000  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TJ = -40°C to +150°C, VBAT = 7 V to 16 V,  
VDD = 4.75 V to 5.25 V, ENABLE = 22.5 kHz, 50% Duty Cycle, Two Phases Active.  
Limits  
Characteristics  
Control Logic  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Logic Input Voltages  
VI(1)  
VI(0)  
II(1)  
Minimum high level input for logical “one”  
2.0  
0.8  
500  
V
V
Maximum low level input for logical “zero”  
Logic Input Currents  
VI = VDD  
50  
µA  
µA  
mV  
V
II(0)  
VI = 0.8 V  
Input Hysteresis  
Vhys  
VO(H)  
VI(L)  
100  
300  
Logic Output High Voltage  
Logic Output Low Voltage  
IO(H) = -800 µA  
IO(L) = 1.6 mA  
VDD0.8  
0.4  
V
Gate Drives, GHx ( internal SOURCE or upper switch stages)  
Output High Voltage  
VDSL(H)  
GHx: IxU = –10 mA, Vsx = 0  
GLx: IxU = –10 mA, Vlss = 0  
VSDU = 10 V, TJ = 25 °C  
VREG2.26  
VREG  
VREG  
V
V
VREG0.26  
Source Current (pulsed)  
Source ON Resistance  
IxU  
800  
mA  
mA  
VSDU = 10 V, TJ = 135 °C  
400  
4.0  
7.0  
rSDU(on)  
IxU = –150 mA, TJ = 25 °C  
IxU = –150 mA, TJ = 35 °C  
10  
15  
Gate Drives, GLx ( internal SINK or lower switch stages)  
Sink Current (pulsed)  
IxL  
VDSL = 10 V, TJ = 25 °C  
VDSL = 10 V, TJ = 135 °C  
IxL = +150 mA, TJ = 25 °C  
IxL = +150 mA, TJ = 135 °C  
850  
mA  
mA  
550  
1.8  
3.0  
Sink ON Resistance  
rDSL(on)  
6.0  
7.5  
Gate Drives, GHx, GLx (General)  
Phase Leakage (Source)  
Propagation Delay, Logic only  
Output Skew Time  
ISx  
tpd  
ENABLE = 0, VSx = 1.7 V  
0
100  
150  
50  
µA  
ns  
ns  
ns  
Logic input to unloaded GHx, GLx  
Grouped by edge, phase-to-phase  
Between GHx, GLx transitions of same phase  
tsk(o)  
tdead  
Dead Time (Shoot-Through  
Prevention)  
75  
180  
NOTES: Typical Data and Typical Characteristics are for design information only.  
Negative current is dened as coming out of (sourcing) the specied device terminal.  
For GHX: VSDU = VCX – VGHX, VDSL = VGHX – VSX, VDSL(H) = VCX – VSDU – VSX.  
For GLX: VSDU = VREG – VGLX, VDSL = VGLX – VLSS, VDSL(H) = VREG – VSDU – VLSS.  
www.allegromicro.com  
5
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TJ = -40°C to +150°C, VBAT = 7 V to 16 V,  
VDD = 4.75 V to 5.25 V, ENABLE = 22.5 kHz, 50% Duty Cycle, Two Phases Active.  
Limits  
Characteristics  
Sense Amplifier  
Input Bias Current  
Input Offset Current  
Input Resistance  
Symbol  
Conditions  
Min  
Typ Max  
Units  
Ibias  
IIO  
ri  
CSP = CSN = 0 V  
-180  
-360  
±35  
µA  
µA  
CSP = CSN = 0 V  
CSP with respect to GND  
CSN with respect to GND  
VID = CSP – CSN, -1.3V < CSP,N < 4V  
CSP = CSN = 0 V  
80  
4.0  
kΩ  
kΩ  
Diff. Input Operating Voltage  
Output Offset Voltage  
VID  
VOO  
VOO  
VIC  
±200  
450  
mV  
mV  
µV/°C  
V
77  
250  
100  
Output Offset Voltage Drift  
Input Com-Mode Oper. Range  
Voltage Gain  
CSP = CSN = 0 V  
CSP = CSN  
-1.5  
4.0  
AV  
VID = 40 mV to 200 mV  
18.6 19.2 19.8  
V/V  
mV  
dB  
Low Output Voltage Error  
DC Common-Mode Attenuation  
Output Resistance  
Ev  
Vid = 0 to 40 mV, Vo = (19.2 x VID) + Vo + Ev  
CSP = CSN = 200 mV  
28  
±25  
AVC  
ro  
VCSOUT = 2.0 V  
8.0  
Output Dynamic Range  
Output Current, Sink  
VCSOUT  
Isink  
ICSOUT = -100 µA at top rail, 100 µA at bottom rail  
