T7633 [AGERE]

Dual T1/E1 3.3 V Short-Haul Terminator; 双T1 / E1 3.3 V短程终结者
T7633
型号: T7633
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

Dual T1/E1 3.3 V Short-Haul Terminator
双T1 / E1 3.3 V短程终结者

文件: 总250页 (文件大小:1849K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
Introduction  
This advisory applies to the T7633 Dual T1/E1 3.3 V Short-Haul Terminator as described in the May 1998  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator Advance Data Sheet (DS98-244TIC).  
Microprocessor Timing Requirements  
This section describes a modification to the microprocessor interface timing information to guarantee proper  
function of the line interface clear on read status register, LIU_REG0, at address 400 and A00 (hex).  
For clear on read (COR) register LIU_REG0 to clear, the chip select (CS) and address value (AD0—AD7 and  
A8—A11, or A0—A11) must be active for either of the following intervals after the completion of the read (RD)  
or data strobe (DS) pulse.  
1. If present, two microprocessor clock (MPCK) cycles.  
33 MHz maximum.  
3 MHz minimum.  
2. Two internal SYSCK cycles, if MPCK is not present.  
The internal SYSCK is a clock at 16 times the line rate (24.704 MHz for DS1 or 32.768 MHz for CEPT).  
Two internal SYSCK cycles, at 16 times the line rate, are equivalent to 81 ns for DS1 and 61 ns for CEPT. If  
MPCK is present, this time interval can range from 61 ns to 667 ns depending upon the particular repetition  
rate selected for MPCK. The microprocessor interface timing table from the T7633 advance data sheet is  
shown in Table 1, Microprocessor Interface I/O Timing Specifications on page 2 with the revised timing incor-  
ported in the table (notes * and †). The timing diagrams, which did not change, are shown in Figure 1—  
Figure 8.  
For the case where MPCK is not present, it is recommended that the hold time between the deassertion of RD  
or DS and the deassertion of CS be at least 110 ns to provide a safety margin.  
This requirement is not specified in the T7633 advance data sheet.  
The framer portion of the terminator internally latches the decoded register address within its logic for clearing  
the framer CORs, and it does not require this timing modification.  
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
Microprocessor Interface  
I/O Timing  
In modes 1 and 3, asserting ALE_AS signal low is used to enable the internal address bus. In modes 2 and 4, the  
falling edge of ALE_AS signal is used to latch the address bus.  
Table 1. Microprocessor Interface I/O Timing Specifications  
Setup  
(ns)  
Hold  
(ns)  
Delay  
(ns)  
Symbol Configuration  
Parameter  
(Min)  
(Min)  
(Max)  
t1  
t2  
Modes 1 & 2 AS Asserted Width  
10  
4
10  
10  
*
12  
15  
15  
25  
12  
10  
Address Valid to AS Deasserted  
t3  
AS Deasserted to Address Invalid  
t4  
t5  
R/W Valid to Both CS and DS Asserted  
Address Valid and AS Asserted to DS Asserted (Read)  
CS Asserted to DTACK Low Impedance  
DS Asserted to DTACK Asserted  
DS Asserted to AD Low Impedance (Read)  
DTACK Asserted to Data Valid  
t6  
0
t7  
10  
10  
10  
0
t8  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
DS Deasserted to CS Deasserted (Read)  
DS Deasserted to R/W Invalid  
5
DS Deasserted to DTACK Deasserted  
CS Deasserted to DTACK High Impedance  
DS Deasserted to Data Invalid (Read)  
Address Valid and AS Asserted to DS Asserted (Write)  
Data Valid to DS Asserted  
5
5
DS Deasserted to CS Deasserted (Write)  
DS Deasserted to Data Valid  
10  
10  
10  
DS Asserted Width (Write)  
Address Valid to AS Falling Edge  
AS Falling Edge to Address Invalid  
AS Falling Edge to DS Asserted (Read)  
AS Falling Edge to DS Asserted (Write)  
CS Asserted to DS Asserted (Write)  
10  
10  
* For Figure 1:  
If AS = 0 (AS is not used or is inactive), then the address must be valid until CS = 1 and  
— If MPCK is used (MPCK is active), then t11 must exceed two MPCK periods,  
— If MPCK is not used (MPCK is inactive), then t11 must exceed two 16x line clock periods. A t11 of 110 ns is suggested.  
If AS is used (AS is active), then  
— If MPCK is used (MPCK is active), then t11 must exceed two MPCK periods,  
— If MPCK is not used (MPCK is inactive), then t11 must exceed two 16x line clock periods. A t11 of 110 ns is suggested.  
For Figure 3:  
If MPCK is used (MPCK is active), then t11 must exceed two MPCK periods,  
If MPCK is not used (MPCK is inactive), then t11 must exceed two 16x line clock periods. A t11 of 110 ns is suggested.  
2
Agere Systems Inc.  
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
Microprocessor Interface (continued)  
I/O Timing (continued)  
Table 1. Microprocessor Interface I/O Timing Specifications (continued)  
Setup  
(ns)  
(Min)  
Hold  
(ns)  
(Min)  
Delay  
(ns)  
(Max)  
Symbol Configuration  
Modes 3 & 4  
Parameter  
ALE Asserted Width  
t31  
t32  
t33  
t34  
t35  
t36  
t37  
t38  
t39  
t40  
t41  
t42  
t43  
t44  
t45  
t46  
t47  
t48  
t49  
t50  
t51  
t52  
t53  
t54  
t55  
10  
0
10  
10  
12  
15  
15  
40  
15  
10  
15  
Address Valid to ALE Deasserted  
ALE Deasserted to Address Invalid  
CS Asserted to RD Asserted  
0
Address Valid and ALE Asserted to RD Asserted  
CS Asserted to RDY Low Impedance  
Rising Edge MPCK to RDY Asserted  
RD Asserted to AD Low Impedance  
RD Asserted to Data Valid  
0
RD Deasserted to CS Deasserted  
RD Deasserted to RDY Deasserted  
CS Deasserted to RDY High Impedance  
RD Deasserted to Data Invalid (High Impedance)  
CS Asserted to WR Asserted  
5
5
10  
10  
10  
0
Address Valid and ALE Asserted to WR Asserted  
Data Valid to WR Asserted  
WR Deasserted to CS Deasserted  
WR Deasserted to RDY Deasserted  
WR Deasserted to Data Invalid  
10  
40  
10  
10  
RD Asserted Width  
WR Asserted Width  
Address Valid to ALE Falling Edge  
ALE Falling Edge to Address Invalid  
ALE Falling Edge to RD Asserted  
ALE Falling Edge to WR Asserted  
10  
† For Figure 5:  
If ALE = 0 (ALE is not used or is inactive), then the address must be valid until CS = 1 and  
— If MPCK is used (MPCK is active), then t40 must exceed two MPCK periods,  
— If MPCK is not used (MPCK is inactive), then t40 must exceed two 16x line clock periods. A t40 of 110 ns is suggested.  
If ALE is used ( ALE is active), then  
— If MPCK is used (MPCK is active), then t40 must exceed two MPCK periods,  
— If MPCK is not used (MPCK is inactive), then t40 must exceed two 16x line clock periods. A t40 of 110 ns is suggested.  
For Figure 7:  
If MPCK is used (MPCK is active), then t40 must exceed two MPCK periods,  
If MPCK is not used (MPCK is inactive), then t40 must exceed two 16x line clock periods. A t40 of 110 ns is suggested.  
The read and write timing diagrams for all four microprocessor interface modes are shown in Figures 1—8.  
Agere Systems Inc.  
3
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
Microprocessor Interface (continued)  
I/O Timing (continued)  
t11  
CS  
t1  
AS  
t2  
t3  
A[0:11]  
R/W  
VALID ADDRESS  
t12  
t5  
DS  
t6  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t10  
t9  
t15  
VALID DATA  
5-6422(F)r.1  
Figure 1. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0)  
t18  
CS  
AS  
t1  
t2  
t3  
A[0:11]  
R/W  
VALID ADDRESS  
t5  
t12  
t16  
t20  
DS  
t25  
t7  
t13  
t14  
t8  
DTACK  
AD[0:7]  
t17  
t19  
VALID DATA  
5-6423(F)  
Figure 2. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0)  
4
Agere Systems Inc.  
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
Microprocessor Interface (continued)  
I/O Timing (continued)  
t11  
CS  
t1  
AS  
t21  
t22  
A[8:11]  
R/W  
VALID ADDRESS  
t5  
t12  
DS  
t23  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t21  
t22  
t10  
t9  
t15  
VALID ADDRESS  
VALID DATA  
5-6424(F)  
Figure 3. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1)  
t18  
CS  
AS  
t1  
t21  
t22  
A[8:11]  
R/W  
VALID ADDRESS  
t5  
t12  
t25  
t20  
DS  
t24  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t17  
t21  
t22  
t19  
VALID ADDRESS  
VALID DATA  
5-6425(F)  
Figure 4. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1)  
Agere Systems Inc.  
5
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
Microprocessor Interface (continued)  
I/O Timing (continued)  
t40  
CS  
t31  
ALE  
t32  
t33  
A[0:11]  
RD  
VALID ADDRESS  
t34  
t50  
t42  
t35  
t36  
t37  
t41  
RDY  
t39  
t43  
t38  
VALID DATA  
AD[0:7]  
MPCK  
5-6426(F)r.1  
Figure 5. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0)  
t47  
CS  
t31  
ALE  
t32  
t33  
A[0:11]  
WR  
VALID ADDRESS  
t44  
t51  
t42  
t45  
t36  
t48  
t49  
t37  
RDY  
t46  
VALID DATA  
AD[0:7]  
MPCK  
5-6427(F)  
Figure 6. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0)  
6
Agere Systems Inc.  
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
Microprocessor Interface (continued)  
I/O Timing (continued)  
t40  
CS  
t31  
ALE  
t52  
t53  
A[8:11]  
RD  
VALID ADDRESS  
t34  
t50  
t54  
t41  
t42  
t37  
t36  
RDY  
t39  
t52  
t53  
t43  
VALID DATA  
t38  
AD  
VALID ADDRESS  
MPCK  
5-6428(F)r.1  
Figure 7. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1)  
t47  
CS  
t31  
ALE  
t52  
t53  
A[8:11]  
WR  
VALID ADDRESS  
t44  
t51  
t55  
t48  
t42  
t37  
t36  
RDY  
t52  
t53  
t46  
t49  
VALID DATA  
VALID ADDRESS  
AD  
MPCK  
5-6429(F)r.1  
Figure 8. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1)  
Agere Systems Inc.  
7
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
Data Pattern Limitation for Proper Functionality of the LIU Internal Full Local  
Loopback (FLLOOP)  
One of the loopback modes built into the T7633 is the line interface (LIU) full local loopback (FLLOOP). This mode  
connects the LIU transmit driver to the LIU line receiver circuit. This loopback mode is controlled by register  
LIU_REG5 bit 2 and bit 3. The FLLOOP function is activated when LIU_REG5, bit 2 = 1 and bit 3 = 0.  
Issue  
In the case of a data pattern with more than 400 continuous zeros, this loopback mode could possibly be unreli-  
able. The possible failure mode is the following:  
1. Latching of the data in either the one or zero state, and/or  
2. An improper period for the recovered line clock (RLCK).  
The condition of an all-zero data pattern should not occur in framed T1 or E1 signals, nor should it occur in signals  
that use B8ZS, HDB3, or ZCS coding. As a consequence, this possible fault in the FLLOOP function should have  
minimal impact on T1 and E1 system applications of the T7633. If the case of an all-zeros data stream is used as a  
special system test or diagnostic condition, these devices may be forced into the above fault condition when the  
T7633 is in the FLLOOP state.  
Solution  
To avoid this possible fault condition, the FLLOOP loopback mode should not be used unless the data pattern is  
limited to one not containing in excess of 400 contiguous zeros. Alternatively, limits on the content of the data  
stream may be eliminated by using an equivalent external loopback in place of the FLLOOP loopback, or by using  
an alternative internal loopback, such as DLLOOP in the LIU or BLB (board loopback) of the framer.  
Asynchronous SYSCK and PLLCK with Jitter Attenuator in the Line Transmit Path  
A feature of the T7633 Line Interface Unit (LIU) is a jitter attenuator that can be optionally included in either the line  
receive or line transmit path. The jitter attenuator mode is controlled by the LIU register LIU_REG3 bits 0 and 1  
(JAR and JAT). This register is located at address 403(hex) or A03(hex). Control of the jitter attenuator mode is  
independent for each channel of the terminator.  
Issue  
In the case when the jitter attenuator is in the line transmit path and the transmit line clock, which is derived from  
PLLCK, is asynchronous with SYSCK, errors may be generated in the line transmit data. These errors may appear  
as pattern slips.  
Solution  
To avoid generation of these errors,  
1. PLLCK should be synchronous to SYSCK if the jitter attenuator is used in the transmit path,  
or  
2. The jitter attenuator should not be used in the line transmit path.  
8
Agere Systems Inc.  
Device Advisory  
September 1999  
T7633 Device Advisory for Version 1.0 of the Device  
AY99-010PDH Replaces AY99-007T1E1 to Incorporate the Following Updates  
1. Separate AY99-007T1E1 into two advisories: one applying to the T7630 and one applying to the T7633. This  
advisory (AY99-010PDH) applies to the T7633.  
2. Page 8, added Asynchronous SYSCK and PLLCK with Jitter Attenuator in the Line Transmit Path section.  
Agere Systems Inc.  
9
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.agere.com  
docmaster@agere.com  
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA:  
Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon  
Tel. (852) 3129-2000, FAX (852) 3129-2020  
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)  
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)  
Tel. (44) 7000 624624, FAX (44) 1344 488 045  
EUROPE:  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.  
Copyright © 2002 Agere Systems Inc.  
All Rights Reserved  
September 1999  
AY99-010PDH (Replaces AY99-007T1E1 and must accompany DS02-244BBAC)  
Device Advisory  
August 1999  
T7633 Device Advisory Describing Differences  
Between Version 1.0 and Version 2.0 of Device  
Introduction  
This advisory applies only to the T7633 Dual T1/E1 3.3 V Short-Haul Terminator, and it describes the differ-  
ences between the two versions of the device.  
Data Sheet Changes  
Table 148, Framer FDL Control Command Register (FRM_PR21) on page 189 of the May 1998 T7633 Dual  
T1/E1 3.3 V Short-Haul Terminator Advance Data Sheet (DS02-244BBAC).  
In version 1.0 of the device, bit 0 is reserved and must be cleared (write to 0).  
In version 2.0 of the device, bit 0 = 1 disables the receive frame sync (RFS) output when the receive framer  
is in a loss of frame alignment (LFA) state; when bit 0 = 0, the device operates the same as version 1.0 of the  
device.  
Device Operation Updates  
LIU Full Local Loopback (FLLOOP)  
In version 1.0 of the device, when FLLOOP is enabled, the device occasionally drops 1s from the data pattern.  
This behavior is 1s density dependent, therefore, some data sequences are more sensitive than others.  
In version 2.0 of the device, the sensitivity to 1s density no longer occurs.  
Microprocessor Interface Timing  
In version 1.0 of the device, the LIU alarm status register (LIU_REG0) is clear-on-read (COR) and requires a  
modification to the microprocesser interface timing to guarantee proper operation. The timing requirements are  
described in the December 1998 T7633 Device Advisory for Version 1.0 of the Device (AY99-007T1E1).  
In version 2.0 of the device, the timing modification is no longer required.  
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.agere.com  
docmaster@agere.com  
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA:  
Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon  
Tel. (852) 3129-2000, FAX (852) 3129-2020  
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)  
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)  
Tel. (44) 7000 624624, FAX (44) 1344 488 045  
EUROPE:  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.  
Copyright © 2002 Agere Systems Inc.  
All Rights Reserved  
August 1999  
AY99-033PDH (Must accompany DS02-244BBAC)  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarm reporting and performance monitoring per  
Features  
AT&T ®, ANSI®, and ITU-T standards.  
Programmable, independent transmit and receive  
system interfaces at a 2.048 MHz, 4.096 MHz, or  
8.192 MHz data rate.  
The T7633 Dual T1/E1 Terminator consists of two  
independent, highly integrated, software-config-  
urable, full-featured short-haul transceiver/framers.  
The T7633 provides glueless interconnection from a  
T1/E1 line to a digital PCM system. Minimal external  
clocks are needed. Only a system clock/frame sync  
and a phase-locked line rate clock are required. Sys-  
tem diagnostic and performance monitoring capabil-  
ity with integrated programmable test pattern  
System interface master mode for generation of  
system frame sync from the line source.  
Internal phase-locked loop (with external VCXO)  
for generation of system clock from the line source.  
Facility Data Link Features  
generator/detector and loopback modes is provided.  
HDLC or transparent modes.  
Power Requirements and Package  
Automatic transmission and detection of ANSI  
T1.403 FDL performance report message and bit-  
oriented codes.  
Single 3.3 V ± 5% supply.  
Low power: 375 mW per channel maximum.  
144-pin TQFP package.  
64-byte FIFO in both transmit and receive direc-  
tions.  
Operating temperature range: –40 °C to +85 °C.  
Microprocessor Interface  
T1/E1 Line Interface Features  
33 MHz, 8-bit data interface, no wait-states.  
Intel® or Motorola® interface modes with multi-  
Full T1/E1 pulse template compliance.  
plexed or demultiplexed buses.  
Receiver provides equalization for up to 11 dB of  
loss.  
Directly addressable control registers.  
Digital clock and data recovery.  
Line coding: B8ZS, HDB3, ZCS, and AMI.  
Applications  
Line interface coupling and matching networks for  
T1 and E1 (120 and 75 ).  
Customer Premises Equipment—CSU/DSU,  
routers, digital PBX, channel banks (CB), base  
transceiver stations (BTS-picocell), small switches,  
and digital subscriber loop access multiplexers  
(DSLAM).  
T1/E1 Framer Features  
Supports T1 framing modes ESF, D4, SLC®-96,  
T1DM DDS.  
Loop/Access—DLC/IDLC, DCS, BTS (microcell/  
macrocell), DSLAMs, and multiplexers (terminal,  
synchronous/asynchronous, add drop).  
Supports G.704 basic and CRC-4 multiframe for-  
mat E1 framing and procedures consistent with  
G.706.  
Central Office—Digital switches, DCS, CB,  
access concentrators, remote switch modules  
(RSM), and DSLAMs.  
Supports unframed transmission format.  
T1 signaling modes: transparent; ESF 2-state,  
4-state, and 16-state; D4 2-state and 4-state; SLC-  
96 2-state, 4-state, 9-state, and 16-state. E1 sig-  
naling modes: transparent, CAS, CCS, and IRMS.  
Test Equipment—Transmission/BERT tester.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Table of Contents  
Contents  
Page  
Features ................................................................................................................................................................... 1  
Power Requirements and Package.................................................................................................................... 1  
T1/E1 Line Interface Features............................................................................................................................ 1  
T1/E1 Framer Features...................................................................................................................................... 1  
Facility Data Link Features................................................................................................................................. 1  
Microprocessor Interface.................................................................................................................................... 1  
Applications........................................................................................................................................................ 1  
Feature Descriptions .............................................................................................................................................. 13  
T1/E1 Line Interface Features.......................................................................................................................... 13  
T1/E1 Framer Features.................................................................................................................................... 13  
Facility Data Link Features............................................................................................................................... 14  
User-Programmable Microprocessor Interface ................................................................................................ 14  
Functional Description............................................................................................................................................ 15  
Pin Information ....................................................................................................................................................... 19  
Line Interface Unit: Block Diagram......................................................................................................................... 26  
Line Interface Unit: Receive ................................................................................................................................... 26  
Data Recovery.................................................................................................................................................. 26  
Jitter Accommodation and Jitter Transfer Without the Jitter Attenuator........................................................... 27  
Receive Line Interface Configuration Modes ................................................................................................... 27  
T1/DS1 LIU Receiver Specifications ................................................................................................................ 30  
CEPT LIU Receiver Specifications................................................................................................................... 31  
Line Interface Unit: Transmit .................................................................................................................................. 34  
Output Pulse Generation.................................................................................................................................. 34  
LIU Transmitter Configuration Modes .............................................................................................................. 35  
LIU Transmitter Alarms .................................................................................................................................... 35  
DSX-1 Transmitter Pulse Template and Specifications ................................................................................... 37  
CEPT Transmitter Pulse Template and Specifications .................................................................................... 38  
Line Interface Unit: Jitter Attenuator....................................................................................................................... 40  
Generated (Intrinsic) Jitter................................................................................................................................ 40  
Jitter Transfer Function .................................................................................................................................... 40  
Jitter Accommodation....................................................................................................................................... 41  
Jitter Attenuator Enable (Transmit or Receive Path)........................................................................................ 41  
Line Interface Unit: Loopbacks............................................................................................................................... 44  
Full Local Loopback (FLLOOP)........................................................................................................................ 44  
Remote Loopback (RLOOP) ............................................................................................................................ 44  
Digital Local Loopback (DLLOOP) ................................................................................................................... 44  
Line Interface Unit: Other Features ........................................................................................................................ 45  
LIU Powerdown (PWRDN)............................................................................................................................... 45  
Loss of Framer Receive Line Clock (LOFRMRLCK Pin).................................................................................. 45  
In-Circuit Testing and Driver High-Impedance State (3-STATE)...................................................................... 45  
LIU Delay Values.............................................................................................................................................. 45  
SYSCK Reference Clock........................................................................................................................................ 46  
Line Interface Unit: Line Interface Networks........................................................................................................... 48  
LIU-Framer Interface .............................................................................................................................................. 50  
LIU-Framer Physical Interface.......................................................................................................................... 50  
Interface Mode and Line Encoding................................................................................................................... 52  
DS1: Zero Code Suppression (ZCS)................................................................................................................ 53  
CEPT: High-Density Bipolar of Order 3 (HDB3)............................................................................................... 54  
2
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Table of Contents (continued)  
Contents  
Page  
Frame Formats........................................................................................................................................................55  
T1 Framing Structures ......................................................................................................................................55  
T1 Loss of Frame Alignment (LFA)...................................................................................................................62  
T1 Frame Recovery Alignment Algorithms .......................................................................................................63  
T1 Robbed-Bit Signaling ...................................................................................................................................64  
CEPT 2.048 Basic Frame, CRC-4 Time Slot 0, and Signaling Time Slot 16 Multiframe Structures.................66  
CEPT 2.048 Basic Frame Structure..................................................................................................................67  
CEPT Loss of Basic Frame Alignment (LFA)....................................................................................................69  
CEPT Loss of Frame Alignment Recovery Algorithm .......................................................................................69  
CEPT Time Slot 0 CRC-4 Multiframe Structure................................................................................................70  
CEPT Loss of CRC-4 Multiframe Alignment (LTS0MFA)..................................................................................71  
CEPT Loss of CRC-4 Multiframe Alignment Recovery Algorithms...................................................................72  
CEPT Time Slot 16 Multiframe Structure..........................................................................................................76  
CEPT Loss of Time Slot 16 Multiframe Alignment (LTS16MFA) ......................................................................78  
CEPT Loss of Time Slot 16 Multiframe Alignment Recovery Algorithm............................................................78  
CEPT Time Slot 0 FAS/NOT FAS Control Bits .......................................................................................................79  
FAS/NOT FAS Si- and E-Bit Source.................................................................................................................79  
NOT FAS A-Bit (CEPT Remote Frame Alarm) Sources ...................................................................................80  
NOT FAS Sa-Bit Sources..................................................................................................................................80  
Sa Facility Data Link Access.............................................................................................................................81  
NOT FAS Sa Stack Source and Destination.....................................................................................................82  
CEPT Time Slot 16 X0—X2 Control Bits ..........................................................................................................84  
Signaling Access.....................................................................................................................................................85  
Transparent Signaling.......................................................................................................................................85  
DS1: Robbed-Bit Signaling ...............................................................................................................................85  
CEPT: Time Slot 16 Signaling...........................................................................................................................86  
Auxiliary Framer I/O Timing ....................................................................................................................................87  
Alarms and Performance Monitoring.......................................................................................................................91  
Interrupt Generation..........................................................................................................................................91  
Alarm Definition.................................................................................................................................................91  
Event Counters Definition .................................................................................................................................97  
Loopback and Transmission Modes .................................................................................................................99  
Line Test Patterns...........................................................................................................................................102  
Automatic and On-Demand Commands .........................................................................................................106  
Facility Data Link (FDL).........................................................................................................................................108  
Receive Facility Data Link Interface................................................................................................................108  
Transmit Facility Data Link Interface...............................................................................................................114  
HDLC Operation..............................................................................................................................................115  
Transparent Mode...........................................................................................................................................118  
Diagnostic Modes............................................................................................................................................120  
Phase-Lock Loop Circuit.......................................................................................................................................122  
Framer-System (CHI) Interface.............................................................................................................................124  
DS1 Modes .....................................................................................................................................................124  
CEPT Modes...................................................................................................................................................124  
Receive Elastic Store......................................................................................................................................124  
Transmit Elastic Store.....................................................................................................................................124  
Concentration Highway Interface (CHI) ................................................................................................................125  
CHI Parameters ..............................................................................................................................................126  
CHI Frame Timing...........................................................................................................................................129  
CHI Offset Programming.................................................................................................................................132  
Agere Systems Inc.  
3
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Table of Contents (continued)  
Contents  
Page  
JTAG Boundary-Scan Specification ..................................................................................................................... 135  
Principle of the Boundary Scan...................................................................................................................... 135  
Test Access Port Controller............................................................................................................................ 136  
Instruction Register ........................................................................................................................................ 138  
Boundary-Scan Register ................................................................................................................................ 139  
BYPASS Register........................................................................................................................................... 139  
IDCODE Register........................................................................................................................................... 139  
3-State Procedures ........................................................................................................................................ 139  
Microprocessor Interface...................................................................................................................................... 140  
Overview ........................................................................................................................................................ 140  
Microprocessor Configuration Modes............................................................................................................. 140  
Microprocessor Interface Pinout Definitions................................................................................................... 141  
Microprocessor Clock (MPCLK) Specifications.............................................................................................. 142  
Microprocessor Interface Register Address Map ........................................................................................... 142  
I/O Timing....................................................................................................................................................... 142  
Reset .................................................................................................................................................................... 149  
Hardware Reset (Pin 43/139)......................................................................................................................... 149  
Software Reset/Software Restart................................................................................................................... 149  
Interrupt Generation ............................................................................................................................................. 149  
Register Architecture............................................................................................................................................ 150  
Global Register Architecture................................................................................................................................. 154  
Global Register Structure ..................................................................................................................................... 155  
Primary Block Interrupt Status Register (GREG0) ......................................................................................... 155  
Primary Block Interrupt Enable Register (GREG1) ........................................................................................ 155  
Global Loopback Control Register (GREG2) ................................................................................................. 156  
Global Loopback Control Register (GREG3) ................................................................................................. 156  
Global Control Register (GREG4).................................................................................................................. 157  
Device ID and Version Registers (GREG5—GREG7) ................................................................................... 157  
Line Interface Unit (LIU) Register Architecture..................................................................................................... 158  
Line Interface Alarm Register............................................................................................................................... 159  
Alarm Status Register (LIU_REG0)................................................................................................................ 159  
Line Interface Alarm Interrupt Enable Register .................................................................................................... 159  
Alarm Interrupt Enable Register (LIU_REG1) ................................................................................................ 159  
Line Interface Control Registers........................................................................................................................... 160  
LIU Control Register (LIU_REG2).................................................................................................................. 160  
LIU Control Register (LIU_REG3).................................................................................................................. 161  
LIU Control Register (LIU_REG4).................................................................................................................. 162  
LIU Configuration Register (LIU_REG5) ........................................................................................................ 162  
LIU Configuration Register (LIU_REG6) ........................................................................................................ 163  
Framer Register Architecture ............................................................................................................................... 164  
Framer Status/Counter Registers................................................................................................................... 165  
Framer Parameter/Control Registers ............................................................................................................. 180  
FDL Register Architecture .................................................................................................................................... 211  
FDL Parameter/Control Registers (800—80E; E00—E0E).................................................................................. 212  
Register Maps ...................................................................................................................................................... 219  
Global Registers............................................................................................................................................. 219  
Line Interface Unit Parameter/Control and Status Registers ......................................................................... 219  
Framer Parameter/Control Registers (READ-WRITE)................................................................................... 220  
Receive Framer Signaling Registers (READ-ONLY) ..................................................................................... 222  
Framer Unit Parameter Register Map ............................................................................................................ 223  
Transmit Signaling Registers (READ/WRITE) ............................................................................................... 226  
Facility Data Link Parameter/Control and Status Registers (READ-WRITE)................................................. 227  
4
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Table of Contents (continued)  
Contents  
Page  
Absolute Maximum Ratings ..................................................................................................................................228  
Operating Conditions ............................................................................................................................................228  
Handling Precautions............................................................................................................................................228  
Electrical Characteristics.......................................................................................................................................229  
Logic Interface Characteristics........................................................................................................................229  
Power Supply Bypassing ......................................................................................................................................229  
Outline Diagram ....................................................................................................................................................230  
144-Pin TQFP .................................................................................................................................................230  
Ordering Information .............................................................................................................................................231  
Index .....................................................................................................................................................................232  
Agere Systems Inc.  
5
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
List of Figures  
Figure  
Page  
Figure 1. T7633 Block Diagram (One of Two Channels)........................................................................................ 15  
Figure 2. T7633 Block Diagram: Receive Section (One of Two Channels)............................................................ 17  
Figure 3. T7633 Block Diagram: Transmit Section (One of Two Channels)........................................................... 18  
Figure 4. Pin Assignment ....................................................................................................................................... 19  
Figure 5. Block Diagram of Line Interface Unit: Single Channel ............................................................................ 26  
Figure 6. T1/DS1 Receiver Jitter Accommodation Without Jitter Attenuator.......................................................... 32  
Figure 7. T1/DS1 Receiver Jitter Transfer Without Jitter Attenuator ...................................................................... 32  
Figure 8. CEPT/E1 Receiver Jitter Accommodation Without Jitter Attenuator....................................................... 33  
Figure 9. CEPT/E1 Receiver Jitter Transfer Without Jitter Attenuator ................................................................... 33  
Figure 10. DSX-1 Isolated Pulse Template ............................................................................................................ 37  
Figure 11. ITU-T G.703 Pulse Template ................................................................................................................ 38  
Figure 12. T1/DS1 Receiver Jitter Accommodation with Jitter Attenuator.............................................................. 42  
Figure 13. T1/DS1 Jitter Transfer of the Jitter Attenuator....................................................................................... 42  
Figure 14. CEPT/E1 Receiver Jitter Accommodation with Jitter Attenuator........................................................... 43  
Figure 15. CEPT/E1 Jitter Transfer of the Jitter Attenuator.................................................................................... 43  
Figure 16. Line Termination Circuitry ..................................................................................................................... 48  
Figure 17. T7633 Line Interface Unit Approximate Equivalent Analog I/O Circuits................................................ 49  
Figure 18. Block Diagram of Framer Line Interface................................................................................................ 50  
Figure 19. Transmit Framer TLCK to TND, TPD and Receive Framer RND, RPD to RLCK Timing...................... 51  
Figure 20. T1 Frame Structure ............................................................................................................................... 55  
Figure 21. T1 Transparent Frame Structure........................................................................................................... 56  
Figure 22. T7633 Facility Data Link Access Timing of the Transmit and Receive Framer Sections...................... 58  
Figure 23. ITU 2.048 Basic Frame, CRC-4 Multiframe, and Channel Associated Signaling Multiframe  
Structures............................................................................................................................................... 66  
Figure 24. CEPT Transparent Frame Structure ..................................................................................................... 68  
Figure 25. Receive CRC-4 Multiframe Search Algorithm Using the 100 ms Internal Timer................................... 73  
Figure 26. Receive CRC-4 Multiframe Search Algorithm for Automatic, CRC-4/Non-CRC-4 Equipment  
Interworking as Defined by ITU (From ITU Rec. G.706, Annex B.2.2 - 1991)...................................... 75  
Figure 27. Facility Data Link Access Timing of the Transmit and Receive Framer Sections in the CEPT Mode... 81  
Figure 28. Transmit and Receive Sa Stack Accessing Protocol ............................................................................ 83  
Figure 29. Timing Specification for RFRMCK, RFRMDATA, and RFS in DS1 Mode............................................. 87  
Figure 30. Timing Specification for TFS, TLCK, and TPD in DS1 Mode................................................................ 87  
Figure 31. Timing Specification for RFRMCK, RFRMDATA, and RFS in CEPT Mode.......................................... 88  
Figure 32. Timing Specification for RFRMCK, RFRMDATA, RFS, and RSSFS in CEPT Mode............................ 88  
Figure 33. Timing Specification for RCRCMFS in CEPT Mode.............................................................................. 89  
Figure 34. Timing Specification for TFS, TLCK, and TPD in CEPT Mode ............................................................. 89  
Figure 35. Timing Specification for TFS, TLCK, TPD, and TSSFS in CEPT Mode................................................ 90  
Figure 36. Timing Specification for TFS, TLCK, TPD, and TCRCMFS in CEPT Mode.......................................... 90  
Figure 37. Relation Between RLCK1 and Interrupt (Pin 99)................................................................................... 91  
Figure 38. Timing for Generation of LOPLLCK (Pin 39/143).................................................................................. 93  
Figure 39. The T and V Reference Points for a Typical CEPT E1 Application....................................................... 96  
Figure 40. Loopback and Test Transmission Modes............................................................................................ 101  
Figure 41. 20-Stage Shift Register Used to Generate the Quasi-Random Signal................................................ 102  
Figure 42. 15-Stage Shift Register Used to Generate the Pseudorandom Signal ............................................... 103  
Figure 43. T7633 Facility Data Link Access Timing of the Transmit and Receive Framer Sections.................... 108  
Figure 44. Block Diagram for the Receive Facility Data Link Interface ................................................................ 109  
Figure 45. Block Diagram for the Transmit Facility Data Link Interface ............................................................... 114  
Figure 46. Local Loopback Mode ......................................................................................................................... 120  
Figure 47. Remote Loopback Mode ..................................................................................................................... 121  
Figure 48. T7633 Phase Detector Circuitry .......................................................................................................... 123  
Figure 49. Nominal Concentration Highway Interface Timing (for FRM_PR43 bit 0—bit 2 = 100 (Binary))......... 129  
Figure 50. CHIDTS Mode Concentration Highway Interface Timing.................................................................... 130  
6
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
List of Figures (continued)  
Figure  
Page  
Figure 51. Associated Signaling Mode Concentration Highway Interface Timing.................................................131  
Figure 52. CHI Timing with ASM and CHIDTS Enabled .......................................................................................131  
Figure 53. TCHIDATA and RCHIDATA to CHICK Relationship with CMS = 0 (CEX = 3 and CER = 4,  
Respectively) .......................................................................................................................................133  
Figure 54. CHI TCHIDATA and RCHIDATA to CHICK Relationship with CMS = 1 (CEX = 3 and CER = 6,  
Respectively) .......................................................................................................................................133  
Figure 55. Receive CHI (RCHIDATA) Timing .......................................................................................................134  
Figure 56. Transmit CHI (TCHIDATA) Timing .......................................................................................................134  
Figure 57. Block Diagram of the T7633’s Boundary-Scan Test Logic...................................................................135  
Figure 58. BS TAP Controller State Diagram........................................................................................................136  
Figure 59. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0)................................................................145  
Figure 60. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0)................................................................145  
Figure 61. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1)................................................................146  
Figure 62. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1)................................................................146  
Figure 63. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0)................................................................147  
Figure 64. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0)................................................................147  
Figure 65. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1)................................................................148  
Figure 66. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1)................................................................148  
Agere Systems Inc.  
7
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
List of Tables  
Table  
Page  
Table 1. Pin Descriptions........................................................................................................................................ 20  
Table 2. Digital Loss of Signal Standard Select ..................................................................................................... 28  
Table 3. LOSSD and RCVAIS Control Configurations (Not Valid During Loopback Modes) ................................. 29  
Table 4. DS1 LIU Receiver Specifications.............................................................................................................. 30  
Table 5. CEPT LIU Receiver Specifications........................................................................................................... 31  
Table 6. Transmit Line Interface Short-Haul Equalizer/Rate Control ..................................................................... 34  
Table 7. DSX-1 Pulse Template Corner Points (from CB119, T1.102) .................................................................. 37  
Table 8. DS1 Transmitter Specifications ................................................................................................................ 38  
Table 9. CEPT Transmitter Specifications.............................................................................................................. 39  
Table 10. Loopback Control ................................................................................................................................... 44  
Table 11. SYSCK (16x, CKSEL = 1) Timing Specifications ................................................................................... 46  
Table 12. SYSCK (1x, CKSEL = 0) Timing Specifications ..................................................................................... 46  
Table 13. Termination Components by Application................................................................................................ 48  
Table 14. AMI Encoding ......................................................................................................................................... 52  
Table 15. DS1 ZCS Encoding ................................................................................................................................ 53  
Table 16. DS1 B8ZS Encoding............................................................................................................................... 53  
Table 17. ITU HDB3 Coding................................................................................................................................... 54  
Table 18. T-Carrier Hierarchy................................................................................................................................. 55  
Table 19. D4 Superframe Format........................................................................................................................... 57  
Table 20. DDS Channel-24 Format........................................................................................................................ 58  
Table 21. SLC-96 Data Link Block Format............................................................................................................. 59  
Table 22. SLC-96 Line Switch Message Codes..................................................................................................... 60  
Table 23. Transmit and Receive SLC-96 Stack Structure...................................................................................... 60  
Table 24. Extended Superframe (ESF) Structure................................................................................................... 61  
Table 25. T1 Loss of Frame Alignment Criteria...................................................................................................... 62  
Table 26. T1 Frame Alignment Procedures............................................................................................................ 63  
Table 27. Robbed-Bit Signaling Options ................................................................................................................ 64  
Table 28. SLC-96 9-State Signaling Format........................................................................................................... 64  
Table 29. 16-State Signaling Format...................................................................................................................... 65  
Table 30. Allocation of Bits 1 to 8 of the FAS Frame and the NOT FAS Frame..................................................... 67  
Table 31. ITU CRC-4 Multiframe Structure ............................................................................................................ 70  
Table 32. ITU CEPT Time Slot 16 Channel Associated Signaling Multiframe Structure........................................ 76  
Table 33. CEPT IRSM Signaling Multiframe Structure........................................................................................... 77  
Table 34. Transmit and Receive Sa Stack Structure.............................................................................................. 82  
Table 35. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames .......................................... 86  
Table 36. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels................................... 86  
Table 37. Associated Signaling Mode CHI 2-Byte Time-Slot Format for CEPT..................................................... 86  
Table 38. Red Alarm or Loss of Frame Alignment Conditions ............................................................................... 92  
Table 39. Remote Frame Alarm Conditions ........................................................................................................... 92  
Table 40. Alarm Indication Signal Conditions......................................................................................................... 93  
Table 41. Sa6 Bit Coding Recognized by the Receive Framer .............................................................................. 95  
Table 42. Sa6 Bit Coding of NT1 Interface Events Recognized by the Receive Framer ....................................... 96  
Table 43. AUXP Synchronization and Clear Sychronization Process.................................................................... 96  
Table 44. Event Counters Definition....................................................................................................................... 97  
Table 45. Summary of the Deactivation of SSTSSLB and SSTSLLB Modes as a Function of  
Activating the Primary Loopback Modes.............................................................................................. 100  
Table 46. Register FRM_PR69 Test Patterns...................................................................................................... 103  
Table 47. Register FRM_PR70 Test Patterns...................................................................................................... 104  
Table 48. Automatic Enable Commands.............................................................................................................. 106  
Table 49. On-Demand Commands....................................................................................................................... 107  
Table 50. Receive ANSI Code.............................................................................................................................. 110  
8
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
List of Tables (continued)  
Table  
Page  
Table 51. Performance Report Message Structure...............................................................................................110  
Table 52. FDL Performance Report Message Field Definition..............................................................................111  
Table 53. Octet Contents and Definition ...............................................................................................................111  
Table 54. Receive Status of Frame Byte ..............................................................................................................112  
Table 55. HDLC Frame Format.............................................................................................................................115  
Table 56. Receiver Operation in Transparent Mode .............................................................................................119  
Table 57. Summary of the T7633’s Concentration Highway Interface Parameters ..............................................126  
Table 58. Programming Values for TOFF[2:0] and ROFF[2:0] when CMS = 0.....................................................132  
Table 59. Programming Values for TOFF[2:0] when CMS = 1 .............................................................................132  
Table 60. Programming Values for ROFF[2:0] when CMS = 1.............................................................................132  
Table 61. TAP Controller States in the Data Register Branch ..............................................................................137  
Table 62. TAP Controller States in the Instruction Register Branch .....................................................................137  
Table 63. T7633’s Boundary-Scan Instructions ....................................................................................................138  
Table 64. IDCODE Register..................................................................................................................................139  
Table 65. Microprocessor Configuration Modes ...................................................................................................140  
Table 66. Mode [1—4] Microprocessor Pin Definitions.........................................................................................141  
Table 67. Microprocessor Input Clock Specifications ...........................................................................................142  
Table 68. T7633 Register Address Map ...............................................................................................................142  
Table 69. Microprocessor Interface I/O Timing Specifications..............................................................................143  
Table 70. Status Register and Corresponding Interrupt Enable Register for Functional Blocks...........................149  
Table 71. Asserted Value and Deasserted State for GREG4 Bit 4 and Bit 6 Logic Combinations .......................149  
Table 72. Register Summary ................................................................................................................................150  
Table 73. Global Register Set (0x000—0x008) ....................................................................................................154  
Table 74. Primary Block Interrupt Status Register (GREG0) (000).......................................................................155  
Table 75. Primary Block Interrupt Enable Register (GREG1) (001)......................................................................155  
Table 76. Global Loopback Control Register (GREG2) (002)...............................................................................156  
Table 77. Global Loopback Control Register (GREG3) (003)...............................................................................156  
Table 78. Global Control Register (GREG4) (004) ...............................................................................................157  
Table 79. Device ID and Version Registers (GREG5—GREG7) (005—007) .......................................................157  
Table 80. Line Interface Units Register Set ((400—40F); (A00—A0F))................................................................158  
Table 81. LIU Alarm Status Register (LIU_REG0) (400, A00)..............................................................................159  
Table 82. LIU Alarm Interrupt Enable Register (LIU_REG1) (401, A01)...............................................................159  
Table 83. LIU Control Register (LIU_REG2) (402, A02).......................................................................................160  
Table 84. LIU Control Register (LIU_REG3) (403, A03).......................................................................................161  
Table 85. LIU Register (LIU_REG4) (404, A04)....................................................................................................162  
Table 86. LIU Configuration Register (LIU_REG5) (405, A05) .............................................................................162  
Table 87. LIU Configuration Register (LIU_REG6) (406, A06) .............................................................................163  
Table 88. Framer Status and Control Blocks Address Range (Hexadecimal) ......................................................164  
Table 89. Interrupt Status Register (FRM_SR0) (600; C00).................................................................................165  
Table 90. Facility Alarm Condition Register (FRM_SR1) (601; C01)....................................................................166  
Table 91. Remote End Alarm Register (FRM_SR2) (602; C02) ...........................................................................167  
Table 92. Facility Errored Event Register-1 (FRM_SR3) (603; C03)....................................................................168  
Table 93. Facility Event Register-2 (FRM_SR4) (604; C04).................................................................................169  
Table 94. Exchange Termination and Exchange Termination Remote End Interface  
Status Register (FRM_SR5) (605; C05) ...............................................................................................171  
Table 95. Network Termination and Network Termination Remote End Interface  
Status Register (FRM_SR6) (606; C06) ...............................................................................................172  
Table 96. Facility Event Register (FRM_SR7) (607; C07) ....................................................................................173  
Table 97. Bipolar Violation Counter Registers (FRM_SR8—FRM_SR9) ((608—609); (C08—C09)) ...................173  
Table 98. Framing Bit Error Counter Registers (FRM_SR10—FRM_SR11) ((60A—60B); (C0A—C0B)) ............173  
Table 99. CRC Error Counter Registers (FRM_SR12—FRM_SR13) ((60C—60D); (C0C—C0D))......................174  
Table 100. E-Bit Counter Registers (FRM_SR14—FRM_SR15) ((60E—60F); (C0E—C0F)) ..............................174  
Agere Systems Inc.  
9
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
List of Tables (continued)  
Table  
Page  
Table 101. CRC-4 Errors at NT1 from NT2 Counter Registers (FRM_SR16—FRM_SR17)  
((610—611); (C10—C11)) ................................................................................................................ 174  
Table 102. E Bit at NT1 from NT2 Counter (FRM_SR18—FRM_SR19) ((612—613); (C12—C13)) ................... 174  
Table 103. ET Errored Seconds Counter (FRM_SR20—FRM_SR21) ((614—615); (C14—C15))...................... 175  
Table 104. ET Bursty Errored Seconds Counter (FRM_SR22—FRM_SR23) ((616—617); (C16—C17))........... 175  
Table 105. ET Severely Errored Seconds Counter (FRM_SR24—FRM_SR25) ((618—619); (C18—C19))....... 175  
Table 106. ET Unavailable Seconds Counter (FRM_SR26—FRM_SR27) ((61A—61B); (C1A—C1B)).............. 175  
Table 107. ET-RE Errored Seconds Counter (FRM_SR28—FRM_SR29) ((61C—61D); (C1C—C1D)) ............. 175  
Table 108. ET-RE Bursty Errored Seconds Counter (FRM_SR30—FRM_SR31) ((61E—61F); (C1E—C1F)) ... 175  
Table 109. ET-RE Severely Errored Seconds Counter (FRM_SR32—FRM_SR33)  
((620—621); (C20—C21)).................................................................................................................. 175  
Table 110. ET-RE Unavailable Seconds Counter (FRM_SR34—FRM_SR35) ((622—623); (C22—C23))......... 176  
Table 111. NT1 Errored Seconds Counter (FRM_SR36—FRM_SR37) ((624—625); (C24—C25)).................... 176  
Table 112. NT1 Bursty Errored Seconds Counter (FRM_SR38—FRM_SR39) ((626—627); (C26—C27))......... 176  
Table 113. NT1 Severely Errored Seconds Counter (FRM_SR40—FRM_SR41) ((628—629); (C28—C29))..... 176  
Table 114. NT1 Unavailable Seconds Counter (FRM_SR42—FRM_SR43) ((62A—62B); (C2A—C2B)) ........... 176  
Table 115. NT1-RE Errored Seconds Counter (FRM_SR44—FRM_SR45) ((62C—62D); (C2C—C2D)) ........... 176  
Table 116. NT1-RE Bursty Errored Seconds Counter (FRM_SR46—FRM_SR47)  
((62E—62F); (C2E—C2F))................................................................................................................. 177  
Table 117. NT1-RE Severely Errored Seconds Counter (FRM_SR48—FRM_SR49)  
((630—631); (C30—C31)).................................................................................................................. 177  
Table 118. NT1-RE Unavailable Seconds Counter (FRM_SR50—FRM_SR51) ((632—633); (C32—C33))....... 177  
Table 119. Receive NOT-FAS TS0 Register (FRM_SR52) (634; C34)................................................................ 177  
Table 120. Receive Sa Register (FRM_SR53) (635; C35)................................................................................... 177  
Table 121. SLC-96 FDL Receive Stack (FRM_SR54—FRM_SR63) ((636—63F); (C36—C3F))........................ 178  
Table 122. CEPT Sa Receive Stack (FRM_SR54—FRM_SR63) ((636—63F); (C36—C3F))............................. 178  
Table 123. Transmit Framer ANSI Performance Report Message Status Register Structure ............................. 179  
Table 124. Received Signaling Registers: DS1 Format (FRM_RSR0—FRM_RSR23)  
((640—658); (C40—C58)).................................................................................................................. 179  
Table 125. Receive Signaling Registers: CEPT Format (FRM_RSR0—FRM_RSR31)  
((640—65F); (C40—C5F)) ................................................................................................................. 179  
Table 126. Summary of Interrupt Group Enable Registers (FRM_PR0—FRM_PR7)  
((660—667); (C60—C67)).................................................................................................................. 180  
Table 127. Primary Interrupt Group Enable Register (FRM_PR0) (660; C60)..................................................... 181  
Table 128. Interrupt Enable Register (FRM_PR1) (661; C61) ............................................................................. 182  
Table 129. Interrupt Enable Register (FRM_PR2) (662; C62) ............................................................................. 182  
Table 130. Interrupt Enable Register (FRM_PR3) (663; C63) ............................................................................. 182  
Table 131. Interrupt Enable Register (FRM_PR4) (664; C64) ............................................................................. 182  
Table 132. Interrupt Enable Register (FRM_PR5) (665; C65) ............................................................................. 182  
Table 133. Interrupt Enable Register (FRM_PR6) (666; C66) ............................................................................. 182  
Table 134. Interrupt Enable Register (FRM_PR7) (667; C67) ............................................................................. 182  
Table 135. Framer Mode Bits Decoding (FRM_PR8) (668; C68)......................................................................... 183  
Table 136. Line Code Option Bits Decoding (FRM_PR8) (668; C68) .................................................................. 183  
Table 137. CRC Option Bits Decoding (FRM_PR9) (669, C69)........................................................................... 184  
Table 138. Alarm Filter Register (FRM_PR10) (66A; C6A).................................................................................. 185  
Table 139. Errored Event Threshold Definition .................................................................................................... 185  
Table 140. Errored Second Threshold Register (FRM_PR11) (66B; C6B).......................................................... 186  
Table 141. Severely Errored Second Threshold Registers (FRM_PR12—FRM_PR13)  
((66C—66D; C6C—C6D)).................................................................................................................. 186  
Table 142. ET1 Errored Event Enable Register (FRM_PR14) (66E; C6E) .......................................................... 186  
Table 143. ET1 Remote End Errored Event Enable Register (FRM_PR15) (66F; C6F)...................................... 187  
Table 144. NT1 Errored Event Enable Register (FRM_PR16) (670; C70)........................................................... 187  
10  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
List of Tables (continued)  
Table  
Page  
Table 145. NT1 Remote End Errored Event Enable Registers (FRM_PR17—FRM_PR18)  
((671—672); (C71—C72)) ..................................................................................................................187  
Table 146. Automatic AIS to the System and Automatic Loopback Enable Register  
(FRM_PR19) (673; C73).....................................................................................................................188  
Table 147. Transmit Test Pattern to the Line Enable Register (FRM_PR20) (674; C74).....................................188  
Table 148. Framer FDL Control Command Register (FRM_PR21) (675; C75) ....................................................189  
Table 149. Framer Transmit Line Idle Code Register (FRM_PR22) (676; C76)...................................................189  
Table 150. Framer System Stuffed Time Slot Code Register (FRM_PR23) (677; C77).......................................189  
Table 151. Primary Time-Slot Loopback Address Register (FRM_PR24) (678; C78) ..........................................190  
Table 152. Loopback Decoding of Bits LBC[2:0] in FRM_PR24, Bits 7—5 ..........................................................190  
Table 153. Secondary Time-Slot Loopback Address Register (FRM_PR25) (679; C79) .....................................191  
Table 154. Loopback Decoding of Bits LBC[1:0] in FRM_PR25, Bits 6—5 ..........................................................191  
Table 155. Framer Reset and Transparent Mode Control Register (FRM_PR26) (67A, C7A).............................192  
Table 156. Transmission of Remote Frame Alarm and CEPT Automatic Transmission of A Bit = 1  
Control Register (FRM_PR27) (67B, C7B).........................................................................................193  
Table 157. CEPT Automatic Transmission of E Bit = 0 Control Register (FRM_PR28) (67C; C7C) ....................194  
Table 158. Sa4—Sa8 Source Register (FRM_PR29) (67D; C7D)........................................................................195  
Table 159. Sa Bits Source Control for Bit 5—Bit 7 in FRM_PR29 ........................................................................195  
Table 160. Sa4—Sa8 Control Register (FRM_PR30) (67E; C7E)........................................................................196  
Table 161. Sa Transmit Stack (FRM_PR31—FRM_PR40) ((67F—688); (C7F—C88)) .......................................197  
Table 162. SLC-96 Transmit Stack (FRM_PR31—FRM_PR40) ((67F—688); (C7F—C88))................................197  
Table 163. Transmit SLC-96 FDL Format.............................................................................................................197  
Table 164. CEPT Time Slot 16 X-Bit Remote Multiframe Alarm and AIS Control Register  
(FRM_PR41) (689; C89).....................................................................................................................198  
Table 165. Framer Exercise Register (FRM_PR42) (68A; C8A) ..........................................................................198  
Table 166. Framer Exercises, FRM_PR42 Bit 5—Bit 0 (68A; C8A) .....................................................................199  
Table 167. DS1 System Interface Control and CEPT FDL Source Control Register (FRM_PR43) (68B; C8B)...201  
Table 168. Signaling Mode Register (FRM_PR44) (68C; C8C)............................................................................202  
Table 169. CHI Common Control Register (FRM_PR45) (68D; C8D) ..................................................................203  
Table 170. CHI Common Control Register (FRM_PR46) (68E; C8E) ..................................................................204  
Table 171. CHI Transmit Control Register (FRM_PR47) (68F; C8F) ...................................................................205  
Table 172. CHI Receive Control Register (FRM_PR48) (690; C90).....................................................................205  
Table 173. CHI Transmit Time-Slot Enable Registers (FRM_PR49—FRM_PR52) ((691—694); (C91—C94)) ...206  
Table 174. CHI Receive Time-Slot Enable Registers (FRM_PR53—FRM_PR56) ((695—698); (C95—C98))....206  
Table 175. CHI Transmit Highway Select Registers (FRM_PR57—FRM_PR60) ((699—69C); (C99—C9C)).....206  
Table 176. CHI Receive Highway Select Registers (FRM_PR61—FRM_PR64) ((69D—6A0); (C9D—CA0)).....207  
Table 177. CHI Transmit Control Register (FRM_PR65) (6A1; CA1) ...................................................................207  
Table 178. CHI Receive Control Register (FRM_PR66) (6A2; CA2)....................................................................207  
Table 179. Auxiliary Pattern Generator Control Register (FRM_PR69) (6A5; CA5).............................................208  
Table 180. Pattern Detector Control Register (FRM_PR70) (6A6; CA6)..............................................................209  
Table 181. Transmit Signaling Registers: DS1 Format (FRM_TSR0—FRM_TSR23)  
((6E0—6F7); (CE0—CF7)) .................................................................................................................210  
Table 182. Transmit Signaling Registers: CEPT Format (FRM_TSR0—FRM_TSR31)  
((6E0—6FF); (CE0—CFF)).................................................................................................................210  
Table 183. FDL Register Set (800—80E); (E00—E0E)........................................................................................211  
Table 184. FDL Configuration Control Register (FDL_PR0) (800; E00)...............................................................212  
Table 185. FDL Control Register (FDL_PR1) (801; E01) .....................................................................................212  
Table 186. FDL Interrupt Mask Control Register (FDL_PR2) (802; E02) .............................................................213  
Table 187. FDL Transmitter Configuration Control Register (FDL_PR3) (803; E03)............................................214  
Table 188. FDL Transmitter FIFO Register (FDL_PR4) (804; E04)......................................................................214  
Table 189. FDL Transmitter Mask Register (FDL_PR5) (805; E05) .....................................................................214  
Table 190. FDL Receiver Interrupt Level Control Register (FDL_PR6) (806; E06) ..............................................215  
Agere Systems Inc.  
