AKD4634 [AKM]

16-Bit Mono CODEC with ALC & MIC/SPK-AMP; 16位单声道编解码器与ALC & MIC / SPK- AMP
AKD4634
型号: AKD4634
厂家: ASAHI KASEI MICROSYSTEMS    ASAHI KASEI MICROSYSTEMS
描述:

16-Bit Mono CODEC with ALC & MIC/SPK-AMP
16位单声道编解码器与ALC & MIC / SPK- AMP

解码器 编解码器
文件: 总77页 (文件大小:959K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
[AK4634]  
AK4634  
= Preliminary =  
16-Bit Mono CODEC with ALC & MIC/SPK-AMP  
GENERAL DESCRIPTION  
The AK4634 is a 16-bit mono CODEC with Microphone-Amplifier and Speaker-Amplifier. Input circuits  
include a Microphone-Amplifier and an ALC (Automatic Level Control) circuit. Output circuits include a  
Speaker-Amplifier and Mono Line Output. The AK4634 is suitable for a moving picture of Digital Still  
Camera and etc. This speaker-Amplifier supports a Piezo Speaker. The AK4634 is housed in a  
space-saving 32-pin QFN 5mm x 5mm package.  
FEATURE  
1. 16-Bit Delta-Sigma Mono CODEC  
2. Recording Function  
1ch Mono Input  
MIC Amplifier: (0dB/+3dB/+6dB/+10dB/ +17dB/+20dB/+23dB/+26dB/+29dB/+32dB)  
Digital ALC (Automatic Level Control)  
(+36dB -54dB, 0.375dB Step, Mute)  
ADC Performance (MIC-Amp=+20dB)  
- S/(N+D): 84dB  
- DR, S/N: 86dB  
Wind-noise Reduction Emphasis  
5 band notch Filter  
3. Playback Function  
Digital ALC (Automatic Level Control)  
(+36dB -54dB, 0.375dB Step, Mute)  
Mono Line Output: S/(N+D) : 85dB, S/N : 93dB  
Mono Class-D Speaker-Amp  
- BTL Output  
- Output Power: 400mW @ 8Ω (SVDD=3.3V)  
- S/(N+D): 55dB (150mW@8Ω)  
Beep Generator  
4. Power Management  
5. PLL Mode:  
Frequencies:  
12MHz, 13.5MHz, 24MHz, 27MHz (MCKI pin)  
1fs (FCK pin)  
16fs, 32fs or 64fs (BICK pin)  
6. EXT Mode:  
Frequencies: 256fs, 512fs or 1024fs (MCKI pin)  
7. Sampling Rate:  
PLL Slave Mode (FCK pin): 7.35kHz ~ 48kHz  
PLL Slave Mode (BICK pin): 7.35kHz ~ 48kHz  
PLL Slave Mode (MCKI pin):  
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz  
PLL Master Mode:  
8kHz, 11.025kHz, 12kHz, 16kHz, 22.05kHz, 24kHz, 32kHz, 44.1kHz, 48kHz  
EXT Slave Mode / EXT Master Mode:  
7.35kHz ~ 48kHz (256fs), 7.35kHz ~ 26kHz (512fs), 7.35kHz ~ 13kHz (1024fs)  
8. Output Master Clock Frequency: 256fs  
9. Serial μP Interface: 3-wire, I2C Bus (Ver 1.0, 400kHz High Speed Mode)  
Rev. 0.5  
2007/10  
- 1 -  
[AK4634]  
10. Master / Slave Mode  
11. Audio Interface Format: MSB First, 2’s compliment  
ADC: DSP Mode, 16bit MSB justified, I2S  
DAC: DSP Mode, 16bit MSB justified, 16bit LSB justified, I2S  
12. Ta = - 30 85°C  
13. Power Supply  
Analog Supply (AVDD): 2.2 3.6V  
Digital Supply (DVDD): 1.6 3.6V  
Speaker Supply (SVDD): 2.2 4.0V  
14. Package: 29pin CSP, 2.5mm x 3.0mm, 0.5mm pitch  
Block Diagram  
AVDD  
VSS1  
VCOM  
DVDD  
VSS2  
PMMP  
MPI  
PDN  
MIC Power  
Supply  
I2C  
PMADC  
MIC/MICP  
LIN/MICN  
Mic  
A/D  
HPF  
MIC-Amp  
0dB /+3dB/+6dB/+10dB/+17dB/+20dB  
+23dB+26dB / +29dB / +32dB  
PMPFIL  
BICK  
FCK  
HPF  
LPF  
Audio  
I/F  
SDTO  
SDTI  
PMDAC  
&
PMAO  
5 Band  
EQ  
PMAO  
AOUT  
VOL  
(ALC)  
Line Out  
D/A  
SVDD  
VSS3  
PMDAC  
SMUTE DATT  
MCKO  
MCKI  
PMPLL  
PMSPK  
PLL  
SPP  
SPN  
VCOC  
Class-D  
SPK-AMP  
PMSPK  
Speaker  
BEEP  
Generator  
CSN/SDA  
CCLK/SCL  
CDTIO  
Control  
Register  
TET1  
TET2  
TET3  
Figure 1. AK4634 Block Diagram  
Rev. 0.5  
2007/10  
- 2 -  
[AK4634]  
Ordering Guide  
AK4634  
AKD4634  
30 +85°C  
29 pin CSP (0.5mm pitch)  
Evaluation board for AK4634  
Pin Layout  
6
5
4
Top View  
3
2
1
A
B
C
D
E
6
5
4
I2C  
DVDD  
MCKO  
SDTI  
VSS2  
SPN  
VSS3  
SVDD  
AOUT  
NC  
SDTO  
BICK  
SPP  
LIN/  
MICN  
MCKI  
MIC/  
MICP  
3
2
1
FCK  
PDN  
TST1  
A
CCLK/SCL  
CSN/SDA  
CDTIO  
TST2  
VSS1  
C
MPI  
VCOM  
AVDD  
D
VCOC  
TST3  
E
B
Top View  
Rev. 0.5  
2007/10  
- 3 -  
[AK4634]  
Compatibility with AK4633  
1. Function  
Function  
AK4633  
AK4634  
MIC-Amp  
0dB/+6dB/+10dB/+14dB  
+17dB/+20dB/+26dB/+32dB  
0dB/+3dB/+6dB/+10dB/+17dB/  
+20dB/+23dB/+26dB/+29dB/  
+32dB  
Single End of Analog Input  
LPF  
Notch Filter ( Equalizer)  
SPK-Amp  
1ch (MIC pin)  
Not Available  
2 band  
2ch (MIC pin / LIN pin)  
Available  
5 band  
Class-AB  
Class-D  
ALC Recovery Waiting Period  
4 steps  
8 steps  
(128fs ~ 1024fs)  
11.2896MHz, 12MHz,  
12.288MHz, 13.5MHz  
24MHz, 27MHz  
Analog Input  
(128fs ~ 16384fs)  
12MHz, 13.5MHz, 24MHz,  
27MHz  
Master Clock Mode  
PLL Mode Frequency  
BEEP Output  
Control Interface  
Package  
Generator circuit Included  
3-wire, I2C  
29 pin CSP:2.5mm x 3.0mm  
3-wire  
24pin QFN: 4.0mm x 4.0mm  
Rev. 0.5  
2007/10  
- 4 -  
[AK4634]  
PIN/FUNCTION  
No. Pin Name  
I/O  
-
Function  
1
NC  
No Connection. No internal bonding. This pin should be connected to the ground.  
TEST3 pin  
This pin should be open.  
Analog Power Supply Pin 2.2 ~ 3.6V  
2
TST3  
-
3
4
AVDD  
VSS1  
-
-
Ground Pin.  
TEST2 pin  
This pin should be open.  
TEST1 pin  
This pin should be open.  
5
TST2  
TST1  
-
-
6
7
NC  
-
I
No Connection. No internal bonding. This pin should be connected to the ground.  
CSN  
SDA  
Chip Select Pin (I2C pin = “L”)  
8
I/O Control Data Input/Output Pin (I2C pin = “H”)  
Power-Down Mode Pin  
“H”: Power up, “L”: Power down reset and initialize the control register.  
AK4634 should always be reset upon power-up.  
9
PDN  
I
Control Data Input/Output Pin (I2C pin = “L”)  
This pin should be connected to the ground. (I2C pin = “H”)  
10 CDTIO  
I/O  
CCLK  
I
I
Control Data Clock Pin (I2C pin = “L”)  
Control Data Clock Pin (I2C pin = “H”)  
11  
SCL  
12 FCK  
13 MCKI  
14 BICK  
15 SDTI  
16 SDTO  
17 I2C  
I/O Frame Clock Pin  
I
External Master Clock Input Pin  
I/O Audio Serial Data Clock Pin  
I
O
I
Audio Serial Data Input Pin  
Audio Serial Data Output Pin  
Control Mode Select Pin “H”: I2C Bus, “L”: 3-wire Serial  
18 MCKO  
19 DVDD  
20 VSS2  
21 NC  
O
-
Master Clock Output Pin  
Digital Power Supply Pin 1.6 ~ 3.6V  
Ground Pin.  
-
-
No Connection. No internal bonding. This pin should be connected to the ground.  
Speaker Amp Negative Output Pin  
22 SPN  
23 VSS3  
24 NC  
O
-
Ground Pin.  
-
No Connection. No internal bonding. This pin should be connected to the ground.  
Speaker Amp Negative Output Pin  
25 SPP  
O
-
26 SVDD  
27 AOUT  
Speaker Amp Power Supply Pin 2.2 ~4.0V  
Mono Line Output Pin  
O
I
LIN  
28  
Line Input Pin for Single Ended Input  
(MDIF bit = “0”)  
(MDIF bit = “1”)  
(MDIF bit = “0”)  
(MDIF bit = “1”)  
MICN  
I
Microphone Negative Input Pin for Differential Input  
Microphone Input Pin for Single Ended Input  
Microphone Positive Input Pin for Differential Input  
MIC Power Supply Pin for Microphone  
MIC  
29  
I
MICP  
I
30 MPI  
I
Common Voltage Output Pin, 0.45 x AVDD  
Bias voltage of ADC inputs and DAC outputs.  
Output Pin for Loop Filter of PLL Circuit  
31 VCOM  
O
O
32 VCOC  
This pin should be connected to VSS1 with one resistor and capacitor in series.  
Note : All input pins except analog input pins (MIC/MICP, LIN/MICN pins) must not be left floating  
Rev. 0.5  
2007/10  
- 5 -  
[AK4634]  
Handling of Unused Pin  
The unused I/O pins should be processed appropriately as below.  
Classification  
Analog  
Pin Name  
Setting  
These pins should be open  
MIC/MICP, LIN/MICN, MPI, AOUT,  
SPP, SPN, VCOC  
MCKI, SDTI  
These pins should be connected to VSS2  
When I2C pin = “H”, These pins should be  
connected to VSS2.  
Digital  
CDTIO  
MCKO, SDTO  
These pins should be open.  
ABSOLUTE MAXIMUM RATINGS  
(VSS1-3 =0V; Note 1)  
Parameter  
Symbol  
AVDD  
DVDD  
SVDD  
IIN  
min  
0.3  
0.3  
0.3  
-
max  
4.6  
4.6  
Units  
V
V
Power Supplies:  
Analog  
Digital  
Speaker-Amp  
4.6  
V
Input Current, Any Pin Except Supplies  
Analog Input Voltage (Note 2)  
Digital Input Voltage (Note 3)  
Ambient Temperature (powered applied)  
Storage Temperature  
±10  
mA  
V
VINA  
VIND  
Ta  
Tstg  
Pd  
0.3  
0.3  
40  
65  
-
AVDD+0.3  
DVDD+0.3  
85  
V
°C  
°C  
mW  
150  
400  
Maximum Power Dissipation (Note 4)  
Note 1. All voltages with respect to ground. VSS21, VSS2 and VSS3 must be connected to the same analog ground plane.  
Note 2. LIN/MICN, MIC/MICP pins  
Note 3. PDN, I2C, CSN/SDA, CCLK/SCL, CDTIO, SDTI, FCK, BICK, MCKI pins  
Pull-up resistors at SDA and SCL pins should be connected to (DVDD+0.3)V or less voltage.  
Note 4.When PCB wiring density is 100%. This power is the AK4634 internal dissipation that does not include power of  
externally connected speaker.  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
RECOMMENDED OPERATING CONDITIONS  
(VSS1-3=0V; Note 1)  
Parameter  
Symbol  
AVDD  
DVDD  
SVDD  
Min  
2.2  
1.6  
typ  
3.3  
3.3  
3.3  
max  
3.6  
3.6  
Units  
V
V
Power Supplies Analog  
(Note 5)  
Digital  
Speaker-Amp  
2.2  
4.0  
V
Note 1. All voltages with respect to ground.  
Note 5. The power up sequence between AVDD, DVDD and SVDD is not critical.  
Do not power DVDD off when AVDD or SVDD is powered up.  
When only AVDD or SVDD is powered OFF, the AK4634 must be reset by bringing the PDN pin “L” after  
theses power supplies are powered ON again. The power supply current of DVDD at power-down mode may be  
increased. DVDD should not be powered OFF while AVDD or SVDD is powered ON.  
* AKEMD assumes no responsibility for the usage beyond the conditions in this datasheet.  
Rev. 0.5  
2007/10  
- 6 -  
 
[AK4634]  
ANALOG CHRACTERISTICS  
(Ta=25°C; AVDD = DVDD = SVDD=3.3V; VSS1-3 =0V; fs=8kHz, BICK=64fs; Signal Frequency=1kHz; 16bit Data;  
Measurement frequency=20Hz 3.4kHz; EXT Slave Mode; unless otherwise specified)  
Parameter  
min  
typ  
max  
Units  
MIC Amplifier: MIC, LIN pins ; MDIF bit = 0; (Single-ended input)  
Input Resistance  
Gain  
20  
-
-
-
-
-
-
-
-
30  
0
40  
-
-
-
-
-
-
-
-
kΩ  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(MGAIN3-0 bits = 0000)  
(MGAIN3-0 bits = 0001)  
(MGAIN3-0 bits = 0010)  
(MGAIN3-0 bits = 0011)  
(MGAIN3-0 bits = 0100)  
(MGAIN3-0 bits = 0101)  
(MGAIN3-0 bits = 0110)  
(MGAIN3-0 bits = 0111)  
(MGAIN3-0 bits = 1000)  
(MGAIN3-0 bits = 1001)  
20  
26  
32  
10  
17  
23  
29  
3
-
-
-
-
6
MIC Amplifier: MICP, MICN pins ; MDIF bit = 1; (Full-differential input)  
Input Voltage  
(Note 6)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.228  
0.114  
0.057  
0.720  
0.322  
0.161  
0.080  
1.14  
Vpp  
Vpp  
Vpp  
Vpp  
Vpp  
Vpp  
Vpp  
Vpp  
(MGAIN3-0 bits = 0001)  
(MGAIN3-0 bits = 0010)  
(MGAIN3-0 bits = 0011)  
(MGAIN3-0 bits = 0100)  
(MGAIN3-0 bits = 0101)  
(MGAIN3-0 bits = 0110)  
(MGAIN3-0 bits = 0111)  
(MGAIN3-0 bits = 1001)  
MIC Power Supply: MPI pin  
Output Voltage  
Load Resistance  
Load Capacitance  
(Note 7)  
TBD  
2
-
2.64  
-
-
TBD  
-
30  
V
kΩ  
pF  
ADC Analog Input Characteristics: MIC/LIN Æ ADC, MIC Gain=20dB, IVOL=0dB, ALC1bit = 0”  
Resolution  
Input Voltage (MIC Gain=20dB, Note 8)  
S/(N+D)  
D-Range  
S/N  
-
-
0.198  
84  
86  
86  
16  
TBD  
-
-
-
Bits  
Vpp  
dB  
dB  
dB  
TBD  
TBD  
TBD  
TBD  
(1dBFS) (Note 9)  
(60dBFS)  
DAC Characteristics:  
Resolution  
16  
Bits  
Mono Line Output Characteristics: AOUT pin, DAC AOUT, RL=10kΩ  
Output Voltage (Note 10) LOVL bit = “0”  
LOVL bit = “1”  
TBD  
TBD  
TBD  
TBD  
TBD  
10  
1.98  
2.50  
85  
93  
93  
-
TBD  
TBD  
-
-
-
Vpp  
Vpp  
dB  
dB  
dB  
S/(N+D)  
D-Range  
S/N  
(0dBFS) (Note 9)  
(-60dBFS)  
Load Resistance  
Load Capacitance  
-
30  
kΩ  
pF  
-
-
Speaker-Amp Characteristics: SDTI Æ SPP/SPN pins, ALC2 bit = 0, SPKG bit = “0”, RL=8Ω + 10μH,  
BTL = SVDD=3.3V  
Output Power (0dBFS)  
S/(N+D) 400mW output  
150mW output  
Output Noise Level  
Load Resistance  
Load Capacitance  
(Note 11)  
-
-
-
400  
20  
55  
-80  
-
-
-
-
-
-
mW  
dB  
dB  
dBV  
Ω
TBD  
8
-
-
30  
pF  
Rev. 0.5  
2007/10  
- 7 -  
[AK4634]  
Parameter  
Min  
Typ  
max  
Units  
Speaker-Amp Characteristics: SDTI SPP/SPN pins, ALC2 bit = “0”, SPKG bit = “0”, CL=3μF, Rseries=10Ω x 2,  
BTL, SVDD=3.8V  
Output Voltage (0dBFS)  
S/(N+D) (Note 12)  
Output Noise Level (Note 12)  
Load Impedance (Note 13)  
Load Capacitance  
(Note 11)  
-
-
-
50  
-
2.5  
20  
-68  
-
-
-
-
-
3
Vrms  
dB  
dBV  
Ω
μF  
-
Power Supplies  
Power Up (PDN pin = “H”)  
All Circuit Power-up: (Note 17)  
AVDD+DVDD  
fs=8kHz  
fs=48kHz  
-
-
9
12  
-
mA  
mA  
TBD  
SVDD: Speaker-Amp Normal Operation (No Output)  
SVDD=3.3V  
Power Down (PDN pin = “L”) (Note 18)  
AVDD+DVDD+SVDD  
-
1.5  
1
TBD  
TBD  
mA  
-
μA  
Note 6. The voltage difference between MICP and MICN pins. AC coupling capacitor should be connected in series at  
each input pin. Full-differential mic input is not available at MGAIN3-0 bits = “1000” or “0000”. Maximum input  
voltage of MICP and MICN pins are proportional to AVDD voltage, respectively.  
Vin = |(MICP) (MICN)| = 0.069 x AVDD(max)@MGAIN3-0 bits = “0001”,  
0.035 x AVDD(max)@MGAIN3-0 bits = “0010”, 0.017 x AVDD(max)@MGAIN3-0 bits = “0011”,  
0.218x AVDD(max)@MGAIN3-0 bits = “0100”, 0.097x AVDD(max)@MGAIN3-0 bits = “0101”,  
0.048x AVDD(max)@MGAIN3-0 bits = “0110”, 0.024x AVDD(max)@MGAIN3-0 bits = “0111”,  
0.345x AVDD(max)@MGAIN3-0 bits = “1001”  
When the signal larger than above value is input to MICP or MICN pin, ADC does not operate normally.  
Note 7. Output voltage is proportional to AVDD voltage. Vout = 0.8 x AVDD (typ)  
Note 8. Input voltage is proportional to AVDD voltage. Vin = 0.06 x AVDD (typ)  
Note 9. When a PLL reference clock is the FCK pin in PLL Slave Mode, S/ (N+D) of MICÆADC is 75dB (typ), S/  
(N+D) of DACÆAOUT is 75dB (typ).  
Note 10. Output voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ)@LOVL bit = “0”.  
Note 11. The value after passing LPF (LPF : Passband is 20kHz or less, Stopband Attenuation@250kHz is –50dB or less)  
Note 12. In case of measuring at between the SPP pin and SPN pin directly.  
Note 13. Load impedance is total impedance of series resistance (Rseries) and piezo speaker impedance at 1kHz in  
Figure 44. Load capacitance is capacitance of piezo speaker. When piezo speaker is used, 10Ω or more series  
resistors should be connected at both SPP and SPN pins, respectively.  
Note 14. Maximum input voltage is in proportion to both AVDD and external input resistance (Rin). Vin = 0.6 x AVDD  
x Rin/20kΩ (typ).  
Note 15. Output voltage is proportional to AVDD voltage. Vout = 0.6 x AVDD (typ).  
Note 16. Input Voltage does not depend on AVDD voltage.  
Note 17. PLL Master Mode (MCKI = 12MHz) and PMMP = PMADC = PMDAC = PMPFIL = PMSPK = PMVCM =  
PMPLL = MCKO = PMAO = M/S = “1”. And output current from the MPI pin is 0mA.  
EXT Slave Mode (PMPLL = M/S = MCKO bits = “0”): AVDD+DVDD = (typ) TBDmA@fs=8kHz,  
(typ)TBDmA @fs=48kHz  
Note 18. All digital inputs pins are fixed to DVDD or VSS2.  
Rev. 0.5  
2007/10  
- 8 -  
 