VCSOUT = 2.5 V  
0.075  
20  
VDD-0.25  
V
mA  
mA  
dB  
Output Current, Source  
VDD Supply Ripple Rejection  
VREG Supply Ripple Rejection  
Small Signal 3-dB Bandwidth  
AC Common-Mode Attenuation  
Isource  
PSRR  
PSRR  
f3db  
VCSOUT = 2.5 V  
-1.0  
20  
CSP = CSN = GND, freq. = 0 to 1 MHz  
CSP = CSN = GND, freq. = 0 to 300 kHz  
10 mV input  
45  
dB  
1.6  
MHz  
dB  
Avc  
Vcm = 250 mV/pp, freq. = 0 to 800 kHz  
200 mV step input, meas. 10/90% points  
26  
Output Slew Rate  
SR  
10  
V/µs  
(positive or negative)  
NOTES: Typical Data and Typical Characteristics are for design information only.  
Negative current is defined as coming out of (sourcing) the specified device terminal.  
115 Northeast Cutoff, Box 15036  
6
Worcester, Massachusetts 01615-0036 (508) 853-5000  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
ELECTRICAL CHARACTERISTICS: unless otherwise noted at TJ = -40°C to +150°C, VBAT = 7 V to 16 V,  
VDD = 4.75 V to 5.25 V, ENABLE = 22.5 kHz, 50% Duty Cycle, Two Phases Active.  
Limits  
Characteristics  
Symbol  
Conditions  
Min  
Typ Max  
Units  
Fault Logic  
VDD Undervoltage  
VDD(uv)  
VDD(uv)  
VSET(ov)  
VSET(ov)  
ISET(ov)  
Decreasing VDD  
3.8  
100  
0
4.3  
300  
VDD  
2.5  
V
mV  
V
VDD Undervoltage Hysteresis  
OVSET Operating Volt. Range  
OVSET Calibrated Volt. Range  
OVSET Input Current Range  
VBAT Overvoltage Range  
VBAT Overvoltage  
VDD(recovery) - VDD(uv)  
0
V
-1.0  
19.4  
+1.0  
40  
µA  
V
VBAT(ov)  
VBAT(ov)  
VBAT(ov)  
KBAT(ov)  
VBAT(uv)  
VBAT(uv)  
VREG(uv)  
VDSTH  
0 V < VSET(ov) < 2.5 V  
Increasing VBAT, VSET(ov) = 0 V  
Percent of VBAT(ov) value set by VSET(ov)  
VBAT(ov) = (KBAT(ov) x VSET(ov)) + VBAT(ov) [0]  
Decreasing VBAT  
19.4 22.4 25.4  
V
VBAT Overvoltage Hysteresis  
VBAT Overvoltage Gain Constant  
VBAT Undervoltage  
9.0  
12  
5.25  
15  
%
V/V  
V
5.0  
5.5  
VBAT Undervoltage Hysteresis  
VREG Undervoltage  
Percent of VBAT(uv)  
8.0  
12  
%
V
Decreasing VREG  
9.9  
11.1  
3.0  
VDSTH Input Range  
0.5  
V
VDSTH Input Current  
IDSTH  
VDSTH > 0.8 V  
40  
100  
µA  
V
Short-to-Ground Threshold  
VSTG(th)  
With a high-side driver “on”, as VSX decreases,  
VDRAIN - VSX > VSTG causes a fault  
VDSTH-0.3  
VDSTH+0.2  
Short-to-Battery Threshold  
VSTB(th)  
With a low-side driver “on”, as VSX increases,  
VSX - VLSS > VSTB causes a fault  
VDSTH-0.3  
VDSTH+0.2  
V
VDRAIN /Open Bridge Oper. Range  
VDRAIN /Open Bridge Current  
VDRAIN /Open Bridge Threshold Volt.  
Thermal Shutdown Temp.  
VDRAIN  
IVDRAIN  
VBDGO(th)  
TJ  
7 V < VBAT < 40 V  
-0.3  
0
VBAT+2.0  
1.0  
V
mA  
V
7 V < VBAT < 40 V  
If VDRAIN < VBDGOTH then a bridge fault occurs  
1.0  
160  
7.0  
3.0  
170  
10  
180  
°C  
°C  
Thermal Shutdown Hysteresis  
TJ  
13  
NOTES: Typical Data and Typical Characteristics are for design information only.  
Negative current is defined as coming out of (sourcing) the specified device terminal.  
www.allegromicro.com  
7
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
Terminal Functions  
A3935KED  
(PLCC)  
A3935KJP  
(QLFP)  
A3935KLQ  
(SOIC)  
Terminal Name  
Function  
CSP  
VDSTH  
LSS  
Current-sense input, positive-side  
DC input, drain-to-source monitor threshold voltage  
