5962-9755701HPC [AGILENT]

Hermetically Sealed Analog Isolation Amplifier; 密封型模拟隔离放大器
5962-9755701HPC
型号: 5962-9755701HPC
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

Hermetically Sealed Analog Isolation Amplifier
密封型模拟隔离放大器

隔离放大器
文件: 总16页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Hermetically Sealed Analog  
Isolation Amplifier  
Technical Data  
HCPL-7850  
HCPL-7851  
5962-97557  
Applications  
• Industrial and Military  
• High Reliability Systems  
• Harsh Industrial  
Environments  
• Transportation, Medical,  
and Life Critical Systems  
• General Purpose Analog  
Signal Isolation  
• Motor Phase and Rail  
Current Sensing  
• Inverter Current Sensing  
Schematic Diagram  
Features  
• Performance Guaranteed  
over Full Military  
Temperature Range: –55˚C  
to +125˚C  
• Manufactured and Tested on  
a MIL-PRF-38534 Certified  
Line  
• Hermetically Sealed  
Packages  
• Dual Marked with Device  
Part Number and DSCC  
Drawing Number  
• QML-38534, Class H  
• HCPL-7840 Function  
Compatibility  
• High Common Mode  
Rejection (CMR):  
8 kV/µs at VCM = 1000 V  
• 5% Gain Tolerance  
• 0.1% Nonlinearity  
• Low Offset Voltage and  
Offset Temperature  
Coefficient  
I
I
DD2  
DD1  
V
8
7
V
V
DD1  
1
2
DD2  
V
+
IN+  
OUT+  
+
V
3
4
IN–  
6
5
V
OUT–  
GND1  
GND2  
SHIELD  
• Switched Mode Power  
Supply Signal Isolation  
• General Purpose Current  
Sensing and Monitoring  
consists of a sigma-delta analog-  
to-digital converter optically  
coupled to a digital-to-analog  
converter in a hermetically sealed  
package. The products are  
capable of operation and storage  
over the full military temperature  
range and can be purchased as  
either commercial product or  
with full MIL-PRF-38534 Class H  
testing or from the appropriate  
DSCC drawing. All devices are  
manufactured and tested on a  
MIL-PRF-38534 certified line and  
are included in the DSCC  
Description  
The HCPL-7850/7851 is an  
isolation amplifier that provides  
accurate, electrically isolated and  
amplified representations of  
voltage and current. When used  
with a shunt resistor to monitor  
the motor phase current in a high  
speed motor drive, the device will  
offer superior reliability  
compared with the traditional  
solutions such as current  
transformers and Hall-effect  
sensors. The HCPL-7850/7851  
• 100 kHz Bandwidth  
Qualified Manufacturers List,  
QML-38534 for Hybrid  
Microcircuits.  
A 0.1 F bypass capacitor must be connected between pins 1 and 4 and between pins 5 and 8.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this  
component to prevent damage and/or degradation which may be induced by ESD.  
2
Superior performance in design  
critical specifications such as  
common-mode rejection, offset  
voltage, nonlinearity, and  
operating temperature make the  
HCPL-7850/7851 an excellent  
choice for designing reliable  
products such as motor  
Common-mode rejection of  
8 kV/µs makes the HCPL-7850/  
7851 suitable for noisy electrical  
environments such as those  
generated by the high switching  
rates of power IGBTs.  
Low offset voltage together with  
a low offset voltage temperature  
coefficient permits accurate use  
of auto-calibration techniques.  
Gain tolerance of 5% with 0.1%  
nonlinearity further provide the  
performance necessary for  
controllers and inverters.  
accurate feedback and control.  
Selection Guide-Package Styles and Lead  
Configuration Options  
Agilent Part Number and Options  
Commercial  
MIL-PRF-38534, Class H  
Standard Lead Finish  
Solder Dipped  
HCPL-7850  
HCPL-7851  
Gold Plate  
Option #200  
Option #100  
Option #300  
Butt Cut/Gold Plate  
Gull Wing/Soldered  
SMD Part Number  
Prescript for all below  
Either Gold or Solder  
Gold Plate  
5962-  
9755701HPX  
9755701HPC  
9755701HPA  
9755701HYC  
9755701HYA  
9755701HXA  
Solder Dipped  
Butt Cut/Gold Plate  
Butt Cut/Soldered  
Gull Wing/Soldered  
Device Marking  
Agilent DESIGNATOR  
Agilent P/N  
A QYYWWZ  
XXXXXXXX  
XXXXXXXXX  
COMPLIANCE INDICATOR,*  
DATE CODE, SUFFIX (IF NEEDED)  
DSCC SMD*  
DSCC SMD*  
PIN ONE/  
XXX  
XXX  
COUNTRY OF MFR.  
Agilent CAGE CODE*  
50434  
ESD IDENT  
* QUALIFIED PARTS ONLY  
3
Outline Drawing  
9.40 (0.370)  
9.91 (0.390)  
8.13 (0.320)  
MAX.  
0.76 (0.030)  
1.27 (0.050)  
7.16 (0.282)  
7.57 (0.298)  
4.32 (0.170)  
MAX.  
0.51 (0.020)  
3.81 (0.150)  
MIN.  
0.20 (0.008)  
0.33 (0.013)  
MIN.  
7.36 (0.290)  
7.87 (0.310)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