[AK4634]  
FILTER CHRACTERISTICS  
(Ta = 30 85°C; AVDD = 2.2 3.6V; DVDD = 1.6 3.6V, SVDD = 2.2 4.0V; fs=8kHz)  
Parameter  
Symbol  
min  
typ  
max  
Units  
ADC Digital Filter (Decimation LPF):  
Passband  
(Note 19) ±0.16dB  
0.66dB  
PB  
0
-
-
-
4.7  
-
-
3.5  
3.6  
4.0  
-
3.0  
-
-
-
kHz  
kHz  
kHz  
kHz  
kHz  
dB  
1.1dB  
6.9dB  
Stopband  
Passband Ripple  
(Note 19)  
SB  
PR  
-
-
±0.1  
Stopband Attenuation  
SA  
GD  
ΔGD  
73  
-
-
-
16  
0
-
-
-
dB  
1/fs  
μs  
Group Delay  
(Note 20)  
Group Delay Distortion  
DAC Digital Filter (Decimation LPF):  
Passband  
(Note 19)  
±0.16dB  
0.54dB  
1.0dB  
6.7dB  
PB  
0
-
-
-
4.7  
-
-
3.5  
3.6  
4.0  
-
3.0  
-
-
-
dB  
Stopband  
Passband Ripple  
(Note 19)  
SB  
PR  
-
kHz  
dB  
-
±0.1  
Stopband Attenuation  
SA  
GD  
ΔGD  
73  
-
-
-
16  
0
-
-
-
dB  
1/fs  
μs  
Group Delay  
(Note 20)  
Group Delay Distortion  
DAC Digital Filter + Analog Filter:  
Frequency Response: 0 3.4kHz  
FR  
-
±1.0  
-
dB  
Note 19. The passband and stopband frequencies are proportional to fs (system sampling rate).  
For example, ADC of PB = 3.6kHz is 0.45*fs (@ 1.0dB). A reference of frequency response is 1kHz.  
Note 20. The calculated delay time caused by digital filtering. This time is from the input of analog signal to setting of the  
16-bit data of a channel from the input register to the output register of the ADC. For the DAC, this time is from  
setting the 16-bit data of a channel from the input register to the output of analog signal. When there is not a  
phase change with the IIR filter, the group delay of the programmable filter (primary HPF + primary LPF +  
5-band Equalizer + ALC) increases for 2/fs than a value of an above mention.  
DC CHRACTERISTICS  
(Ta = 30 ~ 85°C; AVDD = 2.2 3.6V, DVDD = 1.6 3.6V, SVDD = 2.2 4.0V)  
Parameter  
Symbol  
min  
typ  
max  
Units  
V
V
V
V
High-Level Input Voltage  
(DVDD 2.2V)  
(DVDD < 2.2V)  
(DVDD 2.2V)  
(DVDD < 2.2V)  
(Iout = 80μA)  
VIH  
70%DVDD  
80%DVDD  
-
-
-
-
-
-
-
Low-Level Input Voltage  
VIL  
-
-
30%DVDD  
20%DVDD  
-
High-Level Output Voltage  
Low-Level Output Voltage  
VOH  
DVDD0.2  
V
(Except SDA pin: Iout = 80μA) VOL1  
(SDA pin, 2.0V DVDD 3.6V: Iout = 3mA) VOL2  
(SDA pin, 1.6V DVDD < 2.0V: Iout = 3mA) VOL2  
-
-
-
-
-
-
-
-
0.2  
0.4  
20%DVDD  
±10  
V
V
Input Leakage Current  
Iin  
μA  
Rev. 0.5  
2007/10  
- 9 -  
 
[AK4634]  
SWITING CHARACTERISTICS  
(Ta = 30 ~ 85°C; AVDD = 2.2 3.6V, DVDD = 1.6 3.6V, SVDD = 2.2 4.0V; CL = 20pF)  
Parameter  
Symbol  
min  
typ  
max  
Units  
PLL Master Mode (PLL Reference Clock = MCKI pin) (Figure 2)  
MCKI Input: Frequency  
Pulse Width Low  
Pulse Width High  
MCKO Output:  
fCLK  
tCLKL  
tCLKH  
11.2896  
0.4/fCLK  
0.4/fCLK  
-
-
-
27.0  
MHz  
ns  
-
-
ns  
Frequency  
fMCK  
dMCK  
dMCK  
fFCK  
-
40  
-
256 x fFCK  
-
kHz  
%
Duty Cycle except fs=29.4kHz, 32kHz  
fs =29.4kHz, 32kHz (Note 21)  
FCK Output: Frequency  
Pulse width High  
50  
33  
-
60  
-
%
8
48  
kHz  
(DIF1-0 bits = “00” and FCKO bit = “1”)  
Duty Cycle  
tFCKH  
-
tBCK  
-
ns  
(DIF1-0 bits = “00” or FCKO bit = “0”)  
BICK: Period (BCKO1-0 = “00”)  
(BCKO1-0 = “01”)  
dFCK  
tBCK  
tBCK  
tBCK  
dBCK  
-
-
-
-
-
50  
-
-
-
-
-
%
ns  
ns  
ns  
%
1/16fFCK  
1/32fFCK  
1/64fFCK  
50  
(BCKO1-0 = “10”)  
Duty Cycle  
Audio Interface Timing  
DSP Mode: (Figure 3, Figure 4)  
FCK “” to BICK “” (Note 22)  
FCK “” to BICK “” (Note 23)  
BICK “” to SDTO (BCKP = “0”)  
BICK “” to SDTO (BCKP = “1”)  
SDTI Hold Time  
tDBF  
tDBF  
tBSD  
tBSD  
tSDH  
tSDS  
0.5 x tBCK 40 0.5 x tBCK  
0.5 x tBCK 40 0.5 x tBCK  
0.5 x tBCK + 40  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 x tBCK +40  
-70  
-70  
50  
-
-
-
-
70  
70  
-
SDTI Setup Time  
50  
-
Except DSP Mode: (Figure 5)  
BICK “” to FCK Edge  
FCK to SDTO (MSB)  
tBFCK  
tFSD  
40  
70  
-
-
40  
70  
ns  
ns  
(Except I2S mode)  
BICK “” to SDTO  
SDTI Hold Time  
tBSD  
tSDH  
tSDS  
70  
50  
-
-
-
70  
-
ns  
ns  
ns  
SDTI Setup Time  
50  
-
Rev. 0.5  
2007/10  
- 10 -  
[AK4634]  
Parameter  
Symbol  
min  
typ  
max  
Units  
PLL Slave Mode (PLL Reference Clock: FCK pin) (Figure 6, Figure 7)  
FCK: Frequency  
DSP Mode: Pulse Width High  
Except DSP Mode: Duty Cycle  
BICK: Period  
fFCK  
tFCKH  
duty  
7.35  
8
-
-
-
-
-
48  
kHz  
ns  
tBCK60  
45  
1/fFCKtBCK  
55  
%
tBCK  
1/64fFCK  
0.4 x tBCK  
0.4 x tBCK  
1/16fFCK  
ns  
Pulse Width Low  
Pulse Width High  
tBCKL  
tBCKH  
-
-
ns  
ns  
PLL Slave Mode (PLL Reference Clock: BICK pin) (Figure 6, Figure 7)  
FCK: Frequency  
DSP Mode: Pulse width High  
fFCK  
tFCKH  
duty  
7.35  
8
48  
kHz  
ns  
tBCK60  
-
1/fFCKtBCK  
Except DSP Mode: Duty Cycle  
BICK: Period (PLL3-0 bit = “0001”)  
(PLL3-0 bit = “0010”)  
45  
-
55  
-
%
tBCK  
tBCK  
tBCK  
tBCKL  
tBCKH  
-
1/16fFCK  
ns  
-
1/32fFCK  
-
ns  
(PLL3-0 bit = “0011”)  
-
1/64fFCK  
-
ns  
Pulse Width Low  
0.4 x tBCK  
0.4 x tBCK  
-
-
-
ns  
Pulse Width High  
-
ns  
PLL Slave Mode (PLL Reference Clock: MCKI pin) (Figure 8)  
MCKI Input: Frequency  
Pulse Width Low  
Pulse Width High  
MCKO Output:  
fCLK  
fCLKL  
fCLKH  
11.2896  
0.4/fCLK  
0.4/fCLK  
-
-
-
27.0  
MHz  
ns  
-
-
ns  
Frequency  
fMCK  
dMCK  
dMCK  
fFCK  
-
256 x fFCK  
-
kHz  
%
Duty Cycle except fs=29.4kHz, 32kHz  
fs=29.4kHz, 32kHz (Note 21)  
FCK: Frequency  
40  
-
50  
33  
-
60  
-
%
8
48  
kHz  
ns  
DSP Mode: Pulse width High  
Except DSP Mode: Duty Cycle  
BICK: Period  
tFCKH  
duty  
tBCK60  
45  
-
1/fFCKtBCK  
-
55  
%
tBCK  
1/64fFCK  
0.4 x tBCK  
0.4 x tBCK  
-
1/16fFCK  
ns  
Pulse Width Low  
tBCKL  
tBCKH  
-
-
-
ns  
Pulse Width High  
-
ns  
Audio Interface Timing  
DSP Mode: (Figure 9, Figure 10)  
FCK “” to BICK “” (Note 22)  
FCK “” to BICK “” (Note 23)  
BICK “” to FCK “” (Note 22)  
BICK “” to FCK “” (Note 23)  
BICK “” to SDTO (BCKP bit= “0”)  
BICK “” to SDTO (BCKP bit= “1”)  
SDTI Hold Time  
tFCKB  
tFCKB  
tBFCK  
tBFCK  
tBSD  
tBSD  
tSDH  
tSDS  
0.4 x tBCK  
0.4 x tBCK  
0.4 x tBCK  
0.4 x tBCK  
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
-
-
50  
50  
80  
80  
-
SDTI Setup Time  
-
Except DSP Mode: (Figure 12)  
FCK Edge to BICK “” (Note 24)  
BICK “” to FCK Edge (Note 24)  
FCK to SDTO (MSB) (Except I2S mode)  
BICK “” to SDTO  
tFCKB  
tBFCK  
tFSD  
tBSD  
tSDH  
tSDS  
50  
50  
-
-
50  
50  
-
-
-
-
-
-
-
-
80  
80  
-
ns  
ns  
ns  
ns  
ns  
ns  
SDTI Hold Time  
SDTI Setup Time  
-
Rev. 0.5  
2007/10  
- 11 -  
[AK4634]  
Parameter  
Symbol  
min  
typ  
max  
Units  
EXT Slave Mode (Figure 11)  
MCKI Frequency: 256fs  
512fs  
fCLK  
fCLK  
fCLK  
tCLKL  
tCLKH  
fFCK  
1.8816  
3.7632  
7.5264  
0.4/fCLK  
0.4/fCLK  
7.35  
2.048  
12.288  
MHz  
MHz  
MHz  
ns  
4.096  
13.312  
1024fs  
8.192  
13.312  
Pulse Width Low  
Pulse Width High  
FCK Frequency (MCKI = 256fs)  
(MCKI = 512fs)  
(MCKI = 1024fs)  
Duty Cycle  
-
-
-
-
ns  
8
8
8
-
48  
26  
13  
55  
-
kHz  
kHz  
%
fFCK  
7.35  
fFCK  
7.35  
duty  
45  
BICK Period  
tBCK  
tBCKL  
tBCKH  
312.5  
130  
-
ns  
ns  
ns  
BICK Pulse Width Low  
Pulse Width High  
-
-
130  
-
-
Audio Interface Timing (Figure 12)  
FCK Edge to BICK “” (Note 24)  
BICK “” to FCK Edge (Note 24)  
FCK to SDTO (MSB) (Except I2S mode)  
BICK “” to SDTO  
tFCKB  
tBFCK  
tFSD  
50  
50  
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
80  
80  
-
tBSD  
tSDH  
tSDS  
-
SDTI Hold Time  
50  
50  
SDTI Setup Time  
-
Rev. 0.5  
2007/10  
- 12 -  
[AK4634]  
Parameter  
Symbol  
min  
typ  
max  
Units  
EXT Master Mode (Figure 2)  
MCKI Frequency: 256fs  
512fs  
fCLK  
fCLK  
fCLK  
tCLKL  
tCLKH  
fFCK  
fFCK  
fFCK  
dFCK  
tBCK  
tBCK  
tBCK  
dBCK  
1.8816  
2.048  
12.288  
MHz  
MHz  
MHz  
ns  
3.7632  
4.096  
13.312  
1024fs  
7.5264  
8.192  
13.312  
Pulse Width Low  
Pulse Width High  
FCK Frequency (MCKI = 256fs)  
(MCKI = 512fs)  
0.4/fCLK  
-
-
-
0.4/fCLK  
-
ns  
7.35  
8
48  
26  
13  
-
kHz  
kHz  
kHz  
%
7.35  
8
8
(MCKI = 1024fs)  
Duty Cycle  
7.35  
-
-
-
-
-
50  
BICK: Period (BCKO1-0 bit = “00”)  
(BCKO1-0 bit = “01”)  
(BCKO1-0 bit = “10”)  
Duty Cycle  
1/16fFCK  
1/32fFCK  
1/64fFCK  
50  
-
ns  
-
ns  
-
ns  
-
%
Audio Interface Timing  
DSP Mode: (Figure 3, Figure 4)  
FCK “” to BICK “” (Note 22)  
FCK “” to BICK “” (Note 23)  
BICK “” to SDTO (BCKP bit = “0”)  
BICK “” to SDTO (BCKP bit = “1”)  
SDTI Hold Time  
tDBF  
tDBF  
tBSD  
tBSD  
tSDH  
tSDS  
0.5 x tBCK40  
0.5 x tBCK40  
0.5 x tBCK  
0.5 x tBCK + 40  
ns  
ns  
ns  
ns  
ns  
ns  
0.5 x tBCK  
0.5 x tBCK +40  
70  
70  
50  
-
-
-
-
70  
70  
-
SDTI Setup Time  
50  
-
Except DSP Mode: (Figure 5)  
BICK “” to FCK Edge  
FCK to SDTO (MSB)  
tBFCK  
tFSD  
40  
70  
-
-
40  
70  
ns  
ns  
(Except I2S mode)  
BICK “” to SDTO  
SDTI Hold Time  
tBSD  
tSDH  
tSDS  
70  
50  
-
-
-
70  
-
ns  
ns  
ns  
SDTI Setup Time  
50  
-
Note 21. Duty Cycle = (the width of “L”)/(the period of clock)*100  
Note 22. MSBS, BCKP bits = “00” or “11”  
Note 23. MSBS, BCKP bits = “01” or “10”  
Note 24. BICK rising edge must not occur at the same time as FCK edge.  
Rev. 0.5  
2007/10  
- 13 -  
 
[AK4634]  
Parameter  
Symbol  
min  
typ  
max  
Units  
Control Interface Timing (3-wire Serial mode)  
CCLK Period  
tCCK  
tCCKL  
tCCKH  
tCDS  
tCDH  
tCSW  
tCSS  
tCSH  
tDCD  
tCCZ  
200  
80  
80  
40  
40  
150  
50  
50  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
70  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CCLK Pulse Width Low  
Pulse Width High  
CDTI Setup Time  
CDTI Hold Time  
CSN “H” Time  
CSN “” to CCLK “”  
CCLK “” to CSN “”  
CCLK “” to CDTI (at Read Command)  
CSN “” to CDTI (Hi-Z) (at Read Command)  
-
Control Interface Timing (I2C Bus mode):  
SCL Clock Frequency  
fSCL  
tBUF  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
-
-
-
-
-
-
-
0.3  
0.3  
-
400  
50  
kHz  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
pF  
ns  
Bus Free Time Between Transmissions  
Start Condition Hold Time (prior to first clock pulse)  
Clock Low Time  
1.3  
0.6  
1.3  
0.6  
0.6  
0
0.1  
-
-
tHD:STA  
tLOW  
tHIGH  
tSU:STA  
tHD:DAT  
tSU:DAT  
tR  
Clock High Time  
Setup Time for Repeated Start Condition  
SDA Hold Time from SCL Falling (Note 26)  
SDA Setup Time from SCL Rising  
Rise Time of Both SDA and SCL Lines  
Fall Time of Both SDA and SCL Lines  
Setup Time for Stop Condition  
tF  
tSU:STO  
Cb  
0.6  
-
0
Capacitive Load on Bus  
Pulse Width of Spike Noise Suppressed by Input Filter  
tSP  
Reset Timing  
PDN Pulse Width  
(Note 25, Note 26, Note 27)  
tPD  
150  
-
-
ns  
PMADC “” to SDTO valid  
(Note 28)  
ADRST bit = “0”  
ADRST bit = “1”  
tPDV  
tPDV  
-
-
1059  
291  
-
-
1/fs  
1/fs  
Note 25. I2C is a registered trademark of Philips Semiconductors.  
Note 26. RL = 1k/10% change ( Pull-up to DVDD)  
Note 27. The AK4634 can be reset by the PDN pin = “L”  
Note 28. This is the count of FCK “” from the PMADC = “1”.  
Rev. 0.5  
2007/10  
- 14 -  
 
[AK4634]  
Timing Diagram  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
tCLKL  
dFCK  
1/fFCK  
50%DVDD  
FCK  
dFCK  
1/fMCK  
MCKO  
50%DVDD  
tMCKOH  
tMCKOL  
dMCK = tMCKOL x fMCK x 100%  
Figure 2. Clock Timing (PLL/EXT Master mode) (MCKO is not available at EXT Master Mode)  
FCK  
50%DVDD  
tBCK  
tDBF  
dBCK  
BICK  
(BCKP = "0")  
50%DVDD  
50%DVDD  
BICK  
(BCKP = "1")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH  
VIL  
SDTI  
MSB  
Figure 3. Audio Interface Timing (PLL/EXT Master mode & DSP mode: MSBS = “0”)  
Rev. 0.5  
2007/10  
- 15 -  
 
[AK4634]  
FCK  
50%DVDD  
tBCK  
tDBF  
dBCK  
BICK  
(BCKP = "1")  
50%DVDD  
50%DVDD  
BICK  
(BCKP = "0")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH  
VIL  
SDTI  
MSB  
Figure 4. Audio Interface Timing (PLL/EXT Master mode & DSP mode: MSBS = “1”)  
50%DVDD  
FCK  
tBFCK  
dBCK  
BICK  
SDTO  
SDTI  
50%DVDD  
50%DVDD  
tFSD  
tBSD  
tSDS  
tSDH  
VIH  
VIL  
Figure 5. Audio Interface Timing (PLL/EXT Master mode & Except DSP mode)  
Rev. 0.5  
2007/10  
- 16 -  
 