Gate-drive source return, low-side  
Gate-drive C output, low-side  
Load phase C input  
31  
32  
33  
36  
37  
38  
39  
40  
41  
42  
43  
44  
3
19  
1
20  
2
21  
3
GLC  
22  
4
SC  
26  
5
GHC  
Gate-drive C output, high-side  
Bootstrap capacitor C  
27  
6
CC  
28  
7
GLB  
Gate-drive B output, low-side  
Load phase B input  
29  
8
SB  
30  
9
GHB  
Gate-drive B output, high-side  
Bootstrap capacitor B  
31  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
CB  
32  
GLA  
Gate-drive A output, low-side  
Load phase A input  
33  
SA  
34  
GHA  
Gate-drive A output, high-side  
Bootstrap capacitor A  
4
38  
CA  
5
39  
VREG  
VDRAIN  
VBOOST  
BOOSTS  
BOOSTD  
VBAT  
UVFLT  
OVFLT  
FAULT  
ALO  
Gate drive supply, positive  
6
40  
Kelvin connection to MOSFET high-side drains  
Boost supply output  
7
41  
8
42  
Boost switch, source  
9
43  
Boost switch, drain  
10  
13  
14  
15  
16  
17  
18  
19  
20  
21  
24  
25  
26  
27  
44  
Battery supply, positive  
46  
VBAT undervoltage fault output  
VBAT overvoltage fault output  
Active-low fault output, primary  
Gate control input A, low-side  
Gate control input A, high-side  
Gate control input B, high-side  
Gate control input B, low-side  
Gate control input C, low-side  
Gate control input C, high-side  
Gate output enable  
3
4
5
6
AHI  
7
BHI  
8
BLO  
9
CLO  
10  
CHI  
11  
ENABLE  
OVSET  
NC  
12  
DC input, overvoltage threshold setting for VBAT  
Not connected, no external connection allowed  
15  
1,2,13,14,23,24,  
25,35,36,37,47,48  
CSOUT  
VDD  
Current-sense amplifier output  
Logic supply, nominally +5 V  
Current-sense input, negative-side  
28  
29  
30  
16  
17  
18  
45  
34  
35  
36  
21  
CSN  
GND  
Ground, dc supply returns, negative, and (for ED package) 1, 2, 11, 12,  
heat sink tab 22, 23, 34, 35  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
8
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
Terminal Descriptions  
AHI/BHI/CHI. Direct control of high-side gate outputs GHA/  
GHB/GHC. Logic “1” drives the gate “on”. Logic ”0” pulls the  
gate down, turning off the external power MOSFET. Internally  
pulled down when terminal is open.  
GND. Ground or negative side of VDD and VBAT supplies.  
LSS. Low-side gate driver returns. Connects to the common  
sources in the low-side of the power MOSFET bridge.  
OVFLT. Logic “1” means that the VBAT exceeded the VBAT  
overvoltage trip point set by OVSET level. It will recover after  
a hysteresis below that maximum value. Normally has a high-  
impedance state.  
ALO/BLO/CLO. Direct control of low-side gate outputs GLA/  
GLB/GLC. Logic “1” drives the gate “on”. Logic ”0” pulls the  
gate down, turning off the external power MOSFET. Internally  
pulled down when terminal is open.  
OVSET. A positive, dc level that controls the VBAT overvolt-  
age trip point. Usually, provided from precision resistor divider  
network between VDD and GND, but can be held grounded for a  
preset value. When terminal is open, sets unspecified but high  
overvoltage trip point.  
BOOSTD. Boost converter switch drain connection.  
BOOSTS. Boost converter switch source connection.  
CA/CB/CC. High-side connection for bootstrap capacitor,  