11  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
List of Tables (continued)  
Table  
Page  
Table 191. FDL Register FDL_PR7...................................................................................................................... 215  
Table 192. FDL Receiver Match Character Register (FDL_PR8) (808; E08)....................................................... 215  
Table 193. FDL Transparent Control Register (FDL_PR9) (809; E09) ................................................................ 216  
Table 194. FDL Transmit ANSI ESF Bit Codes (FDL_PR10) (80A; E0A)............................................................ 216  
Table 195. FDL Interrupt Status Register (Clear on Read) (FDL_SR0) (80B; E0B) ............................................ 217  
Table 196. FDL Transmitter Status Register (FDL_SR1) (80C; E0C).................................................................. 218  
Table 197. FDL Receiver Status Register (FDL_SR2) (80D; E0D)...................................................................... 218  
Table 198. Receive ANSI FDL Status Register (FDL_SR3) (80E; E0E).............................................................. 218  
Table 199. FDL Receiver FIFO Register (FDL_SR4) (807; E07)......................................................................... 218  
Table 200. Global Register Set ............................................................................................................................ 219  
Table 201. Line Interface Unit Register Set.......................................................................................................... 219  
Table 202. Framer Unit Status Register Map....................................................................................................... 220  
Table 203. Receive Signaling Registers Map....................................................................................................... 222  
Table 204. Framer Unit Parameter Register Map ................................................................................................ 223  
Table 205. Transmit Signaling Registers Map...................................................................................................... 226  
Table 206. Facility Data Link Register Map.......................................................................................................... 227  
Table 207. ESD Threshold Voltage...................................................................................................................... 228  
Table 208. Logic Interface Characteristics (TA = –40 °C to 85 °C, VDD = 3.3 V ± 5%, VSS = 0).......................... 229  
12  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633Dual T1/E13.3VShort-HaulTerminator
T1/E1 Framer Features  
Feature Descriptions  
Framing formats:  
Two independent T1/E1 channels each consisting of  
a T1/E1 short-haul line interface and a T1/E1 framer  
with HDLC formatting on the facility data link inter-  
face.  
— Compliant with T1 standards ANSI T1.231 (1997),  
AT&T TR54016, AT&T TR62411 (1998).  
— Unframed, transparent transmission in T1 and E1  
formats.  
— DS1 extended superframe (ESF).  
— DS1 superframe (SF): D4; SLC-96; T1DM DDS;  
T1DM DDS with FDL access.  
Memory-mapped read and write registers.  
Maskable interrupt events.  
Hardware and software resets.  
Onboard software-selectable pseudorandom test  
pattern generator and detector for line performance  
monitoring.  
— DS1 independent transmit and receive framing  
modes when using the ESF and D4 formats.  
— Compliant with ITU CEPT framing recommenda-  
tion:  
3-state outputs.  
1. G.704 and G.706 basic frame format.  
2. G.704 Section 2.3.3.4 and G.706 Section 4.2:  
CRC-4 multiframe search algorithm.  
3. G.706 Annex B: CRC-4 multiframe search  
algorithm with 400 ms timer for interworking of  
CRC-4 and non-CRC-4 equipment.  
4. G.706 Section 4.3.2 Note 2: monitoring of 915  
CRC-4 checksum errors for loss of frame  
state.  
Single 3 V ± 5% supply.  
5 V tolerant TTL inputs.  
Low power consumption: 650 mW max.  
T1/E1 Line Interface Features  
Transmitter includes transmit encoder (B8ZS or  
HDB3), pulse shaping, and line driver.  
Framer line codes:  
Five pulse equalization settings for template compli-  
ance at DSX cross connect.  
— DS1: alternate mark inversion (AMI); binary eight  
zero code suppression (B8ZS); per-channel zero  
code suppression; decoding bipolar violation mon-  
itor; monitoring of eight or fifteen bit intervals with-  
out positive or negative pulses error indication.  
— DS1 independent transmit and receive path line  
code formats when using AMI/ZCS and B8ZS cod-  
ing.  
— ITU-CEPT: AMI; high-density bipolar 3 (HDB3) en-  
coding and decoding bipolar violation monitoring,  
monitoring of four bit intervals without positive or  
negative pulses error indication.  
Receive includes equalization, digital clock and data  
recovery (immune to false lock), and receive  
decoder.  
CEPT/E1 interference immunity as required by  
G.703.  
Transmit jitter <0.02 UI.  
Receive generated jitter <0.05 UI.  
Jitter attenuator selectable for use in transmit or  
receive path. Jitter attenuation characteristics are  
data pattern independent.  
— Single-rail option.  
For use with 100 DS1 twisted-pair, 120 E1  
twisted-pair, and 75 E1 coaxial cable.  
Common transformer for transmit/receive.  
Analog LOS alarm for signals less than –18 dB for  
greater than 1 ms or 10-bit to 255-bit symbol periods  
(selectable).  
Digital LOS alarm for 100 zeros (DS1) or 255 zeros  
(E1).  
Diagnostic loopback modes.  
Compliant with AT&T CB119(10/79);  
ITU G.703(88), G.732(88), G.735-9(88),  
G.823-4(3/93), I.431(3/93); ANSI T1.102(93), T1.  
408(90); ETSI ETS-300-011(4/92),  
ETS-300-166(8/93), ETS-300-233(5/94, 3/95),  
TBR12(12/93, 1/96), TBR13(1/96); Telcordia Tech-  
nologies® TR-TSY-000009(5/86), TSY-000170(1/  
93), GR-253-CORE(12/95), GR-499-CORE(12/95),  
GR-820-CORE(11/94), GR-1244-CORE(6/95).  
Agere Systems Inc.  
13  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
— Independent transmit and receive frame synchro-  
nization input signals.  
— Independent transmit and receive system inter-  
face clock.  
Feature Descriptions (continued)  
T1/E1 Framer Features (continued)  
— 2.048 Mbits/s, 2.048 MHz concentration highway  
Signaling:  
interface (CHI) default mode.  
— Optional 4.096 Mbits/s and 8.192 Mbits/s data  
rates.  
— Optional 4.096 MHz, 8.192 MHz, and 16.384 MHz  
frequency system clock.  
— Programmable clock edge for latching frame syn-  
chronization signals.  
— Programmable clock edge for latching transmit  
and receive data.  
— Programmable bit and byte offset.  
— Programmable CHI master mode for the genera-  
tion of the transmit CHI FS from internal logic with  
timing derived from the receive line clock signal.  
— DS1: extended superframe 2-state, 4-state, and  
16-state per-channel robbed bit.  
— DS1: D4 superframe 2-state and 4-state per-  
channel robbed bit.  
— DS1: SLC-96 superframe 2-state, 4-state, 9-state,  
and 16-state per-channel robbed bit.  
— DS1: channel-24 message-oriented signaling.  
— ITU CEPT: channel associated signaling (CAS)  
and T7230A mode common channel signaling  
(CCS).  
— ITU CEPT: international remote switching module  
(IRMS).  
— Transparent (all data channels).  
Digital phase comparator for clock generation in the  
receive and transmit paths.  
Alarm reporting, performance monitoring, and main-  
tenance:  
ANSI T1.403-1995, AT&T TR 54016, and ITU  
G.826 standard error checking.  
— Error and status counters:  
Facility Data Link Features  
1. Bipolar violations.  
HDLC or transparent mode.  
2. Errored frame alignment signals.  
3. Errored CRC checksum block.  
4. CEPT: received E bit = 0.  
Automatic transmission of the ESF performance  
report messages (PRM).  
5. Errored, severely errored, and unavailable  
seconds.  
— Selectable errored event monitoring for errored  
and severely errored seconds processing with  
programmable thresholds for errored and severely  
errored second monitoring.  
Detection of the ESF PRM.  
Detection of the ANSI ESF FDL bit-oriented codes.  
64-byte FIFO in both transmit and receive directions.  
Programmable FIFO full- and empty-level interrupt.  
SLC-96: FDL transmit and receive register access of  
D bits.  
— CEPT: Selectable automatic transmission of E bit  
to the line.  
— CEPT: Sa6 coded remote end CRC-4 error E bit =  
0 events.  
— Programmable automatic and on-demand alarm  
transmission:  
User-Programmable Microprocessor Inter-  
face  
1. Automatic transmission of remote frame alarm  
to the line while in loss of frame alignment  
state.  
2. Automatic transmission of alarm indication  
signal (AIS) to the system while in loss of  
frame alignment state.  
33 MHz read and write access with no wait-states.  
12-bit address, 8-bit data interface.  
Programmable Intel or Motorola interface modes.  
Demultiplexed or multiplexed address and data bus.  
Directly addressable internal registers.  
No clock required.  
— Multiple loopback modes.  
— Optional automatic line and payload loopback ac-  
tivate and deactivate modes.  
— CEPT nailed-up connect loopback and CEPT  
nailed-up broadcast transmission TS-X in TS-0  
transmit mode.  
— Selectable test patterns for line transmission.  
— Detection of framed and unframed pseudorandom  
and quasi-random test patterns.  
— Programmable squelch and idle codes.  
System interface:  
— Autonomous transmit and receive system interfac-  
es.  
14  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Functional Description  
RECEIVE  
CHANNEL [1—2]  
TCHICK[1—2]  
TRANSMIT  
CONCENTRATION  
TCHIFS[1—2]  
RTIP_RPD[1—2]  
RECEIVE LINE  
RECEIVE  
HIGHWAY  
RECEIVE  
FRAMER  
UNIT  
TCHIDATA[1—2]  
TCHIDATAB[1—2]  
ELASTIC STORE  
(2 FRAMES)  
INTERFACE  
INTERFACE  
UNIT  
(RLIU)  
(TCHI)  
RRING_RND[1—2]  
RFRMCK[1—2], RFRMDATA[1—2],  
RFS[1—2], RSSFS[1—2],  
RCRCMFS[1—2]  
SYSCK[1—2]  
RLCK[1—2]  
RFDL[1—2], RFDLCK[1—2]  
TCHICK  
RECEIVE  
RECEIVE FACILITY  
DATA LINK MONITOR  
(HDLC OR  
TRANSPARENT  
FRAMING)  
RECEIVE  
CHANNEL DIGITAL  
PHASE DETECTOR  
SIGNALING UNIT  
(DS1: ROBBED-BIT  
OR  
RLCK  
DIV-RLCK[1—2], DIV-TCHICK[1—2],  
TCHICK-EPLL[1—2]  
CEPT: TS16)  
TRANSMIT  
CHANNEL [1—2]  
PLLCK[1—2]  
TRANSMIT FACILITY  
DATA LINK MONITOR  
(HDLC OR  
TRANSPARENT  
FRAMING)  
TRANSMIT  
SIGNALING UNIT  
(DS1: ROBBED-BIT  
OR  
TRANSMIT  
CHANNEL DIGITAL  
PHASE DETECTOR  
RCHICK  
DIV-PLLCK[1—2], DIV-RCHICK[1—2],  
PLLCK-EPLL[1—2]  
CEPT: TS16)  
TFDL[1—2], TFDLCK[1—2]  
XMIT FRAMER  
TCLK  
TRANSMIT  
ELASTIC STORE  
(2 FRAMES)  
TTIP[1—2]  
TRANSMIT LINE  
INTERFACE  
RECEIVE  
CONCENTRATION  
HIGHWAY  
RCHICK[1—2]  
RCHIFS[1—2]  
RCHIDATA[1—2]  
RCHDATAB[1—2]  
UNIT  
(XLIU)  
TRANSMIT  
FRAMER  
UNIT  
INTERFACE  
TRING[1—2]  
(RCHI)  
TND[1—2],  
TPD[1—2],  
TLCK[1—2]  
TFS[1—2], TSSFS[1—2],  
TCRCMFS[1—2]  
MPMODE  
MPMUX  
MICROPROCESSOR INTERFACE  
A[11:0]  
AD[7:0]  
CS  
ALE_AS  
RD_R/W  
WR_DS  
RDY_DTACK INTERRUPT  
MPCK  
5-4512(F).cr.2  
Figure 1. T7633 Block Diagram (One of Two Channels)  
Agere Systems Inc.  
15  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Functional Description (continued)  
The Agere Systems Inc. T7633 Dual T1/E1 Terminator provides two complete T1/E1 interfaces each consisting of  
a fully integrated, full-featured, short-haul line interface transceiver and a full-featured primary rate framer with an  
HDLC formatter for facility data link access. The T7633 provides glueless interconnection from a T1 or E1 analog  
line interface to devices interfacing to its concentration highway interface (CHI); for example, the T7270 Time Slot  
Interchanger or T7115A Synchronous Protocol Data Formatter.  
The line interface receiver performs clock and data recovery using a digital phase-locked loop, thereby avoiding  
false lock conditions that are common when recovering sparse data patterns with an analog implementation. The  
receiver’s equalization circuit guarantees a high level of interference immunity. The receive line unit monitors the  
amplitude at the receive input for analog loss of signal detection and the pulse density of the receive signal for dig-  
ital loss of signal detection. The receive line unit may be programmed to detect bipolar violations. The line interface  
unit may be optionally bypassed.  
The line interface unit’s transmit equalization is done with low-impedance output drivers that provide shaped wave-  
forms to the transformer, guaranteeing template conformance. The transmitter will interface to the digital cross con-  
nect (DSX) at lengths up to 655 feet for DS1 operation, and line impedances of 75 W or 120 W for CEPT-E1  
operation. The transmit line unit monitors nonfunctional links due to faults at the primary of the transmit transformer  
and periods of no data transmission.The line codes supported in the framer unit include AMI, T1 B8ZS, per-chan-  
nel T1 zero code suppression and ITU-CEPT HDB3.  
The T7633 supports T1 D4, T1DM, and SLC-96 superframes; extended superframe (ESF); ITU-CEPT-E1 basic  
frame; ITU-CEPT-E1 time slot 0 multiframe; and time slot 16 multiframe formats.  
The receive framer monitors the following alarms: loss of receive clock, loss of frame, alarm indication signal (AIS),  
remote frame alarms, and remote multiframe alarms. These alarms are detected as defined by the appropriate  
ANSI, AT&T, and ITU standards.  
Performance monitoring as specified by AT&T, ANSI, and ITU is provided through counters monitoring bipolar vio-  
lation, frame bit errors, CRC errors, CEPT E bit = 0 conditions, CEPT Sa6 codes, errored events, errored seconds,  
bursty errored seconds, severely errored seconds, and unavailable seconds.  
In-band loopback activation and deactivation codes can be transmitted to the line via the payload or the facility data  
link. In-band loopback activation and deactivation codes in the payload or the facility data link are detected.  
System, payload, and line loopbacks are programmable.  
The default system interface is a 2.048 Mbits/s data and 2.048 MHz clock concentration highway interface (CHI)  
serial bus. This CHI interface consists of independent transmit and receive paths. The CHI interface can be recon-  
figured into several modes: a 2.048 Mbits/s data interface and 4.096 MHz clock interface, a 4.096 Mbits/s data  
interface and 4.096 MHz clock interface, a 4.096 Mbits/s data interface and 8.192 MHz clock interface, a  
8.192 Mbits/s data interface and 8.192 MHz clock interface, and 8.192 Mbits/s data interface and 16.384 MHz  
clock interface.  
The signaling formats supported are T1 per-channel robbed-bit signaling (RBS), channel-24 message-oriented sig-  
naling (MOS), ITU-CEPT-E1 channel-associated signaling (CAS), common channel signaling (CCS) (Agere  
T7230A mode), and international remote switching module (IRMS). In the T1, RBS mode voice and data channels  
are programmable. The entire payload can be programmed into a data-only (no signaling channels) mode, i.e.,  
transparent mode. Signaling access can be through the on-chip signaling registers or the system CHI port in the  
associated signaling mode. Data and its associated signaling information can be accessed through the CHI in  
either DS1 or CEPT-E1 modes.  
Extraction and insertion of the facility data link in ESF, T1DM, SLC-96, or CEPT-E1 modes are provided through a  
four-port serial interface or through a microprocessor-accessed, 64-byte FIFO either with HDLC formatting or  
transparently. In the T7633’s SLC-96 or CEPT-E1 frame formats, a facility data link (FDL) is provided for FDL  
access. The bit-oriented ESF data-link messages defined in ANSI T1.403-1995 are monitored by the receive  
framer’s facility data link unit and are transmitted by the transmit framer FDL  
The receive framer includes a two-frame elastic store buffer for jitter attenuations that performs control slips and  
provides indication of slip directions.  
16  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Functional Description (continued)  
Accessing internal registers is done via the demultiplexed/multiplexed address and data bus microprocessor inter-  
face using either the Intel 80188 (or 80X88) interface protocol with independent read and write signals or the  
Motorola MC680X0 or M68360 interface protocol with address and data strobe signals.  
The T7633 is manufactured using low-power CMOS technology and is packaged in an 144-pin thin quad flat pack  
(TQFP) with 20 mils lead pitch.  
RLCK  
FRAMER  
RPDE, RNDE, RLCKE  
RPD, RND, RLCK  
RTIP_RPD  
JITTER  
DIGITAL  
CLOCK AND  
DATA  
RECOVERY  
ATTENUATION  
(OPTIONAL:  
RECEIVE  
RECEIVE  
ANALOG  
FRONT END  
BPV DECODER  
AND MONITOR  
RPD-LIU, RND-LIU,  
RLCK-LIU  
OR TRANSMIT)  
RRING_RND  
LINE INTERFACE UNIT BYPASS  
RECEIVE T1/E1 FRAME ALIGNMENT MONITOR,  
RE-ALIGNER, AND SYNC GENERATOR:  
– SF: D4, SLC-96, DDS  
– ESF  
– CEPT: BASIC FRAME, CRC-4 MULTIFRAME,  
& SIGNALING MULTIFRAME  
RECEIVE PERFORMANCE MONITOR:  
– BIPOLAR VIOLATION ERRORS  
– T1/E1 CRC ERRORS  
– ERRORED EVENTS  
– ERRORED SECONDS  
TCHIFS  
TRANSMIT  
CONCENTRATION  
HIGHWAY  
INTERFACE  
(RATE ADAPTER)  
RECEIVE  
ELASTIC  
STORE  
– BURSTY ERRORED SECONDS  
– SEVERELY ERRORED SECONDS  
– UNAVAILABLE SECONDS  
TCHIDATA  
BUFFER  
TCHIDATAB  
(2 FRAMES)  
RECEIVE ALARM MONITOR:  
– ANALOG LOSS OF SIGNAL  
– DIGITAL LOSS OF SIGNAL  
– REMOTE FRAME ALARM  
– CEPT REMOTE MULTIFRAME ALARM  
– ALARM INDICATION SIGNAL (AIS)  
– SLIPS  
RECEIVE PATTERN MONITOR:  
20  
– QUASI-RANDOM: 2 – 1  
TCHICK  
RFRMCK  
INTERNAL  
SYSTEM CLOCK  
RECEIVE SLIP  
MONITOR  
15  
– PSEUDORANDOM: 2 – 1  
ANSI T1.403 BIT-ORIENTED AND ESF-FDL ACTIVATE  
AND DEACTIVATE LINE LOOPBACK CODES  
– CEPT AUXILIARY PATTERN (CEPT = 01)  
– CEPT ACTIVATE AND DEACTIVATE LOOPBACK  
CODES  
RECEIVE SIGNALING EXTRACTER:  
– DS1 ROBBED-BIT SIGNALING (RBS)  
– CEPT CHANNEL ASSOCIATED AND  
COMMON CHANNEL SIGNALING  
– CONCENTRATION HIGHWAY ACCESS  
– MICROPROCESSOR ACCESS  
– CEPT Sa6 CODES  
TEST PATTERN DETECTOR  
– MARK (ALL1s)  
20  
– QRSS (QUASI-RANDOM: 2 – 1)  
RECEIVE FDL HDLC EXTRACTER:  
– 64-byte RECEIVE FIFO  
– TRANSPARENT MODE (NO HDLC FRAMING)  
– MICROPROCESSOR ACCESS  
5
– 2 – 1  
6
– 2 – 1 (53)  
9
– 2 – 1 (511)  
11  
– 2 – 1 (2047)  
15  
– 2 – 1 (PSEUDORANDOM)  
20  
– 2 – 1  
23  
– 2 – 1  
– 1:1 (ALTERNATING 10)  
RECEIVE FACILITY DATA LINK EXTRACTER  
AND MONITOR:  
RFDLCK  
RFDL  
SLC-96 FORMAT  
– DDS ACCESS  
ANSI T1.403-1989 ESF FORMAT:  
• BIT-ORIENTED MESSAGES  
• MESSAGE-ORIENTED MESSAGES  
5-4513(F).cr.2  
Figure 2. T7633 Block Diagram: Receive Section (One of Two Channels)  
Agere Systems Inc.  
17  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Functional Description (continued)  
TLCK, TND, TPD  
÷ 16  
SYSCK  
LOSS  
OF  
TLCK  
TRANSMIT DATA  
MONITOR  
ALL 1s SIGNAL  
(AIS)  
PULSE  
JITTER  
TTIP  
EQUALIZER  
AND  
BPV  
ENCODER  
(OPTIONAL)  
ATTENUATION  
(OPTIONAL:  
TRANSMIT OR  
RECEIVE)  
LINE FORMAT ENCODER  
(AMI; B8ZS; HDB3)  
WIDTH  
CONTROLLER  
TLCK, TND, TPD  
TRING  
PLLCK  
TRANSMIT FACILITY DATA LINK  
INSERTER:  
TFDL  
SLC-96 FORMAT  
TRANSMIT T1/E1 FRAME FORMATTER,  
AND FRAME SYNC GENERATOR:  
– DDS ACCESS  
ANSI T1.403-1989 ESF FORMAT:  
• BIT-ORIENTED MESSAGES  
• MESSAGE-ORIENTED MESSAGES  
TRANSMIT CRC GENERATOR:  
TFDLCK  
– SF: D4, SLC-96, DDS; SIGNALING  
SUPERFRAME  
– ESF  
– ESF  
– CEPT  
TRANSMIT FDL HDLC INSERTER:  
– CEPT: BASIC FRAME, CRC-4  
MULTIFRAME, & SIGNALING MULTIFRAME  
– TRANSPARENT FRAMING  
– 64-byte TRANSMIT FIFO  
– TRANSPARENT MODE  
(NO HDLC FRAMING)  
TRANSMIT ALARM MONITOR:  
– LOSS OF SYSTEM BIFRAME ALIGNMENT  
– SYSTEM ALARM INDICATION SIGNAL (AIS)  
– MICROPROCESSOR ACCESS  
TRANSMIT SIGNALING INSERTER:  
AUTOMATIC AND ON-DEMAND COMMANDS:  
– DS1 ROBBED-BIT SIGNALING (RBS)  
– CEPT CHANNEL ASSOCIATED AND  
COMMON-CHANNEL SIGNALING  
– CONCENTRATION HIGHWAY ACCESS  
– MICROPROCESSOR ACCESS  
– AIS (LINE, SYSTEM, FDL)  
– LOOPBACKS  
– REMOTE FRAME ALARMS (RFA)  
– CEPT E BIT = 0  
– CEPT TS16 AIS  
– CEPT TS16 RPA  
RCHICK  
RECEIVE CONCENTRATION  
TEST PATTERN GENERATOR  
RCHIFS  
RCHIDATA  
RCHIDATAB  
TRANSMIT ELASTIC  
STORE BUFFER  
(2 FRAMES)  
HIGHWAY INTERFACE  
(RATE ADAPTER)  
– MARK (ALL1s)  
– QRSS  
5
– 2 – 1  
6
– 2 – 1 (53)  
9
– 2 – 1 (511)  
11  
– 2 – 1 (2047)  
15  
– 2 – 1  
20  
– 2 – 1  
23  
– 2 – 1  
– 1:1 (ALTERNATING 10)  
5-4514(F).dr.2  
Figure 3. T7633 Block Diagram: Transmit Section (One of Two Channels)  
18  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Pin Information  
The package type and pin assignment for the T7633 (Terminator-II) is illustrated in Figure 4.  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
GRND  
LOFRMRLCK1  
SYSCK1  
2
WR_DS  
JTAGTRST  
JTAGTMS  
JTAGTCK  
JTAGTDI  
JTAGTDO  
MPCK  
RDY_DTACK  
INTERRUPT  
A11  
3
PLLCK-EPLL1  
DIV-RCHICK1  
DIV-PLLCK1  
PLLCK1  
4
5
6
7
8
GRNDA1  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
RRING_RND1  
RTIP_RPD1  
NC  
98  
97  
A10  
96  
A9  
VDDA1  
95  
A8  
GRNDX1  
TRING1  
VDDX1  
94  
A7  
93  
A6  
92  
TTIP1  
A5  
91  
GRNDX1  
NC  
A4  
90  
A3  
89  
GRNDX2  
TTIP2  
A2  
88  
A1  
87  
VDDX2  
A0  
86  
TRING2  
GRNDX2  
VDDA2  
AD7  
85  
AD6  
84  
AD5  
83  
NC  
AD4  
82  
RTIP_RPD2  
RRING_RND2  
NC  
AD3  
81  
AD2  
80  
AD1  
79  
GRNDA2  
PLLCK2  
DIV-PLLCK2  
DIV-RCHICK2  
PLLCK-EPLL2  
SYSCK2  
AD0  
78  
ALE_AS  
CS  
77  
76  
MPMUX  
RD_R/W  
MPMODE  
GRND  
75  
74  
73  
GRND  
5-4712(F).cr.2  
Figure 4. Pin Assignment  
Agere Systems Inc.  
19  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Pin Information (continued)  
Table 1 shows the list of T7633 pins and a functional description for each.  
Table 1. Pin Descriptions  
Pin  
Symbol  
Type*  
Description  
C1  
C2  
1, 36, 73, 109  
GRND  
P
Digital Ground Reference.  
2
38  
LOFRMRLCK  
O
Loss of Framer Receive Line Clock. This pin is asserted high (1)  
when the framer internal receive line clock does not toggle for a 250 µs  
interval. Once asserted, this signal is deasserted on the first edge of the  
framer internal receive line clock.  
Terminator Mode: (FRAMER, pin 41/141 = 1) LOFRMRLCK is  
asserted high when SYSCK clock, pin 3/35, is absent.  
Framer Mode: (FRAMER, pin 41/141 = 0) LOFRMRLCK is asserted  
high when RLCK clock, pin 47/135, is absent.  
3
35  
SYSCK  
Iu  
LIU System Clock. The clock signal used for clock and data recovery  
and jitter attenuation. This clock must be ungapped and free of jitter.  
For CKSEL = 1: a 16x clock (for DS1, SYSCK = 24.704 MHz ± 100  
ppm and for CEPT, SYSCK = 32.768 MHz ± 100 ppm). For CKSEL = 0:  
a 1x clock (for DS1, SYSCK = 1.544 MHz ± 100 ppm and for CEPT,  
SYSCK = 2.048 MHz ± 100 ppm).  
4
34  
PLLCK-EPLL  
O
Error Phase-Lock Loop Signal. The error signal proportional to the  
phase difference between DIV-PLLCK and DIV-RCHICK as detected by  
the internal PLL circuitry (refer to the Phase-Lock Loop Circuit section  
on page 122).  
5
6
7
33  
32  
31  
DIV-RCHICK  
DIV-PLLCK  
PLLCK  
O
O
I
Divided-Down RCHI Clock. 32 kHz or 8 kHz clock signal derived from  
the RCHICK input signal.  
Divided-Down PLLCK Clock. 32 kHz or 8 kHz clock signal derived  
from the PLLCK input signal.  
Transmit Framer Phase-Locked Line Interface Clock. Clock signal  
used to time the transmit framer. This signal must be phase-locked to  
RCHICK clock signal and be ungapped and free of jitter. For  
FRM_PR45, bit 0 (HFLF) = 0, in DS1 PLLCK = 1.544 MHz and in CEPT  
PLLCK = 2.048 MHz. For FRM_PR45, bit 0 (HFLF) = 1 in DS1 PLLCK =  
6.176 MHz and in CEPT PLLCK = 8.192 MHz.  
8
30  
GRNDA  
P
Analog Ground Reference.  
No Connect.  
9, 12, 19,  
26, 29  
NC  
U
* I indicates an internal pull-up.  
20  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
Pin  
Symbol  
Type*  
Description  
C1  
C2  
10  
28  
RRING_RND  
I
Receive Bipolar Ring. Negative bipolar input data from the receive  
analog line isolation transformer.  
Receive Negative Rail Data. Valid when the FRAMER pin is  
strapped to 0 V. Nonreturn-to-zero (NRZ) serial data latched by the  
rising edge of RLCK. Data rates: DS1-1.544 Mbits/s; CEPT-  
2.048 Mbits/s. In the single-rail mode, when RND = 1 the receive  
bipolar violation counter increments once for each rising edge of  
RLCK.  
11  
13  
27  
25  
RTIP_RPD  
I
Receive Bipolar Tip. Positive bipolar input data from the receive  
analog line isolation transformer.  
Receive Positive Rail Data. Valid when the FRAMER pin is  
strapped to 0 V. NRZ serial data latched by the rising edge of RLCK.  
Data rates: DS1-1.544 Mbits/s; CEPT-2.048 Mbits/s. Optional  
single-rail NRZ receive data latched by the rising edge of RLCK.  
VDDA  
GRNDX  
TRING  
P
P
O
Analog 3.3 V Power Supply. 3.3 V ± 5%.  
14, 18 20, 24  
Transmit Line Driver Ground Reference.  
15  
23  
Transmit Bipolar Ring. Negative bipolar output data to the transmit  
analog isolation transformer.  
16  
17  
22  
21  
VDDX  
P
Transmit Line Driver 3.3 V Power Supply. 3.3 V ± 5%.  
TTIP  
O
Transmit Bipolar Tip. Positive bipolar output data to the transmit  
analog isolation transformer.  
37, 72,  
108, 144  
VDD  
P
3.3 V Power Supply. 3.3 V ± 5%.  
143  
39  
LOPLLCK  
O
Loss of PLLCK Clock. This pin is asserted high when the PLLCK  
clock does not toggle for a 250 µs interval. This pin is deasserted  
250 µs after PLLCK clock restarts toggling.  
142  
141  
40  
41  
DS1/CEPT  
FRAMER  
Iu  
Iu  
DS1/CEPT. Strap to VDD to enable defaults for DS1 operation. Strap  
to VSS to enable defaults for CEPT operation.  
Framer Mode. Strap to VDD to enable integrated LIU and framer  
operation. Strap to VSS to bypass the LIU section; the receive framer  
is sourced directly from the RPD, RND, and RLCK pins while the  
TPD, TND, and TLCK pins are driven by the transmit framer.  
140  
139  
138  
42  
43  
44  
3-STATE  
RESET†  
TPD  
Iu  
Iu  
O
3-State (Active-Low). Asserting this pin low forces the channel  
outputs into a high-impedance state. Asserting both 3-state pins low  
forces all outputs into a high-impedance state.  
Reset (Active-Low). Asserting this pin low resets the channel.  
Asserting both RESET pins low resets the entire device including  
the global registers.  
Transmit Line Interface Positive-Rail Data. This signal is the  
transmit framer positive NRZ output data. Data changes on the  
rising edge of TLCK. In the single-rail mode, TPD = transmit framer  
data.  
U
*
I
indicates an internal pull-up.  
† After RESET is deasserted, the channel is in the default framing mode, as a function of the DS1/CEPT pin.  
Agere Systems Inc.  
21  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
Pin  
Symbol  
Type*  
Description  
C1 C2  
137 45  
TND  
O
Transmit Line Interface Negative-Rail Data. This signal is the  
transmit framer negative NRZ output data. Data changes on the rising  
edge of TLCK. In the single-rail mode, TND = 0.  
136 46  
135 47  
134 49  
133 48  
132 50  
TLCK  
RLCK  
O
I
Transmit Framer Line Interface Clock. Optional 1.544 MHz DS1 or  
2.048 MHz output signal from the transmit framer. TND and TPD data  
changes on the rising edge of TLCK.  
Receive Framer Line Interface Clock. Valid when the FRAMER pin is  
strapped to 0 V. This is the 1.544 MHz DS1 or 2.048 MHz input clock  
signal used by the receive framer to latch RPD and RND data.  
RFRMCK  
CKSEL  
O
Iu  
O
Receive Framer Clock. Output receive framer clock signal used to  
clock out the receive framer output signals. In normal operation, this is  
the recovered receive line clock signal.  
LIU System Clock Mode. This pin selects either a 16x rate clock for  
SYSCK (CKSEL = 1) or a primary line rate clock for SYSCK  
(CKSEL = 0).  
RFRMDATA  
Receive Framer Data. This signal is the decoded data input to the  
receive elastic store. During loss of frame alignment, this signal is  
forced to 1.  
131 51  
130 52  
RFS  
O
O
Receive Frame Sync. This active-high signal is the 8 kHz frame  
synchronization pulse generated by the receive framer.  
RSSFS  
Receive Framer Signaling Superframe Sync. This active-high signal  
is the CEPT signaling superframe (multiframe) synchronization pulse  
in the receive framer.  
129 53  
128 54  
127 55  
RCRCMFS  
RFDLCK  
RFDL  
O
O
O
Receive Framer CRC-4 Multiframe Sync. This active-high signal is  
the CEPT CRC-4 multiframe synchronization pulse in the receive  
framer.  
Receive Facility Data Link Clock. In DS1-DDS with data link access,  
this is an 8 kHz clock signal. Otherwise, this is a 4 kHz clock signal.  
The receive data link bit changes on the falling edge of RFDLCK.  
Receive Facility Data Link. Serial output facility data link bit stream  
extracted from the receive line data stream by the receive framer. In  
DS1-DDS with data link access, this is an 8 kbits/s signal; otherwise,  
4 kbits/s. In the CEPT frame format, RFDL can be programmed to one  
of the Sa bits of the NOT FAS frame TS0. During loss of frame  
alignment, this signal is 1.  
126 56  
125 57  
TCHICK  
TCHIFS  
I
Transmit Concentration Highway Interface (CHI) Clock.  
2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz. This clock must  
be free of jitter.  
I/O  
Transmit CHI Frame Sync. Transmit CHI 8 kHz input frame  
synchronization pulse phase-locked to TCHICK. In the CHI master  
mode, the transmit CHI generates the 8 kHz frame sync to control the  
CHI.  
U
*
I
indicates an internal pull-up.  
22  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
Pin  
Symbol  
Type*  
Description  
C1 C2  
124 58  
TCHIDATA  
O
Transmit CHI Data. Serial output system data at 2.048 Mbits/s,  
4.096 Mbits/s, or 8.192 Mbits/s. This port is forced into a high-  
impedance state for all inactive time slots.  
123 59  
122 60  
TCHIDATAB  
DIV-RLCK  
O
O
Transmit CHI Data B. Serial output system data at 2.048 Mbits/s,  
4.096 Mbits/s, or 8.192 Mbits/s. This port is forced into a high-  
impedance state for all inactive time slots.  
Divided-Down Receive Line Clock. 8 kHz clock signal derived from  
the recovered receive line interface unit clock or the RLCK input  
signal.  
121 61  
120 62  
DIV-TCHICK  
O
O
Divided-Down CHI Clock. 8 kHz clock signal derived from the  
transmit CHI CLOCK input signal.  
TCHICK-EPLL  
Error Phase-Lock Loop Signal. The error signal proportional to the  
phase difference between DIV-TCHICK and DIV-RLCK as detected  
from the internal PLL circuitry (refer to the Phase-Lock Loop Circuit  
section on page 122).  
119 63  
118 64  
TFS  
O
O
Transmit Framer Frame Sync. This signal is the 8 kHz frame  
synchronization pulse in the transmit framer. This signal is active-high.  
TSSFS  
Transmit Framer Signaling Superframe Sync. This signal is the  
CEPT signaling superframe (multiframe) synchronization pulse in the  
transmit framer. This signal is active-high.  
117 65  
116 66  
115 67  
TCRCMFS  
TFDLCK  
TFDL  
O
O
I
Transmit Framer CRC-4 Multiframe Sync. This signal is the CEPT  
CRC-4 submultiframe synchronization pulse in the transmit framer.  
This signal is active-high.  
Transmit Facility Data Link Clock. In DS1-DDS with data link  
access, this is an 8 kHz clock signal; otherwise, 4 kHz. The transmit  
frame latches data link bits on the falling edge of TFDLCK.  
Transmit Facility Data Link. Optional serial input facility data link bit  
stream inserted into the transmit line data stream by the transmit  
framer. In DS1-DDS with data link access, this is an 8 kbits/s signal;  
otherwise, 4 kbits/s. In the CEPT frame format, TFDL can be  
programmed to one of the Sa bits of the NOT-FAS frame time slot 0.  
114 68  
RCHICK  
I
Receive Concentration Highway Interface (CHI) Clock. 2.048 MHz,  
4.096 MHz, 8.192 MHz, or 16.384 MHz. This clock must be free of  
jitter.  
113 69  
112 70  
RCHIFS  
RCHIDATA  
RCHIDATAB  
I
I
I
Receive CHI Frame Sync. Receive CHI 8 kHz frame synchronization  
pulse phase-locked to RCHICK.  
Receive CHI Data. Serial input system data at 2.048 Mbits/s,  
4.096 Mbits/s, or 8.192 Mbits/s.  
111 71  
Receive CHI Data B. Serial input system data at 2.048 Mbits/s,  
4.096 Mbits/s, or 8.192 Mbits/s.  
U
*
I
indicates an internal pull-up.  
Agere Systems Inc.  
23  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
Pin  
Symbol  
Type*  
Description  
74  
MPMODE  
Iu  
MPMODE. Strap to ground to enable the Motorola 68360  
microprocessor protocol (MODE1 or MODE2). Strapped to VDD to  
enable the Intel 80X86/88 microprocessor protocol (MODE3 or  
MODE4).  
75  
RD_R/W  
I
Read (Active-Low). In the Intel interface mode, the T7633 drives  
the data bus with the contents of the addressed register while RD  
is low.  
Read/Write. In the Motorola interface mode, this signal is asserted  
high for read accesses; this pin is asserted low for write accesses.  
76  
77  
MPMUX  
CS‡  
Iu  
MPMUX. Strap to VSS to enable the demultiplexed address and  
data bus mode. Strap to VDD to enable the multiplexed address  
and data bus mode.  
I
Chip Select (Active-Low). In the Intel interface mode, this pin  
must be asserted low to initiate a read or write access and kept low  
for the duration of the access; asserting CS low forces RDY out of  
its high-impedance state into a 0 state.  
78  
ALE_AS  
I
Address Latch Enable/Address Strobe. In the address/data bus  
multiplex mode of the microprocessor, when this signal transitions  
from high to low, the state of the address bus is latched into  
internal address registers. In the demultiplexed address mode, the  
address is transparent through the T7633 and is latched on the  
rising edge of the ALE_AS signal. Alternatively, in the demultiplex  
mode, this pin may be connected to ground to make the address  
transparent through the T7633.  
79—86  
AD0—AD7  
I/O  
Microprocessor Address_Data Bus. Multiplexed address and  
bidirectional data bus used for read and write accesses. High-  
impedance output.  
87—98  
99  
A0—A11  
I
Microprocessor Address Bus. Address bus used to access the  
internal registers.  
INTERRUPT  
O
Interrupt. INTERRUPT is asserted indicating an internal interrupt  
condition/event has been generated. This pin is deasserted after  
the generating register is read. As a default, interrupt assertion is a  
logic one. Interrupt events/conditions are maskable through the  
control registers. Interrupt assertion may be inverted (active-low)  
or programmed for wired OR or AND operation by setting register  
GREG 4 bit 4 and bit 6.  
U
*
I
indicates an internal pull-up.  
† After RESET is deasserted, the channel is in the default framing mode, as a function of the DS1/CEPT pin.  
‡ Asserting this pin low will initially force RDY to a low state.  
24  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
Pin  
Symbol  
Type*  
Description  
100  
RDY_DTACK  
O
Ready. In the Intel interface mode, this pin is asserted high to  
indicate the completion of a read or write access; this pin is forced  
into a high-impedance state while CS is high.  
Data Transfer Acknowledge (Active-Low). In the Motorola  
interface mode, DTACK is asserted low to indicate the completion  
of a read or write access; DTACK is 1 otherwise.  
101  
102  
103  
104  
105  
MPCK  
Iu  
O
Iu  
Iu  
Iu  
Microprocessor Clock. Microprocessor clock used in the Intel  
mode to generate the READY signal.  
JTAGTDO  
JTAGTDI  
JTAGTCK  
JTAGTMS  
JTAG Data Output. Serial output data sampled on the falling edge  
of TCK from the boundary-scan test circuitry.  
JTAG Data Input. Serial input data sampled on the rising edge of  
TCK for the boundary-scan test circuitry.  
JTAG Clock Input. TCK provides the clock for the boundary-scan  
test logic.  
JTAG Mode Select (Active-Low). The signal values received at  
TMS are sampled on the rising edge of TCK and decoded by the  
boundary-scan TAP controller to control boundary-scan test opera-  
tions.  
106  
107  
JTAGTRST  
WR_DS  
Id  
I
JTAG Reset Input (Active-Low). Assert this pin low to asynchro-  
nously initialize/reset the boundary-scan test logic.  
Write (Active-Low). In the Intel mode, the value present on the  
data bus is latched into the addressed register on the positive edge  
of the signal applied to WR.  
Data Strobe (Active-Low). In the Motorola mode, when AS is low  
and R/W is low (write), the value present on the data bus is latched  
into the addressed register on the positive edge of the signal  
applied to DS; when AS is low and R/W is high (read), the T7633  
drives the data bus with the contents of the addressed register  
while DS is low.  
110  
SECOND  
O
Second Pulse. A one second timer with an active-high pulse. The  
duration of the pulse is one RLCK cycle. The receive line clock of  
FRAMER1 (RLCK1) is the default clock source for the internal sec-  
ond pulse timer. When LOFRMCLK1 is active, the receive line  
clock of FRAMER2 is used as the clock signal source for the inter-  
nal second pulse timer. The second pulse is used for performance  
monitoring.  
U
d
* I indicates an internal pull-up; I indicates an internal pull-down.  
Agere Systems Inc.  
25  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Block Diagram  
The T7633 LIU diagram is shown in Figure 5. Only a single transceiver is shown here for illustration purposes.  
RDLOS  
RALOS  
RND_BPV  
DECODER  
JITTER  
ATTENUATOR  
RPD  
CLOCK AND  
DATA  
RECOVERY  
RTIP  
EQUALIZER  
SLICERS  
TO RECEIVE  
FRAMER  
RRING  
(RECEIVE PATH)  
RLCK  
FLLOOP  
(DURING LIU AIS)  
INTSYSCK*  
FLLOOP  
(NO LIU AIS)  
TDM  
DLLOOP  
RLOOP  
(CLOCK)  
LOTC  
PULSE-  
WIDTH  
CONTROLLER  
TLCK-LIU  
TND-LIU  
JITTER  
TTIP  
ATTENUATOR  
TRANSMIT  
DRIVER  
PULSE  
EQUALIZER  
(TRANSMIT PATH)  
(DATA)  
ENCODER  
FROM TRANSMIT  
TRING  
TPD-LIU  
FRAMER  
ALARM  
INDICATION  
SIGNAL (AIS)  
LOSS  
OF  
TLCK  
16x  
CLOCK  
MULTIPLIER  
DIVIDE BY 16  
INTSYSCK*  
LOSS OF  
SYSCK  
MONITOR  
SYSCK  
CKSEL  
5-4556(F).cr.4  
* INTSYSCK always runs at 16 times the primary line rate. If CKSEL = 1, INTSYSCK is equal to SYSCK. If CKSEL = 0, INTSYSCK is sourced  
from the internal 16x clock multiplier.  
Figure 5. Block Diagram of Line Interface Unit: Single Channel  
Line Interface Unit: Receive  
Data Recovery  
The receive line-interface unit (RLIU) transmission format is bipolar alternate mark inversion (AMI). The RLIU  
accepts input data with a data rate tolerance of ±130 ppm (DS1) or ±80 ppm (E1). The RLIU first restores the  
incoming data and detects analog loss of signal. Subsequent processing is optional and depends on the program-  
mable LIU configuration established within the microprocessor interface registers. The RLIU utilizes an equalizer to  
operate on line length with typically up to 15 dB of loss at 772 kHz (DS1) or 13 dB loss at 1.024 MHz (E1). The sig-  
nal is then peak-detected and sliced to produce digital representations of the data. Selectable digital loss of signal,  
jitter attenuation, and data decoding are performed.  
The clock is recovered by a digital phase-locked loop that uses SYSCK as a reference to lock to the data rate com-  
ponent. Because the reference clock is a multiple of the received data rate, the internal RLCK (RLCK-LIU) output  
will always be a valid DS1/CEPT clock that eliminates false lock conditions. During periods with no receive input  
signal from the line, the free-run frequency of RLCK-LIU is defined to be either SYSCK/16 or SYSCK depending on  
the state of CKSEL. RLCK-LIU is always active with a duty cycle centered at 50%, deviating by no more than ±5%.  
Valid data is recovered within the first few bit periods after the application of SYSCK.  
26  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Receive (continued)  
Jitter Accommodation and Jitter Transfer Without the Jitter Attenuator  
The RLIU is designed to accommodate large amounts of input jitter. The RLIU’s jitter performance exceeds the  
requirements shown in the RLIU Specification Table 4 and Table 5. Typical receiver performance without the jitter  
attenuator in the path is shown in Figures 6—9. Typical receiver performance with the jitter attenuator is given in  
Figures 12—15. Jitter transfer is independent of input ones density on the line interface.  
Receive Line Interface Configuration Modes  
Zero Substitution Decoding (CODE)  
When single-rail operation is selected with DUAL = 0 (register LIU_REG3, bit 3), the LIU B8ZS/HDB3 zero substi-  
tution decoding can be selected via the CODE bit (register LIU_REG3, bit 2). If CODE = 1, the B8ZS/HDB3 decod-  
ing function is enabled in the receive path. Decoded receive data appears at the internal LIU-to-framer RPD  
interface (RPD-LIU). Code violations, including BPVs, appear at the internal LIU-to-framer RND_BPV interface  
(RND-LIU). If CODE = 0, the receive data is passed unaltered to RPD-LIU, and all bipolar violations (such as two  
consecutive 1s if the same polarity) appear at RND-LIU. The default configuration is single-rail, DUAL = 0, with the  
decoding active, CODE = 1.  
If DUAL = 0, the receive framer must be programmed to the single-rail mode and the receive framer’s interval LIU-  
to-framer RPD input will be the receive data port. If DUAL = 0, then the receive framer’s bipolar violation count will  
increment by 1 whenever the internal LIU-to-framer RND_BPV signal is one. The bipolar violation count is incre-  
mented on the rising edge of the receive framer’s RLCK clock signal.  
Agere Systems Inc.  