[AK4634]  
1/fFCK  
VIH  
VIL  
FCK  
tFCKH  
tBCKH  
tBFCK  
tBCK  
VIH  
VIL  
BICK  
(BCKP = "0")  
tBCKL  
VIH  
VIL  
BICK  
(BCKP = "1")  
Figure 6. Clock Timing (PLL Slave mode; PLL Reference clock = FCK or BICK pin & DSP mode; MSBS = “0”)  
1/fFCK  
VIH  
FCK  
VIL  
tFCKH  
tBCKH  
tBFCK  
tBCK  
VIH  
VIL  
BICK  
(BCKP = "1")  
tBCKL  
VIH  
VIL  
BICK  
(BCKP = "0")  
Figure 7. Clock Timing (PLL Slave mode; PLL Reference Clock = FCK or BICK pin & DSP mode; MSBS = “1”)  
Rev. 0.5  
2007/10  
- 17 -  
 
[AK4634]  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
tCLKL  
1/fFCK  
VIH  
VIL  
FCK  
tFCKH  
tFCKL  
tBCK  
VIH  
VIL  
BICK  
tBCKH  
tBCKL  
1/fMCK  
50%DVDD  
MCKO  
tMCKOH  
tMCKOL  
dMCK = tMCKOL x fMCK x 100%  
Figure 8. Clock Timing (PLL Slave mode; PLL Reference Clock = MCKI pin & Except DSP mode)  
Rev. 0.5  
2007/10  
- 18 -  
 
[AK4634]  
tFCKH  
VIH  
VIL  
FCK  
tFCKB  
VIH  
VIL  
BICK  
(BCKP = "0")  
VIH  
VIL  
BICK  
(BCKP = "1")  
tBSD  
SDTO  
SDTI  
50%DVDD  
MSB  
tSDH  
tSDS  
VIH  
VIL  
MSB  
Figure 9. Audio Interface Timing (PLL Slave mode & DSP mode; MSBS = “0”)  
tFCKH  
VIH  
FCK  
VIL  
tFCKB  
VIH  
VIL  
BICK  
(BCKP = "1")  
VIH  
VIL  
BICK  
(BCKP = "0")  
tBSD  
SDTO  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH  
VIL  
SDTI  
MSB  
Figure 10. Audio Interface Timing (PLL Slave mode, DSP mode; MSBS = “1”)  
- 19 -  
Rev. 0.5  
2007/10  
 
[AK4634]  
1/fCLK  
VIH  
VIL  
MCKI  
tCLKH  
tCLKL  
1/fFCK  
VIH  
VIL  
FCK  
tFCKH  
tBCKH  
tFCKL  
tBCKL  
tBCK  
VIH  
VIL  
BICK  
Figure 11. Clock Timing (EXT Slave mode)  
VIH  
FCK  
VIL  
tBFCK  
tFCKB  
VIH  
VIL  
BICK  
SDTO  
SDTI  
tFSD  
tBSD  
50%DVDD  
MSB  
tSDS  
tSDH  
VIH  
VIL  
Figure 12. Audio Interface Timing (PLL, EXT Slave mode & Except DSP mode)  
Rev. 0.5  
2007/10  
- 20 -  
 
[AK4634]  
VIH  
CSN  
VIL  
tCSS  
tCCKL  
tCCKH  
VIH  
VIL  
CCLK  
CDTI  
tCCK  
tCDH  
tCDS  
VIH  
VIL  
C1  
C0  
R/W  
Figure 13. WRITE Command Input Timing  
tCSW  
VIH  
VIL  
CSN  
tCSH  
VIH  
VIL  
CCLK  
CDTI  
VIH  
VIL  
D2  
D1  
D0  
Figure 14. WRITE Data Input Timing  
Rev. 0.5  
2007/10  
- 21 -  
[AK4634]  
VIH  
CSN  
VIL  
VIH  
VIL  
CCLK  
CDTI  
tCCZ  
tDCD  
50%  
DVDD  
D3  
D2  
D1  
D0  
Figure 15. Read Data Output Timing  
VIH  
VIL  
SDA  
SCL  
tBUF  
tLOW  
tHIGH  
tF  
tR  
tSP  
VIH  
VIL  
tHD:STA  
Start  
tHD:DAT  
tSU:DAT  
tSU:STA  
Start  
tSU:STO  
Stop  
Stop  
Figure 16. I2C Bus Mode Timing  
PMADC  
bit  
tPDV  
SDTO  
50%DVDD  
Figure 17. Power Down & Reset Timing 1  
tPD  
PDN  
VIL  
Figure 18. Power Down & Reset Timing 2  
Rev. 0.5  
2007/10  
- 22 -  
[AK4634]  
OPERATION OVERVIEW  
System Clock  
There are the following five clock modes to interface with external devices. (Table 1 and Table 2)  
Mode  
PLL Master Mode  
PMPLL bit M/S bit  
PLL3-0 bit  
Table 4  
Figure  
Figure 19  
1
1
PLL Slave Mode 1  
(PLL Reference Clock: MCKI pin)  
PLL Slave Mode 2  
(PLL Reference Clock: FCK or BICK pin)  
EXT Slave Mode  
1
0
Table 4  
Table 4  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
1
0
0
0
0
1
x
x
EXT Master Mode  
Table 1. Clock Mode Setting (x: Don’t care)  
Mode  
MCKO bit  
MCKO pin  
MCKI pin  
BICK pin  
FCK pin  
Master Clock  
Input for PLL  
(Note 29)  
0
1
“L” Output  
16fs/32fs/64fs  
Output  
1fs  
Output  
PLL Master Mode  
256fs Output  
Master Clock  
Input for PLL  
(Note 29)  
0
1
“L” Output  
PLL Slave Mode 1  
(PLL Reference Clock: MCKI pin)  
1fs  
Input  
16fs  
Input  
256fs Output  
PLL Slave Mode 2  
(PLL Reference Clock: FCK or BICK pin)  
16fs/32fs/64fs  
Input  
1fs  
Input  
0
0
“L” Output  
“L” Output  
GND  
256fs/  
512fs/  
1024fs  
Input  
1fs  
Input  
32fs  
Input  
EXT Slave Mode  
256fs/  
512fs/  
1024fs  
Input  
32fs/64fs  
Output  
1fs  
Output  
EXT Master Mode  
0
“L” Output  
Note 29. 12MHz/13.5MHz/24MHz/27MHz  
Table 2. Clock pins state in Clock Mode  
Rev. 0.5  
2007/10  
- 23 -  
 
[AK4634]  
Master Mode/Slave Mode  
The M/S bit selects either master or slave modes. M/S bit = “1” selects master mode and “0” selects slave mode. When the  
AK4634 is in power-down mode (PDN pin = “L”) and exits reset state, the AK4634 is slave mode. After exiting reset  
state, the AK4634 changes to master mode by bringing M/S bit = “1”.  
When the AK4634 is in master mode, FCK and BICK pins are a floating state until M/S bit becomes “1”. The FCK and  
BICK pins of the AK4634 should be pulled-down or pulled-up by about 100kΩ resistor externally to avoid the floating  
state.  
M/S bit  
Mode  
0
1
Slave Mode  
Master Mode  
(default)  
Table 3. Select Master/Salve Mod  
PLL Mode  
When PMPLL bit is “1”, a fully integrated analog phase locked loop (PLL) generates a clock that is selected by the  
PLL3-0 and FS3-0 bits. The PLL lock time is shown in Table 4. Ether when the AK4634 is supplied to a stable clocks  
after PLL is powered-up (PMPLL bit = “0” “1”) or when the sampling frequency changes, the PLL lock time is the  
same.  
1) Setting of PLL Mode  
R and C of  
PLL Lock  
VCOC pin  
(Note 30)  
PLL3 PLL2 PLL1 PLL0 PLL Reference  
Input  
Frequency  
Mode  
Time  
bit  
bit  
bit  
bit  
Clock Input Pin  
(max)  
C[F]  
R[Ω]  
0
1
2
3
6
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
0
1
0
1
FCK pin  
BICK pin  
BICK pin  
BICK pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
N/A  
1fs  
16fs  
32fs  
6.8k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
220n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
10n  
160ms  
2ms  
2ms  
(default)  
64fs  
2ms  
12MHz  
24MHz  
13.5MHz  
27MHz  
20ms  
20ms  
20ms  
20ms  
7
12  
13  
Others  
1
10n  
Others  
Note 30. the tolerance of R is ±5%, the tolerance of C is ±30%  
Table 4. Setting of PLL Mode (*fs: Sampling Frequency, N/A: Not available)  
2) Setting of sampling frequency in PLL Mode.  
When PLL2 bit is “1” (PLL reference clock input is the MCKI pin), the sampling frequency is selected by FS2-0 bits as  
defined in Table 5.  
Mode  
0
1
2
3
4
5
6
7
10  
11  
14  
15  
Others  
FS3 bit  
FS2 bit  
FS1 bit  
FS0 bit  
Sampling Frequency  
8kHz  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
(default)  
12kHz  
16kHz  
24kHz  
7.35kHz  
11.025kHz  
14.7kHz  
22.05kHz  
32kHz  
48kHz  
29.4kHz  
44.1kHz  
N/A  
Others  
Table 5. Setting of Sampling Frequency at PLL2 bit = “1” and PMPLL bit = “1” (N/A: Not available)  
Rev. 0.5  
2007/10  
- 24 -  
 
[AK4634]  
When PLL2 bit is “0” (PLL reference clock input is FCK or BICK pin), the sampling frequency is selected by FS3-2  
bits. (Table 6)  
FS3 bit  
FS2 bit  
Sampling Frequency  
Range  
Mode  
FS1 bit  
FS0 bit  
0
0
1
0
1
0
x
x
x
0
1
2
x
x
x
(default)  
7.35kHz fs 12kHz  
12kHz < fs 24kHz  
24kHz < fs 48kHz  
N/A  
Others  
Others  
(x: Don’t care, N/A: Not available)  
Table 6. Setting of Sampling Frequency at PLL2 bit = “0” and PMPLL bit = “1”  
PLL Unlock State  
1) PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
In this mode, irregular frequency clocks are output from FCK, BICK and MCKO pins after PMPLL bit = “0” Æ “1” or  
sampling frequency is changed. After that PLL is unlocked, the BICK and FCK pins output “L” for a moment, and invalid  
frequency clock is output from the MCKO pin at MCKO bit = “1”. If the MCKO bit is “0”, MCKO pin is output to “L”.  
(Table 7)  
When sampling frequency is changed, BICK and FCK pins do not output irregular frequency clocks but go to “L” by  
setting PMPLL bit to “0”.  
MCKO pin  
MCKO bit = “0” MCKO bit = “1”  
PLL State  
BICK pin  
FCK pin  
After that PMPLL bit “0” Æ “1”  
PLL Unlock  
PLL Lock  
“L” Output  
“L” Output  
“L” Output  
Invalid  
Invalid  
256fs Output  
“L” Output  
Invalid  
See Table 9  
“L” Output  
Invalid  
1fs Output  
Table 7. Clock Operation at PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
2) PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)  
In this mode, an invalid clock is output from the MCKO pin after PMPLL bit = “0” Æ “1” or sampling frequency is  
changed. After that, 256fs is output from the MCKO pin when PLL is locked. ADC and DAC output invalid data when  
the PLL is unlocked. For DAC, the output signal should be muted by writing “0” to DACA and DACS bits in Addr=02H.  
MCKO pin  
PLL State  
MCKO bit = “0” MCKO bit = “1”  
After that PMPLL bit “0” Æ “1”  
PLL Unlock  
PLL Lock  
“L” Output  
“L” Output  
“L” Output  
Invalid  
Invalid  
Output  
Table 8. Clock Operation at PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)  
Rev. 0.5  
2007/10  
- 25 -  
 
[AK4634]  
PLL Master Mode (PMPLL bit = “1”, M/S bit = “1”)  
When an external clock (12MHz, 13.5MHz, 24MHz or 27MHz) is input to the MCKI pin, the MCKO, BICK and FCK  
clocks are generated by an internal PLL circuit. The MCKO output frequency is fixed to 256fs, the output is enabled by  
MCKO bit. The BICK is selected among 16fs, 32fs or 64fs, by BCKO1-0 bits. (Table 9)  
In DSP mode, FCK output can select Duty 50% or High-output only during 1 BICK cycle (Table 10). Except DSP mode,  
FCKO bit should be set “0”.  
When BICK output frequency is 16fs, the audio interface format supports Mode 0 only (DSP Mode).  
12MHz, 13.5MHz,  
24MHz, 27MHz  
AK4634  
DSP or μP  
MCKI  
256fs  
MCLK  
BCLK  
FCK  
MCKO  
BICK  
FCK  
16fs, 32fs, 64fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 19. PLL Master Mode  
BICK Output  
Frequency  
Mode  
BCKO1  
BCKO0  
0
1
2
3
0
0
1
1
0
1
0
1
16fs  
32fs  
64fs  
N/A  
(default)  
Table 9. BICK Output Frequency at Master Mode (N/A: Not available)  
Mode  
0
1
FCKO  
FCK Output  
Duty = 50%  
High Width = 1/fBCK  
0
1
(default)  
Note 31. fBCK is BICK Output Frequency.  
Table 10. FCK Output at PLL Master Mode and DSP Mode  
Rev. 0.5  
2007/10  
- 26 -  
 
[AK4634]  
PLL Slave Mode (PMPLL bit = “1”, M/S bit = “0”)  
A reference clock of PLL is selected among the input clocks to the MCKI, BICK or FCK pin. The required clock to the  
AK4634 is generated by an internal PLL circuit. Input frequency is selected by PLL3-0 bits. When BICK input frequency  
is 16fs, the audio interface format supports Mode 0 only (DSP Mode).  
a) PLL reference clock: MCKI pin  
BICK and FCK inputs should be synchronized with MCKO output. The phase between MCKO and FCK is not important.  
The MCKO pin outputs the frequency selected by FS3-0 bits (Table 5)  
12MHz, 13.5MHz,  
24MHz, 27MHz  
AK4634  
DSP or μP  
MCKI  
256fs  
MCLK  
BCLK  
FCK  
MCKO  
BICK  
FCK  
16fs, 32fs, 64fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 20. PLL Slave Mode 1 (PLL Reference Clock: MCKI pin)  
Rev. 0.5  
2007/10  
- 27 -  
 
[AK4634]  
b) PLL reference clock: BICK or LRCK pin  
Sampling frequency corresponds to 7.35kHz to 48kHz by changing FS3-0 bits. (Table 6)  
AK4634  
MCKO  
DSP or μP  
MCKI  
16fs, 32fs, 64fs  
BCLK  
FCK  
BICK  
FCK  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 21 PLL Slave Mode 2 (PLL Reference Clock: BICK pin)  
AK4634  
MCKO  
DSP or μP  
MCKI  
16fs  
BCLK  
FCK  
BICK  
FCK  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 22. PLL Slave Mode 2 (PLL Reference Clock: FCK pin)  
The external clocks (MCKI, BICK and FCK) should always be present whenever the ADC or DAC or SPK or  
Programmable Filter is in operation (PMADC bit = “1”, PMDAC bit = “1”, PMSPK bit = “1”, PMPFIL bit = “1”). If these  
clocks are not provided, the AK4634 may draw excess current and it is not possible to operate properly because utilizes  
dynamic refreshed logic internally. If the external clocks are not present, the ADC, DAC, SPK and Programmable Filter  
should be in the power-down mode.(PMADC = PMDAC = PMSPK = PMPFIL bits = “0”).  
Rev. 0.5  
2007/10  
- 28 -  
 
[AK4634]  
EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”)  
When PMPLL bit is “0”, the AK4634 becomes EXT Slave mode. Master clock is input from the MCKI pin, the internal  
PLL circuit is not operated. This mode is compatible with I/F of the normal audio CODEC. The clocks required to operate  
are MCKI (256fs, 512fs or 1024fs), FCK (fs) and BICK (32fs). The master clock (MCKI) should be synchronized with  
FCK. The phase between these clocks is not important. The input frequency of MCKI is selected by FS1-0 bits. (Table 11)  
Mode  
FS3-2 bits  
FS1 bit  
FS0 bit  
MCKI Input  
Frequency  
256fs  
Sampling Frequency  
Range  
x
x
x
x
0
1
0
1
(default)  
0
1
2
3
0
0
1
1
7.35kHz fs 48kHz  
7.35kHz fs 13kHz  
7.35kHz fs 26kHz  
7.35kHz fs 48kHz  
1024fs  
512fs  
256fs  
Table 11. MCKI Frequency at EXT Slave Mode (PMPLL bit = “0”, M/S bit = “0”) (x: Don’t care)  
External Slave Mode does not support Mode 0 (DSP Mode) of Audio Interface Format.  
The S/N of the DAC at low sampling frequencies is worse than at high sampling frequencies due to out-of-band noise.  
The out-of-band noise can be improved by using higher frequency of the master clock. (Table 12, Table 13)  
S/N (fs=8kHz, 20kHzLPF + A-weighted)  
MCKI  
DAC AOUT  
256fs  
512fs  
1024fs  
84dB  
92dB  
92dB  
Table 12. Relationship between MCKI and S/N of AOUT and SPK-Amp  
Output Noise Level  
(SVDD=3.3V,fs=8kHz, 20kHzLPF + A-weighted)  
MCKI  
SDTI SPK-Amp  
-73dBV  
256fs  
512fs  
-86dBV  
1024fs  
-88dBV  
Table 13. Relationship between MCKI and Output Noise Level of SPK-Amp  
The external clocks (MCKI, BICK and FCK) should always be present whenever the ADC or DAC or SPK or  
Programmable Filter is in operation (PMADC = PMDAC = PMSPK bit = PMPFIL bits = “1”). If these clocks are not  
provided, the AK4634 may draw excess current and it is not possible to operate properly because utilizes dynamic  
refreshed logic internally. If the external clocks are not present, the ADC, DAC, SPK and Programmable Filter should be  
in the power-down mode (PMADC = PMDAC = PMSPK bit = PMPFIL bits = “0”).  
AK4634  
MCKO  
DSP or μP  
256fs, 512fs or 1024fs  
MCKI  
BICK  
FCK  
MCLK  
BCLK  
FCK  
32fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 23. EXT Slave Mode  
Rev. 0.5  
2007/10  
- 29 -  
 
[AK4634]  
EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”)  
The AK4634 becomes EXT Master Mode by setting PMPLL bit = “0” and M/S bit = “1”. Master clock is input from the  
MCKI pin, the internal PLL circuit is not operated. The clock required to operate is MCKI (256fs, 512fs or 1024fs). The  
input frequency of MCKI is selected by FS1-0 bits (Table 14). The BICK is selected among 32fs or 64fs, by BCKO1-0  
bits (Table 15). FCK bit should be set to “0”.  
Mode  
FS3-2 bits  
FS1 bit  
FS0 bit  
MCKI Input  
Frequency  
256fs  
Sampling Frequency  
Range  
x
x
x
x
0
1
0
1
(default)  
0
1
2
3
0
0
1
1
7.35kHz fs 48kHz  
7.35kHz fs 13kHz  
7.35kHz fs 26kHz  
7.35kHz fs 48kHz  
1024fs  
512fs  
256fs  
Table 14. MCKI Frequency at EXT Master Mode (PMPLL bit = “0”, M/S bit = “1”) (x: Don’t care)  
External Master Mode does not support Mode 0 (DSP Mode) of Audio Interface Format.  
MCKI should always be present whenever the ADC, DAC, SPK or Programmable Filter is in operation (PMADC =  
PMDAC = PMSPK bit = PMPFIL bits = “1”). If MCKI is not provided, the AK4634 may draw excess current and it is not  
possible to operate properly because utilizes dynamic refreshed logic internally. If MCKI is not present, the ADC, DAC,  
SPK and Programmable Filter should be in the power-down mode (PMADC = PMDAC = PMSPK = PMPFIL bits = “0”).  
AK4634  
MCKO  
DSP or μP  
256fs, 512fs or 1024fs  
MCKI  
BICK  
FCK  
MCLK  
BCLK  
FCK  
32fs, 64fs  
1fs  
SDTI  
SDTO  
SDTI  
SDTO  
Figure 24. EXT Master Mode  
BICK Output  
Frequency  
Mode  
BCKO1  
BCKO0  
0
1
2
3
0
0
1
1
0
1
0
1
N/A  
32fs  
64fs  
N/A  
(default)  
Table 15. BICK Output Frequency at Master Mode (N/A: Not available)  
Rev. 0.5  
2007/10  
- 30 -  
 