positive supply for high-side gate drive. The bootstrap capacitor  
is charged to VREG when the output Sx terminal is low. When  
the output swings high, the voltage on this terminal rises with  
the output to provide the boosted gate voltage needed for n-  
channel power MOSFETs.  
SA/SB/SC. Directly connected to the motor terminals, these  
terminals sense the voltages switched across the load and are  
connected to the negative side of the bootstrap capacitors. Also,  
are the negative supply connection for the floating, high-side  
drivers.  
CSN. Input for current-sense, differential amplifier, inverting,  
negative side. Kelvin connection for ground side of current-  
sense resistor.  
UVFLT. Logic “1” means that VBAT is below its minimum  
value and will recover after a hysteresis above that minimum  
value. Has a high-impedance state. [If UVFLT and OVFLT are  
both in high-impedance state; then, at least, a thermal shutdown  
or VDD undervoltage has occurred.]  
CSOUT. Amplifier output voltage proportional to current  
sensed across an external low-value resistor placed in the  
ground-side of the power FET bridge.  
VBAT. Battery voltage, positive input and is usually connected  
to the motor voltage supply.  
CSP. Input for current-sense differential amplifier, non-  
inverting, positive side. Connected to positive side of sense  
resistor.  
VBOOST. Boost converter output, nominally 16 V, is also  
input to regulator for VREG. Has internal boost current and  
boost voltage control loops. In high-voltage systems is approxi-  
ENABLE. Logic “0” disables the gate control signals and  
switches off all the gate drivers “low” causing a “coast”. Can be  
used in conjunction with the gate inputs to PWM the load  
current. Internally pulled down when terminal is open.  
mately one diode drop below VBAT  
.
VDD. Logic supply, nominally +5 V.  
FAULT. Diagnostic logic output signal, when “low” indicates  
that one or more fault condition have occurred.  
VDRAIN. Kelvin connection for drain-to-source voltage  
monitor and is connected to high-side drains of MOSFET  
bridge. High impedance when terminal is open and registers as  
a short-to-ground fault on all motor phases.  
GHA/GHB/GHC. High-side gate-drive outputs for n-channel  
MOSFET drivers. External series gate resistors can control slew  
rate seen at the power driver gate; thereby, controlling the di/dt  
and dv/dt of Sx outputs.  
VDSTH. A positive, dc level that sets the drain-to-source  
monitor threshold voltage. Internally pulled down when  
terminal is open.  
GLA/GLB/GLC. Low-side gate drive outputs for external, n-  
channel MOSFET drivers. External series gate resistors can  
control slew rate.  
VREG. High-side, gate-driver supply, nominally, 13.5 V. Has  
low-voltage dropout (LDO) feature.  
www.allegromicro.com  
9
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
Functional Description  
Motor Lead Protection. A fault detection circuit monitors  
the voltage across the drain to source of the external MOSFETs.  
A fault is asserted “low” on the output terminal, FAULT, if the  
drain-to-source voltage of any MOSFET that is instructed to turn  
on is greater than the voltage applied to the VDSTH input terminal.  