27  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Receive (continued)  
Receive Line Interface Configuration Modes (continued)  
Receive Line Interface Unit (RLIU) Alarms  
Analog Loss of Signal (ALOS) Alarm. An analog signal detector monitors the receive signal amplitude and  
reports its status in the analog loss of signal alarm bit ALOS (register LIU_REG0, bit 0). Analog loss of signal is  
indicated (ALOS = 1) if the amplitude at the RRING and RTIP inputs drops below a voltage approximately 18 dB  
below the nominal signal amplitude. The ALOS alarm condition will clear when the receive signal amplitude returns  
to a level greater than 14 dB below normal. The ALOS alarm status bit will latch the alarm and remain set until  
being cleared by a read (clear on read). Upon the transition from ALOS = 0 to ALOS = 1, a microprocessor inter-  
rupt will be generated if the ALOS interrupt enable bit ALOSIE (register LIU_REG1, bit 0) is set. The reset default is  
ALOSIE = 0.  
The ALOS circuitry provides 4 dB of hysteresis to prevent alarm chattering. The time required to detect ALOS is  
selectable. When ALTIMER = 0 (register LIU_REG4, bit 0), ALOS is declared between 1 ms and 2.6 ms after los-  
ing signal as required by I.431(3/93) and ETS-300-233 (5/94). If ALTIMER = 1, ALOS is declared between 10-bit  
and 255-bit symbol periods after losing signal as required by G.775 (11/95). The timing is derived from the SYSCK  
clock. The detection time is independent of signal amplitude before the loss condition occurs. Normally, ALTIMER  
= 1 would be used only in E1 mode since no T1/DS1 standards require this mode. In T1/DS1 mode, this bit should  
normally be zero. The reset default is ALTIMER = 0.  
The behavior of the receiver RLIU outputs under ALOS conditions is dependent on the loss shutdown (LOSSD)  
control bit (register LIU_REG3, bit 4) in conjunction with the receive alarm indication select (RCVAIS) control bit  
(register LIU_REG4, bit 1) as described in the Loss Shutdown (LOSSD) and Receiver AIS (RCVAIS) section on  
page 29.  
Digital Loss of Signal (DLOS) Alarm. A digital loss of signal (DLOS) detector guarantees the received signal  
quality as defined in the appropriate ANSI, Telcordia Technologies, and ITU standards. The digital loss of signal  
alarm is reported in the RLIU alarm status register (register LIU_REG0, bit 1). For DS1 operation, digital loss of sig-  
nal (DLOS = 1) is indicated if 100 or more consecutive 0s occur in the receive data stream. The DLOS condition is  
deactivated when the average ones density of at least 12.5% is received in 100 contiguous pulse positions. The  
DLOS alarm status bit will latch the alarm and remain set until being cleared by a read (clear on read). The  
LOSSTD control bit (register LIU_REG2, bit 2) selects the conformance protocols for the DLOS alarm indication  
per Table 2. Setting LOSSTD = 1 adds an additional constraint that there are less than 15 consecutive zeros in the  
DS1 data stream before DLOS is deactivated. The reset default is LOSSTD = 0.  
For E1 operation, DLOS is indicated when 255 or more consecutive 0s occur in the receive data stream. The  
DLOS indication is deactivated when the average ones density of at least 12.5% is received in 255 contiguous  
pulse positions. LOSSTD has no effect in E1 mode.  
Upon the transition from DLOS = 0 to DLOS = 1, a microprocessor interrupt will be generated if the DLOS interrupt  
enable bit DLOSIE (register LIU_REG1, bit 1) is set. The reset default is DLOSIE = 0.  
The DLOS alarm may occur when FLLOOP is activated (See “Line Interface Unit: Loopbacks” on page 44.) due to  
the abrupt change in signal level at the receiver input. Setting the FLLOOP alarm prevention PFLALM = 1 (register  
LIU_REG 4, bit 2) prevents the DLOS alarm from occurring when FLLOOP is activated by quickly resetting the  
receiver’s internal peak detector. It will not prevent the DLOS alarm during the FLLOOP period but only avoids the  
alarm created by the signal amplitude transient. The reset default is PFLALM = 0.  
Table 2. Digital Loss of Signal Standard Select  
LOSSTD  
DS1 Mode  
CEPT Mode  
0
1
T1M1.3/93-005, ITU-T G.775  
TR-TSY-000009  
ITU-T G.775  
ITU-T G.775  
28  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Receive (continued)  
Receive Line Interface Configuration Modes (continued)  
Loss Shutdown (LOSSD) and Receiver AIS (RCVAIS). The loss shutdown (LOSSD) control bit (register  
LIU_REG3, bit 4) acts in conjunction with the receive alarm indication select (RCVAIS) control bit (register  
LIU_REG4, bit 1) to place the digital RLIU signals (RPD-LIU, RND-LIU, RLCK-LIU) in a predetermined state when  
a digital loss of signal (DLOS) or analog loss of signal (ALOS) alarm occurs.  
If LOSSD = 0 and RCVAIS = 0, the RND-LIU, RPD-LIU, and RLCK-LIU signals will be unaffected by the DLOS  
alarm condition. However, when an ALOS alarm condition is indicated in the LIU alarm status register (register  
LIU_REG0, bit 0), the RPD-LIU and RND-LIU signals are forced to 0 state and the RLCK-LIU free runs (at the  
INTSYSCK/16 frequency).  
If LOSSD = 1, RCVAIS = 0, and a DLOS alarm condition is indicated in the LIU alarm status register (register  
LIU_REG0, bit 1) or an ALOS alarm condition is indicated, the RPD-LIU and RND-LIU signals are forced to the  
0 state and the RLCK-LIU free runs (at the INTSYSCK/16 frequency).  
If LOSSD = 0, RCVAIS = 1, and a DLOS or an ALOS alarm condition is indicated in the LIU alarm status register  
(register LIU_REG0, bits 0 or 1), the RPD-LIU and RND-LIU signals will present an alarm indication signal (AIS, all  
ones) based on the free-running INTSYSCK/16 frequency.  
If LOSSD = 1, RCVAIS = 1, and a DLOS or an ALOS alarm condition is indicated in LIU alarm status register (reg-  
ister LIU_REG0, bits 0 or 1), the RPD-LIU and RND-LIU signals are forced to 0 state and the RLCK-LIU free runs  
at the INTSYSCK/16 frequency.  
The RND-LIU, RPD-LIU, and RLCK-LIU signals will be remain unaffected if any loopback (FLLOOP, RLOOP,  
DLLOOP) is activated independent of LOSSD and RCVAIS settings.  
The default reset state is LOSSD = 0 and RCVAIS = 0.  
The LOSSD and RCVAIS behavior is summarized in Table 3.  
Table 3. LOSSD and RCVAIS Control Configurations (Not Valid During Loopback Modes)  
LOSSD  
RCVAIS  
ALARM  
ALOS  
DLOS  
ALOS  
DLOS  
ALOS  
DLOS  
ALOS  
DLOS  
RPD/RND  
RLCK  
Free Runs  
Recovered Clock  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
Normal Data  
0
0
AIS (all ones)  
AIS (all ones)  
0
0
LIU Receiver Bipolar Violation (BPV) Alarm. The receiver LIU bipolar violation (BPV) alarm is used only in the  
single-rail mode. When B8ZS(DS1)/HDB3(E1) coding is not used (i.e., CODE = 0), any violations in the receive  
data (such as two or more consecutive 1s on a rail) are indicated on the RND-LIU output. When B8ZS(DS1)/  
HDB3(E1) coding is used (i.e., CODE = 1), the HDB3/B8ZS code violations, including BPVs, are reflected on the  
RND-LIU output.  
Agere Systems Inc.  
29  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Receive (continued)  
T1/DS1 LIU Receiver Specifications  
During T1/DS1 operation, the LIU receiver will perform as specified in Table 4.  
Table 4. DS1 LIU Receiver Specifications  
Parameter  
Analog Loss of Signal:  
Min  
Typ  
Max  
Unit  
Spec  
Threshold to Assert  
Threshold to Clear  
Hysteresis  
23  
17.5  
18  
14  
4
16.5  
12.5  
dB1  
dB1  
dB  
I.431  
Time to Assert (ALTIMER = 0)  
Receiver Sensitivity2  
1.0  
2.6  
ms  
I.431  
11  
15  
dB  
Jitter Transfer:  
3 dB Bandwidth  
Peaking  
3.84  
0.1  
kHz  
dB  
Figure 7 on page 32  
Figure 13 on page 42  
Generated Jitter  
0.04  
0.05  
UIpk-pk  
TR-TSY-000499,  
ITU-T G.824  
Jitter Accommodation  
Figure 6 on page 32  
Figure 12 on page 42  
Return Loss:3  
51 kHz to 102 kHz  
102 kHz to 1.544 MHz  
1.544 MHz to 2.316 MHz  
14  
20  
16  
dB  
dB  
dB  
Digital Loss of Signal:  
ITU-T G.775,  
T1M1.3/93-005  
Flag Asserted When Consecutive Bit  
Positions Contain  
100  
zeros  
Flag Deasserted when  
Data Density Is  
and  
12.5  
%ones  
Maximum Consecutive Zeros Are  
15  
99  
zeros  
zeros  
TR-TRY-000009  
ITU-T G.775, T1M1.3/  
93-005  
1.Below the nominal pulse amplitude of 3.0 V with the line interface circuitry specified in the Line Interface Unit: Line Interface Networks on  
page 48.  
2.Cable loss at 772 kHz.  
3.Using Agere transformer 2795L and components listed in Table 13.  
30  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Receive (continued)  
CEPT LIU Receiver Specifications  
During E1 operation, the LIU receiver will perform as specified in Table 5.  
Table 5. CEPT LIU Receiver Specifications  
Parameter  
Analog Loss of Signal:  
Threshold to Assert  
Threshold to Clear  
Hysteresis  
Min  
Typ  
Max  
Unit  
Spec  
23  
17.5  
18  
14  
4
16.5  
12.5  
dB1  
dB1  
dB  
I.431, ETSI 300 233  
Time to Assert (ALTIMER = 0)  
Time to Assert (ALTIMER = 1)  
1.0  
10  
2.6  
255  
ms  
UI  
I.431, ETSI 300 233  
G.775  
Receiver Sensitivity2  
11  
9
13.5  
12  
dB  
dB  
Interference Immunity:3  
ITU-T G.703  
Jitter Transfer:  
3 dB Bandwidth, Single-pole Roll Off  
Peaking  
5.1  
0.5  
kHz  
dB  
Figure 9 on page 33  
Figure 15 on page 43  
Generated Jitter  
0.04  
0.05  
UIpk-pk  
ITU-T G.823, I.431  
Jitter Accommodation  
Figure 8 on page 33  
Figure 14 on page 43  
Return Loss:4  
51 kHz to 102 kHz  
102 kHz to 2.048 MHz  
2.048 MHz to 3.072 MHz  
ITU-T G.703  
14  
20  
16  
dB  
dB  
dB  
Digital Loss of Signal:  
Flag Asserted When Consecutive Bit  
Positions Contain  
255  
zeros  
Flag Deasserted When Data Density Is  
(LOSSTD = 1)  
12.5  
%ones  
ITU-T G.775  
1.Below the nominal pulse amplitude of 3.0 V for 120 and 2.37 V for 75 applications with the line circuitry specified in the Line Interface  
Unit: Line Interface Networks on page 48.  
2.Cable loss at 1.024 MHz.  
3.Amount of cable loss for which the receiver will operate error-free in the presence of a –18 dB interference signal summing with the intended  
signal source.  
4.Using Agere transformer 2795K or 2795J and components listed in Table 13.  
Agere Systems Inc.  
31  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Receive (continued)  
100 UI  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
28 UI  
T1.408/I.431(DS1)/G.824(DS1)  
10 UI  
GR-499-CORE  
(NON-SONET CAT II INTERFACES)  
I.431(DS1), G.824(DS1)  
1.0 UI  
TR-TSY-000009 (DS1, MUXES)  
GR-499/1244-CORE (CAT I INTERFACES)  
0.1 UI  
100 k  
1
10  
100  
1 k  
10 k  
FREQUENCY (Hz)  
5-5260(F)r.4  
Figure 6. T1/DS1 Receiver Jitter Accommodation Without Jitter Attenuator  
GR-499-CORE  
(NON-SONET CAT II TO CAT II)  
0
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
10  
20  
30  
40  
50  
60  
1
10  
100  
1k  
10 k  
100 k  
FREQUENCY (Hz)  
5-5261(F)  
Figure 7. T1/DS1 Receiver Jitter Transfer Without Jitter Attenuator  
32  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Receive (continued)  
100 UI  
G.823  
37 UI  
I.431(CEPT)/ETS-300-011  
20.5 UI  
12e-6 Hz  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
10 UI  
G.823,ETSI-300-011A1  
I.431(CEPT)/ETS-300-011  
1.0 UI  
0.1 UI  
100 k  
1
10  
100  
1 k  
10 k  
FREQUENCY (Hz)  
5-5262(F)r.3  
Figure 8. CEPT/E1 Receiver Jitter Accommodation Without Jitter Attenuator  
G.735-9 W/O JITTER REDUCER  
0
10  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
20  
30  
40  
50  
60  
1
10  
100  
1 k  
10 k  
100 k  
FREQUENCY (HZ)  
5-5263(F)  
Figure 9. CEPT/E1 Receiver Jitter Transfer Without Jitter Attenuator  
Agere Systems Inc.  
33  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Transmit  
Output Pulse Generation  
The line interface transmitter accepts a line rate clock and NRZ data in single-rail mode (DUAL = 0) or positive and  
negative NRZ data in dual-rail mode (DUAL = 1) from the transmit framer unit or, optionally, the system interface.  
The line interface transmitter converts this data to a balanced bipolar signal (AMI format) with optional B8ZS(DS1)/  
HDB3(E1) encoding and optional jitter attenuation. Low-impedance output drivers produce the line transmit pulses.  
Positive 1s are output as positive pulses on TTIP, and negative 1s are output as positive pulses on TRING. Binary  
0s are converted to null pulses.  
In DSX-1 applications, transmit pulse shaping is controlled by the on-chip pulse-width controller and pulse equal-  
izer. The pulse-width controller produces high-speed timing signals to accurately control the transmit pulse widths.  
This eliminates the need for a tightly controlled transmit clock duty cycle that is usually required in discrete imple-  
mentations. The pulse equalizer controls the amplitudes and shapes of the pulses. Different pulse equalizations  
are selected through settings of EQ2, EQ1, and EQ0 bits (register LIU_REG6, bits 0 to 2) as described in Table 6,  
Transmit Line Interface Short-Haul Equalizer/Rate Control, below.  
The reset default state of the equalization bits EQ2, EQ1, and EQ0 can be predetermined by setting the  
DS1_CEPT pin. The default transmit equalization is EQ2, EQ1, and EQ0 = 000 (0 dB T1/DS1) when DS1_CEPT =  
1; EQ2, EQ1, and EQ0 = 110 (CEPT 120 /75 ) when DS1_CEPT = 0. This feature aids in transmitting AIS at the  
correct rate upon completion of hardware reset; See “LIU Transmitter Alarm Indication Signal Generator (XLAIS)”  
on page 35.  
Table 6. Transmit Line Interface Short-Haul Equalizer/Rate Control  
Short-Haul Applications  
EQ2  
EQ1  
EQ0 Service  
Clock Rate  
Transmitter Equalization1,2  
Maximum  
Cable Loss  
to DSX3  
Feet  
Meters  
dB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0 to 131  
0 to 40  
40 to 80  
0.6  
1.2  
1.8  
2.4  
3.0  
131 to 262  
262 to 393  
393 to 524  
524 to 655  
0
1
0
1
0
1
DSX-1  
CEPT4  
1.544 MHz  
2.048 MHz  
80 to 120  
120 to 160  
160 to 200  
75 (Option 2)  
120 or 75 (Option 1)  
Not Used  
1.In DS1 mode, the distance to the DSX for 22-Gauge PIC (ABAM) cable is specified. Use the maximum cable loss figures for other cable  
types. In CEPT mode, equalization is specified for coaxial or twisted-pair cable.  
2.Reset default state is EQ2, EQ1, and EQ0 = 000 when pin DS1_CEPT = 1 and EQ2, EQ1, and EQ0 = 110 when pin DS1_CEPT = 0.  
3.Loss measured at 772 kHz.  
4.In 75 applications, Option 1 is recommended over Option 2 for lower LIU power dissipation. Option 2 allows for the use of the same trans-  
former as in CEPT 120 applications (see the Line Interface Unit: Line Interface Networks on page 48).  
34  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Transmit (continued)  
LIU Transmitter Configuration Modes  
LIU Transmitter Zero Substitution Encoding (CODE)  
LIU transmitter zero substitution (B8ZS/HDB3) encoding can be activated only in the single-rail (DUAL = 0) sys-  
tem/framer interface mode. It is activated by setting CODE = 1 (register LIU_REG3, bit 2). Data transmitted from  
the framer interface on TPD-LIU will be B8ZS/HDB3 encoded before appearing on TTIP and TRING at the line  
interface.  
LIU Transmitter Alarm Indication Signal Generator (XLAIS)  
When the transmit alarm indication signal control is set (XLAIS = 1) for a given channel (see register LIU_REG5,  
bit 1), a continuous stream of bipolar 1s is transmitted to the line interface. The internal LIU to framer TPD interface  
(TPD) and internal LIU to framer TND interface (TND) signals are ignored during this mode. The XLAIS control is  
ignored when a remote loopback (RLOOP) is selected using loopback control bits LOOPA and LOOPB (register  
LIU_REG5, bits 2 to 3). The clock source used for the alarm indication signal is TLCK if present or INTSYSCK if  
TLCK is not present. The clock tolerance must meet the nominal transmission specifications of 1.544 MHz ±  
32 ppm for DS1 (T1), or 2.048 MHz ± 50 ppm CEPT (E1).  
The XLAIS bit is defaulted to 1 on hardware reset allowing the transmitter to send AIS as soon as clocks are avail-  
able, without needing to write the LIU registers1. Because the transmit equalization bits are needed to determine  
the correct system rate (DS1/E1), the reset default state of the equalization bits EQ2, EQ1, EQ0 (register  
LIU_REG6, bits 0—2) can be predetermined by setting the DS1_CEPT pin (see Table 6 on page 34). The default  
transmit equalization is EQ2, EQ1, and EQ0 = 000 (0 dB T1/DS1) when DS1_CEPT = 1, and EQ2, EQ1, and EQ0  
= 110 (CEPT 120 /75 ) when DS1_CEPT = 0. The transmit equalization bits can be subsequently programmed  
to any state by writing the LIU register regardless of the state of the DS1_CEPT pin. The DS1_CEPT pin is only  
used to determine the reset default state of the equalization bits.  
1. If TLCK from the framer is present, automatic transmission of AIS upon reset will occur only if the CHI common control register FRM_PR45  
bit 0 = 0, the default, or low-frequency PLLCK mode. In this case, PLLCK will be equal to the line transmit rate, either 1.544 MHz for DS1 or  
2.048 MHz for CEPT.  
LIU Transmitter Alarms  
Loss of LIU Transmit Clock (LOTC) Alarm  
A loss of LIU transmit clock alarm (LOTC = 1, see register LIU_REG0, bit 3) is indicated if any of the clocks used in  
the LIU transmitter paths are absent. This includes loss of TLCK-LIU input, loss of RLCK-LIU during remote loop-  
back, loss of jitter attenuator output clock (when enabled in transmit path), or the internal loss of clock from the  
pulse-width controller. For all of these conditions, the LIU transmitter timing clock is lost and no data can be driven  
onto the line. Output drivers TTIP and TRING are placed in a high-impedance state when this alarm is active. The  
LOTC alarm asserts between 3 µs and 16 µs after the clock is lost, and deasserts immediately after detecting the  
first clock edge. The LOTC alarm status bit will latch the alarm and remain set until being cleared by a read (clear  
on read). Upon the transition from LOTC = 0 to LOTC = 1, an interrupt will be generated if the LOTC interrupt  
enable bit LOTCIE (register LIU_REG1, bit 3) is set. The reset default is LOTCIE = 0.  
An LOTC alarm may occur when RLOOP is activated and deactivated due to the phase transient that occurs as  
TLCK-LIU switches its source to and from RLCK-LIU. Setting the RLOOP alarm prevention PRLALM = 1 (register  
LIU_REG4, bit 3) prevents the LOTC alarm from occurring at the activation and deactivation of RLOOP but allows  
the alarm to operate normally during the RLOOP active period. The reset default is PRLALM = 0.  
Agere Systems Inc.  
35  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Transmit (continued)  
LIU Transmitter Alarms (continued)  
LIU Transmitter Driver Monitor (TDM) Alarm  
The transmit driver monitor detects two conditions: a nonfunctional link due to faults on the primary of the transmit  
line transformer, and periods of no data transmission. The TDM alarm (register LIU_REG0, bit 2) is the OR’d func-  
tion of both faults and provides information about the integrity of the LIU transmitter signal path.  
The first monitoring function is provided to detect nonfunctional links and protect the LIU transmitter from damage.  
The alarm is set (TDM = 1) when one of the LIU transmitter line drivers (TTIP or TRING) is shorted to power supply  
or ground, or TTIP and TRING are shorted together. Under these conditions, internal circuitry protects the LIU  
transmitter from damage and excessive power supply current consumption by forcing the TTIP and TRING output  
drivers into a high-impedance state. The monitor detects faults on the transformer primary side, but the transformer  
secondary faults may not be detected. The monitor operates by comparing the line pulses with the transmit inputs.  
After 32 transmit clock cycles, the LIU transmitter is powered up in its normal operating mode. The LIU transmitter  
drivers attempt to correctly transmit the next data bit. If the error persists, TDM remains active to eliminate alarm  
chatter and the transmitter is again internally protected for another 32 transmit clock cycles. This process is  
repeated until the error condition is removed, and then the TDM alarm is deactivated. The TDM alarm status bit will  
latch the alarm and remain set until being cleared by a read (clear on read).  
The second monitoring function is to indicate periods of no data transmission. The alarm is set (TDM = 1) when 33  
consecutive zeros have been transmitted. The alarm is cleared (TDM = 0) on the detection of a single pulse. This  
alarm condition does not alter the functionality of the signal path.  
Upon the transition from TDM = 0 to TDM = 1, a microprocessor interrupt will be generated if the TDM interrupt  
enable bit TDMIE (register LIU_REG1, bit 2) is set. The reset default is TDMIE = 0.  
A TDM alarm may occur when RLOOP is activated and deactivated. If the PRLALM bit is not set, then RLOOP may  
activate an LOTC alarm, which will put the output drivers TTIP and TRING in a high-impedance state as described  
in Loss of LIU Transmit Clock (LOTC) Alarm on page 35. The high-impedance state of the drivers may in turn gen-  
erate a TDM alarm.  
Setting the HIGHZ alarm prevention PHIZALM = 1 (register LIU_REG4, bit 4) prevents the TDM alarm from occur-  
ring when the drivers are in a high-impedance state. The reset default is PHIZALM = 0.  
36  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Transmit (continued)  
DSX-1 Transmitter Pulse Template and Specifications  
The DS1 pulse shape template is specified at the DSX (defined by CB119 and ANSI T1.102) and is illustrated in  
Figure 10. The LIU transmitter also meets the pulse template specified by ITU-T G.703 (not shown).  
1.0  
0.5  
0
–0.5  
0
250  
500  
750  
1000  
1250  
TIME (ns)  
5-1160(C)r.4  
Figure 10. DSX-1 Isolated Pulse Template  
Table 7. DSX-1 Pulse Template Corner Points (from CB119, T1.102)  
Maximum Curve  
Minimum Curve  
Normalized  
Amplitude  
Normalized  
Amplitude  
UI  
ns  
UI  
ns  
–0.77  
–0.39  
–0.27  
–0.27  
–0.12  
0.0  
0.27  
0.25  
0.93  
1.16  
0
0.05  
0.05  
0.80  
1.15  
1.15  
1.05  
1.05  
–0.07  
0.05  
0.05  
–0.77  
–0.23  
–0.23  
–0.15  
0.0  
0.15  
0.23  
0.23  
0.46  
0.66  
0.93  
1.16  
0
–0.05  
–0.05  
0.50  
0.95  
0.95  
250  
325  
325  
425  
500  
675  
725  
1100  
1250  
350  
350  
400  
500  
600  
650  
650  
800  
925  
1100  
1250  
0.90  
0.50  
–0.45  
–0.45  
–0.20  
–0.05  
–0.05  
Agere Systems Inc.  
37  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Transmit (continued)  
DSX-1 Transmitter Pulse Template and Specifications (continued)  
During DS1 operation, the LIU transmitter TTIP and TRING pins will perform as specified in Table 8.  
Table 8. DS1 Transmitter Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Spec  
Output Pulse Amplitude at DSX1  
2.5  
3.0  
3.5  
V
AT&T CB119,  
ANSI T1.102  
Output Pulse Width at Line Side of  
Transformer1  
325  
350  
375  
ns  
Output Pulse Width at Device Pins  
330  
350  
370  
ns  
TTIP and TRING1  
Positive/Negative Pulse Imbalance2  
Power Levels:3,4  
772 kHz  
0.1  
0.4  
dB  
12.6  
29  
17.9  
dBm  
dB  
1.544 MHz5  
39  
1. With the line circuitry specified in Table 13.  
2.Total power difference.  
3.Measured in a 2 kHz band around the specified frequency.  
4.Using Agere transformer 2795L and components in Table 13.  
5.Below the power at 772 kHz.  
CEPT Transmitter Pulse Template and Specifications  
CEPT pulse shape template is specified at the system output (defined by ITU-T G.703) and is illustrated in Figure  
11.  
269 ns  
(244 + 25)  
20%  
10%  
V = 100%  
194 ns  
(244 – 50)  
10%  
NOMINAL PULSE  
20%  
50%  
244 ns  
219 ns  
(244 – 25)  
10%  
10%  
10%  
10%  
0%  
20%  
488 ns  
(244 + 244)  
5-3145(C)r.3  
Figure 11. ITU-T G.703 Pulse Template  
38  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Transmit (continued)  
CEPT Transmitter Pulse Template and Specifications (continued)  
During E1 operation, the LIU transmitter TTIP and TRING pins will perform as specified in Table 9.  
Table 9. CEPT Transmitter Specifications  
Parameter  
Min  
Typ  
Max  
Unit  
Spec  
Output Pulse Amplitude1:  
ITU-T G.703  
75 Ω  
120 Ω  
2.13  
2.7  
2.37  
3.0  
2.61  
3.3  
V
V
Output Pulse Width at Line Side of  
Transformer1  
219  
244  
269  
ns  
Output Pulse Width at Device Pins TTIP  
and TRING1  
224  
244  
264  
ns  
Positive/Negative Pulse Imbalance:  
Pulse Amplitude  
Pulse Width  
–4  
–4  
±1.5  
±1  
4
4
%
%
Zero Level (percentage of pulse  
amplitude)  
–5  
0
5
%
Return Loss:2 120 Ω  
51 kHz to 102 kHz  
102 kHz to 2.048 MHz  
2.048 MHz to 3.072 MHz  
Return Loss:2 75 Ω  
51 kHz to 102 kHz  
CH-PTT  
9
15  
11  
dB  
dB  
dB  
ETS 300 166:  
1993  
7
9
dB  
dB  
102 kHz to 3.072 MHz  
1.With the line circuitry specified in Table 13, measured at the transformer secondary.  
2.Using Agere transformer 2795K or 2795J and components in Table 13.  
Agere Systems Inc.  
39  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Jitter Attenuator  
A selectable jitter attenuator is provided for narrow-bandwidth jitter transfer function applications. When placed in  
the LIU receive path, the jitter attenuator provides narrow-bandwidth jitter filtering for line-synchronization. The jitter  
attenuator can also be placed in the LIU transmit path to provide clock smoothing for applications such as synchro-  
nous/asynchronous demultiplexers. In these applications, TLCK-LIU will have an instantaneous frequency that is  
higher than the data rate and some TLCK-LIU periods are suppressed (gapped) in order to set the average long-  
term TLCK-LIU frequency to within the transmit line rate specification. The jitter attenuator will smooth the gapped  
clock.  
Generated (Intrinsic) Jitter  
Generated jitter is the amount of jitter appearing on the output port when the applied input signal has no jitter. The  
jitter attenuator outputs a maximum of 0.04 UI peak-to-peak intrinsic jitter.  
Jitter Transfer Function  
The jitter transfer function describes the amount of jitter that is transferred from the input to the output over a range  
of frequencies. The jitter attenuator exhibits a single-pole roll-off (20 dB/decade) jitter transfer characteristic that  
has no peaking and a nominal filter corner frequency (3 dB bandwidth) of less than 4 Hz for DS1 operation and  
approximately 10 Hz for CEPT operation. Optionally, a lower bandwidth of approximately 1.25 Hz can be selected  
in CEPT operation by setting JABW0 = 1 (register LIU_REG4, bit 5) for systems desiring compliance with ETSI-  
TBR12 and TBR13 jitter attenuation requirements. The reset default is JABW0 = 0. For a given frequency, different  
jitter amplitudes will cause a slight variation in attenuation because of finite quantization effects. Jitter amplitudes of  
less than approximately 0.2 UI will have greater attenuation than the single-pole roll-off characteristic. The jitter  
transfer curve is independent of data patterns. Typical jitter transfer curves of the jitter attenuator are given in Fig-  
ure 13 and Figure 15.  
40  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Jitter Attenuator (continued)  
Jitter Accommodation  
The minimum jitter accommodation of the jitter attenuator occurs when the SYSCK frequency and the input clock’s  
long-term average frequency are at their extreme frequency tolerances. When the jitter attenuator is used in the  
LIU transmit path, the minimum accommodation is 28 UI peak-to-peak at the highest jitter frequency of  
15 kHz. Typical receiver jitter accommodation curves including the jitter attenuator in the LIU receive path are  
given in Figure 12 and Figure 14.  
When the jitter attenuator is placed in the data path, a difference between the SYSCK/16 frequency and the incom-  
ing line rate for receive applications, or the TCLK rate for transmit applications will result in degraded low-  
frequency jitter accommodation performance. The peak-to-peak jitter accommodation (JApp) for frequencies from  
above the corner frequency of the jitter attenuator (Fc) to approximately 100 Hz is given by the following equation  
2( ∆fsysclk fdata )fdata  
-----------------------------------------------------------------  
JApp = 64 –  
UI  
2πfc  
where:  
fdata = 1.544 MHz for DS1 or 2.048 MHz for E1,  
for JABW0 = 0, fc = 3.8 Hz for DS1 or 10 Hz for E1,  
and for JABW0 = 1, fc = 1.25 Hz for E1,  
ýfsysclk = SYSCK tolerance in ppm,  
ýfdata = data tolerance in ppm.  
Note that for lower corner frequencies the jitter accommodation is more sensitive to clock tolerance than for higher  
corner frequencies. When JABW0 = 1 and the jitter attenuator is used in the receive data path, the tolerance on  
SYSCK should be tightened to ±20 ppm in order to meet the jitter accommodation requirements of TBR12/13 as  
given in G.823 for line data rates of ±50 ppm.  
Jitter Attenuator Enable (Transmit or Receive Path)  
The jitter attenuator is placed in the LIU receive path by setting JAR = 1 (register LIU_REG3, bit 0). The jitter atten-  
uator is selected in the LIU transmit path by setting JAT = 1 (register LIU_REG3, bit 1). When JAR = 1 and JAT = 1  
or when JAR = 0 and JAT = 0, the jitter attenuator is disabled. Note that the power consumption increases slightly  
on a per-channel basis when the jitter attenuator is active. The reset default case is JAR = JAT = 0.  
Agere Systems Inc.  
41  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Jitter Attenuator (continued)  
100 UI  
TYPICAL  
28 UI  
(SUBJECT TO DEVICE CHARACTERIZATION)  
T1.408/I.431(DS1)/G.824(DS1)  
10 UI  
GR-499-CORE  
(NON-SONET CAT II INTERFACES)  
I.431(DS1), G.824(DS1)  
1.0 UI  
TR-TSY-000009 (DS1, MUXES)  
GR-499/1244-CORE (CAT I INTERFACES)  
0.1 UI  
100 k  
1
10  
100  
1 k  
10 k  
FREQUENCY (Hz)  
5-5264(F)r.4  
Figure 12. T1/DS1 Receiver Jitter Accommodation with Jitter Attenuator  
0
10  
20  
GR-253-CORE  
TR-TSY-000009  
30  
40  
50  
60  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
1
10  
100  
1 k  
10 k  
100 k  
FREQUENCY (Hz)  
5-5265(F)r.1  
Figure 13. T1/DS1 Jitter Transfer of the Jitter Attenuator  
42  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Jitter Attenuator (continued)  
JABW0 = 1  
JABW0 = 0  
100 UI  
G.823  
37 UI  
I.431(CEPT)/ETS-300-011  
TYPICAL  
20.5 UI  
12e-6 Hz  
(SUBJECT TO DEVICE CHARACTERIZATION)  
10 UI  
G.823,ETSI-300-011A1  
I.431(CEPT)/ETS-300-011  
1.0 UI  
0.1 UI  
100 k  
1
10  
100  
1 k  
10 k  
FREQUENCY (Hz)  
5-5266(F)r.2  
Figure 14. CEPT/E1 Receiver Jitter Accommodation with Jitter Attenuator  
G.735-9 AT NATIONAL BOUNDARIES  
0
10  
20  
I.431, G.735-9 WITH JITTER REDUCER  
ETSI-300-011  
ETSI TBR12/13  
30  
40  
50  
60  
JABW0 = 1  
JABW0 = 0  
TYPICAL  
(SUBJECT TO DEVICE CHARACTERIZATION)  
1
10  
100  
1 k  
10 k  
100 k  
FREQUENCY (Hz)  
5-5267(Fr.1  
Figure 15. CEPT/E1 Jitter Transfer of the Jitter Attenuator  
Agere Systems Inc.  
43  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Loopbacks  
The LIU has independent loopback paths that are activated using LOOPA and LOOPB control bits (register  
LIU_REG5, bits 2 to 3) as shown in Table 10. The locations of these loopbacks are illustrated in Figure 5, Block  
Diagram of Line Interface Unit: Single Channel, on page 26.  
Full Local Loopback (FLLOOP)  
A full local loopback (FLLOOP) connects the LIU transmit driver input to the receive analog front-end circuitry. Valid  
transmit output data continues to be sent to the network. If the LIU transmitter AIS signal (all-1s signal) is sent to  
the network, by setting the XLAIS bit (register LIU_REG5, bit 1), the looped data is not affected. The ALOS alarm  
continues to monitor the receive line interface signal (RTIP and RRING) while the DLOS alarm monitors the looped  
data.  
See Digital Loss of Signal (DLOS) Alarm section on page 28 regarding the behavior of the DLOS alarm upon acti-  
vation of FLLOOP.  
Remote Loopback (RLOOP)  
A remote loopback (RLOOP) connects the recovered clock and retimed data to the LIU transmitter at the framer  
interface and sends the data back to the line. The LIU receiver front end, clock/data recovery, encoder/decoder (if  
enabled), jitter attenuator (if enabled), and LIU transmitter driver circuitry are all exercised during this loopback.  
The transmit clock, transmit data, and the transmit AIS inputs are ignored. Valid receive output data continues to be  
sent to RPD-LIU and RND-LIU. This loopback mode is very helpful in isolating failures between systems.  
See Loss of LIU Transmit Clock (LOTC) Alarm section on page 35 and LIU Transmitter Driver Monitor (TDM) Alarm  
on page 36 regarding the behavior of the LOTC and TDM alarms upon activation and deactivation of RLOOP.  
Digital Local Loopback (DLLOOP)  
A digital local loopback (DLLOOP) connects the transmit clock and data through the encoder/decoder pair to the  
receive clock and data output pins. This loopback is operational regardless of whether the encoder/decoder pair is  
enabled or disabled. The alarm indication signal can be transmitted (XLAIS = 1) without any effect on the looped  
signal.  
Table 10. Loopback Control  
Operation  
Normal1  
Symbol  
LOOPA  
LOOPB  
0
0
1
1
0
1
0
1
Full Local Loopback  
Remote Loopback  
FLLOOP2  
RLOOP3  
DLLOOP  
Digital Local Loopback  
1. The reset default condition is LOOPA = LOOPB = 0 (no loopback).  
2. During the transmit AIS condition, the looped data will be the transmitted data from the framer or system interface and not the all 1s signal.  
3. Transmit AIS request is ignored.  
44  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Other Features  
LIU Powerdown (PWRDN)  
Each LIU channel has an independent powerdown mode controlled by PWRDN (register LIU_REG5, bit 0). This  
provides power savings for systems which use backup channels. If PWRDN = 1, the corresponding LIU channel  
will be in a standby mode consuming only a small amount of power. It is recommended that the alarm registers for  
the powered down LIU channel be disabled by setting ALOSIE = DLOSIE = TDMIE = LOTCIE = 0 (register  
LIU_REG1, bits 0—3). If an LIU channel in powerdown mode needs to be placed back into service, the channel  
should be turned on (PWRDN = 0) approximately 5 ms before data is applied.  
Loss of Framer Receive Line Clock (LOFRMRLCK Pin)  
The LOFRMRLCK (pin 2/38) is set when the internal framer receive line clock is absent. During this alarm condi-  
tion, the clock recovery and jitter attenuator functions are automatically disabled. If JAR = 1, the RLCK-LIU, RPD-  
LIU, RND-LIU, and DLOS signals will be unknown.  
In-Circuit Testing and Driver High-Impedance State (3-STATE)  
If 3-STATE (pin 42/140) is activated (3-STATE = 0), the outputs TTIP, TRING, RDY_DTACK, INTERRUPT, and  
AD[7:0] are placed in a high-impedance state. The TTIP and TRING outputs have a limiting high-impedance capa-  
bility of approximately 8 k.  
LIU Delay Values  
The transmit coder has 5 UI delay whether it is in the path or not and whether it is B8ZS or HDB3. Its delay is only  
removed when in single-rail mode. The remainder of the transmit path has 4.6 UI delay. The receive decoder has  
5 UI delay whether it is in the path or not and whether it is B8ZS or HDB3. Its delay is only removed when in single-  
rail mode or CDR = 0. The equalizer plus slicer delay is nearly 0 UI delay. The jitter attenuator delay is nominally  
33 UI but can be 2 UI—64 UI depending on state. The digital phase-locked loop used for timing recovery has 8 UI  
delay.  
Agere Systems Inc.  
45  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
SYSCK Reference Clock  
The LIU requires an externally applied clock, SYSCK pins 3 and 35, for the clock and data recovery function and  
the jitter attenuation option. SYSCK must be a continuously active (i.e., ungapped, unjittered, and unswitched) and  
an independent reference clock such as from an external system oscillator or system clock for proper operation. It  
must not be derived from any recovered line clock (i.e., from RLCK or any synthesized frequency of RLCK).  
SYSCK may be supplied in one of two formats. The format is selected for each channel by CKSEL pins 48 and  
133. For CKSEL = 1, a clock at 16x the primary line data rate clock (24.704 MHz for DS1 and 32.768 MHz for  
CEPT) is applied to SYSCK. For CKSEL = 0, a primary line data rate clock (1.544 MHz for DS1 and 2.048 MHz for  
CEPT) is applied to SYSCK.  
The CKSEL pin has an internal pull-up resistor allowing the pin to be left open, i.e., a no connect, in applications  
using a 16x reference clock and pulled down to ground for applications using a primary line data rate clock.  
16x SYSCK Reference Clock  
The specifications for SYSCK using a 16x reference clock are defined in Table 11. The 16x reference clock is  
selected when CKSEL = 1.  
Table 11. SYSCK (16x, CKSEL = 1) Timing Specifications  
Value  
Parameter  
Unit  
Min  
Typ  
Max  
Frequency  
DS1  
CEPT  
Range*,†  
24.704  
32.768  
MHz  
MHz  
–100  
40  
100  
60  
ppm  
%
Duty Cycle  
* When JABW0 = 1 and the jitter attenuator is used in the receive data path, the tolerance on SYSCK should be tightened to ±20 ppm in order  
to meet the jitter accommodation requirements of TBR12/13 as given in G.823 for line data rates of ±50 ppm.  
† If SYSCK is used as the source for AIS (see LIU Transmitter Alarm Indication Signal Generator (XLAIS) on page 35), it must meet the nomi-  
nal transmission specifications of 1.544 MHz ± 32 ppm for DS1 (T1), or 2.048 MHz ± 50 ppm for CEPT (E1).  
Primary Line Rate SYSCK Reference Clock and Internal Reference Clock Synthesizer  
In some applications, it is more desirable to provide a reference clock at the primary data rate. In such cases, the  
LIU can utilize an internal 16x clock synthesizer allowing the SYSCK pin to accept a primary data rate clock. The  
specifications for SYSCK using a primary rate reference clock are defined in Table 12.  
Table 12. SYSCK (1x, CKSEL = 0) Timing Specifications  
Value  
Parameter  
Unit  
Min  
Typ  
Max  
Frequency  
DS1  
CEPT  
Range*,†  
1.544  
2.048  
MHz  
MHz  
–100  
40  
100  
60  
5
ppm  
%
Duty Cycle  
Rise and Fall Times  
(10%—90%)  
ns  
* When JABW0 = 1 and the jitter attenuator is used in the receive data path, the tolerance on SYSCK should be tightened to ±20 ppm in order  
to meet the jitter accommodation requirements of TBR12/13 as given in G.823 for line data rates of ±50 ppm.  
† If SYSCK is used as the source for AIS (see LIU Transmitter Alarm Indication Signal Generator (XLAIS) on page 35), it must meet the nomi-  
nal transmission specifications of 1.544 MHz ± 32 ppm for DS1 (T1), or 2.048 MHz ± 50 ppm for CEPT (E1).  
46  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
SYSCK Reference Clock (continued)  
The data rate reference clock and the internal clock synthesizer is selected when CKSEL = 0. In this mode, a valid  
and stable data rate reference clock must be applied to the SYSCK pin before and during the time a hardware  
reset is activated (RESET = 0). The reset must be held active for a minimum of two data rate clock periods to  
ensure proper resetting of the clock synthesizer circuit. Upon the deactivation of the reset pin (RESET = 1), the LIU  
will extend the reset condition internally for approximately 1/2(212 – 1) line clock periods, or 1.3 ms for DS1 and  
1 ms for CEPT after the hardware reset pin has become inactive allowing the clock synthesizer additional time to  
settle. No activity such as microprocessor read/write should be performed during this period. The device will be  
operational 2.7 ms after the deactivation of the hardware reset pin. Issuing an LIU software restart (LIU_REG2 bit  
5 (RESTART) = 1) does not impact the clock synthesizer circuit.  
Agere Systems Inc.  
47  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Line Interface Networks  
The transmit and receive tip and ring connections provide a matched interface to the line cable when used with a  
proper matching network. The diagram in Figure 16 shows the appropriate external components to interface to the  
cable for a single transmit/receive channel. The component values are summarized in Table 13, based on the spe-  
cific application.  
EQUIPMENT  
INTERFACE  
RECEIVE DATA  
TRANSFORMER  
1:N  
RR  
RR  
RTIP  
CC  
ZEQ  
RP  
RS  
RRING  
DEVICE  
(1 CHANNEL)  
TRANSMIT DATA  
RT  
RT  
TTIP  
RL  
CP  
TRING  
N:1  
5-3693(C).e  
Figure 16. Line Termination Circuitry  
Table 13. Termination Components by Application1  
Cable Type  
CEPT 75 3 Coaxial  
Symbol  
Name  
Unit  
DS12  
Twisted  
Pair  
CEPT 120 5  
Twisted Pair  
Option 14 Option 25  
CC  
CP  
Center Tap Capacitor  
0.1  
0.1  
150  
200  
143  
147  
75  
0.1  
150  
200  
261  
182  
75  
0.1  
150  
200  
698  
365  
120  
±4  
µF  
Line Shunt Capacitor  
RP  
Receive Primary Impedance  
Receive Series Impedance  
Receive Secondary Impedance  
Equivalent Line Termination  
Tolerance  
200  
332  
210  
100  
±4  
RR  
RS  
ZEQ  
±4  
±4  
%
RT  
RL  
N
Transmit Series Impedance  
Transmit Load Termination6  
Transformer Turns Ratio  
0
7.5  
75  
5.36  
75  
7.5  
100  
2.1  
120  
2.45  
1.93  
2.45  
1. Resistor tolerances are ±1%. Transformer turns ratio tolerances are ±2%.  
2. Use Agere 2795L transformer.  
3. For CEPT 75 applications, Option 1 is recommended over Option 2 for lower device power dissipation. Option 2 increases power dissipa-  
tion by 13 mW per channel when driving 50% ones data. Option 2 allows for the use of the same transformer as in CEPT 120 applications.  
4. Use Agere 2795K transformer.  
5. Use Agere 2795J transformer.  
6. A ±5% tolerance is allowed for the transmit load termination.  
48  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit: Line Interface Networks (continued)  
The transmit and receive tip and ring connections should be provided with a matched and protected interface to  
the line (i.e., terminating impedance to match the characteristic impedance of the line cable and secondary line  
protection). For the purpose of line protection and matching network design, the equivalent input impedance of the  
receiver and the equivalent output circuit of the transmitter can be assumed to be as shown in Figure 17.  
20 kΩ  
3 pF  
2 pF  
RECEIVER  
INPUT*  
47 kΩ  
3 pF  
20 kΩ  
GRNDA  
A. Receiver Input Approximate Equivalent Circuit  
1 —1.5 Ω  
TRANSMITTER  
OUTPUT  
1 —1.5 Ω  
PULSE  
VOLTAGE SOURCE  
B. Transmitter Output Approximate Equivalent Circuit  
5-6232(F).b  
* Approximately 0.3 V—2.0 V peak.  
† Approximate pulse voltage source (peak).  
Mode  
DS1  
Peak  
Unit  
1.6  
V
CEPT:  
75 :  
Option 1  
Option 2  
120 Ω  
2.3  
2.1  
2.3  
V
V
V
Figure 17. T7633 Line Interface Unit Approximate Equivalent Analog I/O Circuits  
Agere Systems Inc.  
49  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
LIU-Framer Interface  
LIU-Framer Physical Interface  
The transmit framer-LIU interface for the T7633 consists of the TND, TPD, and TLCK pins. In normal operations,  
TND, TPD, and TLCK are directly connected to the transmit line interface and the TPD, TND, and TLCK pins are  
driven from the transmit framer. The receive framer-LIU interface for the T7633 consists of the RPD, RND_BPV,  
and RLCK internal signals. In normal operations, RND, RPD, and RLCK are directly sourced from the internal  
receive line interface unit. In the framer mode, FRAMER = 0, the RPD, RND, and RLCK pins are directly connected  
to the receive framer (the internal receive line interface unit is bypassed). Figure 18 illustrates the interfaces of the  
transmit and receive framer units.  
TRANSMIT  
HDLC  
FACILITY DATA  
LINK  
INTERFACE  
TLCK  
TPD TND  
TFDLCK  
TFDL  
TTIP  
RCHIDATA  
RCHIFS  
TLCK  
TND  
TPD  
RECEIVE  
CONCENTRATION  
HIGHWAY  
TRANSMIT LINE  
INTERFACE  
UNIT  
TRANSMIT  
FRAMER  
(XFRMR)  
INTERFACE  
(RCHI)  
TRING  
(XLIU)  
RCHICK  
PLLCK  
RECEIVE HDLC  
FACILITY DATA  
SYSTEM INTERFACE  
RLCK  
LINK INTERFACE  
LINE INTERFACE  
RFDLCK  
RFDL  
RND_BPV  
RPD  
0
1
FRM_RLCK  
TCHIDATA  
TCHICK  
TCHIFS  
TRANSMIT  
CONCENTRATION  
HIGHWAY  
RECEIVE  
FRAMER  
(RFRMR)  
FRM_RND  
FRM_RPD  
LIU_RLCK  
LIU_RND/BPV  
LIU_RPD  
RTIP  
INTERFACE  
(XCHI)  
RECEIVE LINE  
INTERFACE  
UNIT  
(RLIU)  
RRING  
RFRMCK  
FRAMER  
5-4557(F).br.2  
Figure 18. Block Diagram of Framer Line Interface  
50  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
LIU-Framer Interface (continued)  
LIU-Framer Physical Interface (continued)  
Figure 19 shows the timing requirements for the transmit and receive framer interfaces in the LIU-bypass mode.  
FRM_PR45  
BIT 0 (HFLF)  
t1  
HFLF = 0  
648 ns  
HFLF = 1  
162 ns  
t1-DS1  
PLLCK  
t1-CEPT  
488 ns  
122 ns  
t2f-r  
t2r-f: t2f-r: PLLCK TO TLCK DELAY = 50 ns  
t3-DS1 = 648 ns  
t2r-f  
t3  
t3-CEPT = 488 ns  
TLCK  
t4  
t4 = TLCK TO VALID TPD, TND = 30 ns  
TND, TPD  
t5-DS1 = 648 ns  
t5-CEPT = 488 ns  
t5  
RLCK  
RND, RPD  
RFRMCK  
t6 = RPD, RND SETUP TO RISING RLCK = 40 ns  
t7 = RPD, RND HOLD FROM RISING RLCK = 40 ns  
t6  
t7  
t8r-f: t8f-r: RLCK TO RFRMCK DELAY = 50 ns  
t8  
5-4558(F).cr.3  
Figure 19. Transmit Framer TLCK to TND, TPD and Receive Framer RND, RPD to RLCK Timing  
Agere Systems Inc.  
51  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
LIU-Framer Interface (continued)  
Interface Mode and Line Encoding  
Single Rail  
The default mode for the LIU-framer interface is single-rail, register LIU_REG3 bit 3 (DUAL) = 0 and register  
FRM_PR8 bit 7 = 1, bit 6 = 1, and bit 5 = 0.  
In the single-rail terminator mode (FRAMER = 1), the LIU bipolar encoder and decoder may be enabled by setting  
register LIU_REG3 bit 2 (CODE) to 1. Signals passed on the internal LIU-framer interface are data (LIU_RPD and  
TPD), clock (LIU_RLCK and TLCK), and received bipolar violations (LIU_RND/BPV). When LIU_RND/BPV = 1,  
the BPV counter increments by one on the rising edge of LIU_RLCK.  
In the single-rail framer mode (FRAMER = 0), external signals to and from the framer are data (RTIP_RPD, pin 11/  
27 and TPD, pin 44/138), clock (RLCK, pin 47/135, and TLCK, pin 46/136), and received bipolar violations  
(RRING_RND, pin 10/28). When RRING_RND = 1, the BPV counter increments by one on the rising edge of  
RLCK. In this mode, TND (pin 45/137) is forced to the 0 state.  
Dual Rail  
Dual-rail LIU-framer interface mode is selected by setting LIU_REG3 bit 3 (DUAL) = 1 and by selecting one of the  
dual-rail framer modes of FRM_PR8 bit 5—bit 7.  
In the dual-rail terminator mode (FRAMER = 1), the framer bipolar encoder and decoder are enabled. Signals  
passed on the internal LIU-framer interface are data (LIU_RPD, LIU_RND, TPD, and TND), and clock (LIU_RLCK  
and TLCK). When bipolar violations are detected by the framer, the BPV counter increments by one on the rising  
edge of LIU_RLCK.  
In the dual-rail framer mode (FRAMER = 0), external signals to and from the framer are data (RTIP_RPD, pin 11/  
27, RRING_RND, pin 10/28, TPD, pin 44/138, and TND, pin 45/137) and clock (RLCK, pin 47/135, and TLCK, pin  
46/136). When bipolar violations are detected by the framer, the BPV counter increments by one on the rising edge  
of RLCK.  