[AK4634]  
Audio Interface Format  
Four types of data formats are available and are selected by setting the DIF1-0 bits. (Table 16) In all modes, the serial data  
is MSB first, 2’s complement format. Audio interface formats can be used in both master and slave modes. FCK and  
BICK are output from the AK4634 in master mode, but must be input to the AK4634 in slave mode.  
In Mode 1-3, the SDTO is clocked out on the falling edge of BICK and the SDTI is latched on the rising edge.  
Mode  
DIF1  
DIF0  
SDTO (ADC)  
DSP Mode  
SDTI (DAC)  
DSP Mode  
MSB justified  
MSB justified  
BICK  
16fs  
32fs  
32fs  
32fs  
Figure  
See Table 17  
Figure 25  
Figure 26  
Figure 27  
0
1
2
3
0
0
1
1
0
1
0
1
MSB justified  
MSB justified  
(default)  
I2S compatible I2S compatible  
Table 16. Audio Interface Format  
In Mode0 (DSP mode), the audio I/F timing is changed by BCKP and MSBS bits.  
When BCKP bit is “0”, SDTO data is output by rising edge of BICK, SDTI data is latched by falling edge of BICK.  
When BCKP bit is “1”, SDTO data is output by falling edge of BICK, SDTI data is latched by rising edge of BICK.  
MSB data position of SDTO and SDTI can be shifted by MSBS bit. The shifted period is a half of BICK.  
MSBS bit BCKP bit  
Audio Interface Format  
Figure 28  
0
0
1
1
0
1
0
1
(default)  
Figure 29  
Figure 30  
Figure 31  
Table 17. Audio Interface Format in Mode 0  
If 16-bit data, the output of ADC, is converted to 8-bit data by removing LSB 8-bit, “1” at 16bit data is converted to “1”  
at 8-bit data. And when the DAC playbacks this 8-bit data, “1” at 8-bit data will be converted to “256” at 16-bit data  
and this is a large offset. This offset can be removed by adding the offset of “128” to 16-bit data before converting to 8-bit  
data.  
FCK  
0
1
2
3
8
9
10 11  
12  
13 14  
15  
0
1
2
3
8
9
10 11  
12  
13 14  
15  
0
1
BICK(32fs)  
SDTO(o)  
15 14  
8
7
7
6
6
5
4
4
3
3
2
1
1
0
0
15  
15  
13  
SDTI(i)  
15 14  
5
2
13  
Don’t Care  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
BICK(64fs)  
SDTO(o)  
15 14 13  
2
1
0
15  
Don’t Care  
15:MSB, 0:LSB  
15 14  
1
0
Don’t Care  
SDTI(i)  
Data  
1/fs  
Figure 25. Mode 1 Timing  
Rev. 0.5  
2007/10  
- 31 -  
 
[AK4634]  
FCK  
0
1
2
8
9
10 11  
12  
13 14  
15  
0
1
2
8
9
10 11  
12  
13 14  
15  
0
1
BICK(32fs)  
SDTO(o)  
15 14  
8
8
7
7
6
6
5
4
4
3
3
2
1
1
0
0
15  
15  
SDTI(I)  
15 14  
5
2
Don’t Care  
0
1
2
3
14  
15 16  
17  
18  
31  
0
1
2
3
14  
14  
15 16  
17  
18  
31  
0
1
BICK(64fs)  
SDTO(o)  
SDTI(i)  
15 14 13 13  
2
2
1
1
0
0
15  
15  
15 14 13 13  
15:MSB, 0:LSB  
Don’t Care  
Don’t Care  
Data  
1/fs  
Figure 26. Mode 2 Timing  
FCK  
0
1
2
3
4
9
10 11  
12  
13 14  
15  
0
1
2
3
4
9
10 11  
12  
13 14  
15  
0
1
BICK(32fs)  
SDTO(o)  
15  
13  
7
7
7
6
5
5
4
4
3
2
2
1
1
0
0
14  
SDTI(i)  
15 14 13  
6
3
0
1
2
3
4
14  
15 16  
17  
18  
31  
0
1
2
3
4
14  
15 16  
17  
18  
31  
0
1
BICK(64fs)  
SDTO(o)  
15 14  
2
2
1
1
0
0
13  
15 14 13  
15:MSB, 0:LSB  
Don’t Care  
Don’t Care  
SDTI(i)  
Data  
1/fs  
Figure 27. Mode 3 Timing  
Rev. 0.5  
2007/10  
- 32 -  
 
[AK4634]  
FCK  
15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
2
2
BICK(16fs)  
SDTO(o)  
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
14  
14  
14  
14  
SDTI(i)  
15  
0
1
8
14  
15 16  
17  
18 29  
30 31  
0
1
8
8
9
10  
11  
12 13  
30 31  
0
2
2
BICK(32fs)  
SDTO(o)  
15  
15  
8
2
2
1
1
0
15  
15  
8
8
2
2
1
1
0
0
14  
14  
14  
14  
0
SDTI(i)  
Don’t Care  
Don’t Care  
1/fs  
1/fs  
15:MSB, 0:LSB  
Figure 28. Mode 0 Timing (BCKP = “0”, MSBS = “0”)  
FCK  
15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
2
2
BICK(16fs)  
SDTO(o)  
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
8
8
8
7
7
6
6
5
4
4
3
3
2
2
1
1
0
14  
14  
0
5
0
14  
14  
SDTI(i)  
15  
0
1
8
14  
15 16  
17  
18 29  
30 31  
0
1
8
8
9
10  
11  
12 13  
30 31  
0
2
2
BICK(32fs)  
SDTO(o)  
15  
15  
8
2
2
1
1
0
15  
15  
8
8
2
2
1
1
0
14  
14  
14  
14  
0
0
SDTI(i)  
Don’t Care  
Don’t Care  
1/fs  
1/fs  
15:MSB, 0:LSB  
Figure 29. Mode 0 Timing (BCKP = “1”, MSBS = “0”)  
Rev. 0.5  
2007/10  
- 33 -  
 
[AK4634]  
FCK  
15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
2
2
BICK(16fs)  
SDTO(o)  
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
14  
14  
14  
14  
SDTI(i)  
15  
0
1
8
14  
15 16  
17  
18 29  
30 31  
0
1
8
8
9
10  
11  
12 13  
30 31  
0
2
2
BICK(32fs)  
SDTO(o)  
15  
15  
8
2
2
1
1
0
15  
15  
8
8
2
2
1
1
0
0
14  
14  
14  
14  
0
SDTI(i)  
Don’t Care  
Don’t Care  
1/fs  
1/fs  
15:MSB, 0:LSB  
Figure 30. Mode 0 Timing (BCKP = “0”, MSBS = “1”)  
FCK  
15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
1
8
8
9
10  
11  
12 13  
14 15  
0
2
2
BICK(16fs)  
SDTO(o)  
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
15  
15  
8
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
14  
14  
14  
14  
SDTI(i)  
15  
0
1
8
14  
15 16  
17  
18 29  
30 31  
0
1
8
8
9
10  
11  
12 13  
30 31  
0
2
2
BICK(32fs)  
SDTO(o)  
15  
15  
8
2
2
1
1
0
15  
15  
8
8
2
2
1
1
0
14  
14  
14  
14  
0
0
SDTI(i)  
Don’t Care  
Don’t Care  
1/fs  
1/fs  
15:MSB, 0:LSB  
Figure 31. Mode 0 Timing (BCKP = “1”, MSBS = “1”)  
Rev. 0.5  
2007/10  
- 34 -  
 
[AK4634]  
System Reset  
When power-up, the PDN pin should be “L” and change to “H” after all power are supplied. “L” time of 150ns or more  
is needed to reset in the AK4634.  
The ADC enters an initialization cycle when the PMADC bit is changed from “0” to “1”. The initialization cycle time is  
1059/fs, or 133ms@fs = 8kHz. During the initialization cycle, the ADC digital data outputs of both channels are forced to  
a 2's compliment, “0”. The ADC output reflects the analog input signal after the initialization cycle is complete. The DAC  
does not require an initialization cycle.  
(Note) Off-set occurs in the initial data depending on the conditions of a microphone and cut-off frequency of HPF.  
When Off-set becomes a problem, lengthen initialization time of ADC as ADRST bit = “0” or do not use initial  
output data of ADC.  
Init Cycle  
ADRST bit  
Cycle  
1059/fs  
291/fs  
fs = 8kHz  
132.4ms  
36.4ms  
fs = 16kHz  
66.2ms  
18.2ms  
fs = 48kHz  
22.1ms  
0
1
6.1ms  
Table 18 Initialization cycle of ADC  
Thermal Shut Down  
When the internal device temperature rises up irregularly (e.g. output pins of speaker amplifier are shortened), the  
AK4634 is powered down automatically and then THDET bit becomes “1”. The powered-down speaker amplifier do not  
return to normal operation unless SPK-Amp blocks of the AK4634 are reset by the PDN pin “L”. The device status can be  
monitored by THDET bit.  
MIC/LINE Input Selector  
The AK4634 has an input selector. When MDIF bit is “0”, LIN bit selects the MIC pin or the LIN pin. When MDIF bit is  
“1”, full-differential input is available.  
MDIF bit  
LIN bit  
Input circuit  
Single-End  
Single-End  
Differential  
Input pin  
MIC pin  
LIN pin  
0
0
1
0
1
x
(default)  
MICP/MICN pin  
Table 19. Input Select (x: Don’t care)  
AK4634  
LIN bit  
MIC/MICP pin  
ADC  
LIN/MICN pin  
MDIF bit  
Figure 32 Input Selector  
Rev. 0.5  
2007/10  
- 35 -  
[AK4634]  
AK4634  
MIC-Power  
MIC-Amp  
MPI pin  
1k  
1k  
MICP pin  
MICNpin  
BICK pin  
FCK pin  
STDO pin  
Audio  
I/F  
A/D HPF  
Figure 33. MIC Differential Input Circuit  
MIC Gain Amplifier  
The AK4634 has a Gain Amplifier for Microphone input. These gains are selected by the MGAIN3-0 bit. The typical  
input impedance is 30kΩ.  
MGAIN3 bit  
MGAIN2 bit  
MGAIN1 bit  
MGAIN0 bit  
Input Gain  
0dB  
0
0
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
+20dB  
+26dB  
+32dB  
+10dB  
+17dB  
+23dB  
+29dB  
+3dB  
(default)  
+6dB  
Others  
N/A  
Table 20. Input Gain  
MIC Power  
The MPI pin supplies power for the Microphone. This output voltage is proportional to 0.8 x AVDD typically and the  
load resistance is minimum 2kΩ. Any capacitor must not be connected to the MPI pin, directly. (Figure 34)  
AK4634  
MIC-Power  
MPI pin  
2k  
Audio  
I/F  
MIC pin  
BICK pin  
FCK pin  
STDO pin  
A/D HPF  
MIC-Amp  
Figure 34. MIC Block Circuit  
Rev. 0.5  
2007/10  
- 36 -  
 
[AK4634]  
Digital Block  
The digital block consists of block diagram as shown in Figure 35. The AK4634 can choose various signal processing on  
a recording path or a playback path by setting ADCPF bit, PFDAC bit and PFSDO bit. (Figure 35 - Figure 38, Table 21)  
PMADC bit  
SDTI  
ADC  
1st Order  
HPFAD bit  
HPF  
“1”  
“0”  
ADCPF bit  
PMPFIL bit  
HPF bit  
1st Order  
HPF  
1st Order  
LPF bit  
LPF  
5 Band  
EQ5-1 bits  
EQ  
ALC  
(Volume)  
“0”  
“1”  
“1”  
“0”  
PFSDO bit  
PFDAC bit  
PMDAC bit  
DATT  
SDTO  
SMUTE  
DAC  
(1) ADC: Include the Digital Filter (LPF) for ADC as shown in “FILTER CHRACTERISTICS”.  
(2) DAC: Include the Digital Filter (LPF) for DAC as shown in “FILTER CHRACTERISTICS”.  
(3) HPF: High Pass Filter. Applicable to use as Wind-Noise Reduction Filter. (See “Digital Programmable Filter  
Circuit”.)  
(4) LPF: Low Pass Filter (See “Digital Programmable Filter Circuit”.)  
(5) 5-Band EQ: Applicable to use as Equalizer or Notch Filter. (See “Digital Programmable Filter Circuit”.)  
(6) ALC: Input Digital Volume with ALC function. (See “Input Digital Volume” and “ALC Operation”.)  
(7) DATT: 4-step Digital Volume for recording path. (See “Output Digital Volume 2”)  
(8) SMUTE: Soft mute. (See “SOFT MUTE”.)  
Figure 35. Digital Block Path Select  
Rev. 0.5  
2007/10  
- 37 -  
 
[AK4634]  
Mode  
ADCPF bit  
PFDAC bit  
PFSDO bit  
Figure  
Recording Mode  
Reproduction Mode  
Loop Back Mode  
1
0
1
0
1
1
1
0
1
Figure 36  
Figure 37  
Figure 38  
Table 21 Recording Reproduction Mode  
2nd Order  
HPF  
1st Order  
LPF  
5 Band  
EQ  
ALC  
(Volume)  
ADC  
DAC  
SMUTE  
DATT  
Figure 36. Path at Recording Mode (default)  
1st Order  
HPF  
ADC  
5 Band  
1st Order  
1st Order  
ALC  
(Volume)  
DAC  
SMUTE  
DATT  
EQ  
LPF  
HPF  
Figure 37. Path at Playback Mode  
2nd Order  
HPF  
1st Order  
LPF  
5 Band  
EQ  
ALC  
(Volume)  
ADC  
DAC  
SMUTE  
DATT  
Figure 38. Path at Recording & Playback Mode  
Rev. 0.5  
2007/10  
- 38 -  
 
[AK4634]  
Digital Programmable Filter Circuit  
The AK4634 has 2 steps of 1st order HPF, 1st order LPF and 5-band Equalizer built-in in a recording path and a playback  
path.  
(1) High Pass Filter (HPF)  
Normally, this HPF is used as a Wind-Noise Reduction Filter. This is composed with 2 steps of 1st order HPF. The  
coefficient of both HPF is the same and set by F1A13-0 bits and F1B13-0 bits. HPFAD bit controls ON/OFF of the 1st  
step HPF and HPF bit controls ON/OFF of the 2nd step HPF. When the HPF is OFF, the audio data passes this block by  
0dB gain. The coefficient should be set when HPFAD = HPF bits = “0” or PMADC = PMPFIL bits = “0”.  
fs : Sampling frequency  
fc : Cut-off frequency  
Register setting (Note 32)  
HPF: F1A[13:0] bits = A, F1B[13:0] bits = B  
(MSB = F1A13, F1B13; LSB = F1A0, F1B0)  
1
1tan (πfc/fs)  
1 + tan (πfc/fs)  
A =  
,
B =  
1 + tan (πfc/fs)  
The cut-off frequency should be set as below.  
fc/fs 0.0001 (fc min = 1.6Hz at 16kHz)  
(2) Low Pass Filter(LPF)  
This is composed with 1st order LPF. F2A13-0 bits and F2B13-0 bits set the coefficient of LPF. LPF bit controls ON/OFF  
of the LPF. When the LPF is OFF, the audio data passes this block by 0dB gain. The coefficient should be set when LPF  
bit = “0” or PMPFIL bits = “0”.  
fs : Sampling frequency  
fc : Cut-off frequency  
Register setting (Note 32)  
LPF: F2A[13:0] bits =A, F2B[13:0] bits =B  
(MSB=F2A13, F1B13; LSB=F2A0, F2B0)  
1
1 1 / tan (πfc/fs)  
1 + 1 / tan (πfc/fs)  
A =  
,
B =  
1 + 1 / tan (πfc/fs)  
The cut-off frequency should be set as below.  
fc/fs 0.05 (fc min = 2205Hz at 44.1kHz)  
Rev. 0.5  
2007/10  
- 39 -  
 
[AK4634]  
(3) 5-band Equalizer  
This block can be used as Equalizer or Notch Filter. ON/OFF 5-band Equalizer (EQ1, EQ2, EQ3, EQ4 and EQ5) can be  
controlled independently by EQ1, EQ2, EQ3, EQ4 and EQ5 bits. When Equalizer is OFF, the audio data passes this block  
by 0dB gain. E1A15-0, E1B15-0 and E1C15-0 bits set the coefficient of EQ1. E2A15-0, E2B15-0 and E2C15-0 bits set  
the coefficient of EQ2. E3A15-0, E3B15-0 and E3C15-0 bits set the coefficient of EQ3. E4A15-0, E4B15-0 and E4C15-0  
bits set the coefficient of EQ4. E5A15-0, E5B15-0 and E5C15-0 bits set the coefficient of EQ5. Each EQx coefficient  
setting must be made when EQx bit (corresponding bit to EQx) is “0” or PMPFIL bit is “0”.  
fs : The Sampling frequency  
fo1 ~ fo5 : The Center frequency  
fb1 ~ fb5 : The Band width where the gain is 3dB different from center frequency  
K1 ~ K5 : The Gain ( -1 Kn < 3 )  
Register setting (Note 32)  
EQ1: E1A[15:0] bits =A1, E1B[15:0] bits =B1, E1C[15:0] bits =C1  
EQ2: E2A[15:0] bits =A2, E2B[15:0] bits =B2, E2C[15:0] bits =C2  
EQ3: E3A[15:0] bits =A3, E3B[15:0] bits =B3, E3C[15:0] bits =C3  
EQ4: E4A[15:0] bits =A4, E4B[15:0] bits =B4, E4C[15:0] bits =C4  
EQ5: E5A[15:0] bits =A5, E5B[15:0] bits =B5, E5C[15:0] bits =C5  
(MSB=E1A15, E1B15, E1C15, E2A15, E2B15, E2C15, E3A15, E3B15, E3C15, E4A15, E4B15, E4C15,  
E5A15, E5B15, E5C15 ; LSB= E1A0, E1B0, E1C0, E2A0, E2B0, E2C0, E3A0, E3B0, E3C0, E4A0, E4B0,  
E4C0, E5A0, E5B0, E5C0)  
2
tan (πfbn/fs)  
1 tan (πfbn/fs)  
1 + tan (πfbn/fs)  
An = Kn x  
,
Cn =  
Bn = cos(2π fon/fs) x  
,
1 + tan (πfbn/fs)  
1 + tan (πfbn/fs)  
(n = 1, 2, 3, 4, 5)  
The center frequency should be set as below  
fon / fs < 0.497  
When gain of K is set to “1”, the equalizer becomes notch filter. When it is used as notch filter, central frequency of a  
real notch filter deviates from the above-mentioned calculation, if its central frequency of each band is near. The control  
soft that is attached to the evaluation board has a function that revises a gap of frequency, and calculates the coefficient.  
When its central frequency of each band is near, revise the central frequency and confirm the frequency response.  
Note 32.  
[Translation the filter coefficient calculated by the equations above from real number to binary code (2’s complement)]  
X = (Real number of filter coefficient calculated by the equations above) x 213  
X should be rounded to integer, and then should be translated to binary code (2’s complement).  
MSB of each filter coefficient setting register is sine bit.  
Rev. 0.5  
2007/10  
- 40 -  
 