NOTE: DIMENSIONS IN MILLIMETERS (INCHES).  
Hermetic Optocoupler Options  
Option  
Description  
100  
Surface mountable hermetic optocoupler with leads trimmed for butt joint assembly. This option  
is available on commercial and hi-rel product in 8 pin DIP (see drawings below for details).  
4.32 (0.170)  
MAX.  
0.51 (0.020)  
1.14 (0.045)  
MIN.  
0.20 (0.008)  
0.33 (0.013)  
1.40 (0.055)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
7.36 (0.290)  
7.87 (0.310)  
NOTE: DIMENSIONS IN MILLIMETERS (INCHES).  
200  
300  
Lead finish is solder dipped rather than gold plated. This option is available on commercial and  
hi-rel product in 8 pin DIP. DSCC Drawing part numbers contain provisions for lead finish.  
Surface mountable hermetic optocoupler with leads cut and bent for gull wing assembly. This  
option is available on commercial and hi-rel product in 8 pin DIP (see drawings below for  
details). This option has solder dipped leads.  
5.57 (0.180)  
MAX.  
5.57 (0.180)  
MAX.  
0.20 (0.008)  
0.33 (0.013)  
0.51 (0.020)  
MIN.  
5° MAX.  
1.40 (0.055)  
1.65 (0.065)  
9.65 (0.380)  
9.91 (0.390)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
NOTE: DIMENSIONS IN MILLIMETERS (INCHES).  
4
Absolute Maximum Ratings  
Storage Temperature (T ) ............................................. –65 to +150˚C  
S
Operating Temperature (T ).......................................... –55 to +125˚C  
A
Supply Voltages (V  
, V  
DD1 DD2  
) ......................................... 0.0 to +5.5 V  
Steady-State Input Voltage (V  
, V )...... –2.0 V to V  
+0.5 V (1/)  
+0.5 V (1/)  
IN+  
IN–  
DD1  
DD1  
2 Second Transient Input Voltage ...... –6.0 V to V  
Output Voltages (V , V  
) ...........................–0.5 to V  
+0.5 V  
OUT+ OUT–  
DD2  
Lead Soldering Temperature (soldering, 10 seconds max.)...... +260˚C  
ESD Classification  
(MIL-STD-883, Method 3015)  
HCPL-7850/7851..... (); Class 1  
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
Max.  
Units  
Supply Voltages  
V
,
4.5  
5.5  
Volts  
DD1  
V
DD2  
Input Voltage (See Note 1)  
V
,
–200  
+200  
mV  
IN+  
V
IN–  
5
DC Electrical Specifications  
Over recommended operating conditions (T = –55˚C to +125˚C, V  
= 0 V, V  
= 0 V, V  
= 5 V and  
A
IN+  
IN–  
DD1  
V
= 5 V, unless otherwise specified).  
DD2  
[12]  
Group A  
Symbol Subgroups Min. Typ.* Max. Units  
Parameter  
Test Conditions  
Fig. Note  
Input Offset  
Voltage  
V
OS  
1,2,3  
–1.0  
0.6  
5.0  
mV 4.5 V V  
5.5 V  
, V )  
DD1 DD2  
1,2,  
3
2
Gain  
G
2,3  
7.36  
8.00 8.64  
V/V –200 mV V  
200 mV 5,6,  
IN+  
4.5 V (V  
5.5 V  
, V  
DD1 DD2  
)
7
1
7.60  
8.00  
0.05  
8.4  
0.8  
200 mV  
NL  
2,3  
%
–200 mV V  
200 mV 5,8,  
3
200  
IN+  
Nonlinearity  
4.5 V (V  
5.5 V  
, V  
DD1 DD2  
)
9,10,  
12  
1
0.05  
0.01  
0.2  
0.2  
100 mV  
NL  
2,3  
–100 mV V  
100 mV 5,8,  
100  
IN+  
Nonlinearity  
4.5 V (V  
5.5 V  
, V  
DD1 DD2  
)
9,11,  
12  
1
0.01  
0.1  
Output  
V
1,2,3  
2.20  
2.56 2.80  
V
–400 mV V  
400 mV  
OCM  
IN+  
Common-Mode  
Voltage  
4.5 V (V  
5.5 V  
, V  
DD1 DD2  
)
Input Supply  
Current  
I
1,2,3  
1,2,3  
1
10.7 15.5  
mA  
mA  
14,17  
15,17  
DD1  
Output Supply  
Current  
I
9.4  
14.5  
1.0  
DD2  
Input-Output  
Insulation  
Leakage  
I
µA RH = 45%, t = 5 sec.  
= 1500 Vdc,  
11  
I–O  
V
I–O  
T = 25˚C  
A
Current  
Maximum  
|V  
MAX  
|
320  
mV  
4,12  
13  
IN+  
Input Voltage  
Before Output  
Clipping  
Average Input  
Bias Current  
I
–0.57  
480  
69  
µA  
kΩ  
dB  
4
5
IN  
Average Input  
Resistance  
R
IN  
Input DC  
CMRR  
IN  
Common-Mode  
Rejection Ratio  
Output  
Resistance  
R
1
V
O
Output Low  
Voltage  
V
V
1.28  
3.84  
11  
V
V
V
V
= 400 mV  
4
6
OL  
IN+  
IN+  
OUT  
Output High  
Voltage  
V
= –400 mV  
OH  
Output Short-  
Circuit Current  
|I  
|
mA  
= 0 V or V  
7
OSC  
DD2  
12  
Resistance  
(Input-Output)  
R
10  
= 500 Vdc  
I–O  
11  
I–O  
I–O  
Capacitance  
C
2.7  
pF  
f = 1 MHz  
V = 0 Vdc  
(Input–Output)  
I–O  
*All typicals are at the nominal operating conditions of V  
= 0 V, V  
= 0 V, T = 25˚C, V  
= 5 V and V  
= 5 V.  
IN+  
IN–  
A
DD1  
DD2  
6
AC Electrical Specifications  
Over recommended operating conditions (T = –55˚C to +125˚C, V  
= 0 V, V  
= 0 V, V  
= 5 V and  
A
IN+  
IN–  
DD1  
V
= 5 V, unless otherwise specified).  
DD2  
[12]  
Group A  
Symbol Subgroups Min. Typ.* Max. Units  
Parameter  
Test Conditions  
Fig. Note  
16 8,13  
Common Mode  
Rejection  
CMR  
9
5
8
kV/  
V
= 1 kV  
CM  
µs  