DS1: Alternate Mark Inversion (AMI)  
The default line code used for T1 is alternate mark inversion (AMI). The coding scheme represents a 1 with a pulse  
(mark) on the positive or negative rail and a 0 with no pulse on either rail. This scheme is shown in Table 14.  
Table 14. AMI Encoding  
Input Bit Stream  
AMI Data  
1011  
–0+–  
0000  
0000  
0111  
0+–+  
1010  
–0+0  
The T1 “ones density rule” states that:  
In every 24 bits of information to be transmitted, there must be at least three pulses, and no more than 15  
zeros may be transmitted consecutively [AT&T TR62411 (1988), ANSI T1.231 (1997)].  
Receive ones density is monitored by the receive line interface as per T1M1.3/93-005, ITU G.775, or TR-TSY-  
000009.  
The receive framer indicates excessive zeros upon detecting any zero string length greater than fifteen contiguous  
zeros (no pulses on either RPD or RND). Both excessive zeros and coding violations are indicated as bipolar viola-  
tions.  
52  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
LIU-Framer Interface (continued)  
DS1: Zero Code Suppression (ZCS)  
Zero code suppression is a technique known as pulse stuffing in which the seventh bit of each time slot is stuffed  
with a one. The line format (shown in Table 15) limits the data rate of each time slot from 64 kbits/s to 56 kbits/s.  
The default ZCS format stuffs the seventh bit of those ALL-ZERO time slots programmed for robbed-bit signaling  
(as defined in the signaling control registers with the F and G bits).  
The receive framer indicates excessive zeros upon detecting any zero string length greater than fifteen contiguous  
zeros (no pulses on either RPD or RND). Both excessive zeros and coding violations are indicated as bipolar vio-  
lations.  
Table 15. DS1 ZCS Encoding  
Input Bit Stream  
00000000  
00000010  
00000010  
01010000  
01010010  
01010000  
00000000  
00000010  
00000000  
00000010  
00000010  
ZCS Data (Framer Mode)  
T7633 Default ZCS  
00000000  
(data time slot remains clear)  
DS1: Binary 8 Zero Code Suppression (B8ZS)  
Clear channel transmission can be accomplished using Binary 8 Zero Code Suppression (B8ZS). Eight consecu-  
tive 0s are replaced with the B8ZS code. This code consists of two bipolar violations in bit positions 4 and 7 and  
valid bipolar marks in bit positions 5 and 8. The receiving end recognizes this code and replaces it with the original  
string of eight 0s.  
The receive framer indicates excessive zeros upon detecting a block of eight (8) or more consecutive 0s (no  
pulses on either RPD or RND). Both excessive zeros and coding violations are indicated as bipolar violations.  
Table 16 shows the encoding of a string of 0s using B8ZS. B8ZS is recommended when ESF format is used. V  
represents a violation of the bipolar rule, and B represents an inserted pulse conforming to the AMI rule.  
Table 16. DS1 B8ZS Encoding  
Bit Positions  
Before B8ZS  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
After B8ZS  
V
B
V
B
B
B
V
B
V
B
Agere Systems Inc.  
53  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
LIU-Framer Interface (continued)  
CEPT: High-Density Bipolar of Order 3 (HDB3)  
The line code used for CEPT is described in ITU Rec. G.703 Section 6.1 as high-density bipolar of order 3 (HDB3).  
HDB3 uses a substitution code that acts on strings of four 0s. The substitute HDB3 codes are 000V and B00V,  
where V represents a violation of the bipolar rule and B represents an inserted pulse conforming to the AMI rule  
defined in ITU Rec. G.701, item 9004. The choice of the B00V or 000V is made so that the number of B pulses  
between consecutive V pulses is odd. In other words, successive V pulses are of alternate polarity so that no direct  
current (dc) component is introduced. The substitute codes follow each other if the string of 0s continues. The  
choice of the first substitute code is arbitrary. A line code error consists of two pulses of the same polarity that is not  
defined as one of the two substitute codes. Excessive zeros consist of any zero string length greater than four con-  
tiguous zeros. Both excessive zeros and coding violations are indicated as bipolar violations. An example is shown  
in Table 17.  
Table 17. ITU HDB3 Coding  
Input Bit Stream  
1011  
1011  
–0+–  
–0+–  
0000  
000V  
000–  
–000  
1-BPV  
01  
01  
0+  
0+  
0000  
000V  
000+  
+00+  
0000  
0000 0000  
HDB3-coded Data  
B00V B00V B00V  
HDB3-coded Levels  
HDB3 with 5 Double BPVs  
–00–  
0–––  
+00+ –00–  
+00+ –00–  
3-BPV 5-BPV  
54  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats  
The supported North American T1 framing formats are superframe (D4, SLC-96, and digital data service-DDS) and  
extended superframe (ESF). The device can be programmed to support the ITU-CEPT-E1 basic format with and  
without CRC-4 multiframe formatting. This section describes these framing formats.  
T1 Framing Structures  
T1 is a digital transmission system which multiplexes twenty-four 64 kbits/s time slots (DS0) onto a serial link. The  
T1 system is the lowest level of hierarchy on the North American T-carrier system, as shown in Figure 20.  
Table 18. T-Carrier Hierarchy  
T Carrier  
DS0 Channels  
Bit Rate (Mbits/s)  
Digital Signal Level  
T1  
T1-C  
T2  
24  
48  
1.544  
3.152  
DS1  
DS1C  
DS2  
96  
6.312  
T3  
672  
4032  
44.736  
274.176  
DS3  
T4  
DS4  
Frame, Superframe, and Extended Superframe Definitions  
Each time slot (DS0) is an assembly of 8 bits sampled every 125 µs. The data rate is 64 kbits/s and the sample  
rate is 8 kHz. Time-division multiplexing 24 DS0 time slots together produces a 192-bit (24 DS0s) frame. A framing  
bit is added to the beginning of each frame to allow for detection of frame boundaries and the transport of addi-  
tional maintenance information. This 193-bit frame, also referred to as a DS1 frame, is repeated every 125 µs to  
yield the 1.544 Mbits/s T1 data rate. DS1 frames are bundled together to form superframes or extended super-  
frames.  
24-FRAME EXTENDED  
FRAME 1  
FRAME 2  
FRAME 3  
FRAME 23  
FRAME 24  
SUPERFRAME  
ESF = 3.0 ms  
12-FRAME SUPERFRAME  
SF = 1.5 ms  
FRAME 1  
FRAME 2  
FRAME 11  
FRAME 12  
193-bit FRAME  
DS1 = 125 µs  
F BIT  
TIME SLOT 1  
TIME SLOT 2  
TIME SLOT 24  
8-bit TIME SLOT  
DS0 = 5.19 µs  
1
2
3
4
5
6
7
8
5-4559(F).br.1  
Figure 20. T1 Frame Structure  
Agere Systems Inc.  
55  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Framing Structures (continued)  
Transparent Framing Format  
The transmit framer can be programmed to transparently transmit 193 bits of system data to the line. The system  
interface must be programmed such that the stuffed time slots are 1, 5, 9, 13, 17, 21, 25, and 29 (FRM_PR43 bits  
2—0 must be set to 000) and either transparent framing mode 1 or transparent framing mode 2 is enabled  
(FRM_PR26 bit 3 or bit 4 must be set to 1).  
In transparent mode 1 or mode 2, the transmit framer extracts from the receive system data bit 8 of time slot 1 and  
inserts this bit into the framing bit position of the transmit line data. The other 7 bits of the receive system time slot  
1 are ignored by the transmit framer. The receive framer will extract the f-bit (or 193rd bit) of the receive line data  
and insert it into bit 8 of time slot 1 of the system data; the other bits of time slot 1 are set to 0.  
Frame integrity is maintained in both the transmit and receive framer sections.  
TIME SLOT 1 TIME SLOT 2 TIME SLOT 3  
TIME SLOT 31 TIME SLOT 32  
32 TIME-SLOT CHI FRAME  
(STUFF TIME SLOT)  
0
0
0
0
0
0
0
F BIT  
TRAMSMIT FRAMER’S  
193-bit FRAME  
F BIT TIME SLOT 1 TIME SLOT 2  
TIME SLOT 24  
DS1 = 125 µs  
5-5989(F).ar.1  
Figure 21. T1 Transparent Frame Structure  
In transparent framing mode 1, the receive framer is forced not to reframe on the receive line data. Other than  
bipolar violations and unframed AIS monitoring, there is no processing of the receive line data. The receive framer  
will insert the 193rd bit of the receive line data into bit 8 of time slot 1 of the transmit system data.  
In transparent framing mode 2, the receive framer functions normally on receive line data. All normal monitoring of  
receive line data is performed and data is passed to the transmit CHI as programmed. The receive framer will  
insert the extracted framing bit of the receive line data into bit 8 of time slot 1 of the transmit system data. The  
remaining bits in time slot 1 are set to 0.  
56  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Framing Structures (continued)  
D4 Frame Format  
D4 superframe format consists of 12 DS1 frames. Table 19 shows the structure of the D4 superframe.  
Table 19. D4 Superframe Format  
Frame  
Framing Bits  
Bit Used in Each Time Slot  
Signaling Options  
4-State  
Number1  
Bit  
Terminal  
Signal  
Traffic  
(All  
Remote Signal- None 2-State  
Number2 Frame FT Frame  
FS  
Alarm3  
ing  
4
Channels)  
1
2
0
1
0
0
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
2
2
2
2
2
2
2
2
2
2
2
2
8
A
A
193  
3
386  
0
4
579  
1
5
65  
772  
1
965  
0
7
1158  
1351  
1544  
1737  
1930  
2123  
1
8
A
B
8
1
9
1
10  
11  
125  
0
0
1. Frame 1 is transmitted first.  
2. Following ANSI T1.403, the bits are numbered 0—2315. Bit 0 is transmitted first. Bits in each DS0 time slot are numbered 1 through 8, and  
bit 1 of each DS0 is transmitted first.  
3. The remote alarm forces bit 2 of each time slot to a 0-state when enabled. The Japanese remote alarm forces framing bit 12 (bit number  
2123) to a 1-state when enabled.  
4. Signaling option none uses bit 8 for traffic data.  
5. Frames 6 and 12 contain the robbed-bit signaling information in bit 8 of each voice channel, when enabled.  
The receive framer uses both the FT and FS framing bits during its frame alignment procedure.  
Agere Systems Inc.  
57  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Framing Structures (continued)  
Digital Data Service (DDS) Frame Format  
The superframe format for DDS is the same as that given for D4. DDS is intended to be used for data-only traffic,  
and as such, the system should ensure that the framer is in the nonsignaling mode. DDS uses time slot 24 (FAS  
channel) to transmit the remote frame alarm and data link bits. The format for time slot 24 is shown in Table 20. The  
facility data link timing is shown in Figure 22 below.  
Table 20. DDS Channel-24 Format  
Time Slot 24 = 10111YD0  
Y = (bit 6)  
D = (bit 7)  
Remote frame alarm: 1 = no alarm state; 0 = alarm state  
Data link bits (8 kbits/s)  
t8  
t8: TFDLCK CYCLE = 125 µs (DDS)  
TFDLCK  
250 µs (ALL OTHER  
MODES)  
t9  
t9  
t9: TFDL TO TFDLCK SETUP/HOLD = 40 ns  
TFDL  
t10  
t10: RFDLCK CYCLE = 125 µs (DDS)  
250 µs (ALL OTHER  
MODES)  
RFDLCK  
RFDL  
t11: RFDLCK TO RFDL DELAY = 40 ns  
t11  
5-3910(F).cr.1  
Figure 22. T7633 Facility Data Link Access Timing of the Transmit and Receive Framer Sections  
SLC-96 Frame Format  
SLC-96 superframe format consists of 12 DS1 frames similar to D4. The FT pattern is exactly the same as D4. The  
FS pattern uses that same structure as D4 but also incorporates a 24-bit data link word as shown below.  
SLC-96 24-bit DATA LINK WORD  
Fs =  
. . . 000111000111D1DDDDDDDDDDDDDDDDDDDDDDD24000111000111DDD . . .  
FRAME FRAME FRAME FRAME FRAME FRAME  
FRAME FRAME FRAME FRAME  
N –1  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6 N + 7  
N + 8  
SLC-96 36-FRAME D-bit SUPERFRAME INTERVAL  
(72 DS1 FRAMES)  
5-6421(F)r.1  
58  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Framing Structures (continued)  
External TFDL Source. Data may be inserted and extracted from the SLC-96 data link from either the external  
facility data link (TFDL) ports or the SLC-96 data stack. Source selection is controlled by FRM_PR21 bit 6 and  
FRM_PR29 bit 5—bit 7.  
The transmit framer synchronizes on TFDL = 000111000111 . . . and forces a superframe boundary based on this  
pattern. When sourcing an external bit stream, it is the system’s responsibility to ensure that TFDL data contain the  
pattern of 000111000111 . . . . The D pattern sequence is shown in Table 21. Table 22 shows the encoding for the  
line switch field.  
Table 21. SLC-96 Data Link Block Format  
Data Link Block  
Bit Definition  
Bit Value  
D1 (leftmost bit)  
C1 — concentrator bit  
C2 — concentrator bit  
C3 — concentrator bit  
C4 — concentrator bit  
C5 — concentrator bit  
C6 — concentrator bit  
C7 — concentrator bit  
C8 — concentrator bit  
C9 — concentrator bit  
C10 — concentrator bit  
C11 — concentrator bit  
Spoiler bit 1  
0 or 1  
D2  
0 or 1  
D3  
0 or 1  
D4  
0 or 1  
D5  
0 or 1  
D6  
0 or 1  
D7  
0 or 1  
D8  
D9  
0 or 1  
0 or 1  
D10  
0 or 1  
D11  
0 or 1  
D12  
0
D13  
Spoiler bit 2  
1
D14  
Spoiler bit 3  
0
0 or 1  
D15  
M1 — maintenance bit  
M2 — maintenance bit  
M3 — maintenance bit  
A1 — alarm bit  
D16  
0 or 1  
D17  
0 or 1  
D18  
0 or 1  
D19  
A2 — alarm bit  
0 or 1  
D20  
S1 — line-switch bit  
S2 — line-switch bit  
S3 — line-switch bit  
S4 — line-switch bit  
Spoiler bit 4  
Defined in Table 22  
Defined in Table 22  
Defined in Table 22  
Defined in Table 22  
1
D21  
D22  
D23  
D24 (rightmost bit)  
Agere Systems Inc.  
59  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Framing Structures (continued)  
Table 22. SLC-96 Line Switch Message Codes  
S1  
S2  
S3  
S4  
Code Definition  
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
1
1
0
0
1
0
0
1
1
0
1
0
0
1
0
0
Idle  
Switch line A receive  
Switch line B transmit  
Switch line C transmit  
Switch line D transmit  
Switch line B transmit and receive  
Switch line B transmit and receive  
Switch line B transmit and receive  
Internal SLC-96 Stack Source. Optionally, a SLC-96 FDL stack may be used to insert and correspondingly extract  
the FDL information in the SLC-96 frame format.  
The transmit SLC-96 FDL bits are sourced from the transmit framer SLC-96 FDL stack. The SLC-96 FDL stack  
(see FRM_PR31—FRM_PR35) consists of five 8-bit registers that contain the SLC-96 FS and D-bit information as  
shown in Table 23. The transmit stack data is transmitted to the line when the stack enable mode is active in the  
parameter registers FRM_PR21 bit 6 = 1 and FRM_PR29 bit 5—bit 7 = x10 (binary).  
The receive SLC-96 stack data is received when the receive framer is in the superframe alignment state. In the  
SLC-96 mode, while in the loss of superframe alignment (LSFA) state, updating of the receive framer SLC-96 stack  
is halted and neither the receive stack interrupt nor receive stack flag are asserted.  
Table 23. Transmit and Receive SLC-96 Stack Structure  
Register  
Number  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(LSB)  
1 (LSR)  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
2
3
4
5
0
1
C8  
C1  
C9  
M3  
C2  
C10  
A1  
C3  
C11  
A2  
C4  
C5  
C6  
C7  
M1  
S4  
SPB1 = 0 SPB2 = 1 SPB3 = 0  
S1 S2 S3  
M2  
SPB4 = 1  
Bit 5—bit 0 of the first 2 bytes of the SLC-96 FDL stack in Table 23 are transmitted to the line as the SLC-96 FS  
sequence. Bit 7 of the third stack register is transmitted as the C1 bit of the SLC-96 D sequence. The spoiler bits  
(SPB1, SPB2, SPB3, and SPB4) are taken directly from the transmit stack. The protocol for accessing the SLC-96  
stack information for the transmit and receive framer is described below. The transmit SLC-96 stack must be writ-  
ten with valid data when transmitting stack data.  
The device indicates that it is ready for an update of its transmit stack by setting register FRM_SR4 bit 5 (SLC-96  
transmit FDL stack ready) high. At this time, the system has about 9 ms to update the stack. Data written to the  
stack during this interval will be transmitted during the next SLC-96 superframe D-bit interval. By reading bit 5 in  
register SR4, the system clears this bit so that it can indicate the next time the transmit stack is ready. If the trans-  
mit stack is not updated, then the content of the stack is retransmitted to the line. The start of the SLC-96 36-frame  
FS interval of the transmit framer is a function of the first 2 bytes of the SLC-96 transmit stack registers. These  
bytes must be programmed as shown in Table 23. Programming any other state into these two registers disables  
the proper transmission of the SLC-96 D bits. Once programmed correctly, the transmit SLC-96 D-bit stack is trans-  
mitted synchronous to the transmit SLC-96 superframe structure.  
On the receive side, the device indicates that it has received data in the receive FDL stack (registers FRM_SR54—  
FRM_SR58) by setting bit 4 in register FRM_SR4 (SLC-96 receive FDL stack ready) high. The system then has  
about 9 ms to read the content of the stack before it is updated again (old data lost). By reading bit 4 in register  
FRM_SR4, the system clears this bit so that it can indicate the next time the receive stack is ready. As explained  
above, the SLC-96 receive stack is not updated when superframe alignment is lost.  
60  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Framing Structures (continued)  
Extended Superframe Format  
The extended superframe format consists of 24 DS1 frames. The F bits are used for frame alignment, superframe  
alignment, error checking, and facility data link transport. Table 24 shows the ESF frame format.  
Table 24. Extended Superframe (ESF) Structure  
Frame  
Bit Use in Each Time  
Slot  
Signaling Option2  
Frame Bit  
Number1  
Bit  
FE  
DL  
CRC-64  
Traffic  
Signaling None5 2-State  
4-State 16-State  
Number3  
1
2
0
0
D
D
C1  
C2  
C3  
C4  
C5  
C6  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
1—8  
1—8  
1—8  
1—8  
1—8  
1—7  
8
A
A
A
193  
3
386  
4
579  
D
5
66  
772  
0
965  
D
7
1158  
1351  
1544  
1737  
1930  
2123  
2316  
2509  
2702  
2895  
3088  
3281  
3474  
3667  
3860  
4053  
4246  
4439  
8
A
B
B
8
D
9
1
10  
11  
126  
13  
14  
15  
16  
17  
186  
19  
20  
21  
22  
23  
246  
D
D
0
8
A
A
C
D
D
1
D
8
A
B
D
D
1
D
1. Frame 1 is transmitted first.  
2. The remote alarm is a repeated 1111111100000000 pattern in the DL when enabled.  
3. Following ANSI T1.403, the bits are numbered 0—4361. Bit 0 is transmitted first. Bits in each DS0 time slot are numbered 1 through 8, and  
bit 1 of each DS0 is transmitted first.  
4. The C1 to C6 bits are the cyclic redundancy check-6 (CRC-6) checksum bits calculated over the previous extended superframe.  
5. Signaling option none uses bit 8 for traffic data.  
6. Frames 6, 12, 18, and 24 contain the robbed-bit signaling information in bit 8 of each voice channel, when enabled.  
The ESF format allows for in-service error detection and diagnostics on T1 circuits. ESF format consist of 24 fram-  
ing bits: 6 for framing synchronization (2 kbits/s); 6 for error detection (2 kbits/s); and 12 for in-service monitoring  
and diagnostics (4 kbits/s).  
Agere Systems Inc.  
61  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Framing Structures (continued)  
Cyclic redundancy checking is performed over the entire ESF data payload (4,608 data bits, with all 24 framing bits  
(FE, DL, CRC-6) set to 1 during calculations). The CRC-6 bits transmitted in ESF will be determined as follows:  
The check bits, c1 through c6, contained in ESF(n + 1) will always be those associated with the contents of  
ESF(n), the immediately preceding ESF. When there is no ESF immediately preceding, the check bits may be  
assigned any value.  
For the purpose of CRC-6 calculation only, every F bit in ESF(n) is set to 1. ESF(n) is altered in no other way.  
The resulting 4632 bits of ESF(n) are used, in order of occurrence, to construct a polynomial in x such that the  
first bit of ESF(n) is the coefficient of the term x4631 and the last bit of ESF(n) is the coefficient of the term x0.  
The polynomial is multiplied by the factor x6, and the result is divided, modulo 2, by the generator polynomial x6  
+ x + 1. The coefficients of the remainder polynomial are used, in order of occurrence, as the ordered set of  
check bits, c1 through c6, that are transmitted in ESF(n + 1). The ordering is such that the coefficient of the term  
x5 in the remainder polynomial is check bit c1 and the coefficient of the term x0 in the remainder polynomial is  
check bit c6.  
The ESF remote frame alarm consists of a repeated eight 1s followed by eight 0s transmitted in the data link posi-  
tion of the framing bits.  
T1 Loss of Frame Alignment (LFA)  
Loss of frame alignment condition for the superframe or the extended superframe formats is caused by the inability  
of the receive framer to maintain the proper sequence of frame bits. The number of errored framing bits required to  
detect a loss of frame alignment is given is Table 25.  
Table 25. T1 Loss of Frame Alignment Criteria  
Number of Errored Framing Bits That Will Cause a Loss of Frame Alignment  
Format  
Condition  
D4  
2 errored frame bits (FT or FS) out of 4 consecutive frame bits if FRM_PR10 bit 2 = 1.  
2 errored FT bits out of 4 consecutive FT bits if PRM_PR10 bit 2 = 0.  
SLC-96  
2 errored frame bits (FT or FS) out of 4 consecutive frame bits if FRM_PR10 bit 2 = 1.  
2 errored FT bits out of 4 consecutive FT bits if FRM_PR10 bit 2 = 0.  
DDS: Frame  
ESF  
3 errored frame bits (FT or FS) or channel 24 FAS pattern out of 12 consecutive frame bits.  
2 errored FE bits out of 4 consecutive FE bits or optionally 320 or more CRC-6 errored  
checksums within a one second interval if loss of frame alignment due to excessive CRC-6  
errors is enabled in FRM_PR9.  
The receive framer indicates the loss of frame and superframe conditions by setting the LFA and LSFA bits  
(FRM_SR1 bit 0 and bit 1), respectively, in the status registers for the duration of the conditions. The local system  
may give indication of its LFA state to the remote end by transmitting a remote frame alarm (RFA). In addition, in  
the LFA state, the system may transmit an alarm indication signal (AIS) to the system interface.  
62  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Frame Recovery Alignment Algorithms  
When in a loss of frame alignment state, the receive framer searches for a new frame alignment and forces its  
internal circuitry to this new alignment. The receive framer’s synchronization circuit inhibits realignment in T1 fram-  
ing formats when repetitive data patterns emulate the T1 frame alignment patterns. T1 frame synchronization will  
not occur until all frame sequence emulating patterns disappear and only one valid pattern exists. The loss of  
frame alignment state will always force a loss of superframe alignment state. Superframe alignment is established  
only after frame alignment has been determined in the D4 and SLC-96 frame format. Table 26 gives the require-  
ments for establishing T1 frame and superframe alignment.  
Table 26. T1 Frame Alignment Procedures  
Frame Format  
D4: Frame  
Alignment Procedure  
Using the FT frame position as the starting point, frame alignment is established when  
24 consecutive FT and FS frame bits, excluding the twelfth FS bit, (48 total frames) are  
received error-free. Once frame alignment is established, then superframe alignment is  
determined.  
D4: Superframe  
After frame alignment is determined, two valid superframe bit sequences using the FS  
bits must be received error-free to establish superframe alignment.  
SLC-96: Frame  
Using the FT frame position as the starting point, frame alignment is established when  
24 consecutive FT frame bits (48 total frames) are received error-free. Once frame  
alignment is established, then superframe alignment is determined.  
SLC-96: Superframe  
After frame alignment is determined, superframe alignment is established on the first  
valid superframe bit sequence 000111000111.  
DDS: Frame  
Using the FT frame position as the starting point, frame alignment is established when  
six consecutive FT/FS frame bits and the DDS FAS in time slot 24 are received error-  
free. In the DDS format, there is no search for a superframe structure.  
ESF  
Frame and superframe alignment is established simultaneously using the FE framing  
bit. Alignment is established when 24 consecutive FE bits are received error-free. Once  
frame/superframe alignment is established, the CRC-6 receive monitor is enabled.  
Agere Systems Inc.  
63  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Robbed-Bit Signaling  
To enable signaling, register FRM_PR44 bit 0 (TSIG) must be set to 0.  
Robbed-bit signaling, used in either ESF or SF framing formats, “robs” the eighth bit of the voice channels of every  
sixth (6th) frame. The signaling bits are designated A, B, C, and D, depending on the signaling format used. The  
robbed-bit signaling format used is defined by the state of the F and G bits in the signaling registers (see DS1:  
Robbed-Bit Signaling on page 85). The received channel robbed-bit signaling format is defined by the correspond-  
ing transmit signaling F and G bits. Table 27 shows the state of the transmitted signaling bits as a function of the F  
and G bits.  
Table 27. Robbed-Bit Signaling Options  
G
F
Robbed-Bit Signaling Format  
Frame  
6
12  
18  
24  
0
0
ESF: 16-State  
A
B
C
D
SLC*: 9-State, 16-State  
0
1
1
1
0
1
4-State  
Data channel (no signaling)  
2-State  
A
A
B
A
B
A
PAYLOAD DATA  
A
A
* See register FRM_PR43 bit 3 and bit 4.  
The robbed-bit signaling format for each of the 24 T1 transmit channels is programmed on a per-channel basis by  
setting the F and G bits in the transmit signaling direction.  
SLC-96 9-State Signaling  
SLC-96 9-state signaling state is enabled by setting both the F and G bits in the signaling registers to the 0 state,  
setting the SLC-96 signaling control register FRM_PR43 bit 3 to 1, and setting register FRM_PR44 bit 0 to 0.Table  
28 shows the state of the transmitted signaling bits to the line as a function of the A, B, C and D bit settings in the  
transmit signaling registers. In Table 28 below, X indicates either a 1 or a 0 state, and T indicates a toggle, transi-  
tion from either 0 to 1 or 1 to 0, of the transmitted signaling bit.  
In the line receive direction, this signaling mode functions identically to the preceding transmit path description.  
Table 28. SLC-96 9-State Signaling Format  
Transmit Signaling Register Settings  
Transmit to the Line Signal Bits  
SLC-96 Signaling States  
A
B
C
D
A = f(A,C)  
B = f(B,D)  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
State 8  
State 9  
0
0
0
0
0
0
1
1
1
0
0
1
0
0
1
0
0
1
0
0
0
1
1
1
X
X
X
0
1
X
0
1
X
0
1
X
0
0
0
T
T
T
1
1
1
0
T
1
0
T
1
0
T
1
64  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
T1 Robbed-Bit Signaling (continued)  
16-State Signaling  
The default signaling mode while in SLC-96 framing is 16-state signaling. SLC-96 16-state signaling is enabled by  
setting both the F and G bits in the signaling registers to the 0 state, setting the SLC-96 signaling control register  
FRM_PR43 bit 3 and bit 4 to 0, and setting register FRM_PR44 bit 0 to 0. Table 29 shows the state of the transmit-  
ted signaling bits to the line as a function of the A, B, C, and D bit settings in the transmit signaling registers. In  
Table 29 below, under Transmit to the Line Signal Bits, A and B are transmitted into one SLC-96 12-frame signal-  
ing superframe, while A’ and B’ are transmitted into the next successive SLC-96 12-frame signaling superframe.  
In the line receive direction, this signaling mode functions identically to the preceding transmit path description.  
The signaling mapping of this 16-state signaling mode is equivalent to the mapping of the SLC-96 9-state signaling  
mode.  
Table 29. 16-State Signaling Format  
Transmit Signaling Register Settings  
Transmit to the Line Signal Bits  
SLC-96 Signaling States  
A
B
C
D
A
B
A’  
B’  
State 0  
State 1  
State 2  
State 3  
State 4  
State 5  
State 6  
State 7  
State 8  
State 9  
State 10  
State 11  
State 12  
State 13  
State 14  
State 15  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Agere Systems Inc.  
65  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT 2.048 Basic Frame, CRC-4 Time Slot 0, and Signaling Time Slot 16 Multiframe Struc-  
tures  
As defined in ITU Rec. G.704, the CEPT 2.048 frame, CRC-4 multiframe, and channel associated signaling multi-  
frame structures are illustrated in Figure 23.  
CRC-4 MULTIFRAME IN  
0
0
0
0
X0 YM X1 X2  
FRAME 0 TIME  
SLOT 16  
TIME SLOT 0  
A1 B1 C1 D1 A16 B16 C16 D16  
A2 B2 C2 D2 A17 B17 C17 D17  
A3 B3 C3 D3 A18 B18 C18 D18  
A4 B4 C4 D4 A19 B19 C19 D19  
A5 B5 C5 D5 A20 B20 C20 D20  
A6 B6 C6 D6 A21 B21 C21 D21  
A7 B7 C7 D7 A22 B22 C22 D22  
A8 B8 C8 D8 A23 B23 C23 D23  
A9 B9 C9 D9 A24 B24 C24 D24  
A10 B10 C10 D10 A25 B25 C25 D25  
A11 B11 C11 D11 A26 B26 C26 D26  
A12 B12 C12 D12 A27 B27 C27 D27  
A13 B13 C13 D13 A28 B28 C28 D28  
A14 B14 C14 D14 A29 B29 C29 D29  
A15 B15 C15 D15 A30 B30 C30 D30  
MULTIFRAME  
FRAME 0 OF CRC-4  
MULTIFRAME  
C1 0  
0 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C2 0 TIME SLOT 1  
0 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C3 0 TIME SLOT 1  
1 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C4 0 TIME SLOT 1  
0 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C1 0 TIME SLOT 1  
1 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C2 0 TIME SLOT 1  
1 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C3 0 TIME SLOT 1  
E 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
C4 0 TIME SLOT 1  
E 1 A SA4 SA5 SA6 SA7 SA8 TIME SLOT 1  
0
1
1
0
1
1
TIME SLOT 1  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
TIME SLOT 31  
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
FRAME 15 OF CRC-4  
MULTIFRAME  
FRAME 15  
TIME SLOT 16  
MULTIFRAME  
CHANNEL ASSOCIATED  
SIGNALING MULTIFRAME  
IN TIME SLOT 16  
CHANNEL NUMBERS REFER TO TELEPHONE  
CHANNEL NUMBERS. TIME SLOTS 1 TO 15 AND  
17 TO 31 ARE ASSIGNED TO TELEPHONE  
CHANNELS NUMBERED FROM 1 TO 30.  
FAS FRAME  
Si 0  
0
1
1
0
1
1
TIME SLOT 1  
TIME SLOT 1  
TIME SLOT 31  
PRIMARY BASIC FRAME  
STRUCTURE  
NOT FAS FRAME  
Si 1 A SA4 SA5 SA6 SA7 SA8  
TIME SLOT 31  
256-bit FRAME = 125 µs  
TIME SLOT 0  
TIME SLOT 1  
TIME SLOT 16  
TIME SLOT 31  
1
2
3
4
5
6
7
8
8-bit TIME SLOT = 3.90625 µs  
5-4548(F).cr.1  
Figure 23. ITU 2.048 Basic Frame, CRC-4 Multiframe, and Channel Associated Signaling Multiframe  
Structures  
66  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT 2.048 Basic Frame Structure  
The ITU Rec. G.704 Section 2.3.1 defined frame length is 256 bits, numbered 1 to 256. The frame repetition rate is  
8 kHz. The allocation of bits numbered 1 to 8 of the frame is shown in Table 30.  
Table 30. Allocation of Bits 1 to 8 of the FAS Frame and the NOT FAS Frame  
Basic Frames  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Bit 8  
(MSB)  
(LSB)  
Frame Alignment Signal (FAS)  
Si  
Si  
0
1
0
1
1
0
1
1
Not Frame Alignment Signal (NOT FAS)  
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
The function of each bit in Table 30 is described below:  
1. The Si bits are reserved for international use. A specific use for these bits is described in Table 31, ITU CRC-4  
Multiframe Structure on page 70. If no use is realized, these bits should be fixed at 1 on digital paths crossing  
an international border.  
2. Bit 2 of the NOT FAS frames is fixed to 1 to assist in avoiding simulations of the frame alignment signal.  
3. Bit 3 of the NOT FAS is the remote alarm indication (A bit). In undisturbed operation, this bit is set to 0; in alarm  
condition, set to 1.  
4. Bits 4—8 of the NOT FAS (Sa4—Sa8) may be recommended by ITU for use in specific point-to-point applica-  
tions. Bit Sa4 may be used as a message-based data link for operations, maintenance, and performance mon-  
itoring. If the data link is accessed at intermediate points with consequent alterations to the Sa4 bit, the CRC-4  
bits must be updated to retain the correct end-to-end path termination functions associated with the CRC-4  
procedure. The receive framer does not implement the CRC-4 modifying algorithm described in ITU Rec.  
G.706 Annex C. Bits Sa4—Sa8, where these are not used, should be set to 1 on links crossing an international  
border.  
5. MSB = most significant bit and is transmitted first.  
6. LSB = least significant bit and is transmitted last.  
Agere Systems Inc.  
67  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT 2.048 Basic Frame Structure (continued)  
Transparent Framing Format  
The transmit framer can be programmed to transparently transmit 256 bits of system data to the line. The transmit  
framer must be programmed to either transparent framing mode 1 or transparent framing mode 2 (see Framer  
Reset and Transparent Mode Control Register (FRM_PR26) on page 192).  
In transparent mode 1 or mode 2, the transmit framer transmits all 256 bits of the RCHI payload unmodified to the  
line. Time slot 1 of the RCHI, determined by the RCHIFS signal, is inserted into the FAS/NOTFAS time slot of the  
transmit line interface.  
Frame integrity is maintained in both the transmit and receive framer sections.  
TIME SLOT 1 TIME SLOT 2 TIME SLOT 3  
TIME SLOT 31 TIME SLOT 32  
32 TIME-SLOT CHI FRAME  
TIME SLOT 1 TIME SLOT 2 TIME SLOT 3  
TIME SLOT 31 TIME SLOT 32  
32 TIME-SLOT LINE FRAME  
5-5988(F)  
Figure 24. CEPT Transparent Frame Structure  
In transparent framing mode 1, the receive framer is forced not to reframe on the receive line data. Other than  
bipolar violations and unframed AIS monitoring, there is no processing of the receive line data. The entire receive  
line payload is transmitted unmodified to the CHI.  
In transparent framing mode 2, the receive framer functions normally on the receive line data. All normal monitor-  
ing of receive line data is performed and data is transmitted to the CHI as programmed.  
68  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Loss of Basic Frame Alignment (LFA)  
Frame alignment is assumed to be lost when:  
1. As described in ITU Rec. G.706 Section 4.1.1, three consecutive incorrect frame alignment signals have been  
received.  
2. So as to limit the effect of spurious frame alignment signals, when bit 2 in time slot 0 in NOT FAS frames have  
been received with an error on three consecutive occasions.  
3. Optionally, as described in ITU Rec. G.706 Section 4.3.2, by exceeding a count of >914 errored CRC-4 blocks  
out of 1000, with the understanding that a count of 915 errored CRC blocks indicates false frame alignment.  
4. On demand via the control registers.  
In the LFA state:  
1. No additional FAS or NOT FAS errors are processed.  
2. The received remote frame alarm (received A bit) is deactivated.  
3. All NOT-FAS bit (Si bit, A bit, and Sa4 to Sa8 bits) processing is halted.  
4. Receive Sa6 status bits are set to 0.  
5. Receive Sa6 code monitoring and counting is halted.  
6. All receive Sa stack data updates are halted. The receive Sa stack ready, register FRM_SR4 bit 6 and bit 7, is  
set to 0. If enabled, the receive Sa stack interrupt bit is set to 0.  
7. Receive data link (RFDL) is set to 1 and RFDCLK maintains previous alignment.  
8. Optionally, the remote alarm indication (A = 1) may be automatically transmitted to the line if register  
FRM_PR27 bit 0 is set to 1.  
9. Optionally, the alarm indication signal (AIS) may be automatically transmitted to the system if register  
FRM_PR19 bit 0 is set to 1.  
10. If CRC-4 is enabled, loss of CRC-4 multiframe alignment is forced.  
11. If CRC-4 is enabled, the monitoring and processing of CRC-4 checksum errors is halted.  
12. If CRC-4 is enabled, all monitoring and processing of received E-bit information is halted.  
13. If CRC-4 is enabled, the receive continuous E-bit alarm is deactivated.  
14. If CRC-4 is enabled, optionally, E bit = 0 is transmitted to the line for the duration of loss of CRC-4 multiframe  
alignment if register FRM_PR28 bit 4 is set to 1.  
15. If time slot 16 signaling is enabled, loss of the signaling multiframe alignment is forced.  
16. If time slot 16 signaling is enabled, updating of the signaling data is halted.  
CEPT Loss of Frame Alignment Recovery Algorithm  
The receive framer begins the search for basic frame alignment one bit position beyond the position where the LFA  
state was detected. As defined in ITU Rec. G.706.4.1.2, frame alignment will be assumed to have been recovered  
when the following sequence is detected:  
1. For the first time, the presence of the correct frame alignment signal in frame n.  
2. The absence of the frame alignment signal in the following frame detected by verifying that bit 2 of the basic  
frame is a 1 in frame n + 1.  
3. For the second time, the presence of the correct frame alignment in the next frame, n + 2.  
Failure to meet 2 or 3 above will initiate a new basic frame search in frame n + 2.  
Agere Systems Inc.  
69  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Time Slot 0 CRC-4 Multiframe Structure  
The CRC-4 multiframe is in bit 1 of each NOT FAS frame. As described in ITU Rec. G.704 Section 2.3.3.1, where  
there is a need to provide additional protection against simulation of the frame alignment signal, and/or where there  
is a need for an enhanced error monitoring capability, then bit 1 of each frame may be used for a cyclic redundancy  
check-4 (CRC-4) procedure as detailed below. The allocation of bits 1—8 of time slot 0 of every frame is shown in  
Table 31 for the complete CRC-4 multiframe.  
Table 31. ITU CRC-4 Multiframe Structure  
Submultiframe  
(SMF)  
Frame  
Number  
Bits  
1
C1  
0
2
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
0
4
1
5
6
0
7
1
8
1
I
0
1
1
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
2
C2  
0
3
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
4
C3  
1
5
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
6
C4  
0
Multiframe  
7
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
II  
8
C1  
1
9
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
10  
11  
12  
13  
14  
15  
C2  
1
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C3  
E
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C4  
E
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
Notes:  
C1 to C4 = cyclic redundancy check-4 (CRC-4) bits.  
E = CRC-4 error indication bits.  
Sa4 to Sa8 = spare bits.  
A = remote frame alarm (RFA) bit (active-high); referred to as the A bit.  
The CRC-4 multiframe consists of 16 frames numbered 0 to 15 and is divided into two eight-frame submultiframes  
(SMF), designated SMF-I and SMF-II that signifies their respective order of occurrence within the CRC-4 multi-  
frame structure. The SMF is the CRC-4 block size (2048 bits). In those frames containing the frame alignment sig-  
nal (FAS), bit 1 is used to transmit the CRC-4 bits. There are four CRC-4 bits, designated C1, C2, C3, and C4 in  
each SMF. In those frames not containing the frame alignment signal (NOT FAS), bit 1 is used to transmit the 6-bit  
CRC-4 multiframe alignment signal and two CRC-4 error indication bits (E). The multiframe alignment signal is  
defined in ITU Rec. G.704 Section 2.3.3.4, as 001011. Transmitted E bits should be set to 0 until both basic frame  
and CRC-4 multiframe alignment are established. Thereafter, the E bits should be used to indicate received  
errored submultiframes by setting the binary state of one E bit from 1 to 0 for each errored submultiframe. The  
received E bits will always be taken into account, by the receive E-bit processor1, even when the SMF that con-  
tains them is found to be errored. In the case where there exists equipment that does not use the E bits, the state  
of the E bits should be set to a binary 1 state.  
1. The receive E-bit processor will halt the monitoring of the received E bit during the loss of CRC-4 multiframe alignment.  
70  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Time Slot 0 CRC-4 Multiframe Structure (continued)  
The CRC-4 word, located in submultiframe N, is the remainder after multiplication by x4 and then division  
(modulo 2) by the generator polynomial x4 + x + 1, of the polynomial representation of the submultiframe N – 1.  
Representing the contents of the submultiframe check block as a polynomial, the first bit in the block, i.e., frame 0,  
bit 1 or frame 8, bit 1, is taken as being the most significant bit and the least significant bit in the check block is  
frame 7 or frame 15, bit 256. Similarly, C1 is defined to be the most significant bit of the remainder and C4 the least  
significant bit of the remainder. The encoding procedure, as described in ITU Rec. G.704 Section 2.3.3.5.2, fol-  
lows:  
1. The CRC-4 bits in the SMF are replaced by binary 0s.  
2. The SMF is then acted upon the multiplication/division process referred to above.  
3. The remainder resulting from the multiplication/division process is stored, ready for insertion into the respec-  
tive CRC-4 locations of the next SMF.  
The decoding procedure, as described in ITU Rec. G.704 Section 2.3.3.5.3, follows:  
1. A received SMF is acted upon by the multiplication/division process referred to above, after having its CRC-4  
bits extracted and replaced by 0s.  
2. The remainder resulting from this division process is then stored and subsequently compared on a bit-by-bit  
basis with the CRC bits received in the next SMF.  
3. If the remainder calculated in the decoder exactly corresponds to the CRC-4 bits received in the next SMF, it is  
assumed that the checked SMF is error-free.  
CEPT Loss of CRC-4 Multiframe Alignment (LTS0MFA)  
Loss of basic frame alignment forces the receive framer into a loss of CRC-4 multiframe alignment state. This state  
is reported by way of the status registers FRM_SR1 bit 2. Once basic frame alignment is achieved, a new search  
for CRC-4 multiframe alignment is initiated. During a loss of CRC-4 multiframe alignment state:  
1. The CRC-4 error counter is halted.  
2. The CRC-4 error monitoring circuit for errored seconds and severely errored seconds is halted.  
3. The received E-bit counter is halted.  
4. The received E-bit monitoring circuit for errored seconds and severely errored seconds at the remote end  
interface is halted.  
5. Receive continuous E-bit monitoring is halted.  
6. All receive Sa6 code monitoring and counting functions are halted.  
7. The updating of the receive Sa stack is halted and the receive Sa stack interrupt is deactivated.  
8. Optionally, A = 1 may be automatically transmitted to the line if register FRM_PR27 bit 2 is set to 1.  
9. Optionally, E = 0 may be automatically transmitted to the line if register FRM_PR28 bit 4 is set to 1.  
10. Optionally, if LTS0MFA monitoring in the performance counters is enabled, by setting registers FRM_PR14  
through FRM_PR17 bit 1 to 1, then these counts are incremented once per second for the duration of the  
LTS0MFA state.  
Agere Systems Inc.  
71  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Loss of CRC-4 Multiframe Alignment Recovery Algorithms  
Several optional algorithms exist in the receive framer. These are selected through programming of register  
FRM_PR9.  
CRC-4 Multiframe Alignment Algorithm with 8 ms Timer  
The default algorithm is as described in ITU Rec. G.706 Section 4.2. The recommendation states that if a condition  
of assumed frame alignment has been achieved, CRC-4 multiframe alignment is deemed to have occurred if at  
least two valid CRC-4 multiframe alignment signals can be located within 8 ms, the time separating two CRC-4  
multiframe signals being 2 ms or a multiple of 2 ms. The search for the CRC-4 multiframe alignment signal is made  
only in bit 1 of NOT FAS frames. If multiframe alignment cannot be achieved within 8 ms, it is assumed that frame  
alignment is due to a spurious frame alignment signal and a new parallel search for basic frame alignment is initi-  
ated. The new search for the basic frame alignment is started at the point just after the location of the assumed  
spurious frame alignment signal. During this parallel search for basic frame alignment, there is no indication to the  
system of a receive loss of frame alignment (RLFA) state. During the parallel search for basic frame alignment and  
while in primary basic frame alignment, data will flow through the receive framer to the system interface as defined  
by the current primary frame alignment. The receive framer will continuously search for CRC-4 multiframe align-  
ment.  
CRC-4 Multiframe Alignment Algorithm with 100 ms Timer  
The CRC-4 multiframe alignment with 100 ms timer mode is enabled by setting FRM_PR9 to 0XXXX1X1 (binary).  
This CRC-4 multiframe reframe mode starts a 100 ms timer upon detection of basic frame alignment. This is a par-  
allel timer to the 8 ms timer. If CRC-4 multiframe alignment cannot be achieved within the time limit of 100 ms due  
to the CRC-4 procedure not being implemented at the transmitting side, then an indication is given, and actions are  
taken equivalent to those specified for loss of basic frame alignment, namely:  
1. Optional automatic transmission of A = 1 to the line if register FRM_PR27 bit 3 is set to 1.  
2. Optional automatic transmission of E = 0 to the line if register FRM_PR28 bit 5 is set to 1.  
3. Optional automatic transmission of AIS to the system if register FRM_PR19 bit 1 is set to 1.  
72  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Loss of CRC-4 Multiframe Alignment Recovery Algorithms (continued)  
OUT OF PRIMARY BFA:  
• OPTIONALLY DISABLE TRAFFIC BY TRANSMITTING AIS TO THE SYSTEM  
• OPTIONALLY TRANSMIT A = 1 AND E = 0 TO LINE  
• INHIBIT INCOMING CRC-4 PERFORMANCE MONITORING  
PRIMARY  
NO  
BFA SEARCH?  
YES  
IN PRIMARY BFA:  
• ENABLE TRAFFIC TO THE SYSTEM  
• TRANSMIT A = 0 AND OPTIONALLY E = 0 TO THE LINE  
• START 8 ms AND 100 ms TIMERS  
• ENABLE PRIMARY BFA LOSS CHECKING PROCESS  
YES  
CRC-4 MFA SEARCH (ITU REC. G.706, SECTION 4.2 - NOTE 2)  
PARALLEL  
BFA SEARCH  
GOOD?  
NO  
YES  
NO  
IS  
100 ms  
TIMER  
ELAPSED?  
NO  
CAN CRC-4  
MFA BE FOUND  
IN 8 ms?  
NO  
YES  
INTERNAL  
100 ms TRX = 1  
?
YES  
SET 100 ms TIMER EXPIRATION STATUS BIT TO THE 1 STATE:  
SET INTERNAL 100 ms TIMER EXPIRATION STATUS BIT TO 1:  
• OPTIONALLY TRANSMIT A BIT = 1 TO THE LINE INTERFACE FOR  
THE DURATION OF LTS0MFA = 1  
ASSUME CRC-4 MULTIFRAME ALIGNMENT:  
• CONFIRM PRIMARY BFA ASSOCIATED WITH CRC-4 MFA  
• ADJUST PRIMARY BFA IF NECESSARY  
• OPTIONALLY TRANSMIT AIS TO THE SYSTEM INTERFACE FOR THE  
DURATION OF LTS0MFA = 1  
• OPTIONALLY TRANSMIT E BIT = 0 TO THE LINE INTERFACE FOR  
THE DURATION OF LTSOMFA = 1  
YES  
IS 100 ms TRX = 1  
?
SET INTERNAL 100 ms TIMER EXPIRATION STATUS BIT TO 0:  
• IF TRANSMITTING A BIT = 1 TO THE LINE INTERFACE, TRANSMIT A BIT = 0  
• IF TRANSMITTING AIS TO THE SYSTEM INTERFACE, ENABLE DATA  
TRANSMISSION TO THE SYSTEM INTERFACE  
NO  
• IF TRANSMITTING E = 0 TO THE LINE INTERFACE, TRANSMIT E BIT = 1  
START CRC-4 PERFORMANCE MONITORING:  
• SET E BITS ACCORDING TO ITU REC. G.704, SECTION 2.3.3.4  
CRC-4  
YES  
COUNT > 914  
IN 1 SECOND OR  
LFA = 1?  
NO  
CONTINUE CRC-4 PERFORMANCE MONITORING:  
• SET E BITS ACCORDING TO ITU REC. G.704, SECTION 2.3.3.4  
5-3909(F).er.2  
Figure 25. Receive CRC-4 Multiframe Search Algorithm Using the 100 ms Internal Timer  
Agere Systems Inc.  
73  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Loss of CRC-4 Multiframe Alignment Recovery Algorithms (continued)  
CRC-4 Multiframe Alignment Search Algorithm with 400 ms Timer  
The CRC-4 multiframe alignment with 400 ms timer mode is enabled by setting FRM_PR9 to 0XXX1XX1 (binary).  
This receive CRC-4 multiframe reframe mode is the modified CRC-4 multiframe alignment algorithm described in  
ITU Rec. 706 Annex B, where it is referred to as CRC-4-to-Non-CRC-4 equipment interworking. A flow diagram of  
this algorithm is illustrated in Figure 26 on page 75. When the interworking algorithm is enabled, it supersedes the  
100 ms algorithm described on page 72 and in Figure 25 on page 73. This algorithm assumes that a valid basic  
frame alignment signal is consistently present but the CRC-4 multiframe alignment cannot be achieved by the end  
of the total CRC-4 multiframe alignment search period of 400 ms, if the distant end is a non-CRC-4 equipment. In  
this mode, the following consequent actions are taken:  
1. An indication that there is no incoming CRC-4 multiframe alignment signal.  
2. All CRC-4 processing on the receive 2.048 Mbits/s signal is inhibited.  
3. CRC-4 data is transmitted to the distant end with both E bits set to zero.  
This algorithm allows the identification of failure of CRC-4 multiframe alignment generation/detection, but with cor-  
rect basic framing, when interworking between each piece of equipment having the modified CRC-4 multiframe  
alignment algorithm.  
As described in ITU Rec. G.706 Section B.2.3:  
1. A 400 ms timer is triggered on the initial recovery of the primary basic frame alignment.  
2. The 400 ms timer reset if and only if:  
A. The criteria for loss of basic frame alignment as described in ITU Rec. G.706 Section 4.1.1 is achieved.  
B. If 915 out of 1000 errored CRC-4 blocks are detected resulting in a loss of basic frame alignment as  
described in ITU Rec. G.706 Section 4.3.2.  
C. On-demand reframe is requested.  
D. The receive framer is programmed to the non-CRC-4 mode.  
3. The loss of basic frame alignment checking process runs continuously, irrespective of the state of the CRC-4  
multiframe alignment process below it.  