[AK4634]  
Input Digital Volume (Manual Mode)  
When ADCPF bit = “1” and ALC1 bit = “0”, ALC block becomes an input digital volume (manual mode). The digital  
volume’s gain is set by IVOL7-0 bits as shown in Table 22. The IVOL value is changed at zero cross or zero cross time  
out. The zero crossing timeout period is set by ZTM1-0 bits.  
IVOL7-0bits  
GAIN(0dB)  
Step  
F1H  
F0H  
EFH  
:
92H  
91H  
90H  
:
+36.0  
+35.625  
+35.25  
:
+0.375  
0.0  
0.375dB  
(default)  
-0.375  
:
2H  
1H  
-53.625  
-54.0  
MUTE  
0H  
Table 22. Input Digital Volume Setting  
When writing to the IVOL7-0 bits continually, the control register should be written in an interval more than zero  
crossing timeout. If not, zero crossing counter could be reset at each time and volume is not be changed. However, it could  
be ignored when writing the same register value as the last time. At this time, zero crossing counter is not reset, so it can  
be written in an interval less than zero crossing timeout.  
Rev. 0.5  
2007/10  
- 41 -  
 
[AK4634]  
Output Digital volume (Manual mode)  
When ADCPF bit = “0” and ALC2 bit = “0”, ALC block become an output digital volume (manual mode). The digital  
volume’s gain is set by OVOL7-0 bits as shown in Table 23. The OVOL7-0 bits value are reflected to this output volume  
at zero cross or zero cross time out. The zero crossing timeout period is set by ZTM1-0 bits.  
OVOL7-0bits  
GAIN(0dB)  
Step  
F1H  
F0H  
EFH  
:
92H  
91H  
90H  
:
+36.0  
+35.625  
+35.25  
:
+0.375  
0.0  
0.375dB  
(default)  
-0.375  
:
2H  
1H  
-53.625  
-54.0  
MUTE  
0H  
Table 23 Output Digital Volume Setting  
When writing to the OVOL7-0 bits continually, the control register should be written by an interval more than zero  
crossing timeout. If not, zero crossing counter could be reset at each time and volume is not be changed. However, It  
could be ignored when writing a same register value as the last time. At this time, zero crossing counter is not reset, so it  
can be written by an interval less than zero crossing timeout.  
Output Digital Volume2  
The AK4634 has 4 steps output volume in addition to the volume setting by OVOL7-0 bits. This volume is set by  
DATT1-0 bits as shown in Table 24.  
DATT1-0bits  
GAIN(0dB)  
Step  
0H  
1H  
2H  
3H  
0.0  
-6.0  
-12.0  
-18.1  
(default)  
6.0dB  
Table 24. Output Digital Volume2 Setting  
Rev. 0.5  
2007/10  
- 42 -  
 
[AK4634]  
ALC Operation  
ALC Operation works in ALC block. When ADCPF bit = “1”, ALC operation is enable for recording path. When ADCPF  
bit = “0”, ALC operation is enable for playback path. The ON/OFF of ALC operation for recording is controlled by ALC1  
bit and the ON/OFF of ALC operation for playback is controlled by ALC2 bit.  
1. ALC Limiter Operation  
When the ALC limiter is enabled, and output exceeds the ALC limiter detection level (Table 25), the volume value is  
attenuated by the amount defined in LMAT1-0 bits (Table 26) automatically.  
When the ZELMN bit = “0” (zero crossing detection valid), the VOL value is changed by ALC limiter operation at the  
zero crossing point or zero crossing timeout. Zero crossing timeout period is set by ZTM1-0 bit that in common with ALC  
recovery zero crossing timeout period’s setting (Table 27).At LFST bit = “1”, VOL value is attenuated 1step immediately  
(period: 1/fs) when output Level is over FS(Digital Full Scale).  
When the ZELMN bit = “1” (zero crossing detection invalid), VOL value is changed immediately (period: 1/fs) by ALC  
limiter operation. The attenuation for limiter operation is fixed to 1 step and not controlled by setting LMAT1-0 bits.  
After finishing the attenuate operation, if ALC bit does not change to “0”, the operation repeats when the output signal  
level exceeds the ALC limiter detection level.  
LMTH1 LMTH0 ALC Limiter Detection Level ALC Recovery Waiting Counter Reset Level  
0
0
1
1
0
1
0
1
ALC Output ≥ −2.5dBFS  
ALC Output ≥ −4.1dBFS  
ALC Output ≥ −6.0dBFS  
ALC Output ≥ −8.5dBFS  
2.5dBFS > ALC Output ≥ −4.1dBFS  
4.1dBFS > ALC Output ≥ −6.0dBFS  
6.0dBFS > ALC Output ≥ −8.5dBFS  
8.5dBFS > ALC Output ≥ −12dBFS  
(default)  
Table 25. ALC Limiter Detection Level / Recovery Waiting Counter Reset Level  
ALC1 Limiter ATT Step  
LMAT1  
LMAT0  
ALC1 Output ALC1 Output ALC1 Output ALC1 Output  
LMTH  
FS  
FS + 6dB  
FS + 12dB  
0
0
1
1
0
1
0
1
1
2
2
1
1
2
4
2
1
2
4
4
1
2
8
8
(default)  
Table 26. ALC Limiter ATT Step Setting  
Zero Crossing Timeout Period  
ZTM1  
ZTM0  
8kHz  
16ms  
32ms  
64ms  
128ms  
16kHz  
8ms  
16ms  
32ms  
64ms  
44.1kHz  
2.9ms  
5.8ms  
11.6ms  
23.2ms  
0
0
1
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
(default)  
Table 27. ALC Zero Crossing Timeout Period Setting  
Rev. 0.5  
2007/10  
- 43 -  
 
[AK4634]  
2. ALC Recovery Operation  
The ALC recovery operation waits for the WTM2-0 bits (Table 28) to be set after completing the ALC limiter operation.  
If the input signal does not exceed “ALC recovery waiting counter reset level” (Table 25) during the wait time, the ALC  
recovery operation is executed. The VOL value is automatically incremented by RGAIN1-0 bits (Table 29) up to the set  
reference level (Table 30, Table 31) with zero crossing detection which timeout period is set by ZTM1-0 bits (Table 27).  
The ALC recovery operation is executed in a period set by WTM2-0 bits.  
For example, when the current VOL value is 30H and RGAIN1-0 bits are set to “01”(2 steps), VOL is changed to 32H by  
the auto limiter operation and then the input signal level is gained by 0.75dB (=0.375dB x 2). When the VOL value  
exceeds the reference level (IREF7-0 or OREF5-0), the VOL values are not increased.  
When  
“ALC recovery waiting counter reset level (LMTH1-0) Output Signal < ALC limiter detection level (LMTH1-0)”  
during the ALC recovery operation, the waiting timer of ALC recovery operation is reset. When  
“ALC recovery waiting counter reset level (LMTH1-0) > Output Signal”,  
the waiting timer of ALC recovery operation starts.  
The ALC operation corresponds to the impulse noise. When the impulse noise is input, the ALC recovery operation  
becomes faster than a normal recovery operation. When large noise is input to microphone instantaneously, the quality of  
small level in the large noise can be improved by this fast recovery operation. The speed of first recovery operation is set  
by RFST1-0 bits (Table 32).  
ALC Recovery Operation Waiting Period  
WTM2  
WTM1  
WTM0  
8kHz  
16kHz  
44.1kHz  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
128/fs  
256/fs  
512/fs  
1024/fs  
2048/fs  
4096/fs  
8192/fs  
16384/fs  
16ms  
32ms  
64ms  
128ms  
256ms  
512ms  
1024ms  
2048ms  
8ms  
16ms  
32ms  
64ms  
128ms  
256ms  
512ms  
1024ms  
2.9ms  
5.8ms  
(default)  
11.6ms  
23.2ms  
46.4ms  
92.9ms  
185.8ms  
371.5ms  
Table 28. ALC Recovery Operation Waiting Period  
RGAIN1  
RGAIN0  
GAIN STEP  
0.375dB  
0
0
1
1
0
1
0
1
1
2
3
4
(default)  
0.750dB  
1.125dB  
1.500dB  
Table 29. ALC Recovery GAIN Step  
Rev. 0.5  
2007/10  
- 44 -  
 
[AK4634]  
IREF7-0bits  
GAIN(0dB)  
Step  
F1H  
F0H  
EFH  
:
+36.0  
+35.625  
+35.25  
:
C5H  
:
+19.5  
:
(default)  
0.375dB  
92H  
91H  
90H  
:
+0.375  
0.0  
-0.375  
:
2H  
1H  
0H  
-53.625  
-54.0  
MUTE  
Table 30. Reference Level at ALC Recovery operation for recoding  
OREF5-0bits  
GAIN(0dB)  
Step  
3CH  
3BH  
3AH  
:
+36.0  
+34.5  
+33.0  
:
28H  
:
+6.0  
:
(default)  
1.5dB  
25H  
24H  
23H  
:
+1.5  
0.0  
-1.5  
:
2H  
1H  
0H  
-51.0  
-52.5  
-54.0  
Table 31. Reference Level at ALC Recovery operation for playback  
RFST1 bit  
RFST0 bit  
Recovery Speed  
4 times  
0
0
1
1
0
1
0
1
(default)  
8 times  
16times  
N/A  
Table 32. First Recovery Speed Setting (N/A: Not available)  
Rev. 0.5  
2007/10  
- 45 -  
 
[AK4634]  
3. The Volume at the ALC Operation  
The current volume value at the ALC operation is reflected by VOL7-0 bits. It is enable to check the current volume value  
by reading the register value of VOL7-0 bits.  
This function is available only at the time of 3-wire mode. The volume value at the ALC operation can  
not be read in I2C mode.  
VOL7-0bits  
GAIN(0dB)  
F1H  
F0H  
EFH  
:
+36.0  
+35.625  
+35.25  
:
C5H  
:
+19.5  
:
92H  
91H  
90H  
:
+0.375  
0.0  
0.375  
:
2H  
1H  
0H  
53.625  
54.0  
MUTE  
Table 33. Value of VOL7-0 bits  
4. Example of the ALC Operation for Recording Operation  
Table 34 shows the examples of the ALC setting for mic recording.  
fs=8kHz  
Operation  
fs=16kHz  
Operation  
Register Name Comment  
Data  
Data  
01  
0
LMTH1-0  
ZELM  
Limiter detection Level  
Limiter zero crossing detection  
Zero crossing timeout period  
Recovery waiting period  
*WTM1-0 bits should be more than or  
equal to ZTM1-0 bits  
01  
0
4.1dBFS  
Enable  
16ms  
4.1dBFS  
Enable  
16ms  
ZTM1-0  
00  
01  
WTM2-0  
000  
16ms  
001  
16ms  
IREF7-0  
IVOL7-0  
LMAT1-0  
LFST  
RGAIN1-0  
ALC1  
Maximum gain at recovery operation  
Gain of IVOL  
Limiter ATT step  
Fast Limiter Operation  
Recovery GAIN step  
ALC enable  
C5H  
C5H  
00  
1
00  
19.5dB  
19.5dB  
1step  
C5H  
C5H  
00  
1
00  
19.5dB  
19.5dB  
1step  
ON  
ON  
1 step  
Enable  
4 times  
1 step  
Enable  
4times  
1
00  
1
00  
FRSL1-0  
Speed of Fast Recovery  
Table 34. Example of the ALC Setting (Recording)  
Rev. 0.5  
2007/10  
- 46 -  
 
[AK4634]  
5. Example of ALC for Playback Operation  
Table 35 shows the example of the ALC setting for playback.  
fs=8kHz  
Operation  
fs=16kHz  
Operation  
Register Name Comment  
Data  
01  
0
Data  
01  
0
LMTH1-0  
ZELM  
Limiter detection Level  
Limiter zero crossing detection  
Zero crossing timeout period  
Recovery waiting period  
*WTM1-0 bits should be more than or  
equal to ZTM1-0 bits  
4.1dBFS  
Enable  
16ms  
4.1dBFS  
Enable  
16ms  
ZTM1-0  
00  
01  
WTM2-0  
000  
16ms  
001  
16ms  
OREF5-0  
OVOL7-0  
LFST  
LMAT1-0  
RGAIN1-0  
ALC2  
Maximum gain at recovery operation  
Gain of IVOL  
Fast Limiter Operation  
Limiter ATT step  
Recovery GAIN step  
ALC enable  
28  
91  
1
00  
00  
1
+6dB  
0dB  
ON  
1step  
1 step  
Enable  
4 times  
28  
91  
1
00  
00  
1
+6dB  
0dB  
ON  
1step  
1 step  
Enable  
4 times  
FRSL1-0  
Speed of Fast Recovery  
00  
00  
Table 35. Examples of the ALC Setting (Play back)  
Rev. 0.5  
2007/10  
- 47 -  
 
[AK4634]  
The following registers must not be changed during the ALC operation. These bits should be changed, after the ALC  
operation is finished by ALC1 bit = ALC2 bit = “0” or PMPFIL bit = “0”. After ALC1 bit and ALC2 bit set to “0” or  
PMPFIL bit sets to “0”, when ALC is restarted, the waiting time of zero crossing timeout is not needed.  
LMTH1-0, LMAT1-0, WTM2-0, ZTM1-0, RGAIN1-0, IREF7-0/OREF7-0, ZELM, RFST1-0, LFST  
Example:  
Limiter = Zero crossing Enable  
Manual Mode  
Recovery Cycle = 16ms@8kHz  
Limiter and Recovery Step = 1  
WR (ZTM1-0, WTM2-0)  
WR (IREF7-0/OREF5-0)  
WR (IVOL7-0/OVOL7-0)  
LFST = 1  
Maximum Gain = +19.5dB  
Limiter Detection Level = 4.1dBFS  
ALC1 bit = “1”  
*1  
(1) Addr=06H, Data=00H  
(2) Addr=08H, Data=C5H  
(3) Addr=09H, Data=C5H  
WR (RGAIN1, LMTH1,RFST1-0)  
WR (LFST,LMAT1-0, RGAIN0, ZELMN, LMTH0)  
WR (ALC1= “1”)  
*2  
ALC Operation  
(4) Addr=0BH, Data=28H  
(5) Addr=07H, Data=A1H  
Note : WR : Write  
*1: The value of volume at starting should be the same or smaller than REF’s.  
*2: When setting ALC1 bit or ALC2 bit to “0”, the operation is shifted to manual mode after passing the zero crossing  
time set by ZTM1-0 bits.  
Figure 39. Registers set-up sequence at the ALC operation  
Rev. 0.5  
2007/10  
- 48 -  
[AK4634]  
SOFTMUTE  
Soft mute operation is performed in the digital input domain. When the SMUTE bit changes to “1”, the input signal is  
attenuated by −∞ (“0”) during the cycle of 245/fs (31msec@fs=8kHz). When the SMUTE bit is returned to “0”, the mute  
is cancelled and the input attenuation gradually changes to 0dB during the cycle of 245/fs (31msec@fs=8kHz). If the soft  
mute is cancelled within the cycle of 245/fs (31msec@fs=8kHz), the attenuation is discontinued and returned to 0dB. The  
soft mute for Playback operation is effective for changing the signal source without stopping the signal transmission.  
SMUTE bit  
245/fs  
(1)  
245/fs  
0dB  
(3)  
Attenuation  
-∞  
GD  
GD  
(2)  
Analog Output  
Figure 40. Soft Mute Function  
(1) The input signal is attenuated by −∞ (“0”) during the cycle of 245/fs (31msec@fs=8kHz).  
(2) Analog output corresponding to digital input has the group delay (GD).  
(3) If the soft mute is cancelled within the cycle of 245/fs (31msec@fs=8kHz), the attenuation is discounted and returned  
to 0dB within the same cycle.  
Rev. 0.5  
2007/10  
- 49 -  
 
[AK4634]  
MONO LINE OUTPUT (AOUT pin)  
A signal of DAC is output from the AOUT pin. When the DACA bit is “0”, this output is OFF. When the LOVL bit is “1”,  
this gain changes to +2dB. The load resistance is 10kΩ(min). When PMAO bit is “0” and AOPSN bit is “0”, the mono  
line output enters power-down and is pulled down by 100Ω(typ). If PMAO bit is controlled at AOPS bit = “1”, POP noise  
will be reduced at power-up and down. Then, this line should be pulled down by 20kΩ of resister after C-coupling shown  
in Figure 41. This rising and falling time is max 300 ms at C = 1.0μF . When PMAO bit is “1” and AOPS bit is “0”, the  
mono line output enters power-up state.  
LOVL bits  
Gain  
0dB  
+2dB  
0
1
(default)  
Table 36. Mono line output volume setting  
1μF  
220Ω  
AOUT  
20kΩ  
Figure 41. AOUT external circuit when using POP Reduction function  
AOUT Control Sequence in case of using POP Reduction Circuit  
(2 )  
(5 )  
P M A O b it  
A O P S b it  
(1 )  
(3 )  
(4 )  
(6 )  
A O U T p in  
N o rm a l O u tp u t  
3 0 0 m s  
3 0 0 m s  
Figure 42. Mono Line Output Control Sequence when using POP Reduction function  
(1) Set AOPS bit = “1”. Mono line output enters the power-save mode.  
(2) Set PMAO bit = “1”. Mono line output exits the power-down mode.  
AOUT pin rises up to VCOM voltage. Rise time is 200ms (max 300ms) at C=1μF.  
(3) Set AOPS bit = “0” after AOUT pin rises up. Mono line output exits the power-save mode.  
Mono line output is enabled.  
(4) Set AOPS bit = “1”. Mono line output enters power-save mode.  
(5) Set PMAO bit = “1”. Mono line output enters power-down mode.  
AOUT pin falls down to VSS1. Fall time is 200ms (max 300ms) at C=1μF.  
(6) Set AOPS bit = “0” after AOUT pin falls down. Mono line output exits the power-save mode.  
Rev. 0.5  
2007/10  
- 50 -  
 
[AK4634]  
Speaker Output  
AK4634 has a Mono Class-D Speaker-Amp. Power supply for Speaker-Amp(SVDD) can be set from 2.2V up to 4.0V.  
The Speaker is mono and BTL output, and can drive dynamic speaker and piezo speaker without LPF (filter-less). This  
speaker can output 400W@8at SVDD = 3.3V, SPKG bit = “0”. This gain is set by SPKG bit (Table 37). The output  
level of speaker amp is depended on voltage of SVDD and SPKG bit.  
SPKG bit  
Gain  
0dB  
+2dB (Note 33)  
0
1
Note 33. The signals more than -2dBFS clip.  
Table 37. SPK- Amp Gain  
The power up/down speaker amp is controlled by PMSPK bit. When PMSPK bit is “0”, the SPP and SPN pins output  
VSS3 level. Also ON/OFF of speaker amp is controlled by SPOUTE bit. When SPOUTE bit is “0”, the SPP and SPN pins  
are in VSS3-state forcibly. When the outputting from DAC to speaker, PMDAC bit should be set to “1”.  
Follow the following sequence.  
P M S P K b it  
S P O U T E b it  
S P P p in  
N o rm a l O u tp u t  
S P N p in  
N o rm a l O u tp u t  
Figure 43. Power-up/Power-down Timing for Speaker-Amp  
Rev. 0.5  
2007/10  
- 51 -  
 
[AK4634]  
<Caution for using Piezo Speaker>  
When a piezo speaker is used, resistances more than 10Ω should be connected between the SPP/SPN pins and speaker in  
series, respectively, as shown in Figure 44. Zener diodes should be connected between speaker and GND as shown in  
Figure 44, in order to protect SPK-Amp of the AK4634 from the power that is the piezo speaker output when the speaker  
is pressured. Zener diodes of the following Zener voltage should be used.  
92% of SVDD Zener voltage of Zener diodo (ZD of Figure 44) SVDD+0.3V  
Ex) In case of SVDD = 3.8V :3.5V ZD 4.1V  
For example, Zener diode which Zener voltage is 3.9V(Min 3.7V, Max 4.1V) can be used.  
ZD  
SPK-Amp  
10Ω  
SPP  
SPN  
10Ω  
ZD  
Figure 44. Circuit of Speaker Output (using a piezo speaker)  
Rev. 0.5  
2007/10  
- 52 -  
 