4.5 V (V  
, V  
DD1 DD2  
)
5.5 V, T = 25˚C  
A
Propagation  
Delay to 50%  
t
9,10,11  
3.7  
7.5  
µs  
V
= 0 to 100 mV step 18,19  
IN+  
PD50  
PD90  
4.5 V (V  
5.5 V  
, V  
DD1 DD2  
)
Propagation  
Delay to 90%  
t
9,10,11  
9,10,11  
9,10,11  
5.7  
3.4  
11.0  
7.5  
Rise/Fall  
Time (10-90%)  
t
R/F  
Small-Signal  
Bandwidth  
(–3 dB)  
f
45  
100  
kHz 4.5 V (V  
5.5 V  
, V  
DD1 DD2  
)
18,20, 14  
21  
–3 dB  
V
= 200 mVpk-pk  
IN+  
sine wave  
Small-Signal  
Bandwidth  
(–45˚)  
f
31  
–45˚  
RMS Input-  
Referred Noise  
V
0.6  
mV  
mV  
In recommended  
application circuit  
22,24  
9
N
rms  
Power Supply  
Rejection  
PSR  
570  
10  
P–P  
*All typicals are at the nominal operating conditions of V  
= 0 V, V  
= 0 V, T = 25˚C, V  
= 5 V and V  
= 5 V.  
IN+  
IN–  
A
DD1  
DD2  
Notes:  
1. If V  
is brought above V  
–2 V with respect to GND1 an internal test mode may be activated. This test mode is not intended for  
IN–  
DD1  
customer use.  
2. Exact offset value is dependent on layout of external bypass capacitors. The offset value in the data sheet corresponds to Agilent’s  
recommended layout (see Figures 26 and 27).  
3. Nonlinearity is defined as half of the peak-to-peak output deviation from the best-fit gain line, expressed as a percentage of the full-scale  
differential output voltage.  
4. Because of the switched capacitor nature of the sigma-delta A/D converter, time averaged values are shown.  
5. CMRR is defined as the ratio of the gain for differential inputs applied between pins 2 and 3 to the gain for both common mode inputs  
IN  
applied to both pins 2 and 3 with respect to pin 4.  
6. When the differential input signal exceeds approximately 320 mV, the outputs will limit at the typical values shown.  
7. Short-circuit current is the amount of output current generated when either output is shorted to V  
recommend operations under these conditions.  
or ground. Agilent does not  
DD2  
8. CMR (also known as IMR or Isolation Mode Rejection) specifies the minimum rate of rise of a common mode signal applied across the  
isolation boundary at which small output perturbations begin to occur. These output perturbations can occur with both the rising and  
falling edges of the common mode waveform and may be of either polarity. A CMR failure is defined as a perturbation exceeding 200 mV  
at the output of the recommended application circuit (Figure 24). See Applications section for more information on CMR.  
9. Output noise comes from two primary sources: chopper noise and sigma-delta quantization noise. Chopper noise results from chopper  
stabilization of the output op-amps. It occurs at a specific frequency (typically 500 kHz) and is not attenuated by the on-chip output  
filter. The on-chip filter does eliminate most, but not all, of the sigma-delta quantization noise. An external filter circuit may be easily  
added to the external post-amplifier to reduce the total RMS output noise. See Applications section for more information.  
10. Data sheet value is the amplitude of the transient at the differential output of the HCPL-7850 when a 1 V , 1 MHz square wave with  
P–P  
100 ns rise and fall times (measured at pins 1 and 8) is applied to both V  
and V  
.
DD1  
DD2  
11. Device considered a two-terminal device: Pins 1, 2, 3, and 4 are shorted together and pins 5, 6, 7, and 8 are shorted together.  
12. Commercial parts receive 100% testing at 25˚C (Subgroups 1 and 9). Hi-Rel and SMD parts receive 100% testing at 25˚C, +125˚C and  
–55˚C (Subgroups 1 and 9, 2 and 10, 3 and 11, respectively).  
13. Parameters are tested as part of device initial characterization and after design and process changes only. Parameters are guaranteed to  
limits specified for all lots not specifically tested.  
14. The f  
test is guaranteed by the T  
test.  
RISE  
-3dB  
7
V
V
DD2  
DD1  
+15 V  
0.1 µF  
1
2
8
7
0.1 µF  
10 K  
+
V
HCPL-7850  
OUT  
0.1 µF  
10 K  
6
5
3
4
AD624CD  
GAIN = 100  
0.1 µF  
0.47  
µF  
0.47  
µF  
-15 V  
Figure 1. Input Offset Voltage Test Circuit.  
2.0  
4.0  
3.5  
3.0  
2.5  
2.0  
0.9  
0.6  
0.3  
V
V
= 5 V  
= 5 V  
DD1  
DD2  
vs. V  
vs. V  
(V  
= 5 V)  
= 5 V)  
DD1 DD2  
(V  
DD2 DD1  
1.5  
1.0  
0.5  
0
NEGATIVE  
OUTPUT  
POSITIVE  
OUTPUT  
T
= 25°C  
A
0
V
V
= 5 V  
= 5 V  
= 25°C  
DD1  
DD2  
1.5  
1.0  
T
A
-0.5  
-0.3  
-60  
-20  
20  
60  
100  
140  
-0.6 -0.4 -0.2  
0
0.2  
0.4  
0.6  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
T
A
– TEMPERATURE – °C  
V