When a high-side switch is turned on, the voltage from VDRAIN to  
the appropriate motor phase output, VSX, is examined. If the  
motor lead is shorted to ground before the high side is turned on,  
the measured voltage will exceed the threshold and the FAULT  
terminal will go “low”. Similarly, when a low-side MOSFET is  
turned on, the differential voltage between the motor phase  
(drain) and the LSS terminal (source) is monitored. VDSTH is set  
OVFLT. Asserts “high” when a VBAT overvoltage fault occurs  
and resets “low” after a recovery hysteresis. It has a high-  
impedance state when a thermal shutdown or VDD undervoltage  
occurs. The voltage at the OVSET terminal, VOVSET, controls  
the VBAT overvoltage set point VBAT(ov), i.e.,  
VBAT(ov) = (KBAT(ov) x VSET(ov)) + VBAT(ov)(0),  
where KBAT(ov) is the gain (12) and VBAT(ov)(0) is the value of  
VBAT(ov) when VSET(ov) is zero (~22.4). For valid formula, all  
variables must be in range and below maximum operating  
specification.  
UVFLT. Asserts “high” when a VBAT undervoltage fault occurs  
and resets “low” after a recovery hysteresis. It has a high-  
impedance state when a thermal shutdown or VDD undervoltage  
occurs. OVFLT and UVFLT are mutually exclusive by defini-  
tion.  
by a resistor divider to VDD  
.
The VDRAIN is intended to be a Kelvin connection for the high-  
side, drain-source monitor circuit. Voltage drops across the  
power bus are eliminated by connecting an isolated PCB trace  
from the VDRAIN terminal to the drain of the MOSFET bridge.  
This allows improved accuracy in setting the VDSTH threshold  
voltage. The low-side, drain-source monitor uses the LSS  
Current Sensing. A current-sense amplifier is provided to  
allow system monitoring of the load current. The differential  
amplifier inputs are intended to be Kelvin connected across a  
low-value sense resistor or current shunt. The output voltage is  
represented by:  
terminal, rather than VDRAIN, in comparing against VDSTH  
The A3935 merely reports these motor faults.  
.
VCSOUT = ( ILOAD x AV x RS) + VOS  
Fault Outputs. Transient faults on any of the fault outputs are  
to be expected during switching and will not disable the gate  
drive outputs. External circuitry or controller logic must  
determine if the faults represent a hazardous condition.  
where VOS is the output voltage calibrated at zero load current  
and AV is the differential amplifier gain of about 19.2. If either  
the CSP or CSN pin is open, the CSOUT pin will go to its  
maximum positive level.  
FAULT. This terminal will go active “low” when any of the  
following conditions occur:  
VBAT overvoltage,  
Shutdown. If a fault occurs because of excessive junction  
temperature or undervoltage on VDD or VBAT, all gate driver  
outputs are driven “low” until the fault condition is removed. In  
addition, the boost supply switch and the VREG are turned “off”  
until those undervoltages and junction temperatures recover.  
VBAT undervoltage,  
VREG undervoltage,  
Motor lead short-to-ground,  
Motor lead short-to-supply (or battery),  
Bridge (or VDRAIN) open,  
Boost Supply. VBOOST is controlled by an inner current-  
control loop, and by an outer voltage-feedback loop. The  