[AK4634]  
BEEP Generate  
The AK4634 generates and output square wave from speaker amp. After outputting the signal during the time set by  
BPON6-0 bits, the AK4634 stops the output signal during the time set by BPOFF6-0 bits (Figure 46). The repeat count is  
set by BPTM6-0 bit, and the output level is set by BPLVL2-0 bits. When BPCNT bit is “0”, if BPOUT bit is written “1”,  
the AK4634 outputs the beep for the times of repeat count. When the output finish, BPOUT bit is set to “0” automatically.  
When BPCNT bit is set to “1”, it outputs the beep in succession regardless of repeat count, on-time and off-time.  
< Setting parameter >  
1) Output Frequency ( Table 38 ~ Table 40)  
2) ON Time (Table 41)  
3) OFF Time (Table 42)  
4) Repeat Count (Table 43)  
5) Output Level (Table 44)  
BPFR1-0, BPON7-0, BPOFF7-0, BPTM6-0 and BPLVL3-0 bits should be set when BPOUT =BPCNT  
= “0”.  
BPCNT bit is given priority in BPOUT bit. When BPOUT bit be set to “1”, if BPCNT bit is set to “0”,  
BPOUT bit is set to “0” forcibly.  
DATT2  
SMUTE  
DAC  
Line Out Amp  
Class-D SPK-Amp  
BEEP  
Generator  
LPF  
Figure 45. BEEP signal output path  
BEEP Output  
ON Time  
OFF Time  
Repeat Count  
Figure 46. Beep output  
Rev. 0.5  
2007/10  
- 53 -  
 
[AK4634]  
Output frequency of BEEP Generator [Hz]  
BPFR1-0 bit  
fs = 48kHz system  
(Note 34)  
fs = 44.1kHz system  
(Note 35)  
00  
01  
10  
11  
4000  
2000  
1000  
4009  
2005  
1002  
(default)  
N/A  
Note 34. Sampling frequency is 8kHz, 16kHz, 32kHz or 48kHz.  
Note 35. Sampling frequency is 11.025kHz, 22.05kHz or 44.1kHz.  
Table 38. Beep signal frequency (PLL Master/Slave Mode: reference clock: MCKI) (N/A: Not available)  
Output frequency of BEEP Generator [Hz]  
BPFR1-0 bit  
FS3-2 bits = “00”  
fs/2.75  
FS3-2 bits = “01”  
FS3-2 bits = “10”  
00  
01  
10  
11  
fs/5.5  
fs/11  
fs/22  
N/A  
fs/11  
fs/22  
fs/44  
(default)  
fs/5.5  
fs/11  
Table 39. Beep signal frequency ( PLL Slave Mode: reference clock : FCK/BICK) (N/A: Not available)  
Output frequency of BEEP Generator [Hz]  
BPFR1-0 bit FS1-0 bits = “00”  
FS1-0 bits = “01”  
fs/2.75  
FS1-0 bits = “10”  
FS1-0 bits = “11”  
00  
01  
10  
11  
fs/11  
fs/22  
fs/44  
fs/55  
fs/11  
fs/22  
fs/11  
fs/22  
fs/44  
(default)  
fs/5.5  
fs/11  
N/A  
Table 40. Beep signal frequency (EXT Slave/Master Mode) (N/A: Not available)  
ON Time of BEEP Generator [msec]  
Step [msec]  
BPON7-0 bit  
fs = 48kHz  
system  
fs = 44.1kHz  
system  
fs = 48kHz  
system  
fs = 44.1kHz  
system  
(Note 34)  
(Note 35)  
(Note 34)  
(Note 35)  
0H  
1H  
2H  
3H  
4H  
8.0  
16.0  
24.0  
32.0  
40.0  
:
7.98  
15.86  
23.95  
31.93  
39.9  
8.0  
7.98  
(default)  
:
:
FDH  
FEH  
FFH  
2032  
2040  
2048  
2027.3  
2035.3  
2043.4  
Note 34. Sampling frequency is 8kHz, 16kHz, 32kHz or 48kHz.  
Note 35. Sampling frequency is 11.025kHz, 22.05kHz or 44.1kHz.  
Table 41. Beep output ON-time (PLL Master/Slave Mode reference clock: MCKI)  
Rev. 0.5  
2007/10  
- 54 -  
 
[AK4634]  
OFF Time of BEEP Generator [msec]  
Step [msec]  
BPOFF7-0 bit  
fs = 48kHz  
system  
fs = 44.1kHz  
system  
fs = 48kHz  
system  
fs = 44.1kHz  
system  
(Note 34)  
(Note 35)  
(Note 34)  
(Note 35)  
0H  
1H  
2H  
3H  
4H  
8.0  
16.0  
24.0  
32.0  
40.0  
:
7.98  
15.86  
23.95  
31.93  
39.9  
8.0  
7.98  
(default)  
:
:
FDH  
FEH  
FFH  
2032  
2040  
2048  
2027.3  
2035.3  
2043.4  
Note 34. Sampling frequency is 8kHz, 16kHz, 32kHz or 48kHz.  
Note 35. Sampling frequency is 11.025kHz, 22.05kHz or 44.1kHz.  
Table 42. Beep output OFF-time (PLL Master/Slave Mode reference clock: MCKI)  
BPTM6-0 bit  
Repeat Count  
0H  
1H  
1
2
(default)  
2H  
3
3H  
:
:
125  
7DH  
7EH  
7FH  
126  
127  
128  
Table 43. Beep output Repeat Count  
BPLVL3-0 bit  
Beep Output Level  
0dB  
STEP  
3dB  
0H  
1H  
2H  
3H  
4H  
5H  
6H  
7H  
(default)  
3dB  
6dB  
9dB  
12dB  
18dB  
24dB  
30dB  
6dB  
Note 36. Power supply is 3.3V  
Note 37. Beep output amplitude as 0dB setting is 4.4Vpp@ load resistance = 8+ 10µH, SVDD=3.3V  
Table 44. Beep output level  
Rev. 0.5  
2007/10  
- 55 -  
 
[AK4634]  
Serial Control Interface  
(1) 3-wire Serial Control Mode (I2C pin = “L”)  
Internal registers may be written and read by using the 3-wire µP interface pins (CSN, CCLK and CDTIO). The data on  
this interface consists of Read/Write, Register address (MSB first, 7bits) and Control data (MSB first, 8bits). Address and  
data is clocked in on the rising edge of CCLK and data is clocked out on the falling edge. Data writing is valid on the  
rising edge of the 16th CCLK after the falling edge of CSN. CSN should be set to “H” every after a data writing for each  
address. In reading operation, the CDTIO pin changes to output mode at the falling edge of 8th CCLK and outputs  
D7-D0. The output finishes on the rising edge of CSN. However this reading function is available only at READ bit = “1”.  
When READ bit = “0”, the CDTIO pin stays as Hi-Z even after the falling edge of 8th CCLK. The CDTIO pin is placed  
in a Hi-Z state except outputting data at read operation mode. The clock speed of CCLK is 5MHz (max). The value of  
internal registers is initialized at the PDN pin = “L”.  
Note 38. It is available for reading the address 00H ~ 11H, 20H ~ 24H and 30H. When reading the address 12H ~ 1FH,  
25H ~ 2F and 31H ~ 4FH, the register values are invalid.  
CSN  
2
6
7
8
9
10 11  
12 13 14 15  
0
1
3
4
5
Clock, “H” or “L”  
“H” or “L”  
Clock, “H” or “L”  
CCLK  
R/W  
A6 A5  
A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0 “H” or “L”  
CDTIO  
R/W:  
READ/WRITE (“1”: WRITE, “0”: READ)  
A6-A0: Register Address  
D7-D0: Control data  
Figure 47. Serial Control I/F Timing  
Rev. 0.5  
2007/10  
- 56 -  
 
[AK4634]  
(2) I2C-bus Control Mode (I2C pin = “H”)  
The AK4634 supports the fast-mode I2C-bus (max: 400kHz). Pull-up resistors at SDA and SCL pins should be connected  
to (DVDD+0.3)V or less voltage.  
(2)-1. WRITE Operations  
Figure 48 shows the data transfer sequence for the I2C-bus mode. All commands are preceded by a START condition. A  
HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition (Figure 54). After the  
START condition, a slave address is sent. This address is 7 bits long followed by the eighth bit that is a data direction bit  
(R/W). The most significant seven bits of the slave address are fixed as “0010010” (Figure 49). If the slave address  
matches that of the AK4634, the AK4634 generates an acknowledge and the operation is executed. The master must  
generate the acknowledge-related clock pulse and release the SDA line (HIGH) during the acknowledge clock pulse  
(Figure 55). A R/W bit value of “1” indicates that the read operation is to be executed. A “0” indicates that the write  
operation is to be executed.  
The second byte consists of the control register address of the AK4634. The format is MSB first, and those most  
significant 1-bits are fixed to zeros (Figure 50). The data after the second byte contains control data. The format is MSB  
first, 8bits (Figure 51). The AK4634 generates an acknowledge after each byte is received. A data transfer is always  
terminated by a STOP condition generated by the master. A LOW to HIGH transition on the SDA line while SCL is  
HIGH defines a STOP condition (Figure 54).  
The AK4634 can perform more than one byte write operation per sequence. After receipt of the third byte the AK4634  
generates an acknowledge and awaits the next data. The master can transmit more than one byte instead of terminating the  
write cycle after the first data byte is transferred. After receiving each data packet the internal 6-bit address counter is  
incremented by one, and the next data is automatically taken into the next address. If the address exceeds 4FH prior to  
generating a stop condition, the address counter will “roll over” to 00H and the previous data will be overwritten.  
The data on the SDA line must remain stable during the HIGH period of the clock. The HIGH or LOW state of the data  
line can only change when the clock signal on the SCL line is LOW (Figure 56) except for the START and STOP  
conditions.  
S
S
T
O
P
T
A
R
T
R/W="0"  
Slave  
Address  
Sub  
Address(n)  
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Figure 48. Data Transfer Sequence at the I2C-Bus Mode  
0
0
0
1
0
0
1
0
R/W  
A0  
Figure 49. The First Byte  
A6  
D6  
A5  
A4  
A3  
A2  
D2  
A1  
D1  
Figure 50. The Second Byte  
D7  
D5  
D4  
D3  
D0  
Figure 51. Byte Structure after the second byte  
Rev. 0.5  
2007/10  
- 57 -  
 
[AK4634]  
(2)-2. READ Operations  
Set the R/W bit = “1” for READ operation of the AK4634. After transmission of data, the master can read the next  
address’s data by generating an acknowledge instead of terminating the write cycle after the receipt of the first data word.  
After receiving each data packet the internal 6-bit address counter is incremented by one, and the next data is  
automatically taken into the next address. If the address exceeds 4FH prior to generating a stop condition, the address  
counter will “roll over” to 00H and the data of 00H will be read out.  
Note 38. It is available for reading the address 00H ~ 11H, 20H ~ 24H and 30H. When reading the address 12H ~ 1FH,  
25H ~ 2F and 31H ~ 4FH, the register values are invalid.  
The AK4634 supports two basic read operations: CURRENT ADDRESS READ and RANDOM ADDRESS READ.  
(2)-2-1. CURRENT ADDRESS READ  
The AK4634 contains an internal address counter that maintains the address of the last word accessed, incremented by  
one. Therefore, if the last access (either a read or write) were to address n, the next CURRENT READ operation would  
access data from the address n+1. After receipt of the slave address with R/W bit “1”, the AK4634 generates an  
acknowledge, transmits 1-byte of data to the address set by the internal address counter and increments the internal  
address counter by 1. If the master does not generate an acknowledge but instead generates a stop condition, the AK4634  
ceases the transmission.  
S
S
T
O
P
T
A
R
T
R/W="1"  
Slave  
Address  
S
Data(n)  
Data(n+1)  
Data(n+2)  
Data(n+x)  
P
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
Figure 52. CURRENT ADDRESS READ  
(2)-2-2. RANDOM ADDRESS READ  
The random read operation allows the master to access any memory location at random. Prior to issuing the slave address  
with the R/W bit “1”, the master must first perform a “dummy” write operation. The master issues a start request, a slave  
address (R/W bit = “0”) and then the register address to read. After the register address is acknowledged, the master  
immediately reissues the start request and the slave address with the R/W bit set to “1”. The AK4634 then generates an  
acknowledge, 1 byte of data and increments the internal address counter by 1. If the master does not generate an  
acknowledge but instead generates a stop condition, the AK4634 ceases the transmission.  
S
T
A
R
T
S
T
A
R
T
S
T
O
P
R/W="0"  
R/W="1"  
Slave  
Address  
Sub  
Address(n)  
Slave  
Address  
S
S
Data(n)  
Data(n+1)  
Data(n+x)  
P
SDA  
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
M
A
S
T
E
R
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
N
A
C
K
Figure 53. RANDOM ADDRESS READ  
Rev. 0.5  
2007/10  
- 58 -  
[AK4634]  
SDA  
SCL  
S
P
start condition  
stop condition  
Figure 54. START and STOP Conditions  
DATA  
OUTPUT BY  
TRANSMITTER  
not acknowledge  
DATA  
OUTPUT BY  
RECEIVER  
acknowledge  
SCL FROM  
MASTER  
2
1
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
Figure 55. Acknowledge on the I2C-Bus  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 56. Bit Transfer on the I2C-Bus  
Rev. 0.5  
2007/10  
- 59 -  
 