– INPUT VOLTAGE – V  
IN  
V
– SUPPLY VOLTAGE – V  
DD  
Figure 2. Input Offset Change vs.  
Temperature.  
Figure 3. Input Offset Change vs.  
and V  
Figure 4. Output Voltages vs. Input  
Voltage.  
V
.
DD2  
DD1  
8
V
V
DD2  
DD1  
+15 V  
+15 V  
0.1 µF  
0.1 µF  
1
2
8
7
0.1 µF  
0.1 µF  
10 K  
404  
V
IN  
+
+
V
HCPL-7850  
OUT  
13.2  
10 K  
6
5
3
4
AD624CD  
GAIN = 4  
AD624CD  
GAIN = 10  
0.01 µF  
0.1 µF  
0.1 µF  
0.47  
µF  
0.47  
µF  
-15 V  
-15 V  
10 K  
0.47  
µF  
Figure 5. Gain and Nonlinearity Test Circuit.  
0.05  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.15  
0.10  
0.05  
0
V
V
= 5 V  
= 5 V  
200 mV ERROR  
100 mV ERROR  
DD1  
DD2  
vs. V  
vs. V  
(V  
DD1 DD2  
(V  
DD2 DD1  
= 5 V)  
= 5 V)  
V
V
V
= 5 V  
= 5 V  
DD1  
DD2  
T
= 25°C  
A
= 0 V  
IN–  
= 25°C  
-0.05  
T
A
-0.10  
-0.15  
-0.20  
-0.02  
-0.05  
-0.10  
-0.04  
-0.06  
-60  
-20  
20  
60  
100  
140  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
-0.2  
-0.1  
V – INPUT VOLTAGE – V  
IN+  
0
0.1  
0.2  
T
A
– TEMPERATURE – °C  
V
– SUPPLY VOLTAGE – V  
DD  
Figure 6. Gain Change vs.  
Temperature.  
Figure 7. Gain Change vs. V  
DD2  
and  
Figure 8. Nonlinearity Error Plot vs.  
Input Voltage.  
DD1  
V
.
9
0.4  
0.025  
0.07  
V
V
V
T
= 5 V  
= 5 V  
DD1  
DD2  
vs. V  
vs. V  
(V  
= 5 V)  
= 5 V)  
vs. V  
vs. V  
(V  
= 5 V)  
= 5 V)  
200 mV  
100 mV  
DD1 DD2  
DD1 DD2  
(V  
DD2 DD1  
= 0 V  
(V  
IN–  
= 25 °C  
DD2 DD1  
0.3  
0.2  
A
0.020  
0.015  
0.06  
0.05  
T
= 25°C  
A
T
= 25°C  
A
0.1  
0
0.010  
0.005  
0.04  
0
-60  
-20  
20  
60  
100  
140  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
T
– TEMPERATURE – °C  
V
– SUPPLY VOLTAGE – V  
V
– SUPPLY VOLTAGE – V  
A
DD  
DD  
Figure 9. Nonlinearity vs.  
Temperature.  
Figure 10. 200 mV Nonlinearity vs.  
and V  
Figure 11. 100 mV Nonlinearity vs.  
and V  
V
.
V
.
DD2  
DD1  
DD2  
DD1  
11  
2
5.00  
T = 25°C  
A
0
-2  
-4  
-6  
T
= 25°C  
A
10  
9
0.50  
V
V
V
= 5 V  
= 5 V  
= 0 V  
DD1  
DD2  
IN–  
8
V
V
V
= 5 V  
= 5 V  
= 0 V  
DD1  
DD2  
IN–  
0.05  
0.01  
T
= 25°C  
A
7
-8  
V
V
= 5 V  
= 5 V  
DD1  
DD2  
6
-10  
0
±0.10  
±0.20  
±0.30  
±0.40  
-0.4  
-0.2  
V – INPUT VOLTAGE – V  
IN+  
0
0.2  
0.4  
-6  
-4  
V
-2  
0
2
4
6
FS – FULL-SCALE INPUT VOLTAGE – V  
– INPUT VOLTAGE – V  
IN+  
Figure 12. Nonlinearity vs. Full-Scale  
Input Voltage.  
Figure 13. Input Current vs. Input  
Voltage.  
Figure 14. Input Supply Current vs.  
Input Voltage.  
10  
10 K  
150 pF  
V
DD2  
78L05  
+15 V  
0.1 µF  
IN OUT  
1
2
8
7
0.1  
µF  
0.1  
µF  
10.0  
9.5  
0.1 µF  
V
V
V
= 5 V  
= 5 V  
= 0 V  
DD1  
DD2  
IN–  
2 K  
2 K  
V
HCPL-7850  
9 V  
OUT  
+
6
5
3
4
MC34081  
0.1 µF  
9.0  
8.5  
8.0  
T
= 25°C  
A
10 K  
150  
pF  
PULSE GEN.  
-15 V  
+
-0.4  
-0.2  
0
0.2  
0.4  
V
CM  
V
– INPUT VOLTAGE – V  
IN+  
Figure 15. Output Supply Current vs.  
Input Voltage.  
Figure 16. Common Mode Rejection Test Circuit.  
10 K  
V
V
DD2  
DD1  
+15 V  
0.1 µF  
20  
I
1
2
8
7
V
V
V
V
= 5 V  
= 5 V  
= 320 mV  
= 0 V  
DD1  
DD2  
DD1  
DD2  
IN+  
IN–  
0.1 µF  
0.1 µF  
I
15  
10  
2 K  
V
IN  
V
HCPL-7850  
OUT  
2 K  
+
6
5
3
4
MC34081  
0.1 µF  
0.01 µF  
5
0
10 K  
-15 V  
-60  
-20  
20  
60  
100  
140  
V
IMPEDANCE LESS THAN 10 .  
T
A
– TEMPERATURE – °C  
IN  
Figure 17. Input and Output Supply  
Current vs. Temperature.  
Figure 18. Propagation Delay, Rise/Fall Time and Bandwidth Test Circuit.  
11  
10  
9
0
DELAY TO 90%  
DELAY TO 50%  
RISE/FALL TIME  
8
7
6
5
4
3
2
-1  
V
V
= 5 V  
= 5 V  
V
V
= 5 V  
= 5 V  
= 25 °C  
DD1  
DD2  
DD1  
DD2  
T
A
-2  
-3  
-4  
V
V
= 0 V  
IN–  
IN+  
= 0 TO 100 mV STEP  
-60 -40 -20  
0
20 40 60 80 100 120 140  
1
5
10  
50 100  
500  
T
A
– TEMPERATURE – °C  
f – FREQUENCY – kHz  
Figure 19. Propagation Delays and  
Rise/Fall Time vs. Temperature.  
Figure 20. Amplitude Response vs.  
Frequency.  
160  
140  
2.5  
V
V
V
= 200 mV  
= 100 mV  
= 0 mV  
IN+  
IN+  
IN+  
2.0  
1.5  
V
V
= 5 V  
= 5 V  
DD1  
DD2  
T
V
V
= 25°C  
= 5 V  
120  
100  
80  
A
DD1  
DD2  
= 5 V  
1.0  
0.5  
0
60  
40  
-60 -40 -20  
0
20 40 60 80 100 120 140  
5
10  
50 100  
f – FREQUENCY – KHz  
500  
T
– TEMPERATURE – °C  
A
Figure 21. 3 dB Bandwidth vs.  
Temperature.  
Figure 22. RMS Input-Referred Noise  
vs. Recommended Application Circuit  
Bandwidth.  
12  
VOLTAGE  
CLOCK  
VOLTAGE  
REGULATOR  
GENERATOR  
REGULATOR  
ISOLATION  
BOUNDARY  
Σ∆  
LED DRIVE  
CIRCUIT  
DETECTOR  
CIRCUIT  
DECODER  
AND D/A  
ISO-AMP  