current-control loop turns “off” the boost switch for 5 µs  
whenever the voltage across the boost current-sense resistor  
exceeds 500 mV. A diode reverse-recovery current flows  
through the sense resistor whenever the boost switch turns “on”,  
which could turn it “off” again if not for the “blanking time”  
circuit. Adjustment of this external sense resistor determines the  
maximum current in the inductor. Whenever VBOOST exceeds the  
predefined threshold, nominally 16 V, the boost switch is  
inhibited.  
VDD undervoltage, or  
Thermal shutdown.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
10  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
Functional Description (cont’d)  
Input Logic  
ENABLE xLO  
xHI  
X
0
GLx GHx  
Mode of Operation  
0
1
1
1
1
X
0
0
1
1
0
0
0
1
0
0
0
1
0
0
All gate drive outputs low  
Both gate drive outputs low  
High side on  
1
0
Low side on  
1
XOR circuitry prevents shoot-through  
Fault Responses  
ENABLE  
Input  
Boost  
Reg.  
VREG  
Reg.  
Fault Mode  
No Fault  
FAULT OVFLT UVFLT  
GHx  
"
"
"
"
"
"
0
GLx  
"
"
"
"
"
"
0
X
1#  
1$  
1%  
X
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
Z
Z
0
0
0
0
0
0
1
Z
Z
ON  
ON  
ON  
ON  
Short-to-Battery  
Short-to-Ground  
ON  
ON  
Bridge (VDRAIN) Fault  
VREG Undervoltage  
VBAT Overvoltage  
ON  
ON  
ON  
ON  
X
OFF&  
OFF  
OFF  
OFF  
ON  
VBAT Undervoltage'  
VDD Undervoltage'  
Thermal Shutdown'  
X
OFF  
OFF  
OFF  
X
0
0
X
0
0
NOTES: x = “Little x ”indicates A, B, or C phase.  
X = “Capital X “ indicates a “don’t care”.  
Z = High-impedance state.  
" = Depends on xLO input, xHI input, and ENABLE. See Input Logic table.  
# = Short-to-battery can only be detected when the corresponding GLx = 1. This fault is not detected when ENABLE = 0.  
$ = Short-to-ground can only be detected when the corresponding GHx = 1. This fault is not detected when ENABLE = 0.  
% = Bridge fault appears as a short-to-ground fault on all motor phases. This fault is not detected when ENABLE = 0.  
& = Off, only because VBOOST VBAT is above the voltage threshold of the regulator’s voltage control loop.  
' = These faults are not only reported but action is taken by the internal logic to protect the A3935 and the system.  
www.allegromicro.com  
11  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
Package JP, 48-Pin LQFP  
Package ED, 44-Pin PLCC  
NC  
GHA  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
24 NC  
23 NC  
VDRAIN  
VBOOST  
BOOSTS  
BOOSTD  
GND  
7
8
39 CC  
CA  
22 GLC  
21 LSS  
20 VDSTH  
38 GHC  
37 SC  
VREG  
9
VDRAIN  
VBOOST  
BOOSTS  
BOOSTD  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
36 GLC  
35 GND  
CSP  
19  
18  
17  
16  
15  
CSN  
VDD  
CSOUT  
OVSET  
NC  
GND  
GND  
LSS  
34  
33  
32  
31  
30  
29  
VBAT  
UVFLT  
OVFLT  
FAULT  
ALO  
VDSTH  
CSP  
VBAT  
NC 47  
14  
13  
CSN  
VDD  
NC  
48  
NC  
Package LQ, 36-Pin SOIC  
CSP  
VDSTH  
LSS  
GLC  
SC  
1
2
36 CSN  
35 VDD  
3
34 CSOUT1  
33 OVSET  
32 ENABLE  
4
5
GHC  
CC  
CHI  
6
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
CLO  
7
GLB  
SB  
BLO  
8
BHI  
9
GHB  
CB  
AHI  
10  
11  
12  
13  
14  
ALO  
GLA  
SA  
FAULT  
OVFLT  
UVFLT  
VBAT  
GND  
GHA  
CA 15  