[AK4634]  
Register Map  
Addr Register Name  
00H Power Management 1  
01H Power Management 2  
02H Signal Select 1  
03H Signal Select 2  
04H Mode Control 1  
05H Mode Control 2  
06H Timer Select  
07H ALC Mode Control 1  
08H ALC Mode Control 2  
09H Digital Volume Control  
0AH Digital Volume Control  
0BH ALC Mode Control 3  
0CH Reserved  
D7  
D6  
D5  
0
D4  
PMSPK  
D3  
PMAO  
M/S  
MGAIN3  
D2  
PMDAC  
0
PMMP  
0
BCKO0  
FS2  
WTM0  
LMAT0 RGAIN0 LMTH0  
IREF2  
IVOL2  
OVOL2  
D1  
0
MCKO  
MGAIN2  
PFDAC  
DIF1  
D0  
PMPFIL PMVCM  
PMADC  
PMPLL  
MGAIN0  
ADCPF  
DIF0  
0
0
0
0
DACS  
MGAIN1  
PLL1  
FS3  
ZTM1  
ALC1  
IREF5  
IVOL5  
OVOL5  
OREF5  
0
0
SPOUTE  
PFSDO  
PLL3  
ADRST  
0
DACA  
AOPS  
PLL2  
FCKO  
WTM2  
ALC2  
IREF6  
IVOL6  
OVOL6  
0
SPKG  
BCKO1  
BCKP  
WTM1  
LMAT1  
IREF3  
IVOL3  
OVOL3  
PLL0  
MSBS  
ZTM0  
ZELMN  
IREF4  
IVOL4  
OVOL4  
OREF4  
FS1  
RFST1  
FS0  
RFST0  
LFST  
IREF7  
IVOL7  
OVOL7  
IREF1  
IVOL1  
OVOL1  
OREF1  
IREF0  
IVOL0  
OVOL0  
OREF0  
RGAIN1 LMTH1  
OREF3  
OREF2  
0
0
0
0
0
1
0
0DH ALC LEVEL  
0EH Signal Select 3  
0FH Thermal Shutdown  
10H Signal Select 4  
11H Digital Filter Select 1  
12H Reserved  
VOL7  
DATT1  
THDET  
VOL6  
DATT0  
VOL5  
SMUTE  
0
0
LPF  
0
VOL4  
MDIF  
0
0
HPF  
0
VOL3  
1
0
0
0
0
VOL2  
0
0
0
0
0
VOL1  
1
0
LIN  
0
0
VOL0  
READ  
0
0
0
0
0
0
LOVL  
0
0
HPFAD  
0
13H Reserved  
0
0
0
0
0
0
0
0
14H Reserved  
0
0
0
0
0
0
0
0
15H Reserved  
0
0
0
0
0
0
0
0
16H Reserved  
17H Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
18H Reserved  
19H Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1AH Reserved  
1BH Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
F1A6  
0
F1B6  
0
1CH HPF Co-efficient 0  
1DH HPF Co-efficient 1  
1EH HPF Co-efficient 2  
1FH HPF Co-efficient 3  
20H BEEP Frequency  
21H BEEP ON Time  
22H BEEP OFF Time  
23H BEEP Repeat Count  
24H BEEP VOL/Control  
25H Reserved  
F1A7  
0
F1B7  
0
BPCNT  
BPON7  
F1A5  
F1A13  
F1B5  
F1B13  
0
F1A4  
F1A12  
F1B4  
F1B12  
0
F1A3  
F1A11  
F1B3  
F1B11  
0
F1A2  
F1A10  
F1B2  
F1B10  
0
F1A1  
F1A9  
F1B1  
F1B9  
BPFR1  
BPON1  
F1A0  
F1A8  
F1B0  
F1B8  
BPFR0  
BPON0  
0
BPON6  
BPON5  
BPON4  
BPON3  
BPON2  
BPOFF7 BPOFF6 BPOFF5 BPOFF4 BPOFF3 BPOFF2 BPOFF1 BPOFF0  
0
BPTM6  
BPTM5  
BPTM4  
BPTM3  
BPTM2  
BPTM1  
BPTM0  
BPOUT  
0
0
0
0
0
0
0
0
BPLVL2 BPLVL1 BPLVL0  
0
0
0
0
26H Reserved  
27H Reserved  
28H Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
29H Reserved  
0
0
0
0
0
0
0
0
2AH Reserved  
2BH Reserved  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2CH LPF Co-efficient 0  
2DH LPF Co-efficient 1  
2EH LPF Co-efficient 2  
2FH LPF Co-efficient 3  
F2A7  
0
F2B7  
0
F2A6  
0
F2B6  
0
F2A5  
F2A13  
F2B5  
F2B13  
F2A4  
F2A12  
F2B4  
F2B12  
F2A3  
F2A11  
F2B3  
F2B11  
F2A2  
F2A10  
F2B2  
F2B10  
F2A1  
F2A9  
F2B1  
F2B9  
F2A0  
F2A8  
F2B0  
F2B8  
Rev. 0.5  
2007/10  
- 60 -  
[AK4634]  
Addr Register Name  
30H Digital Filter Select 2  
31H Reserved  
D7  
0
0
D6  
0
0
D5  
0
0
D4  
EQ5  
0
D3  
EQ4  
0
D2  
EQ3  
0
D1  
EQ2  
0
D0  
EQ1  
0
32H E1 Co-efficient 0  
33H E1 Co-efficient 1  
34H E1 Co-efficient 2  
35H E1 Co-efficient 3  
36H E1 Co-efficient 4  
37H E1 Co-efficient 5  
38H E2 Co-efficient 0  
39H E2 Co-efficient 1  
3AH E2 Co-efficient 2  
3BH E2 Co-efficient 3  
3CH E2 Co-efficient 4  
3DH E2 Co-efficient 5  
3EH E3 Co-efficient 0  
3FH E3 Co-efficient 1  
40H E3 Co-efficient 2  
41H E3 Co-efficient 3  
42H E3 Co-efficient 4  
43H E3 Co-efficient 5  
44H E4 Co-efficient 0  
45H E4 Co-efficient 1  
46H E4 Co-efficient 2  
47H E4 Co-efficient 3  
48H E4 Co-efficient 4  
49H E4 Co-efficient 5  
4AH E5 Co-efficient 0  
4BH E5 Co-efficient 1  
4CH E5 Co-efficient 2  
4DH E5 Co-efficient 3  
4EH E5 Co-efficient 4  
4FH E5 Co-efficient 5  
E1A7  
E1A15  
E1B7  
E1B15  
E1C7  
E1C15  
E2A7  
E2A15  
E2B7  
E2B15  
E2C7  
E2C15  
E3A7  
E3A15  
E3B7  
E3B15  
E3C7  
E3C15  
E4A7  
E4A15  
E4B7  
E4B15  
E4C7  
E4C15  
E5A7  
E5A15  
E5B7  
E5B15  
E5C7  
E5C15  
E1A6  
E1A14  
E1B6  
E1B14  
E1C6  
E1C14  
E2A6  
E2A14  
E2B6  
E2B14  
E2C6  
E2C14  
E3A6  
E3A14  
E3B6  
E3B14  
E3C6  
E3C14  
E4A6  
E4A14  
E4B6  
E4B14  
E4C6  
E4C14  
E5A6  
E5A14  
E5B6  
E5B14  
E5C6  
E5C14  
E1A5  
E1A13  
E1B5  
E1B13  
E1C5  
E1C13  
E2A5  
E2A13  
E2B5  
E2B13  
E2C5  
E2C13  
E3A5  
E3A13  
E3B5  
E3B13  
E3C5  
E3C13  
E4A5  
E4A13  
E4B5  
E4B13  
E4C5  
E4C13  
E5A5  
E5A13  
E5B5  
E5B13  
E5C5  
E5C13  
E1A4  
E1A12  
E1B4  
E1B12  
E1C4  
E1C12  
E2A4  
E2A12  
E2B4  
E2B12  
E2C4  
E2C12  
E3A4  
E3A12  
E3B4  
E3B12  
E3C4  
E3C12  
E4A4  
E4A12  
E4B4  
E4B12  
E4C4  
E4C12  
E5A4  
E5A12  
E5B4  
E5B12  
E5C4  
E5C12  
E1A3  
E1A11  
E1B3  
E1B11  
E1C3  
E1C11  
E2A3  
E2A11  
E2B3  
E2B11  
E2C3  
E2C11  
E3A3  
E3A11  
E3B3  
E3B11  
E3C3  
E3C11  
E4A3  
E4A11  
E4B3  
E4B11  
E4C3  
E4C11  
E5A3  
E5A11  
E5B3  
E5B11  
E5C3  
E5C11  
E1A2  
E1A10  
E1B2  
E1B10  
E1C2  
E1C10  
E2A2  
E2A10  
E2B2  
E2B10  
E2C2  
E2C10  
E3A2  
E3A10  
E3B2  
E3B10  
E3C2  
E3C10  
E4A2  
E4A10  
E4B2  
E4B10  
E4C2  
E4C10  
E5A2  
E5A10  
E5B2  
E5B10  
E5C2  
E5C10  
E1A1  
E1A9  
E1B1  
E1B9  
E1C1  
E1C9  
E2A1  
E2A9  
E2B1  
E2B9  
E2C1  
E2C9  
E3A1  
E3A9  
E3B1  
E3B9  
E3C1  
E3C9  
E4A1  
E4A9  
E4B1  
E4B9  
E4C1  
E4C9  
E5A1  
E5A9  
E5B1  
E5B9  
E5C1  
E5C9  
E1A0  
E1A8  
E1B0  
E1B8  
E1C0  
E1C8  
E2A0  
E2A8  
E2B0  
E2B8  
E2C0  
E2C8  
E3A0  
E3A8  
E3B0  
E3B8  
E3C0  
E3C8  
E4A0  
E4A8  
E4B0  
E4B8  
E4C0  
E4C8  
E5A0  
E5A8  
E5B0  
E5B8  
E5C0  
E5C8  
The PDN pin = “L” resets the registers to their default values.  
Note 39. “0” bits must contain “0” and the “1” bits must contain “1” value.  
Note 40. Reading of address 12H ~ 1FH, 25H ~ 2FH and 31H ~ 4FH are not possible.  
Note 41. 0FH and 0DH are for address read only. However, 0DH address cannot be read at I2C –bus control mode.  
Writing access to 0DH and 0FH does not effect the operation.  
Rev. 0.5  
2007/10  
- 61 -  
[AK4634]  
Register Definitions  
Addr Register Name  
D7  
PMPFIL  
R/W  
0
D6  
PMVCM  
R/W  
D5  
0
R
0
D4  
PMSPK  
R/W  
0
D3  
PMAO  
R/W  
0
D2  
PMDAC  
R/W  
D1  
0
R
0
D0  
PMADC  
R/W  
00H  
Power Management 1  
R/W  
Default  
0
0
0
PMADC: ADC Block Power Control  
0: Power down (default)  
1: Power up  
When the PMADC bit changes from “0” to “1”, the initialization cycle (1059/fs=133ms@8kHz) starts. After  
initializing, digital data of the ADC is output.  
PMDAC: DAC Block Power Control  
0: Power down (default)  
1: Power up  
PMAO: Mono Line Out Power Control  
0: Power down (default)  
1: Power up  
PMSPK: Speaker Block Power Control  
0: Power down (default)  
1: Power up  
PMVCM: VCOM Block Power Control  
0: Power down (default)  
1: Power up  
PMPFIL: Programmable Filter Block (HPF/ LPF/ 5-Band EQ/ ALC) Power Control  
0: Power down (default)  
1: Power up  
Each block can be powered-down respectively by writing “0” to each bit. When the PDN pin is “L”, all blocks are  
powered-down.  
When PMPLL and MCKO bits and all bits in 00H address are “0”, all blocks are powered-down.  
When any of the blocks are powered-up, the PMVCM bit must be set to “1”. When PMPLL and MCKO bits and all  
bits in 00H address are “0”, PMVCM bit can be “0”.  
When any block of ADC, DAC, SPK, or Programmable digital filter is powered-up (PMADC bit = “1”or PMDAC bit  
= “1” or PMSPK bit = “1” PMPFIL bit = “1”), the clocks must always be present.  
Rev. 0.5  
2007/10  
- 62 -  
[AK4634]  
Addr  
01H  
Register Name  
Power Management 2  
R/W  
D7  
0
R/W  
0
D6  
0
R
0
D5  
0
R
0
D4  
0
R
0
D3  
M/S  
R/W  
0
D2  
0
R
0
D1  
MCKO  
R/W  
0
D0  
PMPLL  
R/W  
0
Default  
PMPLL: PLL Block Power Control Select  
0: PLL is Power down and External is selected. (default)  
1: PLL is Power up and PLL Mode is selected.  
MCKO: Master Clock Output Enable  
0: “L” Output (default)  
1: 256fs Output  
M/S: Select Master/ Slave Mode  
0: Slave Mode (default)  
1: Master Mode  
Addr Register Name  
02H Signal Select 1  
R/W  
D7  
SPOUTE  
R/W  
D6  
0
R
0
D5  
DACS  
R/W  
0
D4  
DACA  
R/W  
0
D3  
MGAIN3  
R/W  
D2  
PMMP  
R/W  
0
D1  
D0  
MGAIN2 MGAIN0  
R/W  
0
R/W  
1
Default  
0
0
MGAIN3-2: MIC-amp Gain control (Table 20)  
MGAIN1 bit is located at D5 bit of 03H. Default: “0001” (+20.0dB)  
PMMP: MPI pin Power Control  
0: Power down (default)  
1: Power up  
When PMADC bit is “1”, PMMP bit is enabled.  
DACA: Switch Control from DAC to mono line amp  
0: OFF (default)  
1: ON  
When PMAO bit is “1”, DACA bit is enabled. When PMAO bit is “0”, the AOUT pin goes VSS1.  
DACS: Switch Control from DAC to Speaker-Amp  
0: OFF (default)  
1: ON  
When DACS bit is “1”, DAC output signal is input to Speaker-Amp.  
SPOUTE: Speaker output signal Enable  
0: Disable (default)  
1: Enable  
When SPOUTE bit is “0”, the SPP and SPN pins output VSS3.  
When SPOUTE bit is “1”, the SPP and SPN pins output signal.  
Rev. 0.5  
2007/10  
- 63 -  
[AK4634]  
Addr Register Name  
D7  
PFSDO  
R/W  
1
D6  
D5  
D4  
0
R
0
D3  
SPKG  
R/W  
0
D2  
0
R
0
D1  
PFDAC  
R/W  
0
D0  
ADCPF  
R/W  
1
03H  
Signal Select 2  
R/W  
AOPS MGAIN1  
R/W  
0
R/W  
0
Default  
ADCPF: Select of Input signal to Programmable Filter/ALC.  
0: SDTI  
1: Output of ADC (default)  
PFDAC: Select of Input signal to DAC.  
0: SDTI (default)  
1: Output of Programmable Filter/ALC  
SPKG: Select Speaker-Amp Output Gain  
0: 0dB (default)  
1: +2dB  
MGAIN1: Mic-Amplifier Gain Control (Table 20)  
MGAIN3-2 and MGAIN0 bits are D3, D2 and D0 of 02H. Default: “0001” (+20.0dB)  
AOPS: Mono Line Output Power-Save Mode  
0: Normal Operation (default)  
1: Power-Save Mode  
Power-save mode is enable at AOPS bit = “1”. POP noise at power-up/down can be reduced by changing at  
PMAO bit = “1”. (Figure 42)  
PFSDO: Select of signal from SDTO  
0: Output of ADC (1st - HPF)  
1: Output of Programmable Filter/ALC (default)  
Addr Register Name  
D7  
PLL3  
R/W  
0
D6  
PLL2  
R/W  
0
D5  
PLL1  
R/W  
0
D4  
PLL0  
R/W  
0
D3  
D2  
D1  
DIF1  
R/W  
1
D0  
DIF0  
R/W  
0
04H  
Mode Control 1  
R/W  
BCKO1 BCKO0  
R/W  
0
R/W  
0
Default  
DIF1-0: Audio Interface Format (Table 16)  
Default: “10” (MSB First)  
BCKO1-0: Select BICK output frequency at Master Mode (Table 9)  
Default: “00” (16fs)  
PLL3-0: Select input frequency at PLL mode (Table 4)  
Default: “0000” (FCK pin)  
Rev. 0.5  
2007/10  
- 64 -  
[AK4634]  
Addr Register Name  
D7  
ADRST  
R/W  
0
D6  
FCKO  
R/W  
0
D5  
FS3  
R/W  
0
D4  
MSBS  
R/W  
0
D3  
BCKP  
R/W  
0
D2  
FS2  
R/W  
0
D1  
FS1  
R/W  
0
D0  
FS0  
R/W  
0
05H  
Mode Control 2  
R/W  
Default  
FS3-0: Setting of Sampling Frequency (Table 5 and Table 6) and MCKI Frequency (Table 11)  
These bits are selected to sampling frequency at PLL mode and MCKI frequency at EXT mode.  
Default: “0000”  
BCKP, MSBS: “00” (default) (Table 17)  
FCKO: Select FCK output frequency at Master Mode (Table 10)  
Default: “0”  
ADRST: Initialization cycle setting of ADC  
0: 1059/fs (default)  
1: 291/fs  
Addr Register Name  
D7  
0
R
0
D6  
WTM2  
R/W  
0
D5  
ZTM1  
R/W  
0
D4  
ZTM0  
R/W  
0
D3  
WTM1  
R/W  
0
D2  
WTM0  
R/W  
0
D1  
RFST1  
R/W  
0
D0  
RFST0  
R/W  
0
06H  
Timer Select  
R/W  
Default  
WTM2-0: ALC1 Recovery Waiting Period (Table 28)  
A period of recovery operation when any limiter operation does not occur during the ALC1 operation.  
Default is “000”.  
ZTM1-0: ALC1, ALC2, IVOL and OVOL Zero crossing timeout Period (Table 27)  
The gain is changed by the manual volume controlling (ALC off) or the recovery operation (ALC on) only at  
Zero crossing or timeout. The default value is “00”.  
RFST1-0 : ALC First recovery Speed (Table 32)  
Default: “00” (4times)  
Rev. 0.5  
2007/10  
- 65 -  
[AK4634]  
D0  
Addr Register Name  
07H ALC Mode Control 1  
D7  
LFST  
R/W  
0
D6  
ALC2  
R/W  
0
D5  
ALC1  
R/W  
0
D4  
D3  
D2  
D1  
ZELMN LMAT1 LMAT0 RGAIN0 LMTH0  
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
LMTH1-0: ALC Limiter Detection Level / Recovery Waiting Counter Reset Level (Table 25)  
LMTH1 bit is located at D6 bit of 0BH. Default: “01”  
RGAIN1-0: ALC Recovery GAIN Step (Table 29)  
RGAIN1 bit is located at D7 bit of 0BH. Default: “00”  
LMAT1-0: ALC Limiter ATT Step (Table 26)  
Default: “00”  
ZELMN: Zero crossing detection enable at ALC Limiter operation  
0: Enable (default)  
1: Disable  
ALC1: ALC of recoding path Enable  
0: Disable (default)  
1: Enable  
ALC2: ALC2 of playback path Enable  
0: Disable (default)  
1: Enable  
LFST: Limiter function of ALC when the output was bigger than Fs.  
0: The volume value is changed at zero crossing or timeout. (default)  
1: When output of ALC is bigger than FS, VOL value is changed instantly.  
Addr Register Name  
08H ALC Mode Control 2  
D7  
IREF7  
R/W  
1
D6  
IREF6  
R/W  
1
D5  
IREF5  
R/W  
0
D4  
IREF4  
R/W  
0
D3  
IREF3  
R/W  
0
D2  
IREF2  
R/W  
1
D1  
IREF1  
R/W  
0
D0  
IREF0  
R/W  
1
R/W  
Default  
IREF7-0: Reference value at ALC Recovery operation for recoding. (0.375dB step, 242 Level) (Table 30)  
Default: “C5H” (+19.5dB)  
Rev. 0.5  
2007/10  
- 66 -  
[AK4634]  
Addr Register Name  
09H Input Digital Volume Control IVOL7  
D7  
D6  
IVOL6  
R/W  
0
D5  
IVOL5  
R/W  
0
D4  
IVOL4  
R/W  
1
D3  
IVOL3  
R/W  
0
D2  
IVOL2  
R/W  
0
D1  
IVOL1  
R/W  
0
D0  
IVOL0  
R/W  
1
R/W  
Default  
R/W  
1
IVOL7-0: Input Digital Volume; 0.375dB step, 242 Level (Table 22)  
Default: “91H” (0.0dB)  
Addr Register Name  
0AH Digital Volume Control  
D7  
D6  
D5  
D4  
OVOL4  
R/W  
1
D3  
D2  
D1  
D0  
OVOL0  
R/W  
1
OVOL7 OVOL6 OVOL5  
R/W  
1
OVOL3 OVOL2 OVOL1  
R/W  
0
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
OVOL7-0: Output Digital Volume; 0.375dB step, 242 Level (Table 23)  
Default: “91H” (0.0dB)  
Addr Register Name  
0BH ALC Mode Control 3  
R/W  
D7  
RGAIN1  
R/W  
D6  
LMTH1  
R/W  
0
D5  
OREF5  
R/W  
1
D4  
OREF4  
R/W  
0
D3  
OREF3  
R/W  
1
D2  
OREF2  
R/W  
0
D1  
OREF1  
R/W  
0
D0  
OREF0  
R/W  
0
Default  
0
OREF5-0: Reference value at ALC Recovery operation for playback. 1.5dB step, 60 Level (Table 31)  
Default: “28H” (+6.0dB)  
LMTH1-0: ALC Limiter Detection Level / Recovery Waiting Counter Reset Level (Table 25)  
Default: “01” (-4.1dBFS > ALC Output -6.0dBFS)  
RGAIN1-0: ALC Recovery GAIN Step (Table 29)  
RGAIN1 bit is located at D1 bit of 07H. Default: “00”  
Addr Register Name  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0DH Input Digital Volume Control VOL7  
VOL6  
VOL5  
VOL4  
VOL3  
VOL2  
VOL1  
VOL0  
R/W  
Default  
R
-
R
-
R
-
R
-
R
-
R
-
R
-
R
-
VOL7-0: The current volume of ALC; 0.375dB step, 242 Level, Read only (Table 33)  
Rev. 0.5  
2007/10  
- 67 -  
[AK4634]  
Addr Register Name  
0EH Mode Control 3  
R/W  
D7  
DATT1  
R/W  
0
D6  
DATT0  
R/W  
0
D5  
SMUTE  
R/W  
0
D4  
MDIF  
R/W  
0
D3  
1
R
1
D2  
0
R
0
D1  
1
R
1
D0  
READ  
R/W  
0
Default  
READ: Read function Enable  
0: Disable (default)  
1: Enable  
MDIF: Single-ended / Full-differential Input Select  
0: Single-ended input (MIC pin or LIN pin: Default)  
1: Full-differential input (MICP and MICN pins)  
SMUTE: Soft Mute Control  
0: Normal Operation (default)  
1: DAC outputs soft-muted  
DATT1-0: Output Digital Volume2; 6dB step, 4 Level (Table 24)  
Default: “00H” (0.0dB)  
Addr Register Name  
D7  
THDET  
D6  
0
R
0
D5  
0
R
0
D4  
0
R
0
D3  
0
R
0
D2  
0
R
0
D1  
0
R
0
D0  
0
R
0
0FH  
Thermal Shutdown  
R/W  
R
0
Default  
THDET: Thermal Shutdown Detection  
0: Normal Operation (default)  
1: Thermal Shutdown  
Addr Register Name  
D7  
0
R
0
D6  
D5  
0
R
0
D4  
D3  
D2  
D1  
D0  
0
R
0
10H  
Signal Select 4  
R/W  
LOVL  
R/W  
0
0
R
0
0
R
0
0
R
0
LIN  
R/W  
0
Default  
LIN: Select Input data of ADC  
0: MIC pin (default)  
1: LIN pin  
LOVL: Lineout Gain Setting  
0: 0dB(default)  
1: +2dB  
Rev. 0.5  
2007/10  
- 68 -  
[AK4634]  
Addr Register Name  
11H Digital Filter Select 1  
D7  
0
R
0
D6  
0
R
0
D5  
LPF  
R/W  
0
D4  
HPF  
R/W  
1
D3  
0
R
0
D2  
0
R
0
D1  
0
R
0
D0  
HPFAD  
R/W  
1
R/W  
Default  
HPFAD: HPF Enable in ADC block  
0: Disable  
When HPFAD bit is “0”, HPFAD block is bypassed (0dB).  
1: Enable (default)  
When HPFAD bit is “1”, F1A13-0, F1B13-0 bits are enabled.  
HPFAD bit should be “1”at PMADC bit = “1”.  
HPF: HPF Enable in Filter block.  
0: Disable  
When HPF bit is “0”, HPF block is bypassed (0dB).  
1: Enable (default)  
When HPF bit is “1”, F1A13-0, F1B13-0 bits are enabled.  
LPF: LPF Coefficient Setting Enable  
0: Disable (default)  
When LPF bit is “0”, LPF block is bypassed (0dB).  
1: Enable  
When LPF bit is “1”, F2A13-0, F2B13-0 bits are enabled.  
Addr Register Name  
1CH HPF Co-efficient 0  
1DH HPF Co-efficient 1  
1EH HPF Co-efficient 2  
1FH HPF Co-efficient 3  
R/W  
D7  
F1A7  
0
F1B7  
0
D6  
F1A6  
0
F1B6  
0
D5  
F1A5  
F1A13  
F1B5  
F1B13  
W
D4  
F1A4  
F1A12  
F1B4  
F1B12  
W
D3  
F1A3  
F1A11  
F1B3  
F1B11  
W
D2  
F1A2  
F1A10  
F1B2  
F1B10  
W
D1  
D0  
F1A1  
F1A9  
F1B1  
F1B9  
W
F1A0  
F1A8  
F1B0  
F1B8  
W
W
W
Default  
F1A13-0 bits = 0x1F16, F1B13-0 bits = 0x1E2B  
F1A13-0, F1B13-0: FIL1 (Wind-noise Reduction Filter) Coefficient (14bit x 2)  
Default: F1A13-0 bits = 0x1F16, F1B13-0 bits = 0x1E2B  
fc = 75Hz@fs = 8kHz, 150Hz@fs = 16kHz  
Addr Register Name  
D7  
BPCNT  
R/W  
0
D6  
0
R
0
D5  
0
R
0
D4  
0
R
0
D3  
0
R
0
D2  
0
R
0
D1  
BPFR1  
R/W  
0
D0  
BPFR0  
R/W  
0
20H  
BEEP Frequency  
R/W  
Default  
BPFR1-0: BEEP Signal Output Frequency Setting (Table 38 ~ Table 40)  
Default: “00”  
BPCNT: BEEP Signal Output Mode Setting  
0: Once Output Mode (default)  
1: Continuous Mode  
In continuous mode, the BEEP signal is output while BPCNT bit is “1”.  
In output mode, the BEEP signal is output by only the frequency set with BPTM6-0 bits.  
Rev. 0.5  
2007/10  
- 69 -  
[AK4634]  
Addr Register Name  
D7  
BPON7  
R/W  
0
D6  
BPON6  
R/W  
0
D5  
BPON5  
R/W  
0
D4  
BPON4  
R/W  
0
D3  
BPON3  
R/W  
0
D2  
BPON2  
R/W  
0
D1  
BPON1  
R/W  
0
D0  
BPON0  
R/W  
0
21H  
BEEP ON Time  
R/W  
Default  
BPON7-0: Setting ON-time of BEEP signal output (Table 41)  
Default: “00H”  
Addr Register Name  
D7  
BPOFF7  
R/W  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
22H  
BEEP OFF Time  
R/W  
BPOFF6 BPOFF5 BPOFF4 BPOFF3 BPOFF2 BPOFF1 BPOFF0  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Default  
0
BPOFF7-0: Setting OFF-time of BEEP signal output (Table 42)  
Default: “00H”  
Addr Register Name  
23H BEEP Repeat Count  
D7  
0
R
0
D6  
BPTM6  
R/W  
0
D5  
D4  
D3  
D2  
D1  
D0  
BPTM5 BPTM4 BPTM3 BPTM2 BPTM1 BPTM0  
R/W  
0
R/W  
Default  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
BPTM6-0: Setting the number of times that BEEP signal repeats (Table 43)  
Default: “00H”  
Addr Register Name  
24H BEEP VOL/Control  
D7  
BPOUT  
R/W  
0
D6  
0
R
0
D5  
0
R
0
D4  
0
R
0
D3  
0
R
0
D2  
D1  
BPLVL1  
R/W  
D0  
BPLVL0  
R/W  
BPLVL2  
R/W  
0
R/W  
Default  
0
0
BPLVL2-0: Setting Output Level of BEEP signal (Table 44)  
Default: “0H” (0dB)  
BPOUT: BEEP Signal Control  
0: OFF (default)  
1: ON  
At the time of BPCNT = “0”, when BPOUT bit is “1”, the beep signal starts outputting. The Beep signal stops  
after the number of times that was set in BPTM6-0 bit, and BPOUT bit is set to “0” automatically.  
Rev. 0.5  
2007/10  
- 70 -  
[AK4634]  
Addr Register Name  
2CH LPF Co-efficient 0  
2DH LPF Co-efficient 1  
2EH LPF Co-efficient 2  
2FH LPF Co-efficient 3  
R/W  
D7  
F2A7  
0
F2B7  
0
D6  
F2A6  
0
F2B6  
0
D5  
F2A5  
F2A13  
F2B5  
F2B13  
W
D4  
F2A4  
F2A12  
F2B4  
F2B12  
W
D3  
F2A3  
F2A11  
F2B3  
F2B11  
W
D2  
F2A2  
F2A10  
F2B2  
F2B10  
W
D1  
F2A1  
F2A9  
F2B1  
F2B9  
W
D0  
F2A0  
F2A8  
F2B0  
F2B8  
W
W
W
Default  
0
0
0
0
0
0
0
0
F2A13-0, F2B13-0: LPF Coefficient (14bit x 2)  
Default: “0000H”  
Addr Register Name  
30H Digital Filter Select 2  
D7  
0
R
0
D6  
0
R
0
D5  
0
R
0
D4  
EQ5  
R/W  
0
D3  
EQ4  
R/W  
0
D2  
EQ3  
R/W  
0
D1  
EQ2  
R/W  
0
D0  
EQ1  
R/W  
0
R/W  
Default  
EQ1: Equalizer 1 Coefficient Setting Enable  
0: Disable (default)  
When EQ1 bit is “0”, EQ block is through (0dB).  
1: Enable  
When EQ1 bit is “1”, E1A15-0, E1B15-0, E1C15-0 bits are enabled.  
EQ2: Equalizer 2 Coefficient Setting Enable  
0: Disable (default)  
When EQ2 bit is “0”, EQ block is through (0dB).  
1: Enable  
When EQ2 bit is “1”, E2A15-0, E2B15-0, E2C15-0 bits are enabled.  
EQ3: Equalizer 3 Coefficient Setting Enable  
0: Disable (default)  
When EQ3bit is “0”, EQ block is through (0dB).  
1: Enable  
When EQ3 bit is “1”, E3A15-0, E3B15-0, E3C15-0 bits are enabled.  
EQ4: Equalizer 4 Coefficient Setting Enable  
0: Disable (default)  
When EQ4 bit is “0”, EQ block is through (0dB).  
1: Enable  
When EQ4 bit is “1”, E4A15-0, E4B15-0, E4C15-0 bits are enabled.  
EQ5: Equalizer 5 Coefficient Setting Enable  
0: Disable (default)  
When EQ5 bit is “0”, EQ block is through (0dB).  
1: Enable  
When EQ5 bit is “1”, E5A15-0, E5B15-0, E5C15-0 bits are enabled.  
Rev. 0.5  
2007/10  
- 71 -  
[AK4634]  
Addr Register Name  
32H E1 Co-efficient 0  
33H E1 Co-efficient 1  
34H E1 Co-efficient 2  
35H E1 Co-efficient 3  
36H E1 Co-efficient 4  
37H E1 Co-efficient 5  
38H E2 Co-efficient 0  
39H E2 Co-efficient 1  
3AH E2 Co-efficient 2  
3BH E2 Co-efficient 3  
3CH E2 Co-efficient 4  
3DH E2 Co-efficient 5  
3EH E3 Co-efficient 0  
3FH E3 Co-efficient 1  
40H E3 Co-efficient 2  
41H E3 Co-efficient 3  
42H E3 Co-efficient 4  
43H E3 Co-efficient 5  
44H E4 Co-efficient 0  
45H E4 Co-efficient 1  
46H E4 Co-efficient 2  
47H E4 Co-efficient 3  
48H E4 Co-efficient 4  
49H E4 Co-efficient 5  
4AH E5 Co-efficient 0  
4BH E5 Co-efficient 1  
4CH E5 Co-efficient 2  
4DH E5 Co-efficient 3  
4EH E5 Co-efficient 4  
4FH E5 Co-efficient 5  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
E1A7  
E1A15  
E1B7  
E1B15  
E1C7  
E1C15  
E2A7  
E2A15  
E2B7  
E2B15  
E2C7  
E2C15  
E3A7  
E3A15  
E3B7  
E3B15  
E3C7  
E3C15  
E4A7  
E4A15  
E4B7  
E4B15  
E4C7  
E4C15  
E5A7  
E5A15  
E5B7  
E5B15  
E5C7  
E5C15  
W
E1A6  
E1A14  
E1B6  
E1B14  
E1C6  
E1C14  
E2A6  
E2A14  
E2B6  
E2B14  
E2C6  
E2C14  
E3A6  
E3A14  
E3B6  
E3B14  
E3C6  
E3C14  
E4A6  
E4A14  
E4B6  
E4B14  
E4C6  
E4C14  
E5A6  
E5A14  
E5B6  
E5B14  
E5C6  
E5C14  
W
E1A5  
E1A13  
E1B5  
E1B13  
E1C5  
E1C13  
E2A5  
E2A13  
E2B5  
E2B13  
E2C5  
E2C13  
E3A5  
E3A13  
E3B5  
E3B13  
E3C5  
E3C13  
E4A5  
E4A13  
E4B5  
E4B13  
E4C5  
E4C13  
E5A5  
E5A13  
E5B5  
E5B13  
E5C5  
E5C13  
W
E1A4  
E1A12  
E1B4  
E1B12  
E1C4  
E1C12  
E2A4  
E2A12  
E2B4  
E2B12  
E2C4  
E2C12  
E3A4  
E3A12  
E3B4  
E3B12  
E3C4  
E3C12  
E4A4  
E4A12  
E4B4  
E4B12  
E4C4  
E4C12  
E5A4  
E5A12  
E5B4  
E5B12  
E5C4  
E5C12  
W
E1A3  
E1A11  
E1B3  
E1B11  
E1C3  
E1C11  
E2A3  
E2A11  
E2B3  
E2B11  
E2C3  
E2C11  
E3A3  
E3A11  
E3B3  
E3B11  
E3C3  
E3C11  
E4A3  
E4A11  
E4B3  
E4B11  
E4C3  
E4C11  
E5A3  
E5A11  
E5B3  
E5B11  
E5C3  
E5C11  
W
E1A2  
E1A10  
E1B2  
E1B10  
E1C2  
E1C10  
E2A2  
E2A10  
E2B2  
E2B10  
E2C2  
E2C10  
E3A2  
E3A10  
E3B2  
E3B10  
E3C2  
E3C10  
E4A2  
E4A10  
E4B2  
E4B10  
E4C2  
E4C10  
E5A2  
E5A10  
E5B2  
E5B10  
E5C2  
E5C10  
W
E1A1  
E1A9  
E1B1  
E1B9  
E1C1  
E1C9  
E2A1  
E2A9  
E2B1  
E2B9  
E2C1  
E2C9  
E3A1  
E3A9  
E3B1  
E3B9  
E3C1  
E3C9  
E4A1  
E4A9  
E4B1  
E4B9  
E4C1  
E4C9  
E5A1  
E5A9  
E5B1  
E5B9  
E5C1  
E5C9  
W
E1A0  
E1A8  
E1B0  
E1B8  
E1C0  
E1C8  
E2A0  
E2A8  
E2B0  
E2B8  
E2C0  
E2C8  
E3A0  
E3A8  
E3B0  
E3B8  
E3C0  
E3C8  
E4A0  
E4A8  
E4B0  
E4B8  
E4C0  
E4C8  
E5A0  
E5A8  
E5B0  
E5B8  
E5C0  
E5C8  
W
Default  
0
0
0
0
0
0
0
0
E1A15-0, E1B15-0, E1C15-0: Equalizer 1 Coefficient (16bit x3)  
Default: “0000H”  
E2A15-0, E2B15-0, E2C15-0: Equalizer 2 Coefficient (16bit x3)  
Default: “0000H”  
E3A15-0, E3B15-0, E3C15-0: Equalizer 3 Coefficient (16bit x3)  
Default: “0000H”  
E4A15-0, E4B15-0, E4C15-0: Equalizer 4 Coefficient (16bit x3)  
Default: “0000H”  
E5A15-0, E5B15-0, E5C15-0: Equalizer 5 Coefficient (16bit x3)  
Default: “0000H”  
Rev. 0.5  
2007/10  
- 72 -  
[AK4634]  
SYSTEM DESIGN  
Figure 57 and Figure 58 show the system connection diagram. The evaluation board [AKD4634] demonstrates the  
optimum layout, power supply arrangements and measurement results.  
< MIC Single-end Input >  
Dynamic SPK  
R1, R2: Short  
ZD1, ZD2: Open  
Piezo SPK  
0.1µ  
R1, R2: 10Ω  
ZD1, ZD2: Required  
10  
R1  
R2  
Speaker  
0.1µ  
ZD2  
ZD1  
I2C  
DVDD  
VSS2  
SPN  
VSS3  
SVDD  
AOUT  
MPI  
NC  
1µ  
220  
SDTO  
BICK  
FCK  
MCKO  
SDTI  
CCLK  
CSN  
SPP  
LIN  
1µ  
DSP  
&
20 k  
MCKI  
2.2k  
Top View  
µP  
CDTI  
TST2  
VSS1  
MIC  
1µ  
+
2.2µ  
0.1µ  
PDN  
VCOM  
AVDD  
VCOC  
TST3  
Rp  
Cp  
TST1  
0.1µ  
Analog Supply  
+
10µ  
2.23.6V  
Figure 57. Typical Connection Diagram  
Notes:  
- VSS1, VSS2 and VSS3 of the AK4634 should be distributed separately from the ground of external controllers.  
- All digital input pins except pull-down pin should not be left floating.  
- In EXT mode (PMPLL bit = “0”), Rp and Cp of the VCOC pin can be open.  
- In PLL mode (PMPLL bit = “1”), Rp and Cp of the VCOC pin should be connected as shown in Table 45.  
- When the AK4634 is used at master mode, FCK and BICK pins are floating before M/S bit is changed to “1”.  
Therefore, a pull-up resistor with around 100should be connected to LRCK and BICK pins of the AK4634.  
-When AVDD, DVDD and SVDD were distributed, DVDD = 1.6 ~ 3.6 V, SVDD = 2.2 ~ 4.0 V.  
Rev. 0.5  
2007/10  
- 73 -  
 