OUTPUT  
ISO-AMP  
INPUT  
ENCODER  
FILTER  
MODULATOR  
Figure 23. HCPL-7850 Block Diagram.  
POSITIVE  
FLOATING  
SUPPLY  
C5  
150 pF  
HV+  
GATE DRIVE  
CIRCUIT  
R3  
• • •  
10.0 K  
U1  
78L05  
+5 V  
+15 V  
C8  
IN  
OUT  
0.1 µF  
C1  
C2  
1
2
8
7
C4  
0.1  
µF  
0.1  
µF  
0.1 µF  
R5  
68  
R1  
2.00 K  
R2  
C3  
U3  
V
U2  
OUT  
0.01  
µF  
+
6
5
3
4
MC34081  
2.00 K  
MOTOR  
C7  
+
• • •  
C6  
150 pF  
R4  
10.0 K  
R
0.1 µF  
SENSE  
HCPL-7850  
-15 V  
• • •  
HV–  
Figure 24. Recommended Application Circuit.  
13  
Application Circuit  
single-ended output voltage with  
a simple differential amplifier  
circuit (U3 and associated  
components). Although the  
application circuit is relatively  
simple, a few recommendations  
should be followed to ensure  
optimal performance.  
Applications Information  
Functional Description  
The recommended application  
circuit is shown in Figure 24. A  
floating power supply (which in  
many applications could be the  
same supply that is used to drive  
the high-side power transistor) is  
regulated to 5 V using a simple  
three-terminal voltage regulator  
(U1). The voltage from the  
current sensing resistor, or shunt  
(Rsense), is applied to the input  
of the HCPL-7850 through an RC  
anti-aliasing filter (R5, C3). And  
finally, the differential output of  
the isolation amplifier is  
Figure 23 shows the primary  
functional blocks of the HCPL-  
7850. In operation, the sigma-  
delta modulator converts the  
analog input signal into a high-  
speed serial bit stream. The time  
average of this bit stream is  
directly proportional to the input  
signal. This stream of digital data  
is encoded and optically  
Supplies and Bypassing  
As mentioned above, an  
inexpensive three-terminal  
regulator can be used to reduce  
the gate-drive power supply  
voltage to 5 V. To help attenuate  
high frequency power supply  
noise or ripple, a resistor or  
transmitted to the detector  
circuit. The detected signal is  
decoded and converted back into  
an analog signal, which is filtered  
to obtain the final output signal.  
converted to a ground-referenced  
C5  
150 pF  
+5 V  
R3  
10.0 K  
+5 V  
C4  
C2  
R5  
+5 V  
C8  
R4A  
20.0 K  
0.1 µF  
C3  
8
7
1
2
C4  
0.1 µF  
R1  
Figure 26. Top Layer of Printed  
Circuit Board Layout.  
10.0 K  
R2  
V
U3  
U2  
OUT  
+
6
5
3
4
MC34071  
10.0 K  
C6  
R4B  
150 pF  
20.0 K  
HCPL-7850  
TO V  
DD1  
TO V  
DD2  
OUT+  
OUT–  
TO R  
TO R  
V
V
SENSE+  
SENSE–  
Figure 25. Single-Supply Post-Amplifier Circuit.  
Figure 27. Bottom Layer of a Printed  
Circuit Board Layout.  
27  
1 k  
27 Ω  
1 k  
8
7
1
2
V
V
V
V
DD  
DD  
+
(+)  
+
0.1 µF  
V
DD  
5.5 V  
IN+  
OUT+  
1 k  
1 k  
DC  
(–)  
3
4
6
5
V
IN–  
V
OUT–  
GND  
GND  
CONDITIONS: ICC=17.5mA  
TA=+125˚C  
Figure 28. Operating Circuit for Burn-In and Steady State Life Tests.  
14  
inductor can be used in series  
with the input of the regulator to  
form a low-pass filter with the  
regulator’s input bypass  
capacitor.  
them perpendicular to each other  
on the PC board can also help.  
For more information concerning  
this effect, see Application Note  
1078, Designing with Agilent  
Technologies Isolation  
The recommended method for  
connecting the isolation amplifier  
to the shunt resistor is shown in  
Figure 24. Pin 2 (V ) is  
IN+  
connected to the positive  
terminal of the shunt resistor,  
As shown in Figure 24, a 0.1 µF  
bypass capacitor (C2, C4) should  
be located as close as possible to  
the input and output power  
supply pins of the HCPL-7850.  
The bypass capacitors are  
required because of the high-  
speed digital nature of the signals  
inside the isolation amplifier. A  
0.01 µF bypass capacitor (C3) is  
also recommended at the input  
pin(s) due to the switched-  
capacitor nature of the input  
circuit. The input bypass  
Amplifiers.  
while pin 3 (V ) is shorted to  
IN–  
pin 4 (GND1), with the power-  
supply return path functioning as  
the sense line to the negative  
terminal of the current shunt.  
This allows a single pair of wires  
or PC board traces to connect the  
isolation amplifier circuit to the  
shunt resistor. In some  
applications, however, supply  
currents flowing through the  
power-supply return path may  
cause offset or noise problems. In  
this case, better performance  
may be obtained by connecting  
pin 3 to the negative terminal of  
the shunt resistor separate from  
the power supply return path.  