4. A new search for frame alignment is initiated if CRC-4 multiframe alignment cannot be achieved in 8 ms, as  
described in ITU Rec. G.706 Section 4.2. This new search for basic frame alignment will not reset the 400 ms  
timer or invoke consequent actions associated with loss of the primary basic frame alignment. In particular, all  
searches for basic frame alignment are carried out in parallel with, and independent of, the primary basic frame  
loss checking process. All subsequent searches for CRC-4 multiframe alignment are associated with each  
basic framing sequence found during the parallel search.  
5. During the search for CRC-4 multiframe alignment, traffic is allowed through, upon, and to be synchronized to,  
the initially determined primary basic frame alignment.  
6. Upon detection of the CRC-4 multiframe before the 400 ms timer elapsing, the basic frame alignment associ-  
ated with the CRC-4 multiframe alignment replaces, if necessary, the initially determined basic frame align-  
ment.  
7. If CRC-4 multiframe alignment is not found before the 400 ms timer elapses, it is assumed that a condition of  
interworking between equipment with and without CRC-4 capability exists and the actions described above are  
taken.  
8. If the 2.048 Mbits/s path is reconfigured at any time, then it is assumed that the (new) pair of path terminating  
equipment will need to re-establish the complete framing process, and the algorithm is reset.  
74  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Loss of CRC-4 Multiframe Alignment Recovery Algorithms (continued)  
OUT OF PRIMARY BFA:  
• OPTIONALLY DISABLE TRAFFIC BY TRANSMITTING AIS TO THE SYSTEM  
• OPTIONALLY TRANSMIT A BIT = 1 AND E BIT = 0 TO LINE  
• INHIBIT INCOMING CRC-4 PERFORMANCE MONITORING  
PRIMARY  
NO  
BFA SEARCH?  
YES  
IN PRIMARY BFA:  
• ENABLE TRAFFIC NOT TRANSMITTING AIS TO THE SYSTEM  
• TRANSMIT A = 0 AND OPTIONALLY E = 0 TO THE LINE  
• START 400 ms TIMER  
• ENABLE PRIMARY BFA LOSS CHECKING PROCESS  
YES  
CRC-4 MFA SEARCH (ITU REC. G.706, SECTION 4.2)  
NO  
PARALLEL  
BFA SEARCH  
?
NO  
400 ms  
TIMER  
ELAPSED?  
NO  
CAN CRC-4  
MFA BE FOUND  
IN 8 ms?  
YES  
YES  
ASSUME CRC-4-TO-CRC-4 INTERWORKING:  
ASSUME CRC-4-TO-NON-CRC-4 INTERWORKING:  
• CONFIRM PRIMARY BFA ASSOCIATED WITH CRC-4 MFA  
• ADJUST PRIMARY BFA IF NECESSARY  
• KEEP A = 0 IN OUTGOING CRC-4 DATA  
• CONFIRM PRIMARY BFA  
• TRANSMIT A BIT = 0 TO THE LINE INTERFACE  
• TRANSMIT E BIT = 0 TO THE LINE INTERFACE  
• STOP INCOMING CRC-4 PROCESSING  
• INDICATE “NO CRC-4 MFA”  
START CRC-4 PERFORMANCE MONITORING:  
• SET E BITS ACCORDING TO ITU REC. G.704, SECTION 2.3.3.4  
CRC-4  
COUNT > 914  
IN 1 SECOND OR  
LFA = 1?  
YES  
NO  
CONTINUE CRC-4 PERFORMANCE MONITORING:  
• SET E BITS ACCORDING TO ITU REC. G.704, SECTION 2.3.3.4  
5-3909(F).fr.3  
Figure 26. Receive CRC-4 Multiframe Search Algorithm for Automatic, CRC-4/Non-CRC-4 Equipment  
Interworking as Defined by ITU (From ITU Rec. G.706, Annex B.2.2 - 1991)  
Agere Systems Inc.  
75  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Time Slot 16 Multiframe Structure  
The T7633 supports three CEPT signaling modes: channel associated signaling (CAS) or per-channel signaling  
(PSC0 and PSC1); common channel signaling (CCS) (T7230A mode)1; and international remote switching module  
(IRSM) signaling.  
1. See Agere Systems T7230A Primary Access Framer/Controller Preliminary Data Sheet (DS96-007TIC) pages 49—50.  
Channel Associated Signaling (CAS)  
The channel associated signaling (CAS) mode utilizes time slot 16 of the FAS and NOT FAS frames. The CAS for-  
mat is a multiframe consisting of 16 frames where frame 0 of the multiframe contains the multiframe alignment pat-  
tern of four zeros in bits 1 through 4. Table 32 illustrates the CAS multiframe of time slot 16. The T7633 can be  
programmed to force the transmitted line CAS multiframe alignment pattern to be transmitted in the FAS frame by  
selecting the PCS0 option or in the NOT FAS frame by selecting the PCS1 option. Alignment of the transmitted line  
CAS multiframe to the CRC-4 multiframe is arbitrary.  
Table 32. ITU CEPT Time Slot 16 Channel Associated Signaling Multiframe Structure  
Frame  
Bit  
Number  
1
2
3
4
5
6
7
8
0
1
0
0
0
0
X0  
YM  
X1  
X2  
A1  
B1  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
D1  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
2
A2  
B2  
D2  
3
A3  
B3  
D3  
4
A4  
B4  
D4  
5
A5  
B5  
D5  
6
A6  
B6  
D6  
7
A7  
B7  
D7  
Time Slot 16  
Channel  
Associated  
Signaling  
8
A8  
B8  
D8  
9
A9  
B9  
D9  
10  
11  
12  
13  
14  
15  
A10  
A11  
A12  
A13  
A14  
A15  
B10  
B11  
B12  
B13  
B14  
B15  
D10  
D11  
D12  
D13  
D14  
D15  
Multiframe  
Notes:  
Frame 0 bits 1—4 define the time slot 16 multiframe alignment.  
X0—X2 = time slot 16 spare bits defined in FRM_PR41 bit 0—bit 2.  
YM = yellow alarm, time slot 16 remote multiframe alarm (RMA) bit (1 = alarm condition).  
Common Channel Signaling (T7230A Mode) (CCS)  
In the common channel signaling mode, selected if FRM_PR44 bit 4 = 1, data contained in the transmit signaling  
registers, FRM_TSR0—FRM_TSR31, is written transparently into time slot 16 of the transmit line bit stream. The  
received signaling data from time slot 16 is stored transparently in receive signaling registers FRM_RSR0—  
FRM_RSR31.  
76  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Time Slot 16 Multiframe Structure (continued)  
International Remote Switching Module (IRSM) Signaling  
This signaling mode is similar to the channel associated signaling mode, i.e., time slot 16 contains the signaling  
multiframe information (ABCD signaling bits). In addition, time slot 0 Sa5 to Sa8 bit positions of the NOT FAS  
frame contains per-channel control information. The format of the time slot 0 per-channel control information is  
illustrated in Table 33. The IRSM mode forces the transmit framer to align the time slot 16 multiframe to the FAS  
frame (PCS0 mode).  
Table 33. CEPT IRSM Signaling Multiframe Structure  
Frame  
IRSM Bits in Time Slot 0  
Bits in Time Slot 16  
Number  
1
2
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
3
0
4
1
5
1
6
0
7
8
1
2
3
4
5
6
7
8
0
1
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
Si  
1
1
0
0
0
0
X0  
YM  
X1  
X2  
A
0
D
1
E0  
1
E1  
0
E16 E17  
A1  
B1  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
A30  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
B30  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
2
1
1
A2  
B2  
3
A
0
D
1
E2  
1
E3  
0
E18 E19  
A3  
B3  
4
1
1
A4  
B4  
5
A
0
D
1
E4  
1
E5  
0
E20 E21  
A5  
B5  
6
1
1
A6  
B6  
7
A
0
D
1
E6  
1
E7  
0
E22 E23  
A7  
B7  
8
1
1
A8  
B8  
9
A
0
D
1
E8  
1
E9  
0
E24 E25  
A9  
B9  
10  
11  
12  
13  
14  
15  
1
1
A10  
A11  
A12  
A13  
A14  
A15  
B10  
B11  
B12  
B13  
B14  
B15  
A
0
D
1
E10 E11 E26 E27  
1
0
1
1
A
0
D
1
E12 E13 E28 E29  
1
0
1
1
A
D
E14 E15 E30 E31  
Notes:  
Si = time slot 0 control bits. If programmed for CRC-4 mode, then these bits contain the CRC-4 multiframe pattern, checksum, and E-bit  
information.  
Ei = IRSM per-channel control bits.  
X0—X2 = time slot 16 spare bits defined in FRM_PR41 bit 0—bit 2.  
Ai—Di = time slot 16 channel associated signaling bits.  
YM = yellow alarm, time slot 16 remote multiframe alarm (RMA) bit (1 = alarm condition).  
Agere Systems Inc.  
77  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Frame Formats (continued)  
CEPT Loss of Time Slot 16 Multiframe Alignment (LTS16MFA)  
Loss of basic frame alignment forces the receive framer into a loss of time slot 16 signaling multiframe alignment  
state. In addition, as defined in ITU Rec. G.732 Section 5.2, time slot 16 signaling multiframe is assumed lost when  
two consecutive time slot 16 multiframe 4-bit all-zero patterns is received with an error. In addition, the time slot 16  
multiframe is assumed lost when, for a period of two multiframes, all bits in time slot 16 are in state 0. This state is  
reported by way of the status registers FRM_SR1 bit 1. Once basic frame alignment is achieved, the receive  
framer will initiate a search for the time slot 16 multiframe alignment. During a loss of time slot 16 multiframe align-  
ment state:  
1. The updating of the signaling data is halted.  
2. The received control bits forced to the binary 1 state.  
3. The received remote multiframe alarm indication status bit is forced to the binary 0 state.  
4. Optionally, the transmit framer can transmit to the line the time slot 16 signaling remote multiframe alarm if reg-  
ister FRM_PR41 bit 4 is set to 1.  
5. Optionally, the transmit framer can transmit the alarm indication signal (AIS) in the system transmit time slot 16  
data if register FRM_PR44 bit 6 is set to 1.  
CEPT Loss of Time Slot 16 Multiframe Alignment Recovery Algorithm  
The time slot 16 multiframe alignment recovery algorithm is as described in ITU Rec. G.732 Section 5.2. The rec-  
ommendation states that if a condition of assumed frame alignment has been achieved, time slot 16 multiframe  
alignment is deemed to have occurred when the 4-bit time slot 16 multiframe pattern of 0000 is found in time slot  
16 for the first time, and the preceding time slot 16 contained at least one bit in the binary 1 state.  
78  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
CEPT Time Slot 0 FAS/NOT FAS Control Bits  
FAS/NOT FAS Si- and E-Bit Source  
The Si bit can be used as an 8 kbits/s data link to and from the remote end, or in the CRC-4 mode, it can be used  
to provide added protection against false frame alignment. The sources for the Si bits that are transmitted to the  
line are the following:  
1. CEPT with no CRC-4 and FRM_PR28 bit 0 = 1: the TSiF control bit (FRM_PR28 bit 1) is transmitted in bit 1 of  
all FAS frames and the TSiNF control bit (FRM_PR28 bit 2) is transmitted in bit 1 of all NOT FAS frames.  
2. The CHI system interface (CEPT with no CRC-4 and FRM_PR28 bit 0 = 0)1.  
This option requires the received system data (RCHIDATA) to maintain a biframe alignment pattern where  
frames containing Si bit information for the NOT FAS frames have bit 2 of time slot 0 in the binary 1 state fol-  
lowed by frames containing Si bit information for the FAS frames that have bit 2 of time slot 0 in the binary 0  
state. This ensures the proper alignment of the Si received system data to the transmit line Si data. Whenever  
this requirement is not met by the system, the transmit framer will enter a loss of biframe alignment condition  
(indication is given in the status registers) and then search for the pattern; in the loss of biframe alignment  
state, transmitted line data is corrupted (only when the system interface is sourcing Sa or Si data). When the  
transmit framer locates a new biframe alignment pattern, an indication is given in the status registers and the  
transmit framer resumes normal operations.  
3. CEPT with CRC-42: manual transmission of E bit = 0:  
A. If FRM_PR28 bit 0 = 0, then the TSiF bit (FRM_PR28 bit 1) is transmitted in bit 1 of frame 13 (E bit) and  
the TSiNF bit (FRM_PR28 bit 2) is transmitted in bit 1 of frame 15 (E bit).  
B. If FRM_PR28 bit 0 = 1, then each time 0 is written into TSiF (FRM_PR28 bit 1) one E bit = 0 is transmitted  
in frame 13, and each time 0 is written into TSiNF (FRM_PR28 bit 2) one E bit = 0 is transmitted in frame  
15.  
4. CEPT with CRC-42, automatic transmission of E bit = 0:  
A. Optionally, one transmitted E bit is set to 0 by the transmit framer, as described in ITU Rec. G.704 Section  
2.3.3.4, for each received errored CRC-4 submultiframe detected by the receive framer if FRM_PR28  
bit 3 = 1.  
B. Optionally, as described in ITU Rec. G.704 Section 2.3.3.4, both E bits are set to 0 while in a received loss  
of CRC-4 multiframe alignment state3 if FRM_PR28 bit 4 = 1.  
C. Optionally, when the 100 ms or 400 ms timer is enabled and the timer has expired, as described in ITU  
Rec. G.706 Section B.2.2, both E bits are set to 0 for the duration of the loss of CRC-4 multiframe  
alignment state3 if FRM_PR28 bit 5 = 1.  
Otherwise, the E bits are transmitted to the line in the 1 state.  
1.Whenever bits (e.g., Si, Sa, etc.) are transmitted from the system transparently, FRM_PR29 must first be momentarily written to 001xxxxx  
(binary). Otherwise, the transmit framer will not be able to locate the biframe alignment.  
2.The receive E-bit processor will halt the monitoring of received E bits during loss of CRC-4 multiframe alignment.  
3.Whenever loss of frame alignment occurs, then loss of CRC-4 multiframe alignment is forced. Once frame alignment is established, then and  
only then, is the search for CRC-4 multiframe alignment initiated. The receive framer unit, when programmed for CRC-4, can be in a state of  
LFA and LTS0MFA or in a state of LTS0MFA only, but cannot be in a state of LFA only.  
Agere Systems Inc.  
79  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
CEPT Time Slot 0 FAS/NOT FAS Control Bits (continued)  
NOT FAS A-Bit (CEPT Remote Frame Alarm) Sources  
The A bit, as described in ITU Rec. G.704 Section 2.3.2 Table 4a/G.704, is the remote alarm indication bit. In  
undisturbed conditions, this bit is set to 0 and transmitted to the line. In the loss of frame alignment (LFA) state, this  
bit may be set to 1 and transmitted to the line as determined by register FRM_PR27. The A bit is set to 1 and trans-  
mitted to the line for the following conditions:  
1. Setting the transmit A bit = 1 control bit by setting register FRM_PR27 bit 7 to 1.  
2. Optionally for the following alarm conditions as selected through programming register FRM_PR27.  
A. The duration of loss of basic frame alignment as described in ITU Rec. G.706 Section 4.1.11, or ITU Rec.  
G.706 Section 4.3.22 if register FRM_PR27 bit 0 = 1.  
B. The duration of loss of CRC-4 multiframe alignment if register FRM_PR27 bit 2 = 1.  
C. The duration of loss of signaling time slot 16 multiframe alignment if register FRM_PR27 bit 1 = 1.  
D. The duration of loss of CRC-4 multiframe alignment after either the 100 ms or 400 ms timer expires if  
register FRM_PR27 bit 3 = 1.  
E. The duration of receive Sa6_8hex3 if register FRM_PR27 bit 4 = 1.  
F. The duration of receive Sa6_Chex3 if register FRM_PR27 bit 5 = 1.  
1. LFA is due to framing bit errors.  
2. LFA is due to detecting 915 out of 1000 received CRC-4 errored blocks.  
3. See Table 41, Sa6 Bit Coding Recognized by the Receive Framer on page 95, for a definition of this Sa6 pattern.  
NOT FAS Sa-Bit Sources*  
The Sa bits, Sa4—Sa8, in the NOT FAS frame can be a 4 kbits/s data link to and from the remote end. The sources  
and value for the Sa bits are:  
1. The Sa source register FRM_PR29 bit 0—bit 4 if FRM_PR29 bit 7—bit 5 = 000 (binary) and FRM_PR30 bit 4—  
bit 0 = 11111 (binary).  
2. The facility data link external input (TFDL) if register FRM_PR29 bit 7 = 1 and register FRM_PR21 bit 6 = 1.  
3. The internal FDL-HDLC if register FRM_PR29 bit 7 = 1 and register FRM_PR21 bit 6 = 0.  
4. The Sa transmit stack if register FRM_PR29 bit 7—bit 5 are set to 01x (binary).  
5. The CHI system interface if register FRM_PR29 bit 7—bit 5 are set to 001 (binary). This option requires the  
received system data (RCHIDATA) to maintain a biframe alignment pattern where (1) frames containing Sa bit  
information have bit 2 of time slot 0 in the binary 1 state and (2) these NOT FAS frames are followed by frames  
not containing Sa bit information, the FAS frames, which have bit 2 of time slot 0 in the binary 0 state. This  
ensures the proper alignment of the Sa received system data to the transmit line Sa data. Whenever this  
requirement is not met by the system, the transmit framer will enter a loss of biframe alignment condition indi-  
cated in the status register, FRM_SR1 bit 4, and then search for the pattern. In the loss of biframe alignment  
state, transmitted line data is corrupted (only when the system interface is sourcing Sa or Si data). When the  
transmit framer locates a new biframe alignment pattern, an indication is given in the status registers and the  
transmit framer resumes normal operations.  
The receive Sa data is present at:  
A. The Sa received stack, registers FRM_SR54—FRM_SR63, if the T7633 is programmed in the Sa stack  
mode.  
B. The system transmit interface.  
The status of the received Sa bits and the received Sa stack is available in status register FRM_SR4. The transmit  
and receive Sa bit for the FDL can be selected by setting register FRM_PR43 bit 0—bit 2 as shown in Table 167.  
*
Whenever bits (e.g., Si, Sa, etc.) are transmitted from the system transparently, FRM_PR29 must first be momentarily written to 001xxxxx  
(binary). Otherwise, the transmit framer will not be able to locate the biframe alignment.  
80  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
CEPT Time Slot 0 FAS/NOT FAS Control Bits (continued)  
Sa Facility Data Link Access  
The data link interface may be used to source one of the Sa bits. Access is controlled by registers FRM_PR29,  
FRM_PR30, and FRM_PR43, see NOT FAS Sa-Bit Sources on page 80. The receive Sa data is always present at  
the receive facility data link output pin, RFDL, along with a valid clock signal at the receive facility clock output pin,  
RFDLCK. During a loss of frame alignment (LFA) state, the RFDL signal is forced to a 1 state while RFDLCK  
continues to toggle on the previous frame alignment. When basic frame alignment is found, RFDL is as received  
from the selected receive Sa bit position and RFDLCK is forced (if necessary) to the new alignment. The data rate  
for this access mode is 4 kHz. The access timing for the transmit and receive facility data is illustrated in Figure 27  
below. During loss of receive clock (LOFRMRLCK), RFDL and RFDLCK are frozen in a state at the point of the  
LOFRMRLCK being asserted.  
t8  
t8: TFDLCK CYCLE = 250 µs  
TFDLCK  
t9  
t9  
t9: TFDL TO TFDLCK SETUP/HOLD = 40 ns  
TFDL  
t10  
t10: RFDLCK CYCLE = 250 µs  
RFDLCK  
RFDL  
t11: RFDLCK TO RFDL DELAY = 40 ns  
t11  
5-3910(F).dr.1  
Figure 27. Facility Data Link Access Timing of the Transmit and Receive Framer Sections in the CEPT  
Mode  
Agere Systems Inc.  
81  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
CEPT Time Slot 0 FAS/NOT FAS Control Bits (continued)  
NOT FAS Sa Stack Source and Destination  
The transmit Sa4 to Sa8 bits may be sourced from the transmit Sa stack, registers FRM_PR31—FRM_PR40. The  
Sa stack consists of ten 8-bit registers that contain 16 NOT FAS frames of Sa information as shown in Table 23.  
The transmit stack data may be transmitted either in non-CRC-4 mode or in CRC-4 mode to the line.  
The receive stack data, registers FRM_SR54—FRM_SR63, is valid in both the non-CRC-4 mode and the CRC-4  
mode. In the non-CRC-4 mode while in the loss of frame alignment (LFA) state, updating of the receive Sa stack is  
halted and the transmit and receive stack interrupts are deactivated. In the CRC-4 mode while in the loss of time  
slot 0 multiframe alignment (LTS0MFA) state, updating of the receive Sa stack is halted and the transmit and  
receive stack interrupts are deactivated.  
Table 34. Transmit and Receive Sa Stack Structure  
Register  
Number  
Bit 7  
(MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(LSB)  
1
2
Sa4-1  
Sa4-17  
Sa5-1  
Sa4-3  
Sa4-19  
Sa5-3  
Sa4-5  
Sa4-21  
Sa5-5  
Sa4-7  
Sa4-23  
Sa5-7  
Sa4-9  
Sa4-25  
Sa5-9  
Sa4-11  
Sa4-27  
Sa5-11  
Sa5-27  
Sa6-11  
Sa6-27  
Sa7-11  
Sa7-27  
Sa8-11  
Sa8-27  
Sa4-13  
Sa4-29  
Sa5-13  
Sa5-29  
Sa6-13  
Sa6-29  
Sa7-13  
Sa7-29  
Sa8-13  
Sa8-29  
Sa4-15  
Sa4-31  
Sa5-15  
Sa5-31  
Sa6-15  
Sa6-31  
Sa7-15  
Sa7-31  
Sa8-15  
Sa8-31  
3
4
Sa5-17  
Sa6-1  
Sa5-19  
Sa6-3  
Sa5-21  
Sa6-5  
Sa5-23  
Sa6-7  
Sa5-25  
Sa6-9  
5
6
Sa6-17  
Sa7-1  
Sa6-19  
Sa7-3  
Sa6-21  
Sa7-5  
Sa6-23  
Sa7-7  
Sa6-25  
Sa7-9  
7
8
Sa7-17  
Sa8-1  
Sa7-19  
Sa8-3  
Sa7-21  
Sa8-5  
Sa7-23  
Sa8-7  
Sa7-25  
Sa8-9  
9
10  
Sa8-17  
Sa8-19  
Sa8-21  
Sa8-23  
Sa8-25  
The most significant bit of the first byte is transmitted to the line in frame 1 of a double CRC-4 multiframe. The least  
significant bit of the second byte is transmitted to the line in frame 31 of the double CRC-4 multiframe. The protocol  
for accessing the Sa Stack information for the transmit and receive Sa4 to Sa8 bits is shown in Figure 28 and  
described briefly below.  
The device indicates that it is ready for an update of its transmit stack by setting register FRM_SR4 bit 7 (CEPT  
transmit Sa stack ready) high. At this time, the system has about 4 ms to update the stack. Data written to the stack  
during this interval will be transmitted during the next double CRC-4 multiframe. By reading register FRM_SR4  
bit 7, the system clears this bit so that it can indicate the next time the transmit stack is ready. If the transmit stack  
is not updated, then the content of the stack is retransmitted to the line. The 32-frame interval of the transmit framer  
in the Non-CRC-4 mode is arbitrary. Enabling transmit CRC-4 mode forces the updating of the internal transmit  
stack at the end of the 32-frame CRC-4 double multiframe; the transmit Sa stack is then transmitted synchronous  
to the transmit CRC-4 multiframe structure.  
On the receive side, the T7633 indicates that it has received data in the receive Sa stack, register FRM_SR54—  
FRM_SR63, by setting register FRM_SR4 bit 6 (CEPT receive Sa stack ready) high. The system then has about  
4 ms to read the contents of the stack before it is updated again (old data lost). By reading register FRM_SR4 bit 6,  
the system clears this bit so that it can indicate the next time the receive stack is ready. The receive framer always  
updates the content of the receive stack so unread data will be overwritten. The last 16 valid Sa4 to Sa8 bits are  
always stored in the receive Sa stack on a double-multiframe boundary. The 32-frame interval of the receive framer  
in the non-CRC-4 mode is arbitrary. Enabling the receive CRC-4 mode forces updating of the receive Sa stack at  
the end of the 32-frame CRC-4 double multiframe. The receive Sa stack is received synchronous to the CRC-4  
multiframe structure.  
82  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
CEPT Time Slot 0 FAS/NOT FAS Control Bits (continued)  
NOT FAS Sa Stack Source and Destination (continued)  
SYSTEM ACCESS Sa STACK (SASS) INTERVAL:  
1) TRANSMIT FRAMER UNIT TRANSMITS TO THE LINE  
THE DATA IN THE TRANSMIT Sa STACK WRITTEN DURING  
THE PREVIOUS SASS INTERVAL.  
2) THE SYSTEM CAN UPDATE THE TRANSMIT Sa STACK  
REGISTERS FOR TRANSMISSION IN THE NEXT CRC-4  
DOUBLE MULTIFRAME.  
3) THE SYSTEM CAN READ THE RECEIVE Sa STACK REGISTERS  
TO ACCESS THE Sa BITS EXTRACTED DURING THE PREVIOUS  
VALID (IN MULTIFRAME ALIGNMENT) DOUBLE CRC-4  
MULTIFRAME.  
START OF CRC-4 DOUBLE MULTIFRAME:  
• BASIC FRAME ALIGNMENT FOUND, OR,  
• CRC-4 MULTIFRAME ALIGNMENT FOUND.  
SYSTEM ACCESS Sa STACK INTERVAL  
1-FRAME INTERVAL  
1 FRAME  
31 FRAMES  
CRC-4 DOUBLE MULTIFRAME: 32 FRAMES  
31 FRAMES  
CRC-4 DOUBLE MULTIFRAME  
(DMF): 32 FRAMES  
START FRAME 1 OF 32 IN DMF.  
INTERNAL Sa STACK UPDATE INTERVAL  
SYSTEM ACCESS IS DISABLED DURING THIS INTERVAL:  
1) THE INTERNAL TRANSMIT Sa STACK IS UPDATED  
FROM THE FRAMER UNIT’S 10-byte TRANSMIT STACK CONTROL  
REGISTERS DURING THIS 1-FRAME INTERVAL.  
2) ACCESS TO THE STACK CONTROL REGISTERS IS DISABLED  
DURING THIS 1-FRAME INTERVAL.  
3)  
ONCE LOADED, THE INFORMATION IN THE INTERNAL TRANSMIT  
Sa STACK IS TRANSMITTED TO THE LINE DURING THE NEXT  
CRC-4 DOUBLE MULTIFRAME, ALIGNED TO THE CRC-4 MULTIFRAME.  
4)  
IF THE TRANSMIT Sa STACK IS NOT UPDATED, THEN THE  
CONTENT OF THE TRANSMIT Sa STACKS IS RETRANSMITTED  
TO THE LINE.  
5)  
6)  
THE SYSTEM READ-ONLY RECEIVE STACK IS UPDATED FROM  
THE INTERNAL RECEIVE STACK INFORMATION REGISTERS.  
IN NON-CRC-4 MODE, THE RECEIVE Sa STACK EXTRACTING  
CIRCUITRY ASSUMES AN ARBITRARY DOUBLE 16-FRAME MULTIFRAME STRUCTURE  
(32 FRAMES), AND DATA IS EXTRACTED ONLY IN THE FRAME ALIGNED STATE.  
7)  
IN CRC-4 MODE, THE RECEIVE Sa STACK INFORMATION IS ALIGNED  
TO A CRC-4 DOUBLE MULTIFRAME STRUCTURE (32 FRAMES), AND THE  
DATA IS EXTRACTED ONLY IN CRC-4 MULTIFRAME ALIGNED STATE.  
5-3911(F).c  
Figure 28. Transmit and Receive Sa Stack Accessing Protocol  
Agere Systems Inc.  
83  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
CEPT Time Slot 0 FAS/NOT FAS Control Bits (continued)  
NOT FAS Sa Stack Source and Destination (continued)  
Interrupts indicating the transmit Sa stack or the receive Sa stack are ready for system access are available, see  
register FRM_SR4 bit 6 and bit 7.  
CEPT Time Slot 16 X0—X2 Control Bits  
Each of the three X bits in frame 0 of the time slot 16 multiframe can be used as a 0.5 kbits/s data link to and from  
the remote end. The transmitted line X bits are sourced from control register FRM_PR41 bit 0—bit 2. In the loss of  
TS16 multiframe alignment (LTS16MFA) state, receive X bits are set to 1 in status register FRM_SR53.  
84  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Signaling Access  
Signaling information can be accessed by three different methods: transparently through the CHI, via the control  
registers, or via the CHI associated signaling mode.  
Transparent Signaling  
This mode is enabled by setting register FRM_PR44 bit 0 to 1.  
Data at the received RCHIDATA interface passes through the framer undisturbed. The framer generates an arbi-  
trary signaling multiframe in the transmit and receive directions to facilitate the access of signaling information at  
the system interface.  
DS1: Robbed-Bit Signaling  
Microprocessor Control Registers  
To enable signaling, register FRM_PR44 bit 0 must be set to 0 (default).  
The information written into the F and G bits of the transmit signaling registers, FRM_TSR0—FRM_TSR23, define  
the robbed-bit signaling mode for each channel for both the transmit and receive directions. The per-channel pro-  
gramming allows the system to combine voice channels with data channels within the same frame.  
The receive-channel robbed-bit signaling mode is always defined by the state of the F and G bits in the corre-  
sponding transmit signaling registers for that channel. The received signaling data is stored in the receive signaling  
registers, FRM_RSR0—FRM_RSR23, while receive framer is in both the frame and superframe alignment states.  
Updating the receive signaling registers can be inhibited on-demand, by setting register FRM_PR44 bit 3 to 1, or  
automatically when either a framing error event, a loss of frame, or superframe alignment state is detected or a  
controlled slip event occurs. The signaling inhibit state is valid for at least 32 frames after any one of the following:  
a framing errored event, a loss of frame and/or superframe alignment state, or a controlled slip event.  
In the common channel signaling mode, data written in the transmit signaling registers is transmitted in channel 24  
of the transmit line bit stream. The F and G bits are ignored in this mode. The received signaling data from channel  
24 is stored in receive signaling registers FRM_RSR0—FRM_RSR23 for T1.  
Associated Signaling Mode  
This mode is enabled by setting register FRM_PR44 bit 2 to 1.  
Signaling information in the associated signaling mode (ASM) is allocated an 8-bit system time slot in conjunction  
with the pay load data information for a particular channel. The default system data rate in the ASM mode is  
4.096 Mbits/s. Each system channel consists of an 8-bit payload time slot followed by its corresponding 8-bit sig-  
naling time slot. The format of the signaling byte is identical to that of the signaling registers.  
In the ASM mode, writing the transmit signaling registers will corrupt the transmit signaling data. In the transmit sig-  
naling register ASM (TSR-ASM) format, enabled by setting register FRM_PR44 bit 2 and bit 5 to 1, the system  
must write into the F and G bit1 of the transmit signaling registers to program the robbed-bit signaling state mode of  
each DS0. The ABCD bits are sourced from the RCHI ports when TSR-ASM mode is enabled.  
1. All other bits in the signaling registers are ignored, while the F and G bits in the received RCHIDATA stream are ignored.  
Agere Systems Inc.  
85  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Signaling Access (continued)  
DS1: Robbed-Bit Signaling (continued)  
Table 35 illustrates the ASM time-slot format for valid channels.  
Table 35. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames  
DS1: ASM CHI Time Slot  
PAYLOAD DATA  
SIGNALING INFORMATION*  
P†  
1
2
3
4
5
6
7
8
A
B
C
D
X
F
G
* X indicates bits that are undefined by the framer.  
† The identical sense of the received system P bit in the transmitted signaling data is echoed back to the system in the received signaling  
information.  
The DS1 framing formats require rate adaptation from the line-interface 1.544 Mbits/s bit stream to the system-  
interface 4.096 Mbits/s bit stream. The rate adaptation results in the need for stuffed time slots on the system inter-  
face. Table 36 illustrates the ASM format for T1 stuffed channels used by the T7633. The stuffed data byte contains  
the programmable idle code in register FRM_PR23 (default = 7F (hex)), while the signaling byte is ignored.  
Table 36. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels  
ASM CHI Time Slot  
PAYLOAD DATA  
SIGNALING INFORMATION*  
0
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
* X indicates bits which are undefined by the framer.  
CEPT: Time Slot 16 Signaling  
Microprocessor Control Registers  
To enable signaling, register FRM_PR44 bit 0 must be set to 0 (default).  
The information written into transmit signaling control registers FRM_TSR0—FRM_TSR31 define the state of the  
ABCD bits of time slot 16 transmitted to the line.  
The received signaling data from time slot 16 is stored in receive signaling registers FRM_RSR0—FRM_RSR31.  
Associated Signaling Mode  
Signaling information in the associated signaling mode (ASM), register FRM_PR44 bit 2 = 1, is allocated an 8-bit  
system time slot in conjunction with the data information for a particular channel. The default system data rate in  
the ASM mode is 4.096 Mbits/s. Each system channel consists of an 8-bit payload time slot followed by its associ-  
ated 8-bit signaling time slot. The format of the signaling byte is identical to the signaling registers.  
Table 37 illustrates the ASM time-slot format for valid CEPT E1 time slots.  
Table 37. Associated Signaling Mode CHI 2-Byte Time-Slot Format for CEPT  
CEPT ASM CHI Time Slot  
PAYLOAD DATA  
SIGNALING INFORMATION  
D E* XXP‡  
1
2
3
4
5
6
7
8
A
B
C
* In the CEPT IRSM format, this bit position contains the per-channel E0-31 control information. In all other formats, this bit is ignored.  
† In the CEPT formats, these bits are undefined.  
‡ The P bit is the parity-sense bit calculated over the 8 data bits, the ABCD (and E) bits, and the P bit. The identical sense of the received sys-  
tem P bit in the transmitted signaling data is echoed back to the system in the received signaling information.  
86  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Auxiliary Framer I/O Timing  
Transmit and receive clock and data signals are provided by terminals RFRMCK (receive framer clock), RFRM-  
DATA (receive framer data), RFS (receive frame sync), RSSFS (receive framer signaling superframe sync),  
RCRCMFS (receive frame CRC-4 multiframe sync), TFS (transmit framer frame sync), TSSFS (transmit framer  
signaling superframe sync), and TCRCMFS (transmit framer CRC-4 multiframe sync).  
The receive signals are synchronized to the internal recovered receive line clock, RFRMCK, and the transmit sig-  
nals are synchronized to the transmit line clock, TLCK. Note that TLCK is derived from the external PLLCK which  
must be phase-locked to the system (CHI) clock, RCHICK, see Table 1, Pin Descriptions on page 20, pin 7 and pin  
31.  
Detailed timing specifications for these signals are given in Figure 29—Figure 36.  
RFRMCK  
125 µs  
RFS  
RFRMDATA  
BIT 8 BIT 0 BIT 1  
TIME SLOT 1  
TIME SLOT 24  
DATA VALID  
5-6290(F)r.5  
Figure 29. Timing Specification for RFRMCK, RFRMDATA, and RFS in DS1 Mode  
TLCK  
TFS  
125 µs  
TPD  
(SINGLE  
RAIL)  
TS1  
TS2  
TS24  
TS1  
5-6292(F)r.6  
Figure 30. Timing Specification for TFS, TLCK, and TPD in DS1 Mode  
Agere Systems Inc.  
87  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Auxiliary Framer I/O Timing (continued)  
RFRMCK  
RFS  
125 µs  
RFRMDATA  
BIT 8 BIT 0 BIT 1  
FAS/NFAS: TIME SLOT 0  
DATA VALID  
TIME SLOT 31  
5-6294(F)r.5  
Figure 31. Timing Specification for RFRMCK, RFRMDATA, and RFS in CEPT Mode  
RFRMCK  
RFS  
125 µs  
2 ms  
RSSFS  
RFRMDATA  
TS0 OF THE FRAME AFTER THE  
FRAME CONTAINING THE  
SIGNALING MULTIFRAME  
PATTERN (0000)  
TS0 OF THE FRAME AFTER THE  
FRAME CONTAINING THE  
SIGNALING MULTIFRAME  
PATTERN (0000)  
5-6295(F)r.7  
Figure 32. Timing Specification for RFRMCK, RFRMDATA, RFS, and RSSFS in CEPT Mode  
88  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Auxiliary Framer I/O Timing (continued)  
RFRMCLK  
RFS  
2 ms  
RCRCMFS  
RFRMDATA  
TS0 OF FRAME #0  
OF MULTIFRAME  
TS0 OF FRAME #0  
OF MULTIFRAME  
5-6296(F)r.5  
Figure 33. Timing Specification for RCRCMFS in CEPT Mode  
TLCK  
TFS  
125 µs  
TPD  
(SINGLE  
RAIL)  
TS0 OF FRAME X  
TS0 OF FRAME X + 1  
5-6297(F)r.5  
Figure 34. Timing Specification for TFS, TLCK, and TPD in CEPT Mode  
Agere Systems Inc.  
89  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Auxiliary Framer I/O Timing (continued)  
TFS  
11 CLOCK CYCLES  
TLCK  
2 ms  
TSSFS  
TPD  
(SINGLE  
RAIL)  
TS0 OF THE FRAME  
CONTAINING THE SIGNALING  
MULTIFRAME PATTERN (0000)  
5-6298(F)r.5  
Figure 35. Timing Specification for TFS, TLCK, TPD, and TSSFS in CEPT Mode  
TLCK  
TFS  
1 ms  
1 ms  
TCRCMFS  
TPD  
(SINGLE  
RAIL)  
TS0 OF FRAME #0  
OF MULTIFRAME  
TS0 OF FRAME #8  
OF MULTIFRAME  
TS0 OF FRAME #0  
OF MULTIFRAME  
5-6299(F)r.5  
Figure 36. Timing Specification for TFS, TLCK, TPD, and TCRCMFS in CEPT Mode  
90  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring  
Interrupt Generation  
A global interrupt (pin 99) may be generated if enabled by register GREG1. This interrupt is clocked using channel  
1 framer receive line clock (RLCK1). If RLCK1 is absent, the interrupt is clocked using RLCK2, the receive line  
clock of channel 2. If both RLCK1 and RLCK2 are absent, clocking of interrupts is controlled by an interval 2.048  
MHz clock generated from the CHI clock. Timing of the interrupt is shown in Figure 37. There is no relation  
between MPCK (pin 101) and the interrupt, i.e., MPCK maybe asynchronous with any of the other terminator  
clocks.  
RLCK1  
INTERRUPT  
(PIN 99)  
5-6563(F)  
Figure 37. Relation Between RLCK1 and Interrupt (Pin 99)  
Alarm Definition  
The receive framer monitors the receive line data for alarm conditions and errored events, and then presents this  
information to the system through the microprocessor interface status registers. The transmit framer, to a lesser  
degree, monitors the receive system data and presents the information to the system through the microprocessor  
interface status registers. Updating of the status registers is controlled by the receive line clock signal. When the  
receive loss of clock monitor determines that the receive line clock signal is lost, the system clock is used to clock  
the status registers and all status information should be considered corrupted.  
Although the precise method of detecting or generating alarm and error signals differs between framing modes, the  
functions are essentially the same. The alarm conditions monitored on the received line interface are:  
1. Red alarm or the loss of frame alignment indication (FRM_SR1 bit 0).  
The red alarm indicates that the receive frame alignment for the line has been lost and the data cannot be  
properly extracted. The red alarm is indicated by the loss of frame condition for the various framing formats as  
defined in Table 38.  
Agere Systems Inc.  
91  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Alarm Definition (continued)  
Table 38. Red Alarm or Loss of Frame Alignment Conditions  
Framing Format  
D4  
Number of Errored Framing Bits That Will Cause a Red Alarm (Loss of Frame  
Alignment) Condition  
2 errored frame bits (FT or FS) out of 4 consecutive frame bits if FRM_PR10 bit 2 = 1.  
2 errored FT bits out of 4 consecutive FT bits if PRM_PR10 bit 2 = 0.  
SLC-96  
2 errored frame bits (FT or FS) out of 4 consecutive frame bits if FRM_PR10 bit 2 = 1.  
2 errored FT bits out of 4 consecutive FT bits if FRM_PR10 bit 2 = 0.  
DDS: Frame  
ESF  
3 errored frame bits (FT or FS) or channel 24 FAS pattern out of 12 consecutive frame bits.  
2 errored FE bits out of 4 consecutive FE bits or, optionally, 320 or more CRC6 errored  
checksums within a one second interval if loss of frame alignment due to excessive CRC-6  
errors is enabled in FRM_PR9.  
CEPT  
Three consecutive incorrect FAS patterns or three consecutive incorrect NOT FAS patterns;  
or optionally, greater than 914 received CRC-4 checksum errors in a one second interval if  
loss of frame alignment due to excessive CRC-6 errors is enabled in FRM_PR9.  
2. Yellow alarm or the remote frame alarm (FRM_SR1 bit 0).  
This alarm is an indication that the line remote end is in a loss of frame alignment state. Indication of remote  
frame alarm (commonly referred to as a yellow alarm) as for the different framing formats is shown in Table 39.  
Table 39. Remote Frame Alarm Conditions  
Framing Format  
Superframe: D4  
Remote Frame Alarm Format  
Bit 2 of all time slots in the 0 state.  
Superframe: D4-Japanese  
The twelfth (12th) framing bit in the 1 state in two out of three consecutive super-  
frames.  
Superframe: DDS  
Bit 6 of time slot 24 in the 0 state.  
Extended Superframe (ESF)  
CEPT: Basic Frame  
An alternating pattern of eight 1s followed by eight 0s in the ESF data link.  
Bit 3 of the NOT FAS frame in the 1 state in three consecutive frames.  
Bit 6 of the time slot 16 signaling frame in the 1 state.  
CEPT: Signaling Multiframe  
3. Blue alarm or the alarm indication signal (AIS).  
The alarm indication signal (AIS), sometimes referred to as the blue alarm, is an indication that the remote end  
is out-of-service. Detection of an incoming alarm indication signal is defined in Table 40.  
92  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Alarm Definition (continued)  
Table 40. Alarm Indication Signal Conditions  
Framing Format  
Remote Frame Alarm Format  
T1  
Loss of frame alignment occurs and the incoming signal has two (2) or fewer zeros in  
each of two consecutive double frame periods (386 bits).  
CEPT ETSI  
CEPT ITU  
As described in Draft prETS 300 233:1992 Section 8.2.2.4, loss of frame alignment  
occurs and the framer receives a 512 bit period containing two or less binary zeros. This  
is enabled by setting register FRM_PR10 bit 1 to 0.  
As described in ITU Rec. G.775, the incoming signal has two or fewer zeros in each of  
two consecutive double frame periods (512 bits). AIS is cleared if each of two consecu-  
tive double frame periods contains three or more zeros or frame alignment signal (FAS)  
has been found. This is enabled by setting register FRM_PR10 bit 1 to 1.  
4. The SLIP condition (FRM_SR3 bit 6 and bit 7).  
SLIP is defined as the state in which the receive elastic store buffer’s write address pointer from the receive  
framer and the read address pointer from the transmit concentration highway interface are equal1.  
A. The negative slip (Slip-N) alarm indicates that the receive line clock (RLCK) - transmit CHI clock (TCHICK)  
monitoring circuit detects a state of overflow caused by RLCK and TCHICK being out of phase-lock and  
the period of the received frame being less than that of the system frame. One system frame is deleted.  
B. The positive slip (Slip-P) alarm indicates the line clock (RLCK) - transmit CHI clock (TCHICK) monitoring  
circuit detects a state of underflow caused by RLCK and TCHICK being out of phase-lock and the period  
of the received frame being greater than that of the system frame. One system frame is repeated.  
5. The loss of framer receive clock (LOFRMRLCK, pins 2 and 38).  
In the framer mode, FRAMER = 0 (pin 41/141), LOFRMRLCK alarm is asserted high when an interval of  
250 µs has expired with no transition of RLCK (pin 135/47) detected. The alarm is disabled on the first transi-  
tion of RLCK. In the terminator mode, FRAMER = 1 (pin 41/141), LOFRMRLCK is asserted high when SYSCK  
(pin 3/35) does not toggle for 250 µs. The alarm is disabled on the first transition of SYSCK.  
6. The loss of PLL clock (LOPLLCK, pins 39 and 143).  
LOPLLCK alarm is asserted high when an interval of 250 µs has expired with no transition of PLLCK detected.  
The alarm is disabled 250 µs after the first transition of PLLCK. Timing for LOPLLCK is shown in Figure 38.  
1. After a reset, the read and write pointers of the receive path elastic store will be set to a known state.  
PLLCK  
250 µs  
250 µs  
LOPLLCK  
RCHICK  
5-6564(F)r.2  
Figure 38. Timing for Generation of LOPLLCK (Pin 39/143)  
Agere Systems Inc.  
93  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Alarm Definition (continued)  
7. Received bipolar violation errors alarm, FRM_SR3 bit 0.  
This alarm indicates any bipolar decoding error or detection of excessive zeros.  
8. Received excessive CRC errors alarm, FRM_SR3 bit 3.  
In ESF, this alarm is asserted when 320 or more CRC-6 checksum errors are detected within a one second  
interval. In CEPT, this alarm is asserted when 915 or more CRC-4 checksum errors are detected within a one  
second interval.  
9. The CEPT continuous E-bit alarm (CREBIT) (FRM_SR2 bit 2).  
CREBIT is asserted when the receive framer detects:  
A. Five consecutive seconds where each 1 second interval contains 991 received E bits = 0 events.  
B. Simultaneously no LFA occurred.  
C. Optionally, no remote frame alarm (A bit = 1) was detected if register FRM_PR9 bit 0, bit 4, and bit 5 are  
set to 1.  
D. Optionally, neither Sa6-Fhex nor Sa6-Ehex codes were detected if register FRM_PR9 bit 0, bit 4, and bit 6  
are set to 1.  
The five second timer is started when:  
E. CRC-4 multiframe alignment is achieved.  
F. And optionally, A = 0 is detected if register FRM_PR9 bit 0, bit 4, and bit 5 are set to 1.  
1
1
G. And optionally, neither Sa6_Fhex nor Sa6_Ehex is detected if register FRM_PR9 bit 0, bit 4, and bit 6 are  
set to 1.  
The five second counter is restarted when:  
H. LFA occurs, or  
I. ð990 E bit = 0 events occur in 1 second, or  
J. Optionally, an A bit = 1 is detected if register FRM_PR9 bit 0, bit 4, and bit 5 are set to 1.  
K. Optionally, a valid Sa6 pattern 1111 (binary) or Sa6 pattern 1110 (binary) code was detected if register  
FRM_PR9 bit 0, bit 4, and bit 6 are set to 1.  
This alarm is disabled during loss of frame alignment (LFA) or loss of CRC-4 multiframe alignment (LTS0MFA).  
1. See Table 41, Sa6 Bit Coding Recognized by the Receive Framer on page 95, for the definition of this Sa6 pattern.  
94  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Alarm Definition (continued)  
10. Failed state alarm or the unavailable state alarm, FRM_SR5 bit 3 and bit 7 and FRM_SR6 bit 3 and bit 7.  
This alarm is defined as the unavailable state at the onset of ten consecutive severely errored seconds. In this  
state, the receive framer inhibits incrementing of the severely errored and errored second counters for the  
duration of the unavailable state. The receive framer deasserts the unavailable state condition at the onset of  
ten consecutive errored seconds which were not severely errored.  
11. The 4-bit Sa6 codes (FRM_SR2 bit 3—bit 7).  
Sa6 codes are asserted if three consecutive 4-bit patterns have been detected. The alarms are disabled when  
three consecutive 4-bit Sa6 codes have been detected that are different from the pattern previously detected.  
The receive framer monitors the Sa6 bits for special codes described in ETS Draft prETS 300 233:1992 Sec-  
tion 9.2. The Sa6 codes are defined in Table 41 and Table 42. The Sa6 codes in Table 41 may be recognized  
as an asynchronous bit stream in either non-CRC-4 or CRC-4 modes as long as the receive framer is in the  
basic frame alignment state. In the CRC-4 mode, the receive framer can optionally recognize the received Sa6  
codes in Table 41 synchronously to the CRC-4 submultiframe structure as long as the receive framer is in the  
CRC-4 multiframe alignment state (synchronous Sa6 monitoring can be enabled by setting register  
FRM_PR10 bit 1 to 1). The Sa6 codes in Table 42 are only recognized synchronously to the CRC-4 submulti-  
frame and when the receive framer is in CRC-4 multiframe alignment. The detection of three (3) consecutive 4-  
bit patterns are required to indicate a valid received Sa6 code. The detection of Sa6 codes is indicated in status  
register FRM_SR2 bit 3—bit 7. Once set, any three-nibble (12-bit) interval that contains any other Sa6 code will  
clear the current Sa6 status bit. Interrupts may be generated by the Sa6 codes given in Table 41.  
Table 41. Sa6 Bit Coding Recognized by the Receive Framer  
Code  
First Receive Bit (MSB)  
Last Received Bit (LSB)  
Sa6_8hex  
Sa6_Ahex  
Sa6_Chex  
Sa6_Ehex  
Sa6_Fhex  
1
1
1
1
1
0
0
1
1
1
0
1
0
1
1
0
0
0
0
1
Agere Systems Inc.  
95  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Alarm Definition (continued)  
Table 42 defines the three 4-bit Sa6 codes that are always detected synchronously to the CRC-4 submultiframe  
structure, and are only used for counting NT1 events.  
Table 42. Sa6 Bit Coding of NT1 Interface Events Recognized by the Receive Framer  
First Receive  
Bit (MSB)  
Last Received Bit  
(LSB)  
Counter Size  
(bits)  
Code  
Event at NT1  
Sa6_1hex  
Sa6_2hex  
Sa6_3hex  
0
0
0
0
0
0
0
1
1
1
0
1
E = 0  
16  
16  
CRC-4 Error  
CRC-4 Error & E = 0  
This code will cause both  
counters to increment.  
The reference points for receive CRC-4, E bit, and Sa6 decoding are illustrated in Figure 39.  
T REFERENCE  
POINT  
V REFERENCE  
POINT  
NT2  
(NT1 REMOTE)  
NT1  
ET  
CRC ERROR  
DETECTED  
CRC ERROR  
DETECTED  
CRC-4 ERRORS AT THE ET,  
E BIT = 0, ERROR EVENT AT THE ET REMOTE  
E BIT = 0  
Sa6  
E BIT = 0  
COUNT:  
1) CRC ERRORS,  
2) E = 0,  
CRC-4 ERRORS DETECTED FROM NT1 REMOTE, THEN SET Sa6 = 001X  
E = 0 DETECTED FROM NT1 REMOTE, THEN SET Sa6 = 00X1  
3) Sa6 = 001X, AND  
4) Sa6 = 00X1  
CRC-4 ERRORS AT THE NT1  
E BIT = 0, ERROR EVENT DETECTED AT THE NT1 REMOTE  
5-3913(F)r.8  
Figure 39. The T and V Reference Points for a Typical CEPT E1 Application  
12. CEPT auxiliary pattern alarm (AUXP) (FRM_SR1 bit 6).  
The received auxiliary alarm, register FRM_SR1 bit 6 (AUXP), is asserted when the receive framer is in the  
LFA state and has detected more than 253 10 (binary) patterns for 512 consecutive bits. In a 512-bit interval,  
only two 10 (binary) patterns are allowable for the alarm to be asserted and maintained. The 512-bit interval is  
a sliding window determined by the first 10 (binary) pattern detected. This alarm is disabled when three or more  
10 (binary) patterns are detected in 512 consecutive bits. The search for AUXP is synchronized with the first  
alternating 10 (binary) pattern as shown in Table 43.  