[AK4634]  
< MIC differential Input >  
Dynamic SPK  
R1, R2: Short  
ZD1, ZD2: Open  
Piezo SPK  
R1, R2: 10Ω  
ZD1, ZD2: Required  
0.1µ  
10  
R1  
Speaker  
0.1µ  
R2  
ZD2  
ZD1  
I2C  
DVDD  
VSS2  
SPN  
VSS3  
SVDD  
AOUT  
MPI  
NC  
1µ  
220  
SDTO  
BICK  
FCK  
MCKO  
SDTI  
SPP  
MICN  
MICP  
VCOC  
TST3  
1µ  
1k  
DSP  
&
20 k  
MCKI  
1k  
Top View  
µP  
CCLK  
CSN  
CDTI  
TST2  
VSS1  
1µ  
+
2.2µ  
0.1µ  
PDN  
VCOM  
AVDD  
Rp  
Cp  
TST1  
0.1µ  
Analog Supply  
+
10µ  
2.23.6V  
Figure 58. Typical Connection Diagram  
Notes:  
- VSS1, VSS2 and VSS3 of the AK4634 should be distributed separately from the ground of external controllers.  
- All digital input pins except pull-down pin should not be left floating.  
- In EXT mode (PMPLL bit = “0”), Rp and Cp of the VCOC pin can be open.  
- In PLL mode (PMPLL bit = “1”), Rp and Cp of the VCOC pin should be connected as shown in Table 45.  
- When the AK4634 is used at master mode, FCK and BICK pins are floating before M/S bit is changed to “1”.  
Therefore, a pull-up resistor with around 100should be connected to LRCK and BICK pins of the AK4634.  
-When AVDD, DVDD and SVDD were distributed, DVDD = 1.6 ~ 3.6 V, SVDD = 2.2 ~ 4.0 V.  
Rp and Cp of  
VCOC pin  
PLL Lock  
Time (max)  
PLL3 PLL2 PLL1 PLL0 PLL Reference  
Mode  
Input Frequency  
bit  
bit  
bit  
bit  
Clock Input Pin  
Cp[F]  
Rp[Ω]  
6.8k  
10k  
10k  
10k  
10k  
10k  
10k  
10k  
0
1
2
3
6
0
0
0
0
0
0
1
1
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
0
1
0
1
FCK pin  
BICK pin  
BICK pin  
BICK pin  
MCKI pin  
MCKI pin  
MCKI pin  
MCKI pin  
N/A  
1fs  
16fs  
32fs  
220n  
4.7n  
4.7n  
4.7n  
4.7n  
4.7n  
10n  
160ms  
2ms  
2ms  
(default)  
64fs  
2ms  
12MHz  
24MHz  
13.5MHz  
27MHz  
30ms  
30ms  
30ms  
30ms  
7
12  
13  
Others  
10n  
Others  
Table 45. Setting of PLL Mode (*fs: Sampling Frequency, N/A: Not available)  
Rev. 0.5  
2007/10  
- 74 -  
 
[AK4634]  
1. Grounding and Power Supply Decoupling  
The AK4634 requires careful attention to power supply and grounding arrangements. AVDD, DVDD and SVDD are  
usually supplied from the system’s analog supply. If AVDD, DVDD and SVDD are supplied separately, the correct  
power up sequence should be observeVSS21, VSS2 and VSS3 of the AK4634 should be connected to the analog ground  
plane. System analog ground and digital ground should be connected together near to where the supplies are brought onto  
the printed circuit board. Decoupling capacitors should be as near to the AK4634 as possible, with the small value  
ceramic capacitor being the nearest.  
2. Voltage Reference  
VCOM is a signal ground of this chip. A 2.2μF electrolytic capacitor in parallel with a 0.1μF ceramic capacitor attached  
to the VCOM pin eliminates the effects of high frequency noise. No load current may be drawn from the VCOM pin. All  
signals, especially clocks, should be kept away from the VCOM pin in order to avoid unwanted coupling into the  
AK4634.  
3. Analog Inputs  
The Mic and Line inputs supports single-ended and differential. The input signal range scales with nominally at 0.06 x  
AVDD Vpp for the Mic input and 0.6 x AVDD Vpp for the Beep input, centered around the internal common voltage  
(approx. 0.45 x AVDD). Usually the input signal is AC coupled using a capacitor. The cut-off frequency is fc = (1/2πRC).  
The AK4634 can accept input voltages from VSS1 to AVDD.  
4. Analog Outputs  
The input data format for the DAC is 2’s complement. The output voltage is a positive full scale for 7FFFH(@16bit) and  
a negative full scale for 8000H(@16bit). Mono Line Output from the AOUT pin is centered at 0.45 x AVDD (typ).  
Rev. 0.5  
2007/10  
- 75 -  
[AK4634]  
PACKAGE  
29pin WL-CSP : 2.5mm x 3.0mm  
Top View  
Bottom View  
2.5 ± 0.1  
0.5  
6
5
6
5
4
3
2
1
B
4
3.0 ± 0.1  
4634  
XXXX  
3
2
1
A
B
C
D
E
E
D
C
B
A
φ 0.3 ± 0.05  
φ 0.05  
S
M
AB  
S
0.08  
S
Rev. 0.5  
2007/10  
- 76 -  
[AK4634]  
MARKING  
4634  
XXXX  
1
A
XXXX: Date code (4 digits)  
IMPORTANT NOTICE  
z These products and their specifications are subject to change without notice.  
When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei  
EMD Corporation (AKEMD) or authorized distributors as to current status of the products.  
z AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or  
use of any information contained herein.  
z Any export of these products, or devices or systems containing them, may require an export license or other official  
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,  
or strategic materials.  
z AKEMD products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or  
other hazard related device or systemNote2), and AKEMD assumes no responsibility for such use, except for the use  
approved with the express written consent by Representative Director of AKEMD. As used here:  
Note1) A critical component is one whose failure to function or perform may reasonably be expected to result,  
whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and  
which must therefore meet very high standards of performance and reliability.  
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or  
for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform  
may reasonably be expected to result in loss of life or in significant injury or damage to person or property.  
z It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise  
places the product with a third party, to notify such third party in advance of the above content and conditions, and the  
buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any  
and all claims arising from the use of said product in the absence of such notification.  
Rev. 0.5  
2007/10  
- 77 -  

相关型号:

AKD4634-A

16bit mono CODEC with MIC/SPK/VIDEO amplifier.
AKM

AKD4635

16-Bit Mono CODEC with ALC & MIC/SPK/Video-AMP
AKM

AKD4636

16-Bit Mono CODEC with ALC & MIC/SPK/Video-AMP
AKM

AKD4640

AKD4640 EVALUATION BOARD
AKM

AKD4641

16 BIT CODEC WITH BLUETOOTH INTERFACE
AKM

AKD4641EN

16-Bit ツヒ CODEC with Bluetooth Interface
AKM

AKD4641EN-A

16bit stereo CODEC with built-in Microphone-amplifier and 16bit Mono CODEC for Bluetooth Interface.
AKM

AKD4642

Stereo CODEC with MIC/HP/SPK-AMP
AKM

AKD4642-B

Evaluation board Rev.0 for AK4642
AKM

AKD4642EN

AK4642EN Evaluation board Rev.0
AKM

AKD4642EN-B

AK4642EN Evaluation board Rev.0
AKM

AKD4643

Stereo CODEC with MIC/HP/RCV/SPK-AMP
AKM