When connected this way, both  
input pins should be bypassed.  
Whether two or three wires are  
used, it is recommended that  
twisted-pair wire or very close PC  
board traces be used to connect  
the current shunt to the isolation  
amplifier circuit to minimize  
electromagnetic interference to  
the sense signal.  
Shunt Resistor Selections  
The current-sensing shunt  
resistor should have low  
resistance (to minimize power  
dissipation), low inductance (to  
minimize di/dt induced voltage  
spikes which could adversely  
affect operation), and reasonable  
tolerance (to maintain overall  
circuit accuracy). The value of  
the shunt should be chosen as a  
compromise between minimizing  
power dissipation by making the  
shunt resistance smaller and  
improving circuit accuracy by  
making it larger and utilizing the  
full input range of the HCPL-  
7850. Agilent Technologies  
recommends four different shunts  
which can be used to sense  
average currents in motor drives  
up to 35 A and 35 hp. Table 1  
shows the maximum current and  
horsepower range for each of the  
LVR-series shunts from Dale.  
Even higher currents can be  
sensed with lower value shunts  
available from vendors such as  
Dale, IRC, and Isotek  
(Isabellenhuette). When sensing  
currents large enough to cause  
significant heating of the shunt,  
the temperature coefficient of the  
shunt can introduce nonlinearity  
due to the signal dependent  
temperature rise of the shunt.  
Using a heat sink for the shunt or  
using a shunt with a lower  
tempco can help minimize this  
effect. The Application Note  
1078, Designing with Agilent  
Technologies Isolation  
capacitor should be at least  
1000 pF to maintain gain  
accuracy of the isolation  
amplifier.  
Inductive coupling between the  
input power-supply capacitor and  
the input circuit, including the  
input bypass capacitor and the  
input leads of the HCPL-7850,  
can introduce additional DC  
offset in the circuit. Several steps  
can be taken to minimize the  
mutual coupling between the two  
parts of the circuit, thereby  
improving the offset performance  
of the design. Separate the two  
bypass capacitors C2 and C3 as  
much as possible (even putting  
them on opposite sides of the PC  
board), while keeping the total  
lead lengths, including traces, of  
each bypass capacitor less than  
20 mm. PC board traces should  
be made as short as possible and  
placed close together or over  
ground plane to minimize loop  
area and pickup of stray magnetic  
fields. Avoid using sockets, as  
they will typically increase both  
loop area and inductance. And  
finally, using capacitors with  
small body size and orienting  
The 68 resistor in series with  
the input lead forms a low-pass  
anti-aliasing filter with the input  
bypass capacitor with a 200 kHz  
bandwidth. The resistor  
performs another important  
function as well; it dampens any  
ringing which might be present in  
the circuit formed by the shunt,  
the input bypass capacitor, and  
the wires or traces connecting the  
two. Undampened ringing of the  
input circuit near the input  
sampling frequency can alias into  
the baseband producing what  
might appear to be noise at the  
output of the device. To be  
Amplifiers, contains additional  
information on designing with  
current shunts.  
15  
effective, the damping resistor  
should be at least 39 .  
the output offset of the HCPL-  
7850, or less than about 5 mV.  
supply applications. One  
additional resistor is needed and  
the gain is decreased to 1 to  
allow circuit operation over the  
full input voltage range. See  
Application Note 1078,  
Designing with Agilent  
Technologies Isolation  
Amplifiers, for more information  
on the post-amplifier circuit.  
PC Board Layout  
To maintain overall circuit  
In addition to affecting offset, the  
layout of the PC board can also  
affect the common mode  
bandwidth, the post-amplifier  
circuit should have a bandwidth  
at least twice the minimum  
bandwidth of the isolation  
amplifier, or about 200 kHz. To  
obtain a bandwidth of 200 kHz  
with a gain of 5, the op-amp  
should have a gain-bandwidth  
greater than 1 mHz. The post-  
amplifier circuit includes a pair of  
capacitors (C5 and C6) that form  
a single-pole low-pass filter.  
These capacitors allow the  
rejection (CMR) performance of  
the isolation amplifier, due  
primarily to stray capacitive  
coupling between the input and  
the output circuits. To obtain  
optimal CMR performance, the  