Table 43. AUXP Synchronization and Clear Sychronization Process  
00  
10  
10  
01  
11  
11  
00  
00  
0
10  
00  
10  
sync  
clear sync  
sync  
. . .  
. . .  
96  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Event Counters Definition  
The error events monitored in the receive framer’s status registers are defined in Table 44 for the hardwired (default)  
threshold values. The errored second and severely errored second threshold registers can be programmed through  
FRM_PR11—FRM_PR13 such that the errored and severely errored second counters function as required by  
system needs.  
Table 44. Event Counters Definition  
Counter Size  
Error Event  
Functional Mode  
AMI  
Definition  
(bits)  
Bipolar Viola-  
tions (BPVs)  
Any bipolar violation or 16 or more consecutive  
zeros  
16  
B8ZS  
Any BPV, code violation, or any 8-bit interval with no  
one pulse  
CEPT HDB3  
SF: D4  
Any BPV, code violation, or any 4-bit interval with no  
one pulse  
Frame Align-  
ment Errors  
(FERs)  
Any FT or FS bit errors (FRM_PR10 bit 2 = 1) or any  
FT bit errors (FRM_PR10 bit 2 = 0)  
8
SF: SLC-96  
Any FT or FS bit errors (FRM_PR10 bit 2 = 1) or any  
FT bit errors (FRM_PR10 bit 2 = 0)  
SF: DDS  
ESF  
Any FT, FS, or time slot 24 FAS bit error  
Any FE bit error  
CEPT  
Any FAS (0011011) or NOT FAS (bit 2) bit error if  
register FRM_PR10, bit 2 = 0.  
Any FAS (0011011) bit error if register FRM_PR10,  
bit 2 = 1.  
CRC Checksum ESF or CEPT with CRC Any received checksum in error  
Errors  
16  
Excessive CRC ESF  
Errors  
320 checksum errors in a one second interval  
NONE  
CEPT with CRC  
915 checksum errors in a one second interval  
Received  
E bits = 0  
CEPT with CRC-4  
E bits = 0 in frame 13 and frame 15  
16  
16  
Errored Second All  
Events  
Any one of the relevant error conditions enabled in  
registers FRM_PR14—FRM_PR18 within a one sec-  
ond interval  
DS1: non ESF  
Any framing bit errors within a one second interval  
Any CRC-6 errors within a one second interval  
Any framing errors within a one second interval  
DS1: ESF  
CEPT without CRC-4  
CEPT with CRC-4 (ET1) Any CRC-4 errors within a one second interval  
CEPT with CRC-4 (ET1 Any E bit = 0 event within a one second interval  
remote)  
CEPT with CRC-4 (NT1) Any Sa6 = 001x (binary) code event within a one  
second interval  
CEPT with CRC-4 (NT1 Any Sa6 = 00x1 (binary) code event within a one  
remote)  
second interval  
Agere Systems Inc.  
97  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Event Counters Definition (continued)  
Table 44. Event Counters Definition (continued)  
Counter Size  
(bits)  
Error Event  
Functional Mode  
Definition  
Bursty Errored  
Second Events  
DS1: non ESF  
Greater than 1 but less than 8 framing bit errors  
within a one second interval  
16  
DS1: ESF  
Greater than 1 but less than 320 CRC-6 errors within  
a one second interval  
CEPT without CRC-4  
Greater than 1 but less than 16 framing bit errors  
within a one second interval  
CEPT with CRC-4 (ET1) Greater than 1 but less than 915 CRC-4 errors within  
a one second interval  
CEPT with CRC-4 (ET1 Greater than 1 but less than 915 E bit = 0 events  
remote)  
within a one second interval  
CEPT with CRC-4 (NT1) Greater than 1 but less than 915 Sa6=001x (binary)  
code events within a one second interval  
CEPT with CRC-4 (NT1 Greater than 1 but less than 915 Sa6=00x1 (binary)  
remote)  
code events within a one second interval  
SeverelyErrored All  
Second Events  
Any one of the relevant error conditions enabled in  
registers FRM_PR14—FRM_PR18 within a one sec-  
ond interval  
16  
DS1: non ESF  
8 or more framing bit errors within a one second  
interval  
DS1: ESF  
320 or more CRC-6 errors within a one second inter-  
val  
CEPT with no CRC-4  
16 or more framing bit errors within a one second  
interval  
CEPT with CRC-4 (ET1) 915 or more CRC-4 errors within a one second inter-  
val  
CEPT with CRC-4 (ET1 915 or more E bit = 0 events within a one second  
remote)  
interval  
CEPT with CRC-4 (NT1) 915 or more Sa6=001x (binary) code events within a  
one second interval  
CEPT with CRC-4 (NT1 915 or more Sa6=00x1 (binary) code events within a  
remote)  
one second interval  
Unavailable  
All  
A one second period in the unavailable state  
16  
Second Events  
The receive framer enters an unavailable state condition at the onset of ten consecutive severely errored second  
events. When in the unavailable state, the receive framer deasserts the unavailable state alarms at the onset of ten  
consecutive seconds which were not severely errored.  
98  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Loopback and Transmission Modes  
Primary Loopback Modes  
Framer primary loopback mode is controlled by register FRM_PR24. There are seven primary loopback and trans-  
mission test modes supported:  
1. Line loopback (LLB).  
2. Board loopback (BLB).  
3. Single time-slot system loopback (STSSLB).  
4. Single time-slot line loopback (STSLLB).  
5. CEPT nailed-up broadcast transmission (CNUBT).  
6. Payload loopback (PLLB).  
7. CEPT nailed-up connect loopback (CNUCLB).  
The loopback and transmission modes are described in detail below:  
1. The LLB mode loops the receive line data and clock back to the transmit line. The received data is processed  
by the receive framer and transmitted to the system interface. This mode can be selected by setting register  
FRM_PR24 to 001xxxxx (binary).  
2. The BLB mode loops the receive system data back to the system after:  
A. The transmit framer processes the data, and  
B. The receive framer processes the data.  
In the BLB mode, AIS is always transmitted to the line interface. This mode can be selected by setting register  
FRM_PR24 to 010xxxxx (binary).  
3. The STSSLB mode loops one and only one received system time slot back to the transmit system interface.  
The selected looped back time-slot data is not processed by either the transmit framer or the receive framer.  
The selected time slot does not pass through the receive elastic store buffer and therefore will not be affected  
by system-AIS, RLFA conditions, or controlled slips events. Once selected, the desired time-slot position has  
the programmable idle code in register FRM_PR22 transmitted to the line interface one frame before imple-  
menting the loopback and for the duration of the loopback. This mode can be selected by setting register  
FRM_PR24 to 011A4A3A2A1A0, where A4A3A2A1A0 is the binary address of the selected time slot.  
4. The STSLLB mode loops one and only one received line time slot back to the transmit line. The selected time-  
slot data is looped to the line after being processed by the receive framer, and it passes through the receive  
elastic store. The selected time slot has the programmable idle code in register FRM_PR22 transmitted to the  
system interface one frame before implementing the loopback and for the duration of the loopback. In CEPT,  
selecting time slot 0 has the effect of deactivating the current loopback mode while no other action will be  
taken (time slot 0 will not be looped back to the line and should not be chosen). This mode can be selected by  
setting register FRM_PR24 to 100A4A3A2A1A0, where A4A3A2A1A0 is the binary address of the selected time  
slot.  
5. The CNUBT mode transmits received-line time slot X to the system in time slots X and time slot 0 (of the next  
frame). Any time slot can be broadcast. This mode can be selected by setting register FRM_PR24 to  
101A4A3A2A1A0 where A4A3A2A1A0 is the binary address of the selected time slot.  
Agere Systems Inc.  
99  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Loopback and Transmission Modes (continued)  
6. The PLLB mode loops the received line data and clock back to the transmit line while inserting (replacing) the  
facility data link in the looped back data. Two variations of the payload loopback are available. In the pass  
through framing/CRC bit mode (chosen by setting register FRM_PR24 to 111xxxxx (binary)), the framing and  
CRC bits are looped back to the line transmit data. In the regenerated framing/CRC bit mode (chosen by  
setting register FRM_PR24 to 110xxxxx (binary) and register FRM_PR10 bit 3 to 0), the framing and CRC bits  
are regenerated by the transmit framer. The payload loopback is only available for ESF and CEPT modes.  
7. The CNUCLB mode loops received system time slot X back to the system in time slot 0. The selected time slot  
is not routed through the receive elastic store buffer and therefore will not be affected by system-AIS, RLFA  
conditions, or controlled slips. Any time slot can be looped back to the system. Time slot X transmitted to the  
line is not affected by this loopback mode. Looping received system time slot 0 has no effect on time slot 0  
transmitted to the line, i.e., the transmit framer will always overwrite the FAS and NOT FAS data in time slot 0  
transmitted to the line. This mode can be selected by setting register FRM_PR24 to 110A4A3A2A1A0 and  
register FRM_PR10 bit 3 to 1, where A4A3A2A1A0 is the binary address of the selected time slot.  
Secondary Loopback Modes  
There are two secondary loopback modes supported:  
1. Secondary-single time-slot system loopback (S-STSSLB)  
2. Secondary-single time-slot line loopback (S-STSLLB)  
The loopbacks are described in detail below:  
1. The secondary-STSSLB mode loops one and only one received system time slot back to the transmit system  
interface. The selected time-slot data looped back is not processed by either the transmit framer or the receive  
framer. The selected time slot does not pass through the receive elastic store buffer and therefore will not be  
affected by system-AIS, RLFA conditions, or controlled slips events. Whenever the secondary loopback register  
is programmed to the same time slot as the primary register, the primary loopback mode will control that time  
slot. Once selected, the desired time-slot position has the programmable line idle code in register FRM_PR22  
transmitted to the line interface one frame before implementing the loopback and for the duration of the  
loopback.  
2. The secondary-STSLLB mode loops one and only one line time slot back to the line. The selected time slot data  
is looped to the line after being processed by the receive framer and it passes through the receive elastic store.  
The selected time slot has the programmable idle code in register FRM_PR22 transmitted to the system  
interface one frame before implementing the loopback and for the duration of the loopback. In CEPT, selecting  
time slot 0 has the effect of deactivating the current loopback mode while no other action will be taken (time slot  
0 will not be looped back to the line and should not be chosen in this mode).  
Table 45 defines the deactivation of the two secondary loopback modes as a function of the activation of the pri-  
mary loopback and test transmission modes.  
Table 45. Summary of the Deactivation of SSTSSLB and SSTSLLB Modes as a Function of Activating the  
Primary Loopback Modes  
Primary Loopback Mode  
Deactivation of S-STSSLB  
If primary time slot = secondary  
If primary time slot = secondary  
Always  
Deactivation of S-STSLLB  
If primary time slot = secondary  
If primary time slot = secondary  
Always  
STSSLB  
STSLLB  
BLB  
CNUBT  
If the secondary time slot is TS0 or if the If primary time slot = secondary  
primary time slot = secondary  
LLB  
Always  
Always  
NUCLB  
If the secondary time slot is TS0 or if the If primary time slot = secondary  
primary time slot = secondary  
PLLB  
Always  
Always  
100  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Loopback and Transmission Modes (continued)  
Figure 40 illustrates the various loopback modes implemented by each framer unit.  
FRAMER  
AIS  
RECEIVE SYSTEM DATA  
IS IGNORED  
LINE  
SYSTEM  
LINE  
SYSTEM  
ES  
(1) LINE LOOPBACK  
(2) BOARD LOOPBACK  
TRANSMIT PROGRAMMABLE LINE IDLE CODE  
TRANSMIT PROGRAMMABLE IDLE CODE  
IN REGISTER FRM_PR22  
IN OUTGOING LINE TS-X  
IN REGISTER FRM_PR22  
IN OUTGOING SYSTEM TS-X  
FRAMER  
SYSTEM  
INSERT ONLY TIME SLOT X  
LINE  
LINE  
SYSTEM  
LOOPBACK TS-X  
ES  
ES  
(3) SINGLE TIME-SLOT SYSTEM LOOPBACK  
FRAMER  
(4) SINGLE TIME-SLOT LINE LOOPBACK  
TRANSMIT FRAMER  
LINE  
LINE  
SYSTEM  
SYSTEM  
ES  
TRANSMIT LINE TS-X IN  
SYSTEM TS-X AND SYSTEM TS-0  
(6) PAYLOAD LINE LOOPBACK  
(5) CEPT NAILED-UP BROADCAST TRANSMISSION  
FRAMER  
SYSTEM  
LINE  
ES  
LOOPBACK TS-X IN TS-0  
(7) CEPT NAILED-UP CONNECT LOOPBACK  
5-3914(F).cr.3  
Figure 40. Loopback and Test Transmission Modes  
Agere Systems Inc.  
101  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Line Test Patterns  
Test patterns may be transmitted to the line through either register FRM_PR20 or register FRM_PR29. Only one of  
these sources may be active at the same time. Signaling must be inhibited while sending these test patterns.  
Transmit Line Test Patterns—Using Register FRM_PR20  
The transmit framer can be programmed through register FRM_PR20 to transmit various test patterns. These test  
patterns, when enabled, overwrite the received CHI data. The test patterns available using register FRM_PR20  
are:  
1. The unframed-AIS pattern which consists of a continuous bit stream of 1s (. . . 111111 . . .) enabled by setting  
register FRM_PR20 bit 0 to 1.  
2. The unframed-auxiliary pattern which consists of a continuous bit stream of alternating 1s and 0s (. . .  
10101010 . . .) enabled by setting register FRM_PR20 bit 1 to 1.  
3. The quasi-random test signal, enabled by setting register FRM_PR20 bit 3 to 1, which consists of:  
A. A pattern produced by means of a twenty stage shift register with feedback taken from the 17th and 20th  
stages via an exclusive-OR gate to the first stage. The output is taken from the 20th stage and is forced to  
a 1 state whenever the next 14 stages (19 through 6) are all 0. The pattern length is 1,048,575 or  
2
20 – 1 bits. This pattern is described in detail in AT&T Technical Reference 62411 [5] Appendix and  
illustrated in Figure 41.  
B. Valid framing bits.  
C. Valid transmit facility data link (TFDL) bit information.  
D. Valid CRC bits.  
A
C
D
D
D
D
D
D
B
XOR  
#1  
#2  
D-TYPE FLIP-FLOPS  
#17  
#18  
#19  
#20  
#6  
QUASI-RANDOM TEST OUTPUT  
#19  
OR  
NOR  
#20  
5-3915(F).dr.1  
Figure 41. 20-Stage Shift Register Used to Generate the Quasi-Random Signal  
4. The pseudorandom test pattern, enabled by setting register FRM_PR20 bit 2 to 1, which consists of:  
A. A 215– 1 pattern inserted in the entire payload (time slots 1—24 in DS1 and time slots 1—32 in CEPT), as  
described by ITU Rec. 0.151 and illustrated in Figure 42.  
B. Valid framing pattern.  
C. Valid transmit facility data link (TFDL) bit data.  
D. Valid CRC bits.  
102  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Line Test Patterns (continued)  
A
C
D
D
D
D
D
D
B
PSEUDORANDOM  
TEST OUTPUT  
#1  
#2  
#3  
#13  
#14  
#15  
XOR  
D-TYPE FLIP-FLOPS  
5-3915(F).er.1  
Figure 42. 15-Stage Shift Register Used to Generate the Pseudorandom Signal  
5. The idle code test pattern, enabled by setting register FRM_PR20 bit 6 to 1, which consists of:  
A. The programmable idle code, programmed through register FRM_PR22, in time slots 1—24 in DS1 and  
0—31 in CEPT.  
B. Valid framing pattern.  
C. Valid transmit facility data link (TFDL) bit data.  
D. Valid CRC bits.  
Transmit Line Test Patterns—Using Register FRM_PR69  
Framed or unframed patterns indicated in Table 46 may be generated and sent to the line by register FRM_PR69  
and by setting register FRM_PR20 to 00 (hex). Selection of transmission of either a framed or unframed test pat-  
tern is made through FRM_PR69 bit 3. If one of the test patterns of register FRM_PR69 is enabled, a single bit  
error can be inserted into the transmitted test pattern by toggling register FRM_PR69 bit 1 from 0 to 1.  
Table 46. Register FRM_PR69 Test Patterns  
Pattern  
Register FRM_PR69  
Bit 7 Bit 6 Bit 5 Bit 4  
MARK (all ones AIS)  
0
0
0
0
QRSS (220 – 1 with zero suppression)  
0
0
0
1
25 – 1  
63 (26 – 1)  
511 (29 – 1) (V.52)  
29 – 1  
2047 (211 – 1) (O.151)  
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
2
2
2
2
2
11 – 1 (reversed)  
15 – 1 (O.151)  
20 – 1 (V.57)  
20 – 1 (CB113/CB114)  
23 – 1 (O.151)  
1:1 (alternating)  
Agere Systems Inc.  
103  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Line Test Patterns (continued)  
Receive Line Pattern Monitor—Using Register FRM_SR7  
The receive framer pattern monitor continuously monitors the received line, detects the following fixed framed pat-  
terns, and indicates detection in register FRM_SR7 bit 6 and bit 7.  
1. The pseudorandom test pattern as described by ITU Rec. O.151 and illustrated in Figure 42. Detection of the  
pattern is indicated by register FRM_SR7 bit 6 = 1.  
2. The quasi-random test pattern described in AT&T Technical Reference 62411[5] Appendix and illustrated in  
Figure 41. Detection of the pattern is indicated by register FRM_SR7 bit 7 = 1.  
In DS1 mode, the received 193 bit frame must consist of 192 bits of pattern plus 1 bit of framing information. In  
CEPT mode, the received 256 bit frame must consist of 248 bits of pattern plus 8 bits (TS0) of framing information.  
No signaling, robbed bit in the case of T1 and TS16 signaling in the case of CEPT, may be present for successful  
detection of these two test patterns.  
To establish lock to the pattern, 256 sequential bits must be received without error. When lock to the pattern is  
achieved, the appropriate bit of register FRM_SR7 is set to a 1. Once pattern lock is established, the monitor can  
withstand up to 32 single bit errors per frame without a loss of lock. Lock will be lost if more than 32 errors occur  
within a single frame. When such a condition occurs, the appropriate bit of register FRM_SR7 is deasserted. The  
monitor then resumes scanning for pattern candidates.  
Receive Line Pattern Detector—Using Register FRM_PR70  
Framed or unframed patterns indicated in Table 47 may be detected using register FRM_PR70. Detection of the  
selected test pattern is indicated when register FRM_PR7 bit 4 is set to 1. Selection of a framed or unframed test  
pattern is made through FRM_PR70 bit 3. Bit errors in the received test pattern are indicated when register  
FRM_SR7 bit 5 = 1. The bit errors are counted and reported in registers FRM_SR8 and FRM_SR9, which are nor-  
mally the BPV counter registers. (In this test mode, the BPV counter registers do not count BPVs but count only bit  
errors in the received test pattern.)  
Table 47. Register FRM_PR70 Test Patterns  
Pattern  
Register FRM_PR70  
Bit 7 Bit 6 Bit 5 Bit 4  
MARK (all ones AIS)  
0
0
0
0
QRSS (220 – 1 with zero suppression)  
0
0
0
1
25 – 1  
63 (26 – 1)  
511 (29 – 1) (V.52)  
29 – 1  
2047 (211 – 1) (O.151)  
0
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
2
2
2
2
2
11 – 1 (reversed)  
15 – 1 (O.151)  
20 – 1 (V.57)  
20 – 1 (CB113/CB114)  
23 – 1 (O.151)  
1:1 (alternating)  
104  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Line Test Patterns (continued)  
The pattern detector continuously monitors the received line for the particular pattern selected in register  
FRM_PR70 bit 7—bit 4 (DPTRN). To establish detector lock to the pattern, 256 sequential bits must be detected.  
Once the detector has locked onto the selected pattern, it will remain locked and count all single bit errors until reg-  
ister FRM_PR70 bit 2 (DBLKSEL) is set to 0. If the lock to the selected pattern is lost, the detection indicator is  
deasserted (register FRM_SR7 bit 4) and the detector resumes monitoring for the selected pattern.  
To select a pattern or change the pattern to be detected, the following programming sequence must be followed.  
DBLKSEL (register FRM_PR70 bit 2) is set to 0.  
The new pattern to be detected is selected by setting register FRM_PR70 bit 7—bit 4 to the desired value.  
DBLKSEL (register FRM_PR70 bit 2) is set to 1.  
Agere Systems Inc.  
105  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Automatic and On-Demand Commands  
Various alarms can be transmitted either automatically as a result of various alarm conditions or on demand. After  
reset, all automatic transmissions are disabled. The user can enable the automatic or on-demand actions by set-  
ting the proper bits in the automatic and on-demand action registers as identified below in Table 48. Table 48  
shows the programmable automatically transmitted signals and the triggering mechanisms for each. Table 49  
shows the on-demand commands.  
Table 48. Automatic Enable Commands  
Action  
Trigger  
Enabling Register Bit  
FRM_PR27 bit 0 = 1  
Transmit Remote Frame Alarm Loss of frame alignment (RLFA)  
(RFA)  
Loss of CEPT time slot 16 multiframe FRM_PR27 bit 1 = 1  
alignment (RTS16LMFA)  
Loss of CEPT time slot 0 multiframe  
alignment (RTS0LMFA)  
FRM_PR27 bit 2 = 1  
Detection of the timer (100 ms or  
FRM_PR27 bit 3 = 1  
400 ms) expiration due to loss of CEPT FRM_PR9 bit 7—bit 0 = 0xxxx1x1 or  
multiframe alignment 0xxx1xx1  
Detection of the CEPT RSa6 = 8 (hex) FRM_PR27 bit 4 = 1  
code  
Detection of the CEPT RSa6 = C (hex) FRM_PR27 bit 5 = 1  
code  
Transmit CEPT E Bit = 0  
Transmit AIS to System  
Detection of CEPT CRC-4 error  
RTS0LMFA  
FRM_PR28 bit 3 = 1  
FRM_PR28 bit 4 = 1  
FRM_PR28 bit 5 = 1  
Detection of the timer (100 ms or  
400 ms) expiration due to loss of CEPT FRM_PR9 bit 7—bit 0 = 0xxxx1x1 or  
multiframe alignment  
0xxx1xx1  
RLFA  
FRM_PR19 bit 0 = 1  
FRM_PR19 bit 1 = 1  
Detection of the timer (100 ms or  
400 ms) expiration due to loss of CEPT FRM_PR9 bit 7—bit 0 = 0xxxx1x1 or  
multiframe alignment  
0xxx1xx1  
Transmit CEPT Time Slot 16  
Remote Multiframe Alarm to  
Line  
RTS16LMFA  
FRM_PR41 bit 4 = 1  
Transmit CEPT AIS in Time Slot RTS16LMFA  
16 to System  
FRM_PR44 bit 6 = 1  
FRM_PR19 bit 4 =1  
FRM_PR19 bit 6 =1  
FRM_PR19 bit 7 =1  
Automatic Enabling of DS1 Line Line loopback on/off code  
Loopback On/Off  
Automatic Enabling of ESF FDL ESF line loopback on/off code  
Line Loopback On/Off  
Automatic Enabling of ESF FDL ESF payload loopback on/off code  
Payload Loopback On/Off  
106  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Alarms and Performance Monitoring (continued)  
Automatic and On-Demand Commands (continued)  
Table 49. On-Demand Commands  
Type  
Frame Format  
Action  
Enabling Register Bit  
FRM_PR27 bit 6 = 1  
FRM_PR27 bit 7 = 1  
Transmit Remote Frame Alarm D4 (Japanese) FS bit in frame 12 = 1  
D4 (US)  
DDS  
Bit 2 of all time slots = 0  
Bit 6 in time slot 24 = 0  
ESF  
Pattern of 1111111100000000 in  
the FDL F-bit position  
CEPT  
A bit = 1  
Transmit Time Slot 16 Remote CEPT  
Time slot 16 remote alarm bit = 1 FRM_PR41 bit 5 = 1  
Multiframe Alarm to the Line  
Transmit Data Link AIS  
(Squelch)  
SLC-96, ESF Transmit data link bit = 1  
FRM_PR21 bit 4 = 1  
Transmit Line Test Patterns  
All  
Transmit test patterns to the line  
interface  
See Transmit Line Test  
Patterns—Using Register  
FRM_PR20 section on  
page 102 and Transmit  
Line Test Patterns—Using  
Register FRM_PR69  
section on page 103.  
Transmit System AIS  
All  
Transmits AIS to the system  
FRM_PR19 bit 3 = 1  
FRM_PR44 bit 1 = 1  
Transmit System Signaling AIS T1  
(Squelch)  
Transmit ABCD = 1111 to the  
system  
CEPT  
All  
Transmit AIS in system time slot 16 FRM_PR44 bit 7 = 1  
Receive Signaling Inhibit  
Suspend the updating of the  
receive signaling registers  
FRM_PR44 bit 3 = 1  
Receive Framer Reframe  
Transmit Line Time Slot 16  
All  
Force the receive framer to reframe FRM_PR26 bit 2 = 1  
CEPT  
Transmit AIS in time slot 16 to the FRM_PR41 bit 6 = 1  
line  
Enable Loopback  
All  
All  
Enables system and line loopbacks See Loopback and  
Transmission Modes  
section on page 99.  
Framer Software Reset  
The framer and FDL are placed in FRM_PR26 bit 0 = 1  
the reset state for four RCLK clock  
cycles. The framer parameter  
registers are forced to the default  
value.  
Framer Software Restart  
All  
The framer and FDL are placed in FRM_PR26 bit 1 = 1  
the reset state as long as this bit is  
set to 1. The framer parameter  
registers are not changed from their  
programmed values.  
Agere Systems Inc.  
107  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL)  
Data may be extracted from and inserted into the facility data link in SLC-96, DDS, ESF, and CEPT framing  
formats. In CEPT, any one of the Sa bits can be declared as the facility data link by programming register  
FRM_PR43 bit 0—bit 2. Access to the FDL is made through:  
1. The FDL pins (RFDL, RFDLCK, TFDL, and TFDLCK). Figure 27 shows the timing of these signals.  
2. The 64-byte FIFO of the FDL HDLC block. FDL information passing through the FDL HDLC section may be  
framed in HDLC format or passed through transparently.  
t8  
t8: TFDLCK CYCLE = 125 µs (DDS)  
TFDLCK  
250 µs (ALL OTHER  
MODES)  
t9  
t9  
t9: TFDL TO TFDLCK SETUP/HOLD = 40 ns  
TFDL  
t10  
t10: RFDLCK CYCLE = 125 µs (DDS)  
250 µs (ALL OTHER  
MODES)  
RFDLCK  
RFDL  
t11: RFDLCK TO RFDL DELAY = 40 ns  
t11  
5-3910(F).cr.1  
Figure 43. T7633 Facility Data Link Access Timing of the Transmit and Receive Framer Sections  
In the ESF frame format, automatic assembly and transmission of the performance report message (PRM) as  
defined in both ANSI T1.403-1995 and Telcordia Technologies TR-TSY-000194 Issue 1, 12—87 is managed by  
the receive framer and transmit FDL sections. The ANSI T1.403-1995 bit-oriented data link messages (BOM) can  
be transmitted by the transmit FDL section and recognized and stored by the receive FDL section.  
Receive Facility Data Link Interface  
Summary  
A brief summary of the receive facility data link functions is given below:  
1. Bit-oriented message (BOM) operation. The ANSI T1.403-1995 bit-oriented data link messages are  
recognized and stored in register FDL_SR3. The number of times that an ANSI code must be received for  
detection can be programmed from 1 to 10 by writing to register FDL_PR0 bit 4— bit 7. When a valid ANSI  
code is detected, register FDL_SR0 bit 7 (FRANSI) is set.  
2. HDLC operation. This is the default mode of operation when the FDL receiver is enabled (register FDL_PR1  
bit 2 = 1). The HDLC framer detects the HDLC flags, checks the CRC bytes, and stores the data in the FDL  
receiver FIFO (register FDL_SR4) along with a status of frame (SF) byte.  
3. HDLC operation with performance report messages (PRM). This mode is enabled by setting register  
FDL_PR1 bit 2 and bit 6 to 1. In this case, the receive FDL will store the 13 bytes of the PRM report field in the  
FDL receive FIFO (register FDL_SR4) along with a status of frame (SF) byte.  
4. Transparent operation. Enabling the FDL and setting register FDL_PR9 bit 6 (FTM) to 1 disables the HDLC  
processing. Incoming data link bits are stored in the FDL receive FIFO (register FDL_SR4).  
108  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Receive Facility Data Link Interface (continued)  
5. Transparent operation with pattern match. Enabling the FDL and setting registers FDL_PR9 bit 5  
(FMATCH) and FDL_PR9 bit 6 (FTM) to 1 forces the FDL to start storing data in the FDL receive FIFO (register  
FDL_SR4) only after the programmable match character defined in register FDL_PR8 bit 0—bit 7 has been  
detected. The match character and all subsequent bytes are placed into the FDL receive FIFO.  
The FDL interface to the receive framer is illustrated in Figure 44.  
RECEIVE LINE  
DATA  
LOSS OF FRAME  
RECEIVE FDL  
ALIGNMENT  
DATA  
EXTRACTER  
RECEIVE  
FRAMER  
RFDLCK  
RFDL  
RFDL  
RECEIVE  
FACILITY DATA  
RECEIVE FACILITY  
DATA LINK HDLC  
TRANSPARENT  
RFDLCK  
ANSI T1.403-1995  
BIT-ORIENTED DATA  
LINK MESSAGES  
MONITOR  
RECEIVE FACILITY  
DATA LINK FIFO  
ONE 8-bit REGISTER  
IDENTIFYING THE ESF  
BIT-ORIENTED CODE  
64 8-bit LOCATIONS  
MICROPROCESSOR INTERFACE  
5-4560(F).ar.1  
Figure 44. Block Diagram for the Receive Facility Data Link Interface  
Receive ANSI T1.403 Bit-Oriented Messages (BOM)  
1. The receive FDL monitor will detect any of the ANSI T1.403 ESF bit-oriented messages (BOMs) and generate  
an interrupt, enabled by register FDL_PR6 bit 7, upon detection. Register FDL_SR0 bit 7 (FRANSI) is set to 1  
upon detection of a valid BOM and then cleared when read.  
2. The received ESF FDL bit-oriented messages are received in the form 111111110X0X1X2X3X4X50 (the left-most  
bit is received first). The bits designated as X are the defined ANSI ESF FDL code bits. These code bits are  
written into the received ANSI FDL status register FDL_SR3 when the entire code is received.  
3. The minimum number of times a valid code must be received before it is reported can be programmed from 1 to  
10 using register FDL_PR0 bit 4—bit 7.  
Agere Systems Inc.  
109  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Receive Facility Data Link Interface (continued)  
The received ANSI FDL status byte, register FDL_SR3, has the following format.  
Table 50. Receive ANSI Code  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
X5  
X4  
X3  
X2  
X1  
X0  
Receive ANSI Performance Report Messages (PRM)  
As defined in ANSI T1.403, the performance report messages consist of 15 bytes, starting and ending with an  
HDLC flag. The receive framer status information consists of four pairs of octets, as shown in Table 51. Upon  
detection of the PRM message, the receive FDL extracts the 13 bytes of the PRM report field and stores it in the  
receive FDL FIFO along with the status of frame byte.  
Table 51. Performance Report Message Structure*  
Octet  
PRM B7 PRM B6 PRM B5 PRM B4 PRM B3 PRM B2 PRM B1 PRM B0  
Number  
1
Flag  
2
SAPI  
C/R  
EA  
EA  
3
TEI  
Control  
U1  
4
5
G3  
FE  
G3  
FE  
G3  
FE  
G3  
FE  
LV  
SE  
LV  
SE  
LV  
SE  
LV  
SE  
G4  
LB  
G4  
LB  
G4  
LB  
G4  
LB  
U2  
R
G5  
G2  
G5  
G2  
G5  
G2  
G5  
G2  
SL  
Nm  
SL  
G6  
Nl  
6
G1  
U1  
G1  
U1  
G1  
U1  
G1  
7
8
U2  
R
G6  
Nl  
Nm  
SL  
9
U2  
R
G6  
Nl  
10  
Nm  
SL  
11  
U2  
R
G6  
Nl  
12  
Nm  
13—14  
15  
FCS  
Flag  
* The rightmost bit (bit 1) is transmitted first for all fields except for the 2 bytes of the FCS that are transmitted leftmost bit (bit 8) first.  
The definition of each PRM field is shown in Table 52, and octet content is shown in Table 53.  
110  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Receive Facility Data Link Interface (continued)  
Table 52. FDL Performance Report Message Field Definition  
PRM Field  
Definition  
G1 = 1  
G2 = 1  
G3 = 1  
G4 = 1  
G5 = 1  
G6 = 1  
SE = 1  
FE =1  
CRC Error Event = 1  
1 < CRC Error Event 5  
5 < CRC Error Event 10  
10 < CRC Error Event 100  
100 < CRC Error Event 319  
CRC Error Event 320  
Severely Errored Framing Event 1 (FE will = 0)  
Frame Synchronization Bit Error Event 1 (SE will = 0)  
Line Code Violation Event 1  
Slip Event 1  
LV = 1  
SL = 1  
LB = 1  
U1, U2 = 0  
R = 0  
Payload Loopback Activated  
Reserved  
Reserved (default value = 0)  
One-Second Report Modulo 4 Counter  
Nm, Nl = 00,  
01, 10, 11  
Table 53. Octet Contents and Definition  
Octet  
Octet  
Definition  
Number  
Contents  
1
2
01111110  
Opening LAPD Flag  
00111000  
00111010  
From CI: SAPI = 14, C/R = 0, EA = 0  
From Carrier: SAPI = 14, C/R = 1, EA = 0  
3
4
00000001  
00000011  
Variable  
Variable  
Variable  
Variable  
Variable  
01111110  
TEI = 0, EA = 1  
Unacknowledged Frame  
5, 6  
7, 8  
9, 10  
11, 12  
13, 14  
15  
Data for Latest Second (T)  
Data for Previous Second (T – 1)  
Data for Earlier Second (T – 2)  
Data for Earlier Second (T – 3)  
CRC-16 Frame Check Sequence  
Closing LAPD Flag  
Agere Systems Inc.  
111  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Receive Facility Data Link Interface (continued)  
Receive HDLC Mode  
This is the default mode of the FDL. The receive FDL receives serial data from the receive framer, identifies HDLC  
frames, reconstructs data bytes, provides bit destuffing as necessary, and loads parallel data in the receive FIFO.  
The receive queue manager forms a status of frame (SF) byte for each HDLC frame and stores the SF byte in the  
receive FDL FIFO (register FDL_SR4) after the last data byte of the associated frame. HDLC frames consisting of  
n bytes will have n + 1 bytes stored in the receive FIFO. The frame check sequence bytes (CRC) of the received  
HDLC frame are not stored in the receive FIFO. When receiving ANSI PRM frames, the frame check sequence  
bytes are stored in the receive FIFO.  
The SF byte has the following format.  
Table 54. Receive Status of Frame Byte  
RSF B7  
RSF B6  
RSF B5  
RSF B4  
RSF B3  
RSF B2  
RSF B1  
RSF B0  
BAD CRC  
ABORT  
RFIFO  
OVERRUN  
BAD BYTE  
COUNT  
0
0
0
0
Bit 7 of the SF status byte is the CRC status bit. A 1 indicates that an incorrect CRC was detected. A 0 indicates  
the CRC is correct. Bit 6 of the SF status byte is the abort status. A 1 indicates the frame associated with this status  
byte was aborted (i.e., the abort sequence was detected after an opening flag and before a subsequent closing  
flag). An abort can also cause bits 7 and/or 4 to be set to 1. An abort is not reported when a flag is followed by  
seven 1s. Bit 5 is the FIFO overrun bit. A 1 indicates that a receive FIFO overrun occurred (the 64-byte FIFO size  
was exceeded). Bit 4 is the FIFO bad byte count that indicates whether or not the bit count received was a multiple  
of eight (i.e., an integer number of bytes). A 1 indicates that the bit count received after 0-bit deletion was not a  
multiple of eight, and a 0 indicates that the bit count was a multiple of eight. When a non-byte-aligned frame is  
received, all bits received are present in the receive FIFO. The byte before the SF status byte contains less than  
eight valid data bits. The HDLC block provides no indication of how many of the bits in the byte are valid. User  
application programming controls processing of non-byte-aligned frames. Bit 3—bit 0 of the SF status byte are not  
used and are set to 0. A good frame is implied when the SF status byte is 00 (hex).  
Receive FDL FIFO  
Whenever an SF byte is present in the receive FIFO, the end of frame registers FDL_SR0 bit 4 (FREOF) and  
FDL_SR2 bit 7 (FEOF) bits are set. The receiver queue status (register FDL_SR2 bit 0—bit 6) bits report the  
number of bytes up to and including the first SF byte. If no SF byte is present in the receive FIFO, the count directly  
reflects the number of data bytes available to be read. Depending on the FDL frame size, it is possible for multiple  
frames to be present in the receive FIFO. The receive fill level indicator register FDL_PR6 bit 0—bit 5 (FRIL) can  
be programmed to tailor the service time interval to the system. The receive FIFO full register FDL_SR0 bit 3 (FRF)  
interrupt is set in the interrupt status register when the receive FIFO reaches the preprogrammed full position. An  
FREOF interrupt is also issued when the receiver has identified the end of frame and has written the SF byte for  
that frame. An FDL overrun interrupt register FDL_SR0 bit 5 (FROVERUN) is generated when the receiver needs  
to write either status or data to the receive FIFO while the receive FIFO is full. An overrun condition will cause the  
last byte of the receive FIFO to be overwritten with an SF byte indicating the overrun status. A receive idle register  
FDL_SR0 bit 6 (FRIDL) interrupt is issued whenever 15 or more continuous 1s have been detected.  
112  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Receive Facility Data Link Interface (continued)  
The receive queue status bits, register FDL_SR2 bit 0—bit 6 (FRQS), are updated as bytes are loaded into the  
receive FIFO. The SF status byte is included in the byte count. When the first SF status byte is placed in the FIFO,  
register FDL_SR0 bit 4 (FREOF) is set to 1, and the status freezes until the FIFO is read. As bytes are read from  
the FIFO, the queue status decrements until it reads 1. The byte read when register FDL_SR2 bit 0—bit 6 =  
0000001 and the FREOF bit is 1 is the SF status byte describing the error status of the frame just read. Once the  
first SF status byte is read from the FIFO, the FIFO status is updated to report the number of bytes to the next SF  
status byte, if any, or the number of additional bytes present. When FREOF is 0, no SF status byte is currently  
present in the FIFO, and the FRQS bits report the number of bytes present. As bytes are read from the FIFO, the  
queue status decrements with each read until it reads 0 when the FIFO is totally empty. The FREOF bit is also 0  
when the FIFO is completely empty. Thus, the FRQS and FREOF bit provide a mechanism to recognize the end of  
1 frame and the beginning of another. Reading the FDL receiver status register does not affect the FIFO buffers. In  
the event of a receiver overrun, an SF status byte is written to the receive FIFO. Multiple SF status bytes can be  
present in the FIFO. The FRQS reports only the number of bytes to the first SF status byte.  
To allow users to tailor receiver FIFO service intervals to their systems, the receiver interrupt level bits in register  
FDL_PR6 bit 0—bit 5 (FRIL) are provided. These bits are coded in binary and determine when the receiver full  
interrupt, register FDL_SR0 bit 3 (FRF), is asserted. The interrupt pin transition can be masked by setting register  
FDL_PR2 bit 3 (FRFIE) to 0. The value programmed in the FRIL bits equals the total number of bytes necessary to  
be present in the FIFO to trigger an FRF interrupt. The FRF interrupt alone is not sufficient to determine the  
number of bytes to read, since some of the bytes may be SF status bytes. The FRQS bits and FREOF bit allow the  
user to determine the number of bytes to read. The FREOF interrupt can be the only interrupt for the final frame of  
a group of frames, since the number of bytes received to the end of the frame cannot be sufficient to trigger an  
FRF interrupt.  
Programming Note: Since the receiver writing to the receive FIFO and the host reading from the receive FIFO are  
asynchronous events, it is possible for a host read to put the number of bytes in the receive FIFO just below the  
programmed FRIL level and a receiver write to put it back above the FRIL level. This causes a new FRF interrupt,  
and has the potential to cause software problems. It is recommended that during service of the FRF interrupt, the  
FRF interrupt be masked FRFIE = 0, and the interrupt register be read at the end of the service routine, discarding  
any FRF interrupt seen, before unmasking the FRF interrupt.  
Receiver Overrun  
A receiver overrun occurs if the 64-byte limit of the receiver FIFO is exceeded, i.e., data has been received faster  
than it has been read out of the receive FIFO. Upon overrun, an SF status byte with the overrun bit (bit 5) set to 1  
replaces the last byte in the FIFO. The SF status byte can have other error conditions present. For example, it is  
unlikely the CRC is correct. Thus, care should be taken to prioritize the possible frame errors in the software  
service routine. The last byte in the FIFO is overwritten with the SF status byte regardless of the type of byte (data  
or SF status) being overwritten. The overrun condition is reported in register FDL_SR0 bit 5 and causes the  
interrupt pin to be asserted if it is not masked (register FDL_PR2 bit 5 (FROVIE)). Data is ignored until the  
condition is cleared and a new frame begins. The overrun condition is cleared by reading register FDL_SR0 bit 5  
and reading at least 1 byte from the receive FIFO. Because multiple frames can be present in the FIFO, good  
frames as well as the overrun frame can be present. The host can determine the overrun frame by looking at the  
SF status byte.  
Agere Systems Inc.  
113  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Transmit Facility Data Link Interface  
The FDL interface of the transmit framer is shown in Figure 45, indicating the priority of the FDL sources.  
The remote frame alarm, enabled using register FRM_PR27, is given the highest transmission priority by the  
transmit framer.  
The ANSI T1.403-1995 bit-oriented data link message transmission is given priority over performance report  
messages and the automatic transmission of the performance report messages is given priority over FDL HDLC  
transmission. Idle code is generated by the FDL unit when no other transmission is enabled.  
The FDL transmitter is enabled by setting register FDL_PR1 bit 3 to 1.  
MICROPROCESSOR INTERFACE  
RECEIVE  
TRANSMIT  
FRAMER  
FDL FIFO  
TRANSPARENT  
TRANSMIT  
TRANSMIT FDL  
PERFORMANCE  
REPORT MESSAGE  
HDLC FRAMER  
TRANSMIT ANSI  
T1.403 FDL BIT  
ASSEMBLER  
CODE  
GENERATOR  
FDL  
IDLE CODE  
GENERATOR  
TFDL  
TFDLCK  
FDL  
YELLOW  
ALARM  
TRANSMIT FDL  
CLOCK GENERATOR  
TFDLCK  
TRANSMIT  
FRAME  
ASSEMBLER  
5-4561(F).a  
Figure 45. Block Diagram for the Transmit Facility Data Link Interface  
Transmit ANSI T1.403 Bit-Oriented Messages (BOM)  
When the ANSI BOM mode is enabled by setting register FDL_PR10 bit 7 to 1, the transmit FDL can send any of  
the ANSI T1.403 ESF bit-oriented messages automatically through the FDL bit in the frame.  
The transmit ESF FDL bit-oriented messages of the form 111111110X0X1X2X3X4X50 are taken from the transmit  
ANSI FDL parameter register FDL_PR10 bit 0—bit 5. The ESF FDL bit-oriented messages will be repeated while  
register FDL_PR10 bit 7 (FTANSI) is set to 1.  
114  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Transmit Facility Data Link Interface (continued)  
Transmit ANSI Performance Report Messages (PRM)  
When the ANSI PRM mode is enabled by setting register FDL_PR1 bit 7 to 1, the transmit FDL assembles and  
transmits the ANSI performance report message once every second.  
After assembling the ANSI PRM message, the receive framer stores the current second of the message in  
registers FRM_SR62 and FRM_SR63 and transfers the data to the FDL transmit FIFO. After accumulating three  
seconds (8 bytes) of the message, the FDL transmit block appends the header and the trailer (including the  
opening and closing flags) to the PRM messages and transmits it to the framer for transmission to the line.  
Table 51—Table 53 show the complete format of the PRM HDLC packet.  
HDLC Operation  
HDLC operation is the default mode of operation. The transmitter accepts parallel data from the transmit FIFO,  
converts it to a serial bit stream, provides bit stuffing as necessary, adds the CRC-16 and the opening and closing  
flags, and sends the framed serial bit stream to the transmit framer. HDLC frames on the serial link have the  
following format.  
Table 55. HDLC Frame Format  
Frame Check  
Opening Flag  
User Data Field  
Closing Flag  
Sequence (CRC)  
01111110  
8 bits  
16 bits  
01111110  
All bits between the opening flag and the CRC are considered user data bits. User data bits such as the address,  
control, and information fields for LAPB or LAPD frames are fetched from the transmit FIFO for transmission. The  
16 bits preceding the closing flag are the frame check sequence, cyclic redundancy check (CRC), bits.  
Zero-Bit Insertion/Deletion (Bit Stuffing/Destuffing)  
The HDLC protocol recognizes three special bit patterns: flags, aborts, and idles. These patterns have the  
common characteristic of containing at least six consecutive 1s. A user data byte can contain one of these special  
patterns. Transmitter zero-bit stuffing is done on user data and CRC fields of the frame to avoid transmitting one of  
these special patterns. Whenever five 1s occur between flags, a 0 bit is automatically inserted after the fifth 1, prior  
to transmission of the next bit. On the receive side, if five successive 1s are detected followed by a 0, the 0 is  
assumed to have been inserted and is deleted (bit destuffing).  
Agere Systems Inc.  
115  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
HDLC Operation (continued)  
Flags1  
All flags have the bit pattern 01111110 and are used for frame synchronization. The FDL HDLC block automatically  
sends two flags between frames. If the chip-configuration register FDL_PR0 bit 1 (FLAGS) is cleared to 0, the 1s  
idle byte (11111111) is sent between frames if no data is present in the FIFO. If FLAGS is set to 1, the FDL HDLC  
block sends continuous flags when the transmit FIFO is empty. The FDL HDLC does not transmit consecutive  
frames with a shared flag; therefore, two successive flags will not share the intermediate 0.  
An opening flag is generated at the beginning of a frame (indicated by the presence of data in the transmit FIFO  
and the transmitter enable register FDL_PR1 bit 3 = 1). Data is transmitted per the HDLC protocol until a byte is  
read from the FIFO while register FDL_PR3 bit 7 (FTFC) set to 1. The FDL HDLC block follows this last user data  
byte with the CRC sequence and a closing flag.  
The receiver recognizes the 01111110 pattern as a flag. Two successive flags may or may not share the  
intermediate 0 bit and are identified as two flags (i.e., both 011111101111110 and 0111111001111110 are recognized  
as flags by the FDL HDLC block). When the second flag is identified, it is treated as the closing flag. As mentioned  
above, a flag sequence in the user data or CRC bits is prevented by zero-bit insertion and deletion. The HDLC  
receiver recognizes a single flag between frames as both a closing and opening flag.  
1.Regardless of the time-fill byte used, there always is an opening and closing flag with each frame. Back-to-back frames are separated by two  
flags.  
Aborts  
An abort is indicated by the bit pattern of the sequence 01111111. A frame can be aborted by writing a 1 to register  
FDL_PR3 bit 6 (FTABT). This causes the last byte written to the transmit FIFO to be replaced with the abort  
sequence upon transmission. Once a byte is tagged by a write to FTABT, it cannot be cleared by subsequent writes  
to register FDL_PR3. FTABT has higher priority than FDL transmit frame complete (FTFC), but FTABT and FTFC  
should never be set to 1 simultaneously since this causes the transmitter to enter an invalid state requiring a  
transmitter reset to clear. A frame should not be aborted in the very first byte following the opening flag. An easy  
way to avoid this situation is to first write a dummy byte into the queue and then write the abort command to the  
queue.  
When receiving a frame, the receiver recognizes the abort sequence whenever it receives a 0 followed by seven  
consecutive 1s. The receive FDL unit will abort a frame whenever the receive framer detects a loss of frame  
alignment. This results in the abort bit, and possibly the bad byte count bit and/or bad CRC bits, being set in the  
status of frame status byte (see Table 54, Receive Status of Frame Byte on page 112) which is appended to the  
receive data queue. All subsequent bytes are ignored until a valid opening flag is received.  
Idles  
In accordance with the HDLC protocol, the HDLC block recognizes 15 or more contiguous received 1s as idle.  
When the HDLC block receives 15 contiguous 1s, the receiver idle bit register FDL_SR0 bit 6 (RIDL) is set.  
For transmission, the 1s idle byte is defined as the binary pattern 11111111 (FF (hex)). If the FLAGS control bit in  
register FDL_PR0 bit 1 is 0, the 1s idle byte is sent as the time-fill byte between frames. A time-fill byte is sent  
when the transmit FIFO is empty and the transmitter has completed transmission of all previous frames. Frames  
are sent back-to-back otherwise.  
116  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
HDLC Operation (continued)  
CRC-16  
For given user data bits, 16 additional bits that constitute an error-detecting code (CRC-16) are added by the  
transmitter. As called for in the HDLC protocol, the frame check sequence bits are transmitted most significant bit  
first and are bit stuffed. The cyclic redundancy check (or frame check sequence) is calculated as a function of the  
transmitted bits by using the ITU-T standard polynomial:  
x
16 + x 12 + x 5 + 1  
The transmitter can be instructed to transmit a corrupted CRC by setting register FDL_PR2 bit 7 (FTBCRC) to 1.  
As long as the FTBCRC bit is set, the CRC is corrupted for each frame transmitted by logically flipping the least  
significant bit of the transmitted CRC.  
The receiver performs the same calculation on the received bits after destuffing and compares the results to the  
received CRC-16 bits. An error indication occurs if, and only if, there is a mismatch.  
Transmit FDL FIFO  
Transmit FDL data is loaded into the 64-byte transmit FIFO via the transmit FDL data register, FDL_PR4. The  
transmit FDL status register indicates how many additional bytes can be added to the transmit FIFO. The transmit  
FDL interrupt trigger level register FDL_PR3 bit 0—bit 5 (FTIL) can be programmed to tailor service time intervals  
to the system environment. The transmitter empty interrupt bit is set in the FDL interrupt status register FDL_SR0  
bit 1 (FTEM) when the transmit FIFO has sufficient empty space to add the number of bytes specified in register  
FDL_PR3 bit 0—bit 5. There is no interrupt indicated for a transmitter overrun that is writing more data than empty  
spaces exist. Overrunning the transmitter causes the last valid data byte written to be repeatedly overwritten,  
resulting in missing data in the frame.  
Data associated with multiple frames can be written to the transmit FIFO by the controlling microprocessor.  