VREG 16  
VDRAIN 17  
VBOOST 18  
BOOSTD  
BOOSTS  
20  
19  
115 Northeast Cutoff, Box 15036  
12  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
A3935KED (PLCC)  
Dimensions in Inches  
(for reference only)  
Dimensions in Millimeters  
(controlling dimensions)  
NOTES: 1. Exact body and lead configuration at vendor’s option within limits shown.  
2. Lead spacing tolerance is non-cumulative.  
3. Webbed lead frame. Terminals 1, 2, 11, 12, 22, 23, 34, and 35 are internally one piece.  
4. Supplied in standard sticks/tubes of 27 devices or add “TR” to part number for tape and reel.  
www.allegromicro.com  
13  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
A3935KJP (LQFP)  
7º  
0º  
.20 0.008  
.09 0.004  
9
0.354  
5
BSC  
0.197  
BSC  
A
7
0.276  
BSC  
1
REF  
0.039  
48  
1
2
.75 0.030  
.45 0.018  
.25 0.010  
BSC  
Seating Plane  
Gauge Plane  
.27 0.011  
.17 0.007  
1.60 0.063  
1.40 0.055  
.50 .020  
BSC  
.15  
.05  
0.006  
0.002  
Dimensions in millimeters  
U.S. Customary dimensions (in.) in brackets, for reference only  
A
Exposed thermal pad (bottom surface)  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
14  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
A3935KLQ (SOIC)  
Dimensions in Inches  
(for reference only)  
Dimensions in Millimeters  
(controlling dimensions)  
NOTES: 1. Lead spacing tolerance is non-cumulative.  
2. Exact body and lead configuration at vendor’s option within limits shown.  
3. Supplied in standard sticks/tubes of 31 devices or add “TR” to part number for tape and reel.  
www.allegromicro.com  
15  
3935  
THREE-PHASE POWER  
MOSFET CONTROLLER  
The products described here are manufactured under one or more  
U.S. patents or U.S. patents pending.  
Allegro MicroSystems, Inc. reserves the right to make, from time to  
time, such departures from the detail specifications as may be required  
to permit improvements in the performance, reliability, or  
manufacturability of its products. Before placing an order, the user is  
cautioned to verify that the information being relied upon is current.  
Allegro products are not authorized for use as critical components  
in life-support devices or systems without express written approval.  
The information included herein is believed to be accurate and  
reliable. However, Allegro MicroSystems, Inc. assumes no responsi-  
bility for its use; nor for any infringement of patents or other rights of  
third parties which may result from its use.  
115 Northeast Cutoff, Box 15036  
Worcester, Massachusetts 01615-0036 (508) 853-5000  
16  

相关型号:

A3935KED

Half Bridge Based MOSFET Driver, 0.85A, PQCC44, PLASTIC, LCC-44
ALLEGRO

A3935KJP

3-PHASE POWER MOSFET CONTROLLER
ALLEGRO

A3935KLQ

3-PHASE POWER MOSFET CONTROLLER
ALLEGRO

A3935KLQ-T

3-Phase Power MOSFET Controller for Automotive Applications
ALLEGRO

A3935KLQTR

暂无描述
ALLEGRO

A3936-0000T

100 x 100, PCB Two Row
3M

A3936-0010T

100 x 100, PCB Two Row
3M

A3936-2000T

100 x 100, PCB Two Row
3M

A3936-2010T

100 x 100, PCB Two Row
3M

A3936SED

DMOS THREE-PHASE PWM MOTOR DRIVER
ALLEGRO

A3936SED-T

DMOS THREE-PHASE PWM MOTOR DRIVER
ALLEGRO

A3936SEDTR

Brushless DC Motor Controller, 3A, NMOS, PQCC44, PLASTIC, LCC-44
ALLEGRO