layout of the printed circuit board  
(PCB) should minimize any stray  
coupling by maintaining the  
maximum possible distance  
between the input and output  
sides of the circuit and ensuring  
that any ground plane on the PCB  
does not pass directly below the  
HCPL-7850. Using surface mount  
components can help achieve  
many of the PCB objectives  
discussed in the preceding  
Other Information  
As mentioned above, reducing the  
bandwidth of the post amplifier  
circuit reduces the amount of  
output noise. Figure 22 shows  
how the output noise changes as  
a function of the post-amplifier  
bandwidth. The post-amplifier  
circuit exhibits a first-order low-  
pass filter characteristic. For the  
same filter bandwidth, a higher-  
order filter can achieve even  
better attenuation of modulation  
noise due to the second-order  
noise shaping of the sigma-delta  
modulator. For more information  
on the noise characteristics of the  
HCPL-7850, see Application Note  
1078, Designing with Agilent  
Technologies Isolation  
bandwidth of the post-amp to be  
adjusted independently of the  
gain and are useful for reducing  
the output noise from the  
isolation amplifier (doubling the  
capacitor values halves the circuit  
bandwidth). The component  
values shown in Figure 24 form a  
differential amplifier with a gain  
of 5 and a cutoff frequency of  
approximately 100 kHz, and were  
chosen as a compromise between  
low noise and fast response  
times. The overall recommended  
application circuit has a  
paragraphs. An example through-  
hole PCB layout illustrating some  
of the more important layout  
recommendations is shown in  
Figures 26 and 27. See  
Applications Note 1078,  
Designing with Agilent  
Amplifiers.  
Technologies Isolation  
Amplifiers, for more information  
on PCB layout consideration.  
bandwidth of 66 kHz, a rise time  
of 5.2 µs and a delay to 90% of  
8.5 µs.  
The HCPL-7850 can also be used  
to isolate signals with amplitudes  
larger than its recommended  
input range through the use of a  
resistive voltage divider at its  
input. The only restrictions are  
that the impedance of the divider  
be relatively small (less than 1 KΩ  
so that the input resistance (480  
K) and input bias current (0.6  
A) do not affect the accuracy of  
the measurement. An input  
bypass capacitor is still required,  
although the 68 series damping  
resistor is not. (The resistance of  
the voltage divider provides the  
same function.) The low pass  
filter formed by the divider  
Post-Amplifier Circuit  
The gain-setting resistors in the  
post-amp should have a tolerance  
of 1% or better to ensure  
adequate CMRR and gain  
tolerance for the overall circuit.  
Resistor networks with even  
better ratio tolerances can be  
used which offer better  
The recommended application  
circuit (Figure 24) includes a  
post-amplifier circuit that serves  
three functions: to reference the  
output signal to the desired level  
(usually ground), to amplify the  
signal to appropriate levels, and  
to help filter output noise. The  
particular op-amp used in the  
post-amp is not critical; however,  
it should have low enough offset  
and high enough bandwidth and  
slew rate so that it does not  
performance, as well as reducing  
the total component count and  
board space.  
The post-amplifier circuit can be  
easily modified to allow for  
single-supply operation. Figure  
25 shows a schematic for a post  
amplifier for use in 5 V single  
adversely affect circuit  
performance. The offset of the  
op-amp should be low relative to  
resistance and the input bypass  
capacitor may limit the  
achievable bandwidth.  
Table 1. Current Shunt Summary.  
Maximum  
Power  
Dissipation  
Maximum  
Average  
Current  
Maximum  
Horsepower  
Range  
Shunt  
Resistance  
Shunt Resistor Part Number  
LVR-3.05-1%  
50 mΩ  
3 W  
3 W  
3 W  
5 W  
3 A  
8 A  
0.8 to 3.0 hp  
2.2 to 8.0 hp  
4.1 to 15 hp  
9.6 to 35 hp  
LVR-3.02-1%  
20 mΩ  
LVR-3.01-1%  
10 mΩ  
15 A  
35 A  
LVR-5.005-1%  
5 mΩ  
MIL-PRF-38534 Class H and  
DSCC SMD Test Program  
Agilent Technologies’ Hi-Rel  
Optocouplers are in compliance  
with MIL-PRF-38534 Class H.  
Class H devices are also in  
compliance with DSCC drawing  
5962-97557.  
Testing consists of 100%  
screening and quality  
conformance inspection to  
MIL-PRF-38534.  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 2000 Agilent Technologies  
Osoletes 5966-2716E  
5968-9405E (11/00)  