However, all frames must be explicitly tagged with a transmit frame complete, register FDL_PR3 bit 7 (FTFC), or a  
transmit abort, register FDL_PR3 bit 6 (FTABT). The FTFC is tagged onto the last byte of a frame written into the  
transmitter FIFO and instructs the transmitter to end the frame and attach the CRC and closing flag following the  
tagged byte. Once written, the FTFC cannot be changed by another write to register FDL_PR3. If FTFC is not  
written before the last data byte is read out for transmission, an underrun occurs (FDL_SR0 bit 2). When the  
transmitter has completed a frame, with a closing flag or an abort sequence, register FDL_SR0 bit 0 (FTDONE) is  
set to 1. An interrupt is generated if FDL_PR2 bit 0 (FTDIE) is set to 1.  
Sending 1-Byte Frames  
Sending 1-byte frames with an empty transmit FIFO is not recommended. If the FIFO is empty, writing two data  
bytes to the FIFO before setting FTFC provides a minimum of eight TFDLCK periods to set FTFC. When 1 byte is  
written to the FIFO, FTFC must be written within 1 TFDLCK period to guarantee that it is effective. Thus, 1-byte  
frames are subject to underrun aborts. One-byte frames cannot be aborted with FTABT. Placing the transmitter in  
1s-idle mode, register FDL_PR0 bit 1 (FLAGS) = 0, lessens the frequency of underruns. If the transmit FIFO is not  
empty, then 1-byte frames present no problems.  
Transmitter Underrun  
After writing a byte to the transmit queue, the user has eight TFDLCK cycles in which to write the next byte before  
a transmitter underrun occurs. An underrun occurs when the transmitter has finished transmitting all the bytes in  
the queue, but the frame has not yet been closed by setting FTFC. When a transmitter underrun occurs, the abort  
sequence is sent at the end of the last valid byte transmitted. A FTDONE interrupt is generated, and the transmitter  
reports an underrun abort until the interrupt status register is read.  
Agere Systems Inc.  
117  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
HDLC Operation (continued)  
Using the Transmitter Status and Fill Level  
The transmitter-interrupt level bits, register FDL_PR3 bit 0—bit 5, allow the user to instruct the FDL HDLC block to  
interrupt the host processor whenever the transmitter has a predetermined number of empty locations. The  
number of locations selected determines the time between transmitter empty, register FRM_SR0 bit 1 (FTEM),  
interrupts. The transmitter status bits, register FDL_SR1, report the number of empty locations in the FDL  
transmitter FIFO. The transmitter empty dynamic bit, register FDL_SR1 bit 7 (FTED), like the FTEM interrupt bit, is  
set to 1 when the number of empty locations is less than or equal to the programmed empty level. FTED returns to  
0 when the transmitter is filled to above the programmed empty level. Polled interrupt systems can use FTED to  
determine when they can write to the FDL transmit FIFO.  
Transparent Mode  
The FDL HDLC block can be programmed to operate in the transparent mode by setting register FDL_PR9 bit 6  
(FTRANS) to 1. In the transparent mode of operation, no HDLC processing is performed on user data. The  
transparent mode can be exited at any time by setting FDL_PR9 bit 6 (FTRANS) to 0. It is recommended that the  
transmitter be disabled when changing in and out of transparent mode. The transmitter should be reset by setting  
FDL_PR1 bit 5 (FTR) to 1 whenever the mode is changed.  
In the transmit direction, the FDL HDLC takes data from the transmit FIFO and transmits that data exactly bit-for-bit  
on the TFDL interface. Transmit data is octet-aligned to the first TFDLCK after the transmitter has been enabled.  
The bits are transmitted least significant bit first. When there is no data in the transmit FIFO, the FDL HDLC either  
transmits all 1s, or transmits the programmed HDLC transmitter idle character (register FDL_PR5) if register  
FDL_PR9 bit 6 (FMATCH) is set to 1. To cause the transmit idle character to be sent first, the character must be  
programmed before the transmitter is enabled.  
The transmitter empty interrupt, register FDL_SR0 bit 1 (FTEM), acts as in the HDLC mode. The transmitter-done  
interrupt, register FDL_SR0 bit 0 (FTDONE), is used to report an empty FDL transmit FIFO. The FTDONE interrupt  
thus provides a way to determine transmission end. Register FDL_SR0 bit 2 (FTUNDABT) interrupt is not active in  
the transparent mode.  
In the receive direction, the FDL HDLC block loads received data from the RFDL interface directly into the receive  
FIFO bit-for-bit. The data is assumed to be least significant bit first. If FMATCH register FDL_PR9 bit 6 is 0, the  
receiver begins loading data into the receive FIFO beginning with the first RFDLCK detected after the receiver has  
been enabled. If the FMATCH bit is set to 1, the receiver does not begin loading data into the FIFO until the  
receiver match character has been detected. The search for the receiver match character is in a sliding window  
fashion if register FDL_PR9 bit 4 (FALOCT) bit is 0 (align to octet), or only on octet boundaries if FALOCT is set to  
1. The octet boundary is aligned relative to the first RFDLCK after the receiver has been enabled. The matched  
character and all subsequent bytes are placed in the receive FIFO. An FDL receiver reset, register FDL_PR1 bit 4  
(FRR) = 1, causes the receiver to realign to the match character if FMATCH is set to 1.  
118  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Transparent Mode (continued)  
The receiver full (FRF) and receiver overrun (FROVERUN) interrupts in register FDL_SR0 act as in the HDLC  
mode. The received end of frame (FREOF) and receiver idle (FRIDL) interrupts are not used in the transparent  
mode. The match status (FMSTAT) bit is set to 1 when the receiver match character is first recognized. If the  
FMATCH bit is 0, the FMSTAT (FDL_PR9 bit 3) bit is set to 1 automatically when the first bit is received, and the  
octet offset status bits (FDL_PR9 bit 0—bit 2) read 000. If the FMATCH bit is programmed to 1, the FMSTAT bit is  
set to 1 upon recognition of the first receiver match character, and the octet offset status bits indicate the offset  
relative to the octet boundary at which the receiver match character was recognized. The octet offset status bits  
have no meaning until the FMSTAT bit is set to 1. An octet offset of 111 indicates byte alignment.  
An interrupt for recognition of the match character can be generated by setting the FRIL level to 1. Since the  
matched character is the first byte written to the FIFO, the FRF interrupt occurs with the writing of the match  
character to the receive FIFO.  
Programming Note: The match bit (FMATCH) affects both the transmitter and the receiver. Care should be taken  
to correctly program both the transmit idle character and the receive match character before setting FMATCH. If  
the transmit idle character is programmed to FF (hex), the FMATCH bit appears to affect only the receiver.  
The operation of the receiver in transparent mode is summarized in Table 56.  
Table 56. Receiver Operation in Transparent Mode  
FALOCT  
FMATCH  
Receiver Operation  
X
0
Serial-to-parallel conversion begins with first RFDLCK after FRE, register  
FDL_PR1 bit 2, is set. Data loaded to receive FIFO immediately.  
0
1
1
1
Match user-defined character using sliding window. Byte aligns once character is  
recognized. No data to receive FIFO until match is detected.  
Match user-defined character, but only on octet boundary. Boundary based on  
first RFDLCK after FRE, register FDL_PR1 bit 2, set. No data to receive FIFO  
until match is detected.  
Agere Systems Inc.  
119  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Diagnostic Modes  
Loopbacks  
The serial link interface can operate in two diagnostic loopback modes: (1) local loopback and (2) remote loopback.  
The local loopback mode is selected when register FDL_PR1 bit 1 (FLLB) is set to 1. The remote loopback is  
selected when register FDL_PR1 bit 0 (FRLB) is set to 1. For normal traffic, i.e., to operate the transmitter and  
receiver independently, the FLLP bit and the FRLB bits should both be cleared to 0. Local and remote loopbacks  
cannot be enabled simultaneously.  
In the local loopback mode:  
1. TFDLCK clocks both the transmitter and the receiver.  
2. The transmitter and receiver must both be enabled.  
3. The transmitter output is internally connected to the receiver input.  
4. The TFDL is active.  
5. The RFDL input is ignored.  
6. The communication between the transmit and receive FIFO buffers and the microprocessor continues normally.  
XMIT HDLC FDL BLOCK  
TFDL  
FDL XMIT  
XMIT HDLC  
XMIT FIFO  
INTERFACE  
TFDLCK  
RFDLCK  
FDL RCVR  
RCVR FIFO  
RCVR HDLC  
INTERFACE  
RFDL  
RCVR HDLC FDL BLOCK  
5-4562(F)r.2  
Figure 46. Local Loopback Mode  
120  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Facility Data Link (FDL) (continued)  
Diagnostic Modes (continued)  
In the remote loopback mode:  
1. Transmitted data is retimed with a maximum delay of 2 bits.  
2. Received data is retransmitted on the TFDL.  
3. The transmitter should be disabled. The receiver can be disabled or, if desired, enabled. Received data is sent  
as usual to the receive FIFO if the receiver is enabled.  
XMIT HDLC FDL BLOCK  
TFDL  
FDL XMIT  
INTERFACE  
XMIT FIFO  
XMIT HDLC  
TFDLCK  
RFDLCK  
FDL RCVR  
INTERFACE  
RCVR FIFO  
RCVR HDLC  
RFDL  
RCVR HDLC FDL BLOCK  
5-4563(F)r.1  
Figure 47. Remote Loopback Mode  
Agere Systems Inc.  
121  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Phase-Lock Loop Circuit  
The T7633 allows for independent transmit path and receive path clocking. The device provides outputs to control  
variable clock oscillators on both the transmit and receive paths. As such, the system may have both the transmit  
and receive paths phase-locked to two autonomous clock sources.  
The block diagram of the T7633 phase detector circuitry is shown in Figure 48 on page 123. The T7633 uses elas-  
tic store buffers (two frames) to accommodate the transfer of data from the system interface clock rate of  
2.048 Mbits/s to the line interface clock rate of either 1.544 Mbits/s or 2.048 Mbits/s.The transmit line side of the  
T7633 does not have any mechanism to monitor data overruns or underruns (slips) in its elastic store buffer. This  
interface relies on the requirement that the PLLCK clock signal (variable) is phase-locked to the RCHICK clock sig-  
nal (reference). When this requirement is not met, uncontrolled slips may occur in the transmit elastic store buffer  
that would result in corrupting data and no indication will be given. Typically, a variable clock oscillator (VCXO) is  
used to drive the PLLCK signal. The T7633 provides a phase error signal (PLLCK-EPLL) that can be used to con-  
trol the VCXO. The PLLCK-EPLL signal is generated by monitoring the divided-down PLLCK (DIV-PLLCK) and  
RCHICK (DIV-RCHICK) signals. The DIV-RCHICK signal is used as the reference to determine the phase differ-  
ence between DIV-RCHICK and DIV-PLLCK. While DIV-RCHICK and DIVPLLCK are phase-locked, the PLLCK-  
EPLL signal is in a high-impedance state. A phase difference between DIV-RCHICK and DIV-PLLCK drives  
PLLCK-EPLL to either 5 V or 0 V. An RC circuit (typically, R = 1 kand C = 0.1 µF) is used to filter these PLLCK-  
EPLL pulses to control the VCXO.  
The system can force TCHICK to be phase-locked to RLCK by using RLCK as a reference signal to control a  
VCXO that is sourcing the TCHICK signal. The T7633 uses the receive line signal (RLCK) as the reference and the  
TCHICK signal as the variable signal. The T7633 provides a phase error signal (TCHICK-EPLL) that can be used  
to control the VCXO generating TCHICK. The TCHICK-EPLL signal is generated by monitoring the divided-down  
TCHICK signal (DIV-TCHICK) and RLCK (DIV-RLCK) signals. The DIV-RLCK signal is used as the reference to  
determine the phase difference between DIV-TCHICK and DIV-RLCK. While DIV-RLCK and DIV-TCHICK are  
phase-locked, the TCHICK-EPLL signal is in a high-impedance state. A phase difference between DIV-RLCK and  
DIV-TCHICK drives TCHICK-EPLL to either 5 V or 0 V. An RC circuit (typically, R = 1 kand C = 0.1 µF) is used to  
filter these TCHICK-EPLL pulses to control the VCXO. In this mode, the T7633 can be programmed to act as a  
master timing source and is capable of generating the system frame synchronization signal through the TCHIFS  
pin by setting FRM_PR45 bit 4 to 1.  
122  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Phase-Lock Loop Circuit (continued)  
EXTERNAL CIRCUIT  
VOLTAGE-  
CONTROLLED  
CRYSTAL  
OSCILLATOR  
(VCXO)  
PLLCK  
DIV-PLLCK  
PLLCK-EPLL  
DIV-RCHICK  
RCHICK  
DIVIDER  
CIRCUIT  
PLLCK  
DIVIDER  
CIRCUIT  
DIGITAL  
PHASE  
DETECTOR  
INTERNAL_XLCK  
INTERNAL_RCHICK  
RCHICK  
READ ADDRESS  
TRANSMIT  
2-FRAME  
ELASTIC STORE  
BUFFER  
RECEIVE  
CONCENTRATION  
HIGHWAY  
TLCK  
WRITE ADDRESS  
SYSTEM DATA  
TRANSMIT  
RCHIFS  
FRAMER  
INTERFACE  
RCHIDATA  
FACILITY DATA  
TPD, TND  
BUFFER OVERRUN  
SLIP  
BUFFER UNDERRUN  
MONITOR  
WRITE ADDRESS  
FACILITY DATA  
READ ADDRESS  
SYSTEM DATA  
TCHIDATA  
RPD, RND  
RLCK  
RECEIVE  
2-FRAME  
ELASTIC STORE  
BUFFER  
TRANSMIT  
CONCENTRATION  
HIGHWAY  
RECEIVE  
FRAMER  
TCHIFS  
TCHICK  
INTERFACE  
INTERNAL_TCHICK  
INTERNAL_RLCK  
TCHICK  
DIVIDER  
CIRCUIT  
RLCK  
DIVIDER  
CIRCUIT  
DIGITAL  
PHASE  
DETECTOR  
DIV-TCHICK  
DIV-RLCK  
TCHICK_EPLL  
VOLTAGE-  
CONTROLLED  
CRYSTAL  
OSCILLATOR  
(VCXO)  
EXTERNAL CIRCUIT  
5-5268(F)r.2  
Figure 48. T7633 Phase Detector Circuitry  
Agere Systems Inc.  
123  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer-System (CHI) Interface  
DS1 Modes  
The DS1 framing formats require rate adaptation from the 1.544 Mbits/s line interface bit stream to the system  
interface which functions at multiples of a 2.048 Mbits/s bit stream. The rate adaptation results in the need for eight  
stuffed time slots on the system interface since there are only 24 DS1 (1.544 Mbits/s) payload time slots while  
there are 32 system (2.048 Mbits/s) time slots. Placement of the stuffed time slots is defined by register  
FRM_PR43 bit 0—bit 2.  
CEPT Modes  
The framer maps the line time slots into the corresponding system time slot one-to-one. Framing time slot 0, the  
FAS and NFAS bytes, are placed in system time slot 0.  
Receive Elastic Store  
The receive interface between the framer and the system (CHI) includes a 2-frame elastic store buffer to enable  
rate adaptation. The receive line elastic store buffer contains circuitry that monitors the read and write pointers for  
potential data overrun and underrun (slips) conditions. Whenever this slip circuitry determines that a slip may occur  
in the receive elastic store buffer, it will adjust the read pointer such that a controlled slip is performed. The con-  
trolled slip is implemented by dropping or repeating a complete frame at the frame boundaries. The occurrence of  
controlled slips in the receive elastic store are indicated in the status register FRM_SR3 bit 6 and bit 7.  
Transmit Elastic Store  
The transmit interface between the framer and the system (CHI) includes a 2-frame elastic store buffer to enable  
rate adaptation. The line transmit clock applied to PLLCK (pins 7/31) must be phase-locked to RCHICK. No indica-  
tion of a slip in the transmit elastic store is given.  
124  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI)  
Each framer has a dual, high-speed, serial interface to the system known as the concentration highway interface  
(CHI). This flexible bus architecture allows the user to directly interface to other Agere components which use this  
interface, as well as to Mitel® and AMD® TDM highway interfaces, with no glue logic. Configured via the highway  
control registers FRM_PR45 through FRM_PR66, this interface can be set up in a number of different configura-  
tions.  
The following is a list of the CHI features:  
1. Agere standard interface for communication devices.  
2. Two pairs of transmit and receive paths to carry data in 8-bit time slots.  
3. Programmable definition of highways through offset and clock-edge options which are independent for transmit  
and receive directions.  
4. Programmable idle code substitution of received time slots.  
5. Programmable 3-state control of each transmit time slot.  
6. Independent transmit and receive framing signals to synchronize each direction of data flow.  
7. An 8 kHz frame synchronization signal internally generated from the received line clock.  
8. Compatible with Mitel and AMD PCM highways.  
Supported is the optional configuration of the CHI which presents the signaling information along with the data in  
any framing modes when the device is programmed for the associated signaling mode (ASM). This mode is dis-  
cussed in the signaling section.  
Data can be transmitted or received on either one of two interface ports, called CHIDATA and CHIDATAB. The  
user-supplied clocks (RCHICLK and TCHICLK) control the timing on the transmit or receive paths. Individual time  
slots are referenced to the frame synchronization (RCHIFS and TCHIFS) pulses. Each frame consists of 32 time  
slots at a programmable data rate of 2.048 Mbits/s, 4.096 Mbits/s, or 8.192 Mbits/s requiring a clock (TCHICK and  
RCHICK) of the same rate. Alternatively, a mode is supported in which the clocks (TCHICK and RCHICK) can be  
twice the data rate, the CMS mode. This mode is controlled by register FRM_PR45 bit 1. The clock and data rates  
of the transmit and receive highways are programmed independently.  
Rate adaptation is required for all DS1 formats between the 1.544 Mbits/s line rate and 2.048 Mbits/s,  
4.966 Mbits/s, or 8.182 Mbits/s CHI rate. This is achieved by means of stuffing eight idle time slots into the existing  
twenty-four time slots of the T1 frame. Idle time slots can occur every fourth time slot (starting in the first, second,  
third, or fourth time slot) or be grouped together at the end of the CHI frame as described in register FRM_PR43  
bit 0—bit 2. The positioning of the idle time slots is the same for transmit and receive directions. Idle time slots con-  
tain the programmable code of register FRM_PR23. Unused time slots can be disabled by forcing the TCHIDATA  
interface to a high-impedance state for the interval of the disabled time slots.  
Agere Systems Inc.  
125  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Parameters  
The CHI parameters that define the receive and transmit paths are given in Table 57.  
Table 57. Summary of the T7633’s Concentration Highway Interface Parameters  
Name  
Description  
HWYEN  
Highway Enable (FRM_PR45 bit 7). A 1 in this bit enables the transmit and receive  
concentration highway interfaces. This allows the framer to be fully configured before  
transmission to the highway. A 0 forces the idle code as defined in register  
FRM_PR22, to be transmitted to the line in all payload time slots while TCHIDATA is  
forced to a high-impedance state for all CHI transmitted time slots.  
CHIMM  
Concentration Highway Master Mode (PRM_PR45 bit 4). The default mode  
CHIMM = 0 enables an external system frame synchronization signal (TCHIFS) to  
drive the transmit CHI. A 1 enables the transmit CHI to generate a system frame syn-  
chronization signal from the receive line clock. The transmit CHI system frame syn-  
chronization signal is generated on the TCHIFS output pin. Applications using the  
receive line clock as the reference clock signal of the system are recommended to  
enable this mode and use the TCHIFS signal generated by the framer. The receive  
CHI path is not affected by this mode.  
CHIDTS  
CHI Double Time-Slot Mode (FRM_PR65 bit 1 and FRM_PR66 bit 1). CHIDTS  
defines the 4.096 Mbits/s and 8.192 Mbits/s CHI modes. CHIDTS = 0 enables the 32  
contiguous time-slot mode. This is the default mode. CHIDTS = 1 enables the double  
time-slot mode in which the transmit CHI drives TCHIDATA for one time slot and then  
3-states for the subsequent time slot, and the receive CHI latches data from RCHI-  
DATA for one time slot and then ignores the following time slot and so on. CHIDTS =  
1 allows two CHIs to interleave frames on a common bus.  
TFE  
Transmit Frame Edge (FRM_PR46 bit 3). TFE = 0 (or 1), TCHIFS is sampled on the  
falling (or rising) edge of TCHICK. In CHIMM (CHI master mode), the TCHIFS pin  
outputs a transmit frame strobe to provide synchronization for TCHIDATA. When  
TFE = 1 (or 0), TCHIFS is centered around rising (or falling) edge of TCHICK. In this  
mode, TCHIFS can be used for receive data on RCHIDATA. The timing for TCHIFS in  
CHIMM = 1 mode is identical to the timing for TCHIFS in CHIMM = 0 mode.  
RFE  
Receive Frame Edge (FRM_PR46 bit 7). RFE = 0 (or 1), RCHIFS is sampled on the  
falling (or rising) edge of RCHICK.  
CDRS0—CDRS1  
CHI Data Rate (FRM_PR45 bit 2 and bit 3). Two-bit control for selecting the CHI data  
rate. The default state (00) enables the 2.048 Mbits/s.  
CDRS Bit:  
2 3  
0 0  
0 1  
1 0  
1 1  
CHI Data Rate  
2.048 Mbits/s  
4.096 Mbits/s  
8.192 Mbits/s  
Reserved  
CMS  
Clock Select Mode (FRM_PR45 bit 1). When CMS = 0, the concentration highway  
clocks (TCHICK and RCHCK) and data (RCHIDATA, RCHIDATAB, TCHIDATA, or  
TCHIDATAB) have the same rate. When CMS = 1, the concentration highway clocks  
are twice the rate of CHI data.  
TCE  
RCE  
Transmitter Clock Edge (FRM_PR47 bit 6). TCE = 0 (or 1), TCHIDATA is clocked on  
the falling (or rising) edge of TCHICK.  
Receiver Clock Edge (FRM_PR48 bit 6). RCE = 0 (or 1), RCHIDATA is latched on  
the falling (or rising) edge of RCHICK.  
126  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Parameters (continue)  
Table 57. Summary of the T7633’s Concentration Highway Interface Parameters (continued)  
Name  
Description  
TTSE31—TTSE0  
Transmit Time-Slot Enable 31—0 (FRM_PR49—FRM_PR52). These bits define  
which transmit CHI time slots are enabled. A 1 enables the TCHIDATA or TCHI-  
DATAB time slot. A 0 forces the CHI transmit highway time slot to be 3-stated.  
RTSE31—RTSE0  
Receive Time-Slot Enable 31—0 (FRM_PR53—FRM_PR56). These bits define  
which receive CHI time slots are enabled. A 1 enables the RCHIDATA or RCH-  
DATAB time slots. A 0 disables the time slot and transmits the programmable idle  
code of register FRM_PR22 to the line interface.  
THS31—THS0  
RHS31—RHS0  
TOFF2—TOFF0  
Transmit Highway Select 31—0 (FRM_PR57—FRM_PR60). These bits define  
which transmit CHI highway, TCHIDATA or TCHIDATAB, contains valid data for the  
active time slot. A 0 enables TCHIDATA; a 1 enables the TCHIDATAB.  
Receive Highway Select 31—0 (FRM_PR61—FRM_PR64). These bits define which  
receive CHI highway, RCHIDATA or RCHIDATAB, contains valid data for the active  
time slot. A 0 enables RCHIDATA; a 1 enables the RCHIDATAB.  
Transmitter Bit Offset (FRM_PR46 bit 0—bit 2). These bits are used in conjunction  
with the transmitter byte offset to define the beginning of the transmit frame. They  
determine the offset relative to TCHIFS, for the first bit of transmit time slot 0. For CMS  
= 1, the offset is twice the number of TCHICK clock periods by which transmission of  
the first bit is delayed. For CMS = 0, the offset is the number of TCHICK cycles by  
which the first bit is delayed.  
ROFF2—ROFF0  
Receiver Bit Offset (FRM_PR46 bit 4—bit 6). These bits are used in conjunction with  
the receiver byte offset to define the beginning of the receiver frame. They determine  
the offset relative to the RCHIFS, for the first bit of receive time slot 0. For CMS = 1,  
the offset is twice the number of RCHICK clock periods by which the first bit is delayed.  
For CMS = 0, the offset is the number of RCHICK cycles by which the first bit is  
delayed.  
TBYOFF6—TBYOFF0 Transmitter Byte Offset (FRM_PR47 bit 0—bit 5 and FRM_PR65 bit 0). These bits  
determine the offset from the TCHIFS to the beginning of the next frame on the  
transmit highway. Note that in the ASM mode, a frame consists of 64 contiguous bytes;  
whereas in other modes, a frame contains 32 contiguous bytes. Allowable offsets:  
2.048 Mbits/s  
4.096 Mbits/s  
8.192 Mbits/s  
0—31 bytes.  
0—63 bytes.  
0—127 bytes.  
RBYOFF6—RBYOFF0 Receiver Byte Offset (FRM_PR48 bit 0—bit 5 and FRM_PR66 bit 0). These bits  
determine the offset from RCHIFS to the beginning of the receive CHI frame. Note that  
in the ASM mode, a frame consists of 64 contiguous bytes; whereas in other modes,  
a frame contains 32 contiguous bytes. Allowable offsets:  
2.048 Mbits/s  
4.096 Mbits/s  
8.192 Mbits/s  
0—31 bytes.  
0—63 bytes.  
0—127 bytes.  
Agere Systems Inc.  
127  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Parameters (continued)  
Table 57. Summary of the T7633’s Concentration Highway Interface Parameters (continued)  
Name  
Description  
TLBIT  
Transmit Least Significant Bit First (FRM_PR47 bit 7). When TLBIT = 0 (the  
default mode), the most significant bit (bit 0) of each time slot is transmitted first.  
When TLBIT = 1, the least significant bit (bit 7) of each time slot is transmitted first.  
RLBIT  
ASM  
Receive Least Significant Bit First (FRM_PR48 bit 7). When RLBIT = 0 (the default  
mode), the first bit of each time slot received on the received data input is received as  
the most significant bit (bit 0) of each time slot. When RLBIT = 1, the first bit of each  
time slot on the received data input is received as the least significant bit (bit 7) of  
each time slot.  
Associated Signaling Mode (FRM_PR44 bit 2). When enabled, the associate sig-  
naling mode configures the CHI to carry both payload data and its associated signal-  
ing information. Enabling this mode must be in conjunction with the programming of  
the CHI data rate to either 4.048 Mbits/s or 8.096 Mbits/s. Each time slot consists of  
16 bits where 8 bits are data and the remaining 8 bits are signaling information.  
STS0—STS2  
Stuffed Time Slots (FRM_PR43 bit 0—bit 2). Valid only in T1 framing formats, these  
3 bits define the location of the eight stuffed CHI (unused) time slots.  
128  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Frame Timing  
CHI Timing with CHIDTS Disabled  
Figure 49 illustrates the CHI frame timing when CHIDTS is disabled (registers FRM_PR65 bit 1 (TCHIDTS) and  
FRM_PR66 bit 1 (RCHDTS) = 0) and the CHI is not in the associated signaling mode (FRM_PR44 bit 2 (ASM) =  
0). The frames are 125 µs long and consist of 32 contiguous time slots.  
In DS1 frame modes, the CHI frame consists of 24 payload time slots and eight stuffed (unused) time slots.  
In CEPT frame modes, the CHI frame consists of 32 payload time slots.  
125 µs  
CHIFS  
DS1 FORMAT  
2.048 Mbits/s CHI:  
FRAME 1  
24 VALID TIME SLOTS  
HIGH IMPEDANCE  
TCHIDATA  
FRAME 2  
FRAME 2  
8 STUFFED  
SLOTS*  
24 VALID TIME SLOTS  
RCHIDATA  
CEPT FORMAT  
2.048 Mbits/s CHI:  
32 VALID TIME SLOTS  
FRAME 1  
TCHIDATA  
or  
FRAME 2  
RCHIDATA  
4.096 Mbits/s CHI:  
TCHIDATA  
HIGH IMPEDANCE  
FRAME 1  
FRAME 1  
FRAME 2  
FRAME 2  
RCHIDATA  
8.192 Mbits/s CHI:  
TCHIDATA  
HIGH IMPEDANCE  
FRAME 1  
FRAME 1  
FRAME 2  
FRAME 2  
RCHIDATA  
5-5269(F).ar.2  
* The position of the stuffed time is controlled by register FRM_PR43 bit 0—bit 2.  
Figure 49. Nominal Concentration Highway Interface Timing (for FRM_PR43 bit 0—bit 2 = 100 (Binary))  
Agere Systems Inc.  
129  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Frame Timing (continued)  
CHI Timing with CHIDTS Enabled  
Figure 50 illustrates the CHI frame timing when CHIDTS is enabled (registers FRM_PR65 bit 1 (TCHIDTS) and  
FRM_PR66 bit 1 (RCHIDTS) = 1) and ASM is disabled (register FRM_PR44 bit 2 (ASM) = 0). In the CHIDTS  
mode, valid CHI payload time slots are alternated with high-impedance intervals of one time-slot duration. This  
mode is valid only for 4.096 Mbits/s and 8.192 Mbits/s CHI rates.  
125 µs  
CHIFS  
FRAME 1  
FRAME 2  
4.096 Mbits/s CHI  
TCHIDATA  
TIME TIME  
SLOT SLOT  
TS0  
TS1  
TS2  
TS2  
TS3  
TS3  
TS4  
TS4  
TS30  
T30  
TS31  
TS31  
TS0  
TS0  
8 bits  
TS0  
TS1  
RCHIDATA  
8.192 Mbits/s CHI  
TCHIDATA  
HIGH IMPEDANCE  
TS0  
TS0  
TS1  
TS1  
TS2  
TS2  
TS30  
TS30  
TS31  
TS31  
TS0  
TS0  
RCHIDATA  
5-6454(F)r.3  
Figure 50. CHIDTS Mode Concentration Highway Interface Timing  
130  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Frame Timing (continued)  
CHI Timing with Associated Signaling Mode Enabled  
Figure 51 illustrates the CHI frame timing when the associated signaling mode is enabled (register FRM_PR44 bit  
2 (ASM) = 1) and the CHIDTS mode is disabled (registers FRM_PR65 bit 1 (TCHIDTS) = 0 and FRM_PR66 bit 1  
(RCHDTS) = 0). The frames are 125 µs long and consist of 32 contiguous 16-bit time slots.  
In DS1 frame formats, each frame consists of 24 time slots and eight stuffed time slots. Each time slot consists of  
two octets.  
In CEPT modes, each frame consists of 32 time slots. Each time slot consists of two octets.  
125 µs  
CHIFS  
4.096 Mbits/s CHI:  
FRAME = 64 bytes: 32 DATA + 32 SIGNALING  
FRAME 1  
TCHIDATA  
or  
FRAME 2  
RCHIDATA  
DATA AND SIGNALING BYTES ARE INTERLEAVED  
DATA 0  
SIGNALING 0  
DATA 31  
SIGNALING 31  
DATA 0  
FRAME  
8.192 Mbits/s CHI:  
TCHIDATA  
HIGH IMPEDANCE  
FRAME 1  
FRAME 2  
FRAME 2  
RCHIDATA  
FRAME 1  
5-5270(F).ar.3  
Figure 51. Associated Signaling Mode Concentration Highway Interface Timing  
CHI Timing with Associated Signaling Mode and CHIDTS Enabled  
Figure 52 illustrates the CHI frame timing in the associated signaling mode (register FRM_PR44 bit 2 (ASM) = 1)  
and CHIDTS enabled (registers FRM_PR65 bit 1 (TCHIDTS) = 1 and FRM_PR66 bit 1 (RCHIDTS) = 1).  
8.192 Mbits/s CHI WITH ASM (ASSOCIATED SIGNALING MODE) ENABLED  
TS0  
TS1  
TS31  
TS0  
TCHIDATA  
OR  
RCHIDATA  
*
*
*
DATA SIGNALING  
DATA SIGNALING  
16 bits  
16 bits  
1 TIME SLOT  
1 TIME SLOT  
5-6454(F).ar.2  
* High-impedance state for TCHIDATA and not received (don’t care) for RCHIDATA.  
Figure 52. CHI Timing with ASM and CHIDTS Enabled  
Agere Systems Inc.  
131  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Offset Programming  
To facilitate bit offset programming, two additional internal parameters are introduced: CEX is defined as the clock  
edge with which the first bit of time slot 0 is transmitted; CER is defined as the clock edge on which bit 0 of time slot  
0 is latched. CEX and CER are counted relative to the edge on which the CHIFS signal is sampled. Values of CEX  
and CER depend upon the values of the parameters described above.  
The following three tables give decimal values of CEX and CER for various values of CMS, TFE, RFE, TCE, RCE,  
TOFF[2:0], and ROFF[2:0]. The byte (time slot) offsets are assumed to be zero in the following examples.  
Table 58. Programming Values for TOFF[2:0] and ROFF[2:0] when CMS = 0  
RFE/  
TFE  
RCE/  
TCE  
ROFF[2:0] or TOFF[2:0]  
000  
4
001  
6
010  
8
011  
10  
9
100  
12  
11  
11  
12  
101  
14  
13  
13  
14  
110  
16  
15  
15  
16  
111  
18  
17  
17  
18  
CER  
or  
CEX  
0
0
1
1
0
1
0
1
3
5
7
(decimal)  
3
5
7
9
4
6
8
10  
Table 59. Programming Values for TOFF[2:0] when CMS = 1  
TFE  
TCE  
TOFF[2:0]  
000  
4
001  
8
010  
12  
011  
16  
15  
15  
16  
100  
20  
19  
19  
20  
101  
110  
111  
CEX  
(decimal)  
0
0
1
1
0
1
0
1
24  
23  
23  
24  
28  
27  
27  
28  
32  
31  
31  
32  
3
7
11  
3
7
11  
4
8
12  
Table 60. Programming Values for ROFF[2:0] when CMS = 1  
RFE  
RCE  
ROFF[2:0]  
000  
6
001  
10  
9
010  
14  
13  
13  
14  
011  
18  
17  
17  
18  
100  
22  
21  
21  
22  
101  
26  
110  
30  
29  
29  
30  
111  
34  
33  
33  
34  
CER  
(decimal)  
0
0
1
1
0
1
0
1
5
25  
5
9
25  
6
10  
26  
132  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Offset Programming (continued)  
Figure 53 shows an example of the relative timing of CHI 2.048 Mbits/s data with the following parameters:  
1. CMS = 0, TFE, RFE = 0.  
2. TCE = 1, TOFF[2:0] = 000, TBYOFF[6:0] = 0000000, TLBIT = 0,  
3. RCE = 0, ROFF[2:0] = 000, RBYOFF[6:0] = 0000000, RLBIT = 0.  
CHIFS IS SAMPLED ON THIS EDGE: FE = 0  
1
3
5
7
CHICK  
2
4
6
8
TCHIFS, RCHIFS  
CEX = 3  
HIGH IMPEDANCE  
BIT 0, TS 0  
CER = 4  
BIT 0, TS 0  
BIT 1, TS 0  
BIT 1, TS 0  
BIT 2, TS 0  
TCHIDATA: TCE = 1  
RCHIDATA: RCE = 0  
BIT 2, TS 0  
5-2202(F).cr.1  
Figure 53. TCHIDATA and RCHIDATA to CHICK Relationship with CMS = 0 (CEX = 3 and CER = 4,  
Respectively)  
Figure 54 shows an example of the relative timing of CHI 2.048 Mbits/s data with the following parameters:  
1. CMS = 1, TFE,RFE = 0.  
2. TCE = 1, TOFF[2:0] = 000, TBYOFF[6:0] = 0000000, TLBIT = 0,  
3. RCE = 0, ROFF[2:0] = 000, RBYOFF[6:0] = 0000000, RLBIT = 0.  
CHIFS IS SAMPLED ON THIS EDGE: FE = 0  
1
3
5
7
CHICK  
2
4
6
8
TCHIFS, RCHIFS  
CEX = 3  
HIGH IMPEDANCE  
TCHIDATA: TCE = 1  
RCHIDATA: RCE = 0  
BIT 1, TS 0  
BIT 0, TS 0  
CER = 6  
BIT 1, TS 0  
BIT 0, TS 0  
5-2203(F).cr.1  
Figure 54. CHI TCHIDATA and RCHIDATA to CHICK Relationship with CMS = 1 (CEX = 3 and CER = 6,  
Respectively)  
Agere Systems Inc.  
133  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Concentration Highway Interface (CHI) (continued)  
CHI Offset Programming (continued)  
Figure 55 and Figure 56 illustrate the CHI timing.  
RCHICLK  
t14S  
t14H  
t14S: RCHIFS SETUP = 30 ns min  
t14H: RCHIFS HOLD = 45 ns min  
RCHIFS  
t15S  
t15H  
t15S: RCHIDATA SETUP = 25 ns min  
t15S: RCHIDATA HOLD = 25 ns min  
RCHIDATA  
5-3916(F).cr.1  
Note: For case illustrated, RFE = 0, and RCE = 0.  
Figure 55. Receive CHI (RCHIDATA) Timing  
TCHICLK  
TCHIFS  
t14S  
t14H  
t14S: TCHIFS SETUP = 35 ns min  
t14H: TCHIFS HOLD = 45 ns min  
t19  
t19: TCHICK TO TCHIDATA DELAY = 25 ns max  
TCHIDATA  
5-3917(F).c  
Note: For case illustrated, TFE = 0 and TCE = 0.  
Figure 56. Transmit CHI (TCHIDATA) Timing  
134  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
JTAG Boundary-Scan Specification  
Principle of the Boundary Scan  
The boundary scan (BS) is a test aid for chip, module, and system testing. The key aspects of BS are as follows:  
1. Testing the connections between ICs on a particular board.  
2. Observation of signals to the IC pins during normal operating functions.  
3. Controlling the built-in self-test (BIST) of an IC. T7633 does not support BS-BIST.  
Designed according to the IEEE® Std. 1149.1-1990 standard, the BS test logic consists of a defined interface: the  
test access port (TAP). The TAP is made up of four signal pins assigned solely for test purposes. The fifth test pin  
ensures that the test logic is initialized asynchronously. The BS test logic also comprises a 16-state TAP controller,  
an instruction register with a decoder, and several test data registers (BS register, BYPASS register, and IDCODE  
register). The main component is the BS register that links all the chip pins to a shift register by means of special  
logic cells. The test logic is designed in such a way that it is operated independently of the application logic of the  
T7633 (the mode multiplexer of the BS output cells may be shared). Figure 57 illustrates the block diagram of the  
T7633’s BS test logic.  
BOUNDARY-SCAN REGISTER  
CHIP KERNEL  
OUT  
IN  
(UNAFFECTED BY BOUNDARY-SCAN TEST)  
IDCODE REGISTER  
TDO  
MUX  
BYPASS REGISTER  
TDI  
INSTRUCTION REGISTER  
TRST  
TMS  
TCK  
INSTRUCTION  
DECODER  
TAP  
CONTROLLER  
5-3923(F)r.4  
Figure 57. Block Diagram of the T7633’s Boundary-Scan Test Logic  
Agere Systems Inc.  
135  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
JTAG Boundary-Scan Specification (continued)  
Test Access Port Controller  
The test access port controller is a synchronous sequence controller with 16 states. The state changes are preset  
by the TMS, TCK, and TRST signals and by the previous state. The state change always take place when the TCK  
edge rises. Figure 58 shows the TAP controller state diagram.  
TRST = 0  
TEST LOGIC  
RESET  
1
0
1
1
RUN TEST/  
IDLE  
SELECT DR  
SELECT IR  
0
CAPTURE DR  
0
0
CAPTURE IR  
0
0
1
1
SHIFT DR  
1
SHIFT IR  
0
1
0
1
1
EXIT1 DR  
EXIT1 IR  
0
PAUSE DR  
1
0
PAUSE IR  
1
0
0
EXIT2 DR  
1
EXIT2 IR  
1
0
0
UPDATE DR  
UPDATE IR  
0
1
0
1
5-3924(F)r.5  
Figure 58. BS TAP Controller State Diagram  
The value shown next to each state transition in Figure 58 represents the signal present at TMS at the time of a ris-  
ing edge at TCK.  
The description of the TAP controller states is given in IEEE Std. 1149.1-1990 Section 5.1.2 and is reproduced in  
Table 61 and Table 62.  
136  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
JTAG Boundary-Scan Specification (continued)  
Test Access Port Controller (continued)  
Table 61. TAP Controller States in the Data Register Branch  
Name  
Description  
TEST LOGIC RESET The BS logic is switched in such a way that normal operation of the ASIC is  
adjusted. The IDCODE instruction is initialized by TEST LOGIC RESET.  
Irrespective of the initial state, the TAP controller has achieved TEST LOGIC  
RESET after five control pulses at the latest when TMS = 1. The TAP controller  
then remains in this state. This state is also achieved when TRST = 0.  
RUN TEST/IDLE  
Using the appropriate instructions, this state can activate circuit parts or initiate  
a test. All of the registers remain in their present state if other instructions are  
used.  
SELECT DR  
This state is used for branching to the test data register control.  
CAPTURE DR  
The test data is loaded in the test data register parallel to the rising edge of TCK  
in this state.  
SHIFT DR  
The test data is clocked by the test data register serially to the rising edge of TCK  
in the state. The TDO output driver is active.  
EXIT (1/2) DR  
PAUSE DR  
This temporary state causes a branch to a subsequent state.  
The input and output of test data can be interrupted in this state.  
UPDATE DR  
The test data is clocked into the second stage of the test data register parallel to  
the falling edge of TCK in this state.  
Table 62. TAP Controller States in the Instruction Register Branch  
Name  
Description  
SELECT IR  
CAPTURE IR  
This state is used for branching to the instruction register control.  
The instruction code 0001 is loaded in the first stage of the instruction register  
parallel to the rising edge of TCK in this state.  
SHIFT IR  
The instructions are clocked into the instruction register serially to the rising edge  
of TCK in the state. The TDO output driver is active.  
EXIT (1/2) IR  
PAUSE IR  
This temporary state causes a branch to a subsequent state.  
The input and output of instructions can be interrupted in this state.  
UPDATE IR  
The instruction is clocked into the second stage of the instruction register parallel  
to the falling edge of TCK in this state.  
Agere Systems Inc.  
137  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
JTAG Boundary-Scan Specification (continued)  
Instruction Register  
The instruction register (IR) is 4 bits in length. Table 63 shows the BS instructions implemented by the T7633.  
Table 63. T7633’s Boundary-Scan Instructions  
Instruction  
EXTEST  
Code  
0000  
0001  
Act. Register  
TDITDO  
Mode  
TEST  
NORMAL  
X
Function  
Output Defined Via  
BS Register  
Boundary Scan  
Identification  
BYPASS  
Test external  
connections  
IDCODE  
Read Manuf.  
Register  
Core Logic  
HIGHZ  
0100  
0101  
1111  
3-state  
Sample/load  
Min. shift path  
Output — High Impedance  
Core Logic  
SAMPLE/PRELOAD  
BYPASS  
Boundary Scan NORMAL  
BYPASS  
BYPASS  
NORMAL  
X
Core Logic  
EVERYTHING ELSE  
Output — High Impedance  
The instructions not supported in T7633 are INTEST, RUNBIST, TOGGLE. A fixed binary 0001 pattern (the 1 into  
the least significant bit) is loaded into the IR in the capture-IR controller state. The IDCODE instruction (binary  
0001) is loaded into the IR during the test-logic-reset controller state and at powerup.  
The following is an explanation of the instructions supported by T7633 and their effect on the devices’ pins.  
EXTEST:  
This instruction enables the path cells, the pins of the ICs, and the connections between ASICs to be tested via the  
circuit board. The test data can be loaded in the chosen position of the BS register by means of the SAMPLE/PRE-  
LOAD instruction. The EXTEST instruction selects the BS register as the test data register. The data at the function  
inputs is clocked into the BS register on the rising edge of TCK in the CAPTURE-DR state. The contents of the BS  
register can be clocked out via TDO in the SHIFT-DR state. The value of the function outputs is solely determined  
by the contents of the data clocked into the BS register and only changes in the UPDATE-DR state on the falling  
edge of TCK.  
IDCODE:  
Information regarding the manufacturer’s ID for Agere, the IC number, and the version number can be read out  
serially by means of the IDCODE instruction. The IDCODE register is selected, and the BS register is set to normal  
mode in the UPDATE-IR state. The IDCODE is loaded at the rising edge of TCK in the CAPTURE-DR state. The  
IDCODE register is read out via TDO in the SHIFT-DR state.  
HIGHZ:  
All 3-statable outputs are forced to a high-impedance state, and all bidirectional ports to an input state by means of  
the HIGHZ instruction. The impedance of the outputs is set to high in the UPDATE-IR state. The function outputs  
are only determined in accordance with another instruction if a different instruction becomes active in the UPDATE-  
IR state. The BYPASS register is selected as the test data register. The HIGHZ instruction is implemented in a sim-  
ilar manner to that used for the BYPASS instruction.  
SAMPLE/PRELOAD:  
The SAMPLE/PRELOAD instruction enables all the inputs and outputs pins to be sampled during operation (SAM-  
PLE) and the result to be output via the shift chain. This instruction does not impair the internal logic functions.  
Defined values can be serially loaded in the BS cells via TDI while the data is being output (PRELOAD).  
138  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
JTAG Boundary-Scan Specification (continued)  
Instruction Register (continued)  
BYPASS:  
This instruction selects the BYPASS register. A minimal shift path exists between TDI and TDO. The BYPASS reg-  
ister is selected after the UPDATE-IR. The BS register is in normal mode. A 0 is clocked into the BYPASS register  
during CAPTURE-DR state. Data can be shifted by the BYPASS register during SHIFT-DR. The contents of the BS  
register do not change in the UPDATE-DR state. Please note that a 0 that was loaded during CAPTURE-DR  
appears first when the data is being read out.  
Boundary-Scan Register  
The boundary-scan register is a shift register, whereby one or more BS cells are assigned to every digital T7633  
pin (with the exception of the pins for the BS architecture, analog signals, and supply voltages). The T7633’s  
boundary-scan register bit-to-pin assignment is to be determined.  
BYPASS Register  
The BYPASS register is a one-stage, shift register that enables the shift chain to be reduced to one stage in the  
T7633.  
IDCODE Register  
The IDCODE register identifies the T7633 by means of a parallel, loadable, 32-bit shift register. The code is loaded  
on the rising edge of TCK in the CAPTURE-DR state. The 32-bit data is organized into four sections as follows.  
Table 64. IDCODE Register  
Version  
Bits 31—28  
0001  
Part Number  
Bits 27—12  
Manufacturer ID  
Bits 11—1  
1
Bit 0  
1
0111 011000110011  
0000 0011101  
3-State Procedures  
The 3-state input participates in the boundary scan. It has a BS cell, but buffer blocking via this input is suppressed  
for the EXTEST instruction. The 3-state input is regarded as a signal input that is to participate in the connection  
test during EXTEST. The buffer blocking function should not be active during EXTEST to ensure that the update  
pattern at the T7633 outputs does not become corrupted.  
Agere Systems Inc.  
139  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface  
Overview  
The T7633 device is equipped with a microprocessor interface that can operate with most commercially available  
microprocessors. The microprocessor interface provides access to all the internal registers through a 12-bit  
address bus and an 8-bit data bus. Inputs MPMODE and MPMUX (pins 74 and 76) are used to configure this inter-  
face into one of four possible modes, as shown in Table 65. The MPMUX setting selects either a multiplexed (8-bit  
address/data bus, AD[7:0]) or a demultiplexed (12-bit address bus, A[11:0] and an 8-bit data bus AD[7:0]) mode of  
operation. The MPMODE setting selects the associated set of control signals required to access a set of registers  
within the device.  
The microprocessor interface can operate at speeds up to 33 MHz in interrupt-driven or polled mode without  
requiring any wait-states. For microprocessors operating at greater than 33 MHz, the RDY_DTACK output (pin  
100) may be used to introduce wait-states in the read/write cycles.  
In the interrupt-driven mode, one or more device alarms will assert the INTERRUPT output (pin 99) once per alarm  
activation. After the microprocessor identifies the source(s) of the alarm(s) (by reading the global interrupt register)  
and reads the specific alarm status registers, the INTERRUPT output will deassert. In the polled mode, however,  
the microprocessor monitors the various device alarm status by periodically reading the alarm status registers  
within the line interface unit, framer, and HDLC blocks without the use of INTERRUPT. In both interrupt and polled  
methods of alarm servicing, the status registers within an identified block will clear on a microprocessor read cycle  
only when the alarm condition within that block no longer exists; otherwise, the alarm status register bit remains  
set.  
The powerup default states for the line interface unit, framer, and the HDLC blocks are discussed in their respec-  
tive sections. All read/write registers within these blocks must be written by the microprocessor on system start-up  
to guarantee proper device functionality. Register addresses not defined in this data sheet must not be writ-  
ten.  
Details concerning the microprocessor interface configuration modes, pinout definitions, clock specifications,  
register address map, I/O timing specifications, and the I/O timing diagrams are described in the following sections.  
Microprocessor Configuration Modes  
Table 65 highlights the four microprocessor modes controlled by the MPMUX and MPMODE inputs (pins 76 and  
74).  
Table 65. Microprocessor Configuration Modes  
Generic Control, Data, and  
Mode  
MPMODE  
MPMUX  
Address/Data Bus  
Output Pin Names  
Mode 1  
Mode 2  
Mode 3  
Mode 4  
0
0
1
1
0
1
0
1
DEMUXed*  
MUXed  
CS, AS, DS, R/W, A[11:0], AD[7:0], INT, DTACK†  
CS, AS, DS, R/W, A[11:8], AD[7:0], INT, DTACK†  
CS, ALE, RD, WR, A[11:0], AD[7:0], INT, RDY  
CS, ALE, RD, WR, A[11:8], AD[7:0], INT, RDY  
DEMUXed*  
MUXed  
*
ALE_AS may be connected to ground in this mode.  
The DTACK signal is asynchronous to the MPCLK signal.  
140  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface (continued)  
Microprocessor Interface Pinout Definitions  
The Mode [1—4] specific pin definitions are given in Table 66. Note that the microprocessor interface uses the  
same set of pins in all modes.  