相关型号:

5962-9755701HPX

Hermetically Sealed Analog Isolation Amplifier
AGILENT

5962-9755701HXA

Hermetically Sealed Analog Isolation Amplifier
AGILENT

5962-9755701HXX

ISOLATION AMPLIFIER, 100kHz BAND WIDTH, CDSO8, GULLWING, HERMETIC SEALED, DIP-8
AVAGO

5962-9755701HYA

Hermetically Sealed Analog Isolation Amplifier
AGILENT

5962-9755701HYC

Hermetically Sealed Analog Isolation Amplifier
AGILENT

5962-9755701HYX

Isolation Amplifier, 1 Func, 100MHz Band Width, CDSO8, HERMETIC SEALED, SMT, DIP-8
AVAGO

5962-9755801Q2A

Single 8-input NAND Gate
ETC

5962-9755801QCA

军用单路 8 输入、4.5V 至 5.5V 双极与非门 | J | 14 | -55 to 125
TI

5962-9755901Q2A

OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS
TI

5962-9755901QRA

OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS
TI

5962-9755901QSA

OCTAL BUFFERS AND LINE DRIVERS WITH 3-STATE OUTPUTS
TI

5962-9756001Q2A

军用 4 通道、2 输入、4.5V 至 5.5V 双极或门 | FK | 20 | -55 to 125
TI