Table 66. Mode [1—4] Microprocessor Pin Definitions  
Generic  
Pin Name  
Assertion  
Sense  
Configuration  
Pin Number Device Pin Name  
Pin_Type  
Function  
Mode 1  
107  
75  
WR_DS  
RD_R/W  
DS  
Input  
Active-Low  
Data Strobe  
Read/Write  
R/W = 1 => Read  
R/W = 0 => Write  
R/W  
Input  
77  
78  
ALE_AS  
CS  
AS  
CS  
Input  
Input  
Active-Low  
Active-Low  
Active-High/  
Address Strobe  
Chip Select  
1
99  
INTERRUPT  
INTERRUPT  
Output  
Interrupt  
4
Low  
2
100  
86—79  
98—87  
101  
RDY_DTACK  
AD[7:0]  
DTACK  
Output  
I/O  
Active-Low  
Data Acknowledge  
Data Bus  
AD[7:0]  
A[11:0]  
MPCLK  
DS  
A[11:0]  
Input  
Input  
Input  
Input  
Address Bus  
MPCLK  
Active-Low  
Microprocessor Clock  
Data Strobe  
Mode 2  
107  
WR_DS  
RD_R/W  
75  
R/W  
Read/Write  
R/W = 1 => Read  
R/W = 0 => Write  
77  
78  
ALE_AS  
CS  
AS  
CS  
Input  
Input  
Output  
Output  
I/O  
Active-Low  
Active-High/Low  
Active-Low  
Address Strobe  
Chip Select  
1
99  
INTERRUPT  
RDY_DTACK  
AD[7:0]  
INTERRUPT  
Interrupt  
2
100  
86—79  
98—87  
101  
107  
75  
DTACK  
Data Acknowledge  
Address/Data Bus  
Address/Data Bus  
Microprocessor Clock  
Write  
AD[7:0]  
A[11:8], AD[7:0]  
MPCLK  
A[11:8], AD[7:0]  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
I/O  
MPCLK  
WR  
Mode 3  
WR_DS  
Active-Low  
Active-Low  
Active-Low  
Active-Low  
Active-High/Low  
Active-High  
RD_R/W  
ALE_AS  
RD  
Read  
77  
ALE  
CS  
Address Latch Enable  
Chip Select  
78  
CS  
1
99  
INTERRUPT  
RDY_DTACK  
AD[7:0]  
INTERRUPT  
Interrupt  
3
100  
86—79  
98—87  
101  
107  
75  
RDY  
Ready  
AD[7:0]  
A[11:0]  
MPCLK  
WR  
Data Bus  
A[11:0]  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
I/O  
Address Bus  
Microprocessor Clock  
Write  
MPCLK  
Mode 4  
WR_DS  
Active-Low  
Active-Low  
RD_R/W  
ALE_AS  
RD  
Read  
77  
ALE  
Address Latch Enable  
Chip Select  
78  
CS  
CS  
Active-Low  
Active-High/Low  
Active-High  
1
99  
INTERRUPT  
RDY_DTACK  
AD[7:0]  
INTERRUPT  
Interrupt  
3
100  
86—79  
98—87  
101  
RDY  
Ready  
AD[7:0]  
A[11:8], AD[7:0]  
MPCLK  
Address/Data Bus  
Address/Data Bus  
Microprocessor Clock  
A[11:8], AD[7:0]  
MPCLK  
Input  
Input  
1. INTERRUPT output is synchronous to the internal clock source RLCK-LIU. If RLCK_LIU is absent, the reference clock for interrupt timing  
becomes an interval 2.048 MHz clock derived from the CHI clock.  
2. The DTACK output is asynchronous to MPCLK.  
3. MPCLK is needed if RDY output is required to be synchronous to MPCLK.  
4. In the default (reset) mode, INTERRUPT is active-high. It can be made active-low by setting register GREG4 bit 6 to 1.  
Agere Systems Inc.  
141  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface (continued)  
Microprocessor Clock (MPCLK) Specifications  
The microprocessor interface is designed to operate at clock speeds up to 33 MHz without requiring any wait-  
states. Wait-states may be needed if higher microprocessor clock speeds are required. The microprocessor clock  
(MPCLK, pin 101) specification is shown in Table 67. This clock must be supplied only if the RDY (MODE 3 and  
MODE 4) is required to be synchronous to MPCLK.  
Table 67. Microprocessor Input Clock Specifications  
Name  
Symbol  
Period  
and  
Trise  
Typ  
Tfall  
Typ  
Duty Cycle  
Unit  
Tolerance  
Min High  
12  
Min Low  
MPCLK  
t1  
30 to 323  
2
2
12  
ns  
Microprocessor Interface Register Address Map  
The register address space is divided into eight (8) contiguous banks of 512 addressable units each. Each  
addressable unit is an 8-bit register. These register banks are labeled as REGBANK[7:0]. The register address  
map table gives the address range of these register banks and their associated circuit blocks. REGBANK0 con-  
tains the global registers which are common to all the circuit blocks on T7633. REGBANK1 is reserved and must  
not be written. REGBANK[2, 5] are attached to the LIU circuit blocks. REGBANK[3, 6] are attached to the framer  
circuit blocks. REGBANK[4, 7] are attached to the FDL circuit blocks. The descriptions of the individual register  
banks can be found in the appropriate sections of this document. In these descriptions, all addresses are given in  
hexadecimal. Addresses out of the range specified by Table 68 must not be addressed. If they are written,  
they must be written to 0. An inadvertent write to an out-of-range address may be corrected by a device  
reset.  
Table 68. T7633 Register Address Map  
Start Address End Address  
Register Bank Label  
Circuit Block Name  
(in Hex)  
(in Hex)  
REGBANK0  
REGBANK1  
REGBANK2  
REGBANK3  
000  
007  
T7633 Global Registers1  
Reserved  
400  
406  
Line Interface Unit 1 (LIU1)  
Framer1  
600,  
6E0  
6A6,  
6FF  
REGBANK4  
REGBANK5  
REGBANK6  
800  
A00  
80E  
A06  
Facility Data Link 1 (FDL1)  
Line Interface Unit 2 (LIU2)  
Framer2  
C00,  
CE0  
CA6,  
CFF  
REGBANK7  
E00  
E0E  
Facility Data Link 2 (FDL2)  
1.Core registers are common to all circuit blocks on T7633.  
I/O Timing  
The I/O timing specifications for the microprocessor interface are given in Table 69. The microprocessor interface  
pins are compatible with CMOS/TTL I/O levels. All outputs, except the address/data bus AD[7:0], are rated for a  
capacitive load of 50 pF. The AD[7:0] outputs are rated for a 100 pF load.  
142  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface (continued)  
I/O Timing (continued)  
In modes 1 and 3, asserting ALE_AS signal low is used to enable the internal address bus. In modes 2 and 4, the  
falling edge of ALE_AS signal is used to latch the address bus.  
Table 69. Microprocessor Interface I/O Timing Specifications  
Setup  
(ns)  
Hold  
(ns)  
Delay  
(ns)  
Symbol Configuration  
Parameter  
(Min)  
(Min)  
(Max)  
t1  
t2  
t3  
t4  
t5  
Modes 1 & 2 AS Asserted Width  
10  
4
10  
10  
Address Valid to AS Deasserted  
AS Deasserted to Address Invalid  
R/W Valid to Both CS and DS Asserted  
Address Valid and AS Asserted to DS Asserted  
(Read)  
t6  
0
t7  
CS Asserted to DTACK Low Impedance  
DS Asserted to DTACK Asserted  
5
12  
15  
15  
25  
12  
10  
t8  
t9  
DS Asserted to AD Low Impedance (Read)  
DTACK Asserted to Data Valid  
t10  
t11  
t12  
t13  
t14  
t15  
DS Deasserted to CS Deasserted (Read)  
DS Deasserted to R/W Invalid  
5
DS Deasserted to DTACK Deasserted  
CS Deasserted to DTACK High Impedance  
DS Deasserted to Data Invalid (Read)  
5
Address Valid and AS asserted to DS Asserted  
(Write)  
t16  
10  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
Data Valid to DS Asserted  
10  
10  
0
5
DS Deasserted to CS Deasserted (Write)  
DS Deasserted to Data Valid  
10  
10  
10  
DS Asserted Width (Write)  
Address Valid to AS Falling Edge  
AS Falling Edge to Address Invalid  
AS Falling Edge to DS Asserted (Read)  
AS Falling Edge to DS Asserted (Write)  
CS Asserted to DS Asserted (Write)  
10  
10  
Agere Systems Inc.  
143  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface (continued)  
I/O Timing (continued)  
Table 69. Microprocessor Interface I/O Timing Specifications (continued)  
Setup  
(ns)  
Hold  
(ns)  
Delay  
(ns)  
Symbol Configuration  
Parameter  
(Min)  
(Min)  
(Max)  
t31  
t32  
t33  
t34  
t35  
t36  
t37  
t38  
t39  
t40  
t41  
t42  
t43  
t44  
t45  
t46  
t47  
t48  
t49  
t50  
t51  
t52  
t53  
t54  
t55  
Modes 3 & 4 ALE Asserted Width  
10  
0
10  
10  
5
12  
15  
15  
40  
15  
10  
15  
Address Valid to ALE Deasserted  
ALE Deasserted to Address Invalid  
CS Asserted to RD Asserted  
Address Valid and ALE Asserted to RD Asserted  
CS Asserted to RDY Low Impedance  
Rising Edge MPCK to RDY Asserted  
RD Asserted to AD Low Impedance  
RD Asserted to Data Valid  
0
0
RD Deasserted to CS Deasserted  
RD Deasserted to RDY Deasserted  
CS Deasserted to RDY High Impedance  
RD Deasserted to Data Invalid (High Impedance)  
CS Asserted to WR Asserted  
5
5
Address Valid and ALE Asserted to WR Asserted  
Data Valid to WR Asserted  
10  
10  
10  
0
WR Deasserted to CS Deasserted  
WR Deasserted to RDY Deasserted  
WR Deasserted to Data Invalid  
10  
40  
10  
10  
RD Asserted Width  
WR Asserted Width  
Address Valid to ALE Falling Edge  
ALE Falling Edge to Address Invalid  
ALE Falling Edge to RD Asserted  
ALE Falling Edge to WR Asserted  
10  
The read and write timing diagrams for all four microprocessor interface modes are shown in Figures 59—66.  
144  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface (continued)  
I/O Timing (continued)  
t11  
CS  
t1  
AS  
t2  
t3  
A[0:11]  
R/W  
VALID ADDRESS  
t12  
t5  
DS  
t6  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t10  
t9  
t15  
VALID DATA  
5-6422(F)r.1  
Figure 59. Mode 1—Read Cycle Timing (MPMODE = 0, MPMUX = 0)  
t18  
CS  
AS  
t1  
t2  
t3  
A[0:11]  
R/W  
VALID ADDRESS  
t5  
t12  
t16  
t20  
DS  
t25  
t7  
t13  
t14  
t8  
DTACK  
AD[0:7]  
t17  
t19  
VALID DATA  
5-6423(F)  
Figure 60. Mode 1—Write Cycle Timing (MPMODE = 0, MPMUX = 0)  
Agere Systems Inc.  
145  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface (continued)  
I/O Timing (continued)  
t11  
CS  
t1  
AS  
t21  
t22  
A[8:11]  
R/W  
VALID ADDRESS  
t5  
t12  
DS  
t23  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t21  
t22  
t10  
t9  
t15  
VALID ADDRESS  
VALID DATA  
5-6424(F)  
Figure 61. Mode 2—Read Cycle Timing (MPMODE = 0, MPMUX = 1)  
t18  
CS  
AS  
t1  
t21  
t22  
A[8:11]  
R/W  
VALID ADDRESS  
t5  
t12  
t25  
t20  
DS  
t24  
t13  
t14  
t8  
t7  
DTACK  
AD[0:7]  
t17  
t21  
t22  
t19  
VALID ADDRESS  
VALID DATA  
5-6425(F)  
Figure 62. Mode 2—Write Cycle Timing (MPMODE = 0, MPMUX = 1)  
146  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface (continued)  
I/O Timing (continued)  
t40  
CS  
t31  
ALE  
t32  
t33  
A[0:11]  
RD  
VALID ADDRESS  
t34  
t50  
t42  
t35  
t36  
t37  
t41  
RDY  
t39  
t43  
t38  
VALID DATA  
AD[0:7]  
MPCK  
5-6426(F)r.1  
Figure 63. Mode 3—Read Cycle Timing (MPMODE = 1, MPMUX = 0)  
t47  
CS  
t31  
ALE  
t32  
t33  
A[0:11]  
WR  
VALID ADDRESS  
t44  
t51  
t42  
t45  
t36  
t48  
t49  
t37  
RDY  
t46  
VALID DATA  
AD[0:7]  
MPCK  
5-6427(F)  
Figure 64. Mode 3—Write Cycle Timing (MPMODE = 1, MPMUX = 0)  
Agere Systems Inc.  
147  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Microprocessor Interface (continued)  
I/O Timing (continued)  
t40  
CS  
t31  
ALE  
t52  
t53  
A[8:11]  
RD  
VALID ADDRESS  
t34  
t50  
t54  
t41  
t42  
t37  
t36  
RDY  
t39  
t52  
t53  
t43  
VALID DATA  
t38  
AD  
VALID ADDRESS  
MPCK  
5-6428(F)r.1  
Figure 65. Mode 4—Read Cycle Timing (MPMODE = 1, MPMUX = 1)  
t47  
CS  
t31  
ALE  
t52  
t53  
A[8:11]  
WR  
VALID ADDRESS  
t44  
t51  
t55  
t48  
t42  
t37  
t36  
RDY  
t52  
t53  
t46  
t49  
VALID DATA  
VALID ADDRESS  
AD  
MPCK  
5-6429(F)r.1  
Figure 66. Mode 4—Write Cycle Timing (MPMODE = 1, MPMUX = 1)  
148  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Reset  
Both hardware and software resets are provided.  
Hardware Reset (Pin 43/139)  
Hardware reset is enabled by asserting RESET to 0. Each channel has independent resets, RESET1 (pin 139) for  
channel 1 and RESET2 (pin 43) for channel 2. The device is in an inactive condition when RESET is 0, and  
becomes active when RESET is returned to 1. Upon completion of a reset cycle, the LIU register default values are  
controlled by the setting of DS1/CEPT (pin 40/142), as given in Table 6, Transmit Line Interface Short-Haul Equal-  
izer/Rate Control on page 34. If DS1/CEPT is 1, the defaults are set for DS1 with line equalization for a 1 ft. to  
131 ft. span. If DS1/CEPT is 0, the defaults are set for CEPT with a line equalization for 120 twisted pair or  
75 coax option 1.  
Hardware reset of a single channel returns all LIU, framer, and FDL registers of that channel to their default values,  
as listed in the individual register descriptions and register maps, Table 200—Table 206. Reset of a single channel  
does not reset the global registers. Hardware reset of both channels simultaneously, both pin 43 and pin 139 set to  
0, results in a complete device reset including a reset of the global registers.  
Software Reset/Software Restart  
Independent software reset for each functional block of the device is available. The LIU may be placed in restart  
through register LIU_REG2 bit 5 (RESTART). The framer may be reset through register FRM_PR26 bit 0 (SWRE-  
SET), or placed in restart through FRM_PR26 bit 1 (SWRESTART). The FDL receiver may be reset through regis-  
ter FDL_PR26 bit 1 (FRR), and the FDL transmitter may be reset through FDL_PR1 bit 5 (FTR). The reset  
functions, framer SWRESET (framer software reset), FDL FRR (FDL receiver reset), and FTR (FDL transmitter  
reset), reset the block and return all parameter/control registers for the block to their default values. The restart  
functions, LIU RESTART and framer SWRESTART (framer software restart), reset the block but do not alter the  
value of the parameter/control registers.  
Interrupt Generation  
An interrupt may be generated by any of the conditions reported in the status registers. For a bit (condition) in a  
status register to create an interrupt, the corresponding interrupt enable bit must be set and the interrupt block  
enable in the global register for the source block must be set, see Table 70 below. Once the source interrupt regis-  
ter is read, the interrupt for that condition is deasserted.  
Table 70. Status Register and Corresponding Interrupt Enable Register for Functional Blocks  
Functional Block  
Primary Block  
Status Register  
GREG0  
Interrupt Enable Register  
GREG1  
Line Interface  
Framer  
Facility Data Link  
LIU_REG0  
LIU_REG1  
FRM_SR0—FRM_SR7  
FDL_SR0  
FRM_PR0—FRM_PR7  
FDL_PR2  
Default for interrupt assertion is a logical 1 (high) value. But the assertion value and deasserted state is program-  
mable through register GREG4 bit 4 and bit 6 and may take on the following state, see Table 71 below.  
Table 71. Asserted Value and Deasserted State for GREG4 Bit 4 and Bit 6 Logic Combinations  
Greg4  
INTERRUPT (Pin 99)  
Functionality  
Bit 4  
Bit 6  
Asserted Value  
Deasserted Value  
0
1
0
1
0
0
1
1
High  
High  
Low  
Low  
Low  
3-state  
High  
Wired OR  
Wired AND  
3-state  
Agere Systems Inc.  
149  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Architecture  
Table 72 is an overview of the register architecture. The table is a summary of the register function and address.  
Complete detail of each register is given in the following sections.  
Table 72. Register Summary  
Register  
Function  
Register Address (hex)  
Channel 1  
Channel 2  
Global Registers  
GREG0  
GREG1  
GREG2  
GREG3  
GREG4  
GREG5  
GREG6  
GREG7  
Primary Block Interrupt Status  
000  
001  
002  
003  
004  
005  
006  
007  
Primary Block Interrupt Enable  
Global Loopback Control  
Global Loopback Control  
Global Control  
Device ID and Version  
Device ID and Version  
Device ID and Version  
LIU Registers  
LIU_REG0  
LIU_REG1  
LIU_REG2  
LIU_REG3  
LIU_REG4  
LIU_REG5  
LIU_REG6  
LIU Alarm Status  
LIU Alarm Interrupt Enable  
LIU Control  
400  
401  
402  
403  
404  
405  
406  
A00  
A01  
A02  
A03  
A04  
A05  
A06  
LIU Control  
LIU Control  
LIU Configuration  
LIU Configuration  
Framer Registers  
Status Registers  
FRM_SR0  
FRM_SR1  
FRM_SR2  
FRM_SR3  
FRM_SR4  
FRM_SR5  
Interrupt Status  
600  
601  
602  
603  
604  
605  
C00  
C01  
C02  
C03  
C04  
C05  
Facility Alarm Condition  
Remote End Alarm  
Facility Errored Event  
Facility Event  
Exchange Termination and Exchange Termination Remote End  
Interface Status  
FRM_SR6  
FRM_SR7  
Network Termination and Network Termination Remote End  
Interface Status  
606  
C06  
Facility Event  
607  
C07  
FRM_SR8,  
FRM_SR9  
Bipolar Violation Counter  
608, 609  
C08, C09  
FRM_SR10, Framing Bit Error Counter  
FRM_SR11  
60A, 60B  
60C, 60D  
60E, 60F  
C0A, C0B  
C0C, C0D  
C0E, C0F  
FRM_SR12, CRC Error Counter  
FRM_SR13  
FRM_SR14, E-bit Counter  
FRM_SR15  
150  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Architecture (continued)  
Table 72. Register Summary (continued)  
Register  
Function  
Register Address (hex)  
Channel 1  
Channel 2  
FRM_SR16, CRC-4 Error at NT1 from NT2 Counter  
FRM_SR17  
610, 611  
C10, C11  
FRM_SR18, E-bit at NT1 from NT2 Counter  
FRM_SR19  
612, 613  
614, 615  
616, 617  
618, 619  
61A, 61B  
61C, 61D  
61E, 61F  
620, 621  
622, 623  
624, 625  
626, 627  
628, 629  
62A, 62B  
62C, 62D  
62E, 62F  
630, 631  
632, 633  
C12, C13  
C14, C15  
C16, C17  
C18, C19  
C1A, C1B  
C1C, C1D  
C1E, C1F  
C20, C21  
C22, C23  
C24, C25  
C26, C27  
C28, C29  
C2A, C2B  
C2C, C2D  
C2E, C2F  
C30, C31  
C32, C33  
FRM_SR20, ET Errored Seconds Counter  
FRM_SR21  
FRM_SR22, ET Bursty Errored Seconds Counter  
FRM_SR23  
FRM_SR24, ET Severely Errored Seconds Counter  
FRM_SR25  
FRM_SR26, ET Unavailable Seconds Counter  
FRM_SR27  
FRM_SR28, ET-RE Errored Seconds Counter  
FRM_SR29  
FRM_SR30, ET-RE Bursty Errored Seconds Counter  
FRM_SR31  
FRM_SR32, ET-RE Severely Errored Seconds Counter  
FRM_SR33  
FRM_SR34, ET-RE Unavailable Seconds Counter  
FRM_SR35  
FRM_SR36, NT1 Errored Seconds Counter  
FRM_SR37  
FRM_SR38, NT1 Bursty Errored Seconds Counter  
FRM_SR39  
FRM_SR40, NT1 Severely Errored Seconds Counter  
FRM_SR41  
FRM_SR42, NT1 Unavailable Seconds Counter  
FRM_SR43  
FRM_SR44, NT1-RE Errored Seconds Counter  
FRM_SR45  
FRM_SR46, NT1-RE Bursty Errored Seconds Counter  
FRM_SR47  
FRM_SR48, NT1-RE Severely Errored Seconds Counter  
FRM_SR49  
FRM_SR50, NT1-RE Unavailable Seconds Counter  
FRM_SR51  
FRM_SR52 Receive NOT-FAS TS0  
FRM_SR53 Received Sa  
634  
635  
C34  
C35  
FRM_SR54— SLC-96 FDL/CEPT Sa Receive Stack  
636—63F  
C36—C3F  
FRM_SR63  
Agere Systems Inc.  
151  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Architecture (continued)  
Table 72. Register Summary (continued)  
Register  
Function  
Register Address (hex)  
Channel 1  
Channel 2  
Received Signaling Registers  
FRM_RSR0— Received Signaling  
FRM_RSR31  
640—65F  
C40—C5F  
Parameter/Control Registers  
FRM_PR0— Interrupt Group Enable  
FRM_PR7  
660—667  
C60—C67  
FRM_PR8  
FRM_PR9  
Framer Mode Option  
Framer CRC Control Option  
668  
669  
C68  
C69  
FRM_PR10 Alarm Filter  
66A  
C6A  
FRM_PR11 Errored Second Threshold  
66B  
C6B  
FRM_PR12, Severely Errored Second Threshold  
FRM_PR13  
66C. 66D  
C6C, C6D  
FRM_PR14 Errored Event Enable  
66E  
66F  
C6E  
C6F  
FRM_PR15 ET Remote End Errored Event Enable  
FRM_PR16 NT1 Errored Event Enable  
670  
C70  
FRM_PR17, NT1 Remote End Errored Event Enable  
FRM_PR18  
671, 672  
C71, C72  
FRM_PR19 Automatic AIS to the System and Automatic Loopback Enable  
FRM_PR20 Transmit to the Line Command  
673  
674  
675  
676  
677  
678  
679  
67A  
67B  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
C7A  
C7B  
FRM_PR21 Framer FDL Loopback Transmission Codes Command  
FRM_PR22 Framer Transmit Line Idle Code  
FRM_PR23 Framer Transmit System Idle Code  
FRM_PR24 Primary Loopback Control  
FRM_PR25 Secondary Loopback Control  
FRM_PR26 System Frame Sync Mask Source  
FRM_PR27 Transmission of Remote Frame Alarm and CEPT Automatic  
Transmission of A bit = 1 Control  
FRM_PR28 CEPT Automatic Transmission of E bit = 0  
FRM_PR29 Sa4—Sa8 Source  
67C  
67D  
C7C  
C7D  
FRM_PR30 Sa4—Sa8 Control  
67E  
C7E  
FRM_PR31— Sa Transmit Stack/SLC-96 Transmit Stack  
67F—688  
C7F—C88  
FRM_PR40  
FRM_PR41 Si-bit Source  
689  
68A  
68B  
68C  
68D  
68E  
68F  
690  
C89  
C8A  
C8B  
C8C  
C8D  
C8E  
C8F  
C90  
FRM_PR42 Frame Exercise  
FRM_PR43 System Interface Control  
FRM_PR44 Signaling Mode  
FRM_PR45 CHI Common Control  
FRM_PR46 CHI Common Control  
FRM_PR47 CHI Transmit Control  
FRM_PR48 CHI Receive Control  
152  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Architecture (continued)  
Table 72. Register Summary (continued)  
Register  
Function  
Register Address (hex)  
Channel 1  
Channel 2  
FRM_PR49— Transmit CHI Time-Slot Enable  
FRM_PR52  
691—694  
C91—C94  
FRM_PR53— Receive CHI Time-Slot Enable  
FRM_PR56  
695—698  
699—69C  
69D—6A0  
C95—C98  
C99—C9C  
C9D—CA0  
FRM_PR57— CHI Transmit Highway Select  
FRM_PR60  
FRM_PR61— CHI Receive Highway Select  
FRM_PR64  
FRM_PR65 CHI Transmit Control  
6A1  
6A2  
6A5  
6A6  
CA1  
CA2  
CA5  
CA6  
FRM_PR66 CHI Receive Control  
FRM_PR69 Auxiliary Pattern Generator Control  
FRM_PR70 Auxiliary Pattern Detector Control  
Transmit Signaling Registers  
FRM_TSR0— Transmit Signaling  
FRM_TSR31  
6E0—6F7  
CE0—CF7  
Facility Data Link Registers  
FDL Parameter/Control Registers  
FDL_PR0  
FDL_PR1  
FDL_PR2  
FDL_PR3  
FDL_PR4  
FDL_PR5  
FDL_PR6  
FDL_PR7  
FDL_PR8  
FDL_PR9  
FDL_PR10  
FDL Configuration Control  
FDL Control  
800  
801  
802  
803  
804  
805  
806  
E00  
E01  
E02  
E03  
E04  
E05  
E06  
FDL Interrupt Mask Control  
FDL Transmitter Configuration Control  
FDL Transmitter FIFO  
FDL Transmitter Mask  
FDL Receive Interrupt Level Control  
Not Assigned  
FDL Receive Match Character  
FDL Transparent Control  
808  
809  
80A  
E08  
E09  
E0A  
FDL Transmit ANSI ESF Bit Codes  
FDL Status Registers  
FDL_SR0  
FDL_SR1  
FDL_SR2  
FDL_SR3  
FDL_SR4  
FDL Interrupt Status  
80B  
80C  
80D  
80E  
807  
E0B  
E0C  
E0D  
E0E  
E07  
FDL Transmitter Status  
FDL Receiver Status  
FDL ANSI Bit Codes Status  
FDL Receive FIFO  
Agere Systems Inc.  
153  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Global Register Architecture  
REGBANK0 contains the status and programmable control registers for all global functions. The address of these  
registers is 000 (hex) to 008 (hex). These registers control both channels of the terminator.  
The register bank architecture is shown in Table 73. The register bank consists of 8-bit registers classified as pri-  
mary block interrupt status register, primary block interrupt enable register, global loopback control register, global  
terminal control register, device identification register, and global internal interface control register.  
GREG0 is a clear on read (COR) register. This register is cleared by the framer internal received line clock  
(LIU_RLCK of Figure 18, Block Diagram of Framer Line Interface on page 50). At least two RFRMCK cycles  
(1.3 µs for DS1 and 1.0 µs for CEPT) must be allowed between successive reads of the same COR register to  
allow it to properly clear.  
The default values are shown in parentheses.  
Table 73. Global Register Set (0x000—0x008)  
Global Register  
[Address (hex)]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FDL2INT  
(0)  
FRMR2INT  
(0)  
LIU2INT  
(0)  
Reserved  
(0)  
FDL1INT  
(0)  
FRMR1INT  
(0)  
LIU1INT  
(0)  
GREG0[000]  
Reserved  
(0)  
Reserved  
(0)  
FDL2IE  
(0)  
FRMR2IE  
(0)  
LIU2IE  
(0)  
Reserved  
(0)  
FDL1IE  
(0)  
FRMR1IE  
(0)  
LIU1IE  
(0)  
GREG1[001]  
GREG2[002]  
GREG3[003]  
GREG4[004]  
TID2-RSD1 TSD2-RSD1 TID1-RSD1 TSD1-RSD1 TSD2-RID1  
(0) (0) (0) (0) (0)  
TID1-RSD2 TSD1-RSD2 TID2-RSD2 TSD2-RSD2 TSD1-RID2  
TID2-RID1  
(0)  
TSD1-RID1  
(0)  
TID1-RID1  
(0)  
TID1-RID2  
(0)  
TSD2-RID2  
(0)  
TID2-RID2  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Reserved  
(0)  
ALIE  
(0)  
SECCTRL  
(0)  
ITC  
(0)  
T1-R2  
(0)  
T2-R1  
(0)  
Reserved  
(0)  
Reserved  
(0)  
GREG5[005]  
GREG6[006]  
GREG7[007]  
0
0
0
1
0
0
1
1
0
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
The following section describes the global registers in Table 74—Table 79.  
154  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Global Register Structure  
Primary Block Interrupt Status Register (GREG0)  
A bit set to 1 indicates the block has recently generated an interrupt. This register is cleared on read.  
Table 74. Primary Block Interrupt Status Register (GREG0) (000)  
Bit  
0
Symbol  
Description  
LIU1INT  
Line Interface Unit 1 Interrupt. A 1 indicates LIU1 generated an interrupt.  
1
FRMR1INT Framer 1 Interrupt. A 1 indicates framer 1 generated an interrupt.  
2
FDL1INT  
Facility Data Link 1 Interrupt. A 1 indicates FDL1 generated an interrupt.  
Reserved.  
3
4
LIU2INT  
Line Interface Unit 2 Interrupt. A 1 indicates LIU2 generated an interrupt.  
5
FRMR2INT Framer 2 Interrupt. A 1 indicates framer 2 generated an interrupt.  
6
FDL2INT  
Facility Data Link 2 Interrupt. A 1 indicates FDL2 generated an interrupt.  
7
Reserved.  
Primary Block Interrupt Enable Register (GREG1)  
This register enables the individual blocks to assert the interrupt pin.  
Table 75. Primary Block Interrupt Enable Register (GREG1) (001)  
Bit  
0
Symbol  
LIU1IE  
FRMR1IE  
FDL1IE  
Description  
Line Interface 1 Interrupt Enable. A 1 enables LIU1 interrupts.  
Framer 1 Interrupt Enable. A 1 enables framer 1 interrupts.  
Facility Data Link 1 Interrupt Enable. A 1 enables FDL1 interrupts.  
Reserved. Write to 0.  
1
2
3
4
LIU2IE  
FRMR2IE  
FDL2IE  
Line Interface 2 Interrupt Enable. A 1 enables LIU2 interrupts.  
Framer 2 Interrupt Enable. A 1 enables framer 2 interrupts.  
Facility Data Link 2 Interrupt Enable. A 1 enables FDL2 interrupts.  
Reserved. Write to 0.  
5
6
7
Agere Systems Inc.  
155  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Global Register Structure (continued)  
Global Loopback Control Register (GREG2)  
This register enables the framer inputs RCHIDATA1 and RCHIDATAB1 to be driven by various internal sources. A  
1 enables the specified loopback. The default of the register 00 (hex) disables all loopbacks and enables external  
sources to drive these inputs.  
Table 76. Global Loopback Control Register (GREG2) (002)  
Bit  
0
Symbol  
Description  
TID1—RID1 TCHIDATA1 to RCHIDATA1 Connection.  
TSD1—RID1 TCHIDATAB1 to RCHIDATA1 Connection.  
TID2—RID1 TCHIDATA2 to RCHIDATA1 Connection.  
TSD2—RID1 TCHIDATAB2 to RCHIDATA1 Connection.  
TSD1—RSD1 TCHIDATAB1 to RCHIDATAB1 Connection.  
TID1—RSD1 TCHIDATA1 to RCHIDATAB1 Connection.  
TSD2—RSD1 TCHIDATAB2 to RCHIDATAB1 Connection.  
TID2—RSD1 TCHIDATA2 to RCHIDATAB1 Connection.  
1
2
3
4
5
6
7
Global Loopback Control Register (GREG3)  
This register enables the framer inputs RCHIDATA2and RCHIDATAB2 to be driven by various internal sources. A 1  
enables the specified loopback. The default of the register 00 (hex) disables all loopbacks and enables external  
sources to drive these inputs.  
Table 77. Global Loopback Control Register (GREG3) (003)  
Bit  
0
Symbol  
Description  
TID2—RID2 TCHIDATA2 to RCHIDATA2 Connection.  
TSD2—RID2 TCHIDATAB2 to RCHIDATA2 Connection.  
TID1—RID2 TCHIDATA1 to RCHIDATA2 Connection.  
TSD1—RID2 TCHIDATAB1 to RCHIDATA2 Connection.  
TSD2—RSD2 TCHIDATAB2 to RCHIDATAB2 Connection.  
TID2—RSD2 TCHIDATA2 to RCHIDATAB2 Connection.  
TSD1—RSD2 TCHIDATAB1 to RCHIDATAB2 Connection.  
TID1—RSD2 TCHIDATA1 to RCHIDATAB2 Connection.  
1
2
3
4
5
6
7
156  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Global Register Structure (continued)  
Global Control Register (GREG4)  
This register enables LIU1 to LIU2 loopbacks (bit 2 and bit 3), interrupt 3-state control (bit 4), source of the output  
second pulse (bit 5), and interrupt polarity (bit 6).  
Table 78. Global Control Register (GREG4) (004)  
Bit  
0
Symbol  
Description  
Reserved. Write to zero.  
Reserved. Write to zero.  
1
2
T2-R1  
TLCK2, TPD2, and TND2 to RLCK1, RPD1, and RND1 Connection. A 1 makes the indi-  
cated loopback.  
3
4
T1-R2  
ITC  
TLCK1, TPD1, and TND1 to RLCK2, RPD2, and RND2 Connection. A 1 makes the indi-  
cated loopback.  
INTERRUPT 3-State Control. This bit along with bit 6 in this register (ALIE) allows the  
interrupt pin to be programmed for active-high, active-low, wire OR, or wire AND opera-  
tion, as described below:  
Bits  
4 6  
Description  
0 0 Programs the interrupt pin to be active-high (1 state) when there is an interrupt  
condition and to be inactive (0 state) when there is no interrupt condition.  
0 1 Programs the interrupt pin to be active-low (0 state) when there is an interrupt  
condition and to be inactive (1 state) when there is no interrupt condition.  
1 0 Programs the interrupt pin to be active-high (1 state) when there is an interrupt  
condition and to be in the high-impedance state (3-state) when there is no inter-  
rupt condition. This allows the interrupt to be wire OR’d with other interrupt pins  
on the system board. A pull-down resister is needed on the system board.  
1 1 Programs the interrupt pin to be active-low (0 state) when there is an interrupt  
condition and to be in the high-impedance state (3-state) when there is no inter-  
rupt condition. This allows the interrupt to be wire AND’d with other interrupt  
pins on the system board. A pull-up resister is needed on the system board.  
5
SECCTRL SECOND Pulse Source Control. A 0 enables framer 1 to source the output second pulse  
(SECOND). A 1 enables framer 2 to source the output second pulse.  
6
7
ALIE  
Active-Low Interrupt Enable. A 1 enables active-low interrupt.  
Reserved. Write to zero.  
Device ID and Version Registers (GREG5GREG7)  
These bits define the device and version number.  
Table 79. Device ID and Version Registers (GREG5GREG7) (005—007)  
Register  
GREG5  
GREG6  
GREG7  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Device Code  
Device Code  
Version #  
0
0
0
1
0
0
1
1
0
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
Agere Systems Inc.  
157  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Unit (LIU) Register Architecture  
REGBANK2 and REGBANK5 contain the status and programmable registers for the line interface unit channels  
LIU1 and LIU2 respectively. The base address for REGBANK2 is 400(hex) and for REGBANK5 is A00(hex). Within  
these register banks the bit map is identical for both LIU1 and LIU2.  
The register bank architecture for LIU1 and LIU2 is shown in Table 80. The register bank consists of 8-bit registers  
classified as alarm status register, alarm mask register, status register, status interrupt mask register, control regis-  
ters, and configuration registers.  
Register LIU_REG0 is the alarm status register used for storing the various LIU alarms and status. It is a read-only,  
clear-on-read (COR) register. This register is cleared on the rising edge of MPCLK, if present, or on the rising edge  
of the internally generated 2.048 MHz clock derived from the CHI clock if MPCLK is not present. Register  
LIU_REG1 contains the individual interrupt enable bits for the alarms in LIU_REG0.  
Register LIU_REG2, LIU_REG3, and LIU_REG4 are designated as control registers while LIU_REG5 and  
LIU_REG6 are configuration registers. These are used to set up the individual LIU channel functions and parame-  
ters.  
The default values are shown in parentheses.  
The following sections describe the LIU registers in more detail.  
Table 80. Line Interface Units Register Set1 ((400—40F); (A00—A0F))  
LIU  
LIU  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Register  
Register  
[Address  
(HEX)]  
Alarm Register (Read Only) (Latches Alarm, Clear On Read)  
LOTC  
Alarm Interrupt Enable Register (Read/Write)  
LIU_REG0 400; A00  
LIU_REG1 401; A01  
0
0
0
0
TDM  
DLOS  
ALOS  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
LOTCIE  
(0)  
TDMIE  
(0)  
DLOSIE ALOSIE  
(0) (0)  
Control Registers (Read/Write)  
Reserved  
(0)  
Reserved  
(0)  
RESTART  
(0)  
HIGHZ  
(0)  
Reserved  
(0)  
LOSST Reserved Reserved  
LIU_REG2 402; A02  
LIU_REG3 403; A03  
LIU_REG4 404; A04  
(0)  
(0)  
(0)  
2
2
2
Reserved  
(1)  
Reserved  
(1)  
Reserved  
LOSSD  
(0)  
DUAL  
(0)  
CODE  
(1)  
JAT  
(0)  
JAR  
(0)  
(1)  
Reserved  
0
Reserved  
(0)  
JABW0  
(0)  
PHIZALM  
(0)  
PRLALM  
(0)  
PFLALM RCVAIS ALTIMER  
(0)  
(0)  
(0)  
Configuration Registers (Read/Write)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
LOOPA  
(0)  
LOOPB  
(0)  
XLAIS  
(1)  
PWRDN  
(0)  
LIU_REG5 405; A05  
LIU_REG6 406; A06  
EQ2  
(0,DS1)  
(1,CEPT) (1,CEPT)  
EQ1  
(0,DS1)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
0
EQ0  
(0)  
1. The logic value in parentheses below each bit definition is the default state upon completion of hardware reset.  
2. These bits must be written to 1.  
158  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Alarm Register  
Alarm Status Register (LIU_REG0)  
Bits 0—3 of this register represent the status of the line interface receiver and transmitter alarms ALOS, DLOS,  
TDM, and LOTC. The alarm indicators are active-high and automatically clear on a microprocessor read if the cor-  
responding alarm conditions no longer exist. However, persistent alarm conditions will cause these bits to remain  
set even after a microprocessor read. This is a read-only register.  
Table 81. LIU Alarm Status Register (LIU_REG0) (400, A00)  
Bit  
Description  
Symbol  
Receive Analog Loss of Signal. A 1 indicates the LIU receive channel has detected  
an analog loss of signal condition/event.  
0
ALOS  
Receive Digital Loss of Signal. A 1 indicates the LIU receive channel has detected a  
digital loss of signal condition/event.  
1
2
DLOS  
TDM  
Transmit Driver Monitor Alarm. A 1 indicates the LIU transmit channel has detected  
a transmit driver monitor alarm condition/event.  
Transmit Loss of Transmit Clock Alarm. A 1 indicates the LIU transmit channel has  
detected a loss of transmit clock condition/event.  
3
LOTC  
4—7  
Reserved.  
Line Interface Alarm Interrupt Enable Register  
Alarm Interrupt Enable Register (LIU_REG1)  
The bits in the alarm interrupt enable register allow the user to selectively enable generation of an interrupt by  
each channel alarm. The enable bits correspond to their associated alarm status bits in the alarm status register,  
LIU-REG0. The interrupt enable function is active-high. When an enable bit is set, the corresponding alarm is  
enabled to generate an interrupt. Otherwise, the alarm is disabled from generating an interrupt.  
The enable function only impacts the ability to generate an interrupt signal. The proper alarm status will be  
reflected in LIU_REG0 even when the corresponding enable bit is set to zero. Any other LIU behavior associated  
with an alarm event will operate normally even if the interrupt is not enabled.  
This is a read/write register.  
Table 82. LIU Alarm Interrupt Enable Register (LIU_REG1) (401, A01)  
Bit  
Symbol  
Description  
Enable Analog Loss of Signal Interrupt. A 1 enables an interrupt in response to  
ALOS alarm.  
0
ALOSIE  
Enable Digital Loss of Signal Interrupt. A 1 enables an interrupt in response to  
DLOS alarm.  
1
2
DLOSIE  
TDMIE  
Enable Transmit Driver Monitor Interrupt. A 1 enables an interrupt in response to  
TDM alarm.  
Enable loss of Transmit Clock Interrupt. A 1 enables an interrupt in response to  
LOTC alarm.  
3
LOTCIE  
4—7  
Reserved. Write to 0.  
Agere Systems Inc.  
159  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Control Registers  
The bits in the control registers allow the user to configure the various device functions for the individual line inter-  
face channels 1 and 2. All the control bits (with the exception of LOSSTD) are active-high.  
LIU Control Register (LIU_REG2)  
Table 83. LIU Control Register (LIU_REG2) (402, A02)  
Bit  
Symbol  
Description  
0
1
2
Reserved. Write to 0.  
Reserved. Write to 0.  
LOSSTD  
The LOSSTD bit selects the conformance protocol for the DLOS receiver alarm  
function. LOSSTD = 0 selects standards T1M1.3/93-005, ITU-T G.755 for DS1  
mode and ITU-T G.755 for CEPT mode. LOSSTD = 1 selects standards TR-TSY-  
000009 for DS1 and ITU-T G.775 for CEPT.  
3
4
Reserved. Write to 0.  
HIGHZ  
The HIGHZ bit places the LIU in a high-impedance state. When HIGHZ = 1, the  
TTIP and TRING transmit drivers for the specified channel are placed in a high-  
impedance state.  
5
RESTART  
The RESTART bit is used for device initialization through the microprocessor inter-  
face. RESTART = 1 resets the data path circuits. Data path circuits will be reset, but  
the microprocessor registers state will not be altered by a restart action.  
6—7  
Reserved. Write to 0.  
160  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Control Registers (continued)  
LIU Control Register (LIU_REG3)  
The default value of this register is E4 (hex).  
Table 84. LIU Control Register (LIU_REG3) (403, A03)  
Bit  
Symbol  
Description  
0
JAR  
The JAR bit is used to enable and disable the jitter attenuator function in the receive  
path. The JAR and JAT control bits are mutually exclusive, i.e., either JAR or the JAT  
control bit can be set, but not both. JAR = 1 places jitter attenuator in the receive path.  
1
2
JAT  
The JAT bit is used to enable and disable the jitter attenuator function in the transmit  
path. The JAT and JAR control bits are mutually exclusive, i.e., either JAT or the JAR  
control bit can be set, but not both. JAT = 1 places jitter attenuator in the transmit path.  
CODE  
The CODE bit is used to enable and disable the B8ZS/HDB3 zero substitution coding  
in the transmit and decoding in the receive path. CODE is used in conjunction with the  
DUAL bit and is valid only for single-rail operation. CODE = 1 activates the coding/  
decoding functions. The default value is CODE = 1.  
3
4
DUAL  
The DUAL bit is used to select single- or dual-rail mode of operation. DUAL = 1 selects  
the dual-rail mode.  
LOSSD  
The LOSSD bit selects the shut down function for the receiver during digital loss of sig-  
nal alarm (DLOS). LOSSD operates in conjunction with the RCVAIS bit (see Table 3,  
LOSSD and RCVAIS Control Configurations (Not Valid During Loopback Modes), from  
page 29 repeated below for reference.  
1. These registers must be written to 1 for the LIU-to-framer interface to be functional.  
LOSSD and RCVAIS Control Configurations (Not Valid During Loopback Modes) (from Table 3, page 29)  
LOSSD  
RCVAIS  
ALARM  
ALOS  
DLOS  
ALOS  
DLOS  
ALOS  
DLOS  
ALOS  
DLOS  
RPD/RND  
RLCK  
Free Runs  
Recovered Clock  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
Free Runs  
0
0
1
1
0
0
1
1
0
0
0
0
1
1
1
1
0
Normal Data  
0
0
AIS (all ones)  
AIS (all ones)  
0
0
Agere Systems Inc.  
161  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Control Registers (continued)  
LIU Control Register (LIU_REG4)  
Table 85. LIU Register (LIU_REG4) (404, A04)  
Bit  
Symbol  
Description  
0
ALTIMER  
The ALTIMER bit is used to select the time required to declare ALOS. ALTIMER =  
0 selects 1 ms—2.6 ms. ALTIMER = 1 selects 10 bit to 255 bit periods.  
1
RCVAIS  
The RCVAIS bit selects the shut down function for the receiver during analog loss  
of signal alarm (ALOS). RCVAIS operates in conjunction with the LOSSD bit. See  
LIU-REG3.  
2
3
4
PFLALM  
PRLALM  
PHIZALM  
PFLALM prevents the DLOS alarm from occurring during FLLOOP activation.  
PFLALM = 1 activates the PFLALM function.  
PRLALM prevents the LOTC alarm from occurring during RLOOP activation/deac-  
tivation. PRLALM = 1 activates the PRLALM function.  
PHIZALM prevents the TDM alarm from occurring when the driver are in a high-  
impedance state. PHIZALM = 1 activates the PHIZALM function.  
5
JABW0  
JABW0 = 1 selects the lower bandwidth jitter attenuator option in CEPT mode.  
6—7  
Reserved. Write to 0.  
LIU Configuration Register (LIU_REG5)  
The control bits in the channel configuration register 5 are used to select powerdown mode, AIS generation, and  
loopbacks for the LIU. The PWRDN and XLAIS bits are active-high. This is a read/write register. The default value  
of this register is 02 (hex).  
Table 86. LIU Configuration Register (LIU_REG5) (405, A05)  
Bit  
Symbol  
Description  
0
1
PWRDN  
XLAIS  
PWRDN = 1 activates powerdown.  
XLAIS = 1 enables transmission of an all 1s signal to the line interface. XLAIS = 1  
after a reset allowing immediate generation of alarm signal as long as a clock  
source is present. The default value is XLAIS = 1.  
2
3
LOOPB  
LOOPA  
The LOOPA bit is used in conjunction with LOOPB to select the channel loopback  
modes. See Table 10, Loopback Control, from page 44 repeated below for refer-  
ence.  
4—7  
Reserved. Write to 0.  
Loopback Control (from Table 10, page 44)  
Operation  
Normal1  
Symbol  
LOOPA  
LOOPB  
0
0
1
1
0
1
0
1
Full Local Loopback  
Remote Loopback  
FLLOOP2  
RLOOP3  
DLLOOP  
Digital Local Loopback  
1. The reset default condition is LOOPA = LOOPB = 0 (no loopback).  
2. During the transmit AIS condition, the looped data will be the transmitted data from the framer or system interface and not the all 1s signal.  
3. Transmit AIS request is ignored.  
162  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Line Interface Control Registers (continued)  
LIU Configuration Register (LIU_REG6)  
The control bits in the channel configuration register 6 are used to select LIU transmit equalization settings. This is  
a read/write register. The default value of this register is 00 (hex) in DS1 when DS1/CEPT (pin 40/142) is set to 1,  
and 06 (hex) in CEPT when DS1/CEPT (pin 40/142) is set to 0.  
Table 87. LIU Configuration Register (LIU_REG6) (406, A06)  
Bit  
Symbol  
Description  
0
1
2
EQ0  
EQ1  
The EQ0, EQ1, and EQ2 bits select the type of service (DS1 or CEPT) and the  
associated transmitter cable equalization/line build out/termination impedances.  
See Table 6, Transmit Line Interface Short-Haul Equalizer/Rate Control, from  
page 34 repeated below for reference.  
EQ2  
3—7  
Reserved. Write to 0.  
Transmit Line Interface Short-Haul Equalizer/Rate Control (from Table 6, page 34)  
Short-Haul Applications  
EQ2  
EQ1  
EQ0 Service  
Clock Rate  
Transmitter Equalization1,2  
Maximum  
Cable Loss  
to DSX3  
Feet  
Meters  
dB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DSX-1  
CEPT4  
1.544 MHz  
0 to 131  
0 to 40  
40 to 80  
0.6  
1.2  
1.8  
2.4  
3.0  
131 to 262  
262 to 393  
393 to 524  
524 to 655  
80 to 120  
120 to 160  
160 to 200  
2.048 MHz  
75 (Option 2)  
120 or 75 (Option 1)  
Not Used  
1.In DS1 mode, the distance to the DSX for 22-Gauge PIC (ABAM) cable is specified. Use the maximum cable loss figures for other cable  
types. In CEPT mode, equalization is specified for coaxial or twisted-pair cable.  
2.Reset default state is EQ2, EQ1, and EQ0 = 000 when pin DS1_CEPT = 1 and EQ2, EQ1, and EQ0 = 110 when pin DS1_CEPT = 0.  
3.Loss measured at 772 kHz.  
4.In 75 applications, Option 1 is recommended over Option 2 for lower LIU power dissipation. Option 2 allows for the use of the same trans-  
former as in CEPT 120 applications (see Line Interface Unit: Line Circuitry section).  
Agere Systems Inc.  
163  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture  
REGBANK3 and REGBANK6 contain the status and programmable control registers for the framer and system  
(CHI) interface channels FRM1 and FRM2. The base address for REGBANK3 is 600 (hex) and for REGBANK6 is  
C00 (hex). Within these register banks, the bit map is identical for both FRM1 and FRM2.  
The framer registers are structures as shown in Table 88. Default values are given in the individual register defini-  
tion tables.  
Table 88. Framer Status and Control Blocks Address Range (Hexadecimal)  
Framer Register Block  
Status Registers (COR) ((600—63F); (C00—C3F))  
Receive Signaling Registers ((640—65F); (C40—C5F))  
Parameter (Configuration) Registers ((660—6A6); (C60—CA6))  
Transmit Signaling Registers ((6E0—6FF); (CE0—CFF))  
The complete register map for the framer is given in Table 202—Table 204 on page 220—page 223.  
All status registers are clocked with the internal framer receive line clock (RFRMCK).  
Bits in status registers FRM_SR1 and FRM_SR7 are set at the onset of the condition and are cleared on read  
when the given condition is no longer present. These registers can generate interrupts if the corresponding register  
bits are enabled in interrupt enable registers FRM_PR0—FRM_PR7.  
On all 16-bit counter registers (FRM_SR8—FRM_SR51), both bytes are cleared only after reading both bytes,  
regardless of the order in which they are read. Once a read is initiated on one of the bytes, the updating of that  
counter is disabled and remains disabled until both bytes are read. All events during this interval are lost. Updating  
of the counter registers is stopped when all of the bits are set to 1. Updating resumes after the registers are cleared  
on read. These register pairs may be read in any order, but they must be read in pairs, i.e., a read of 1 byte must be  
followed immediately by a read of the remaining byte of the pair.  
Status registers FRM_SR0—FRM_SR63 are clear-on-read (COR) registers. These registers are cleared by the  
framer internal received line clock (RFRMCK). At least two RFRMCK cycles (1.3 µs for DS1 and 1.0 µs for CEPT)  
must be allowed between successive reads of the same COR register to allow it to properly clear.  
164  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers  
Registers FRM_SR0—FRM_SR63 report the status of each framer. All are clear-on-read, read only registers.  
Interrupt Status Register (FRM_SR0)  
The interrupt pin (INTERRUPT) goes active when a bit in this register and its associated interrupt enable bit in reg-  
isters FRM_PR0—FRM_PR7 are set, and the interrupt for the framer block is enabled in register GREG1.  
Table 89. Interrupt Status Register (FRM_SR0) (600; C00)  
Bit  
0
Symbol  
FAC  
Description  
Facility Alarm Condition. A 1 indicates a facility alarm occurred (go read FRM_SR1).  
Remote Alarm Condition. A 1 indicates a remote alarm occurred (go read FRM_SR2).  
1
RAC  
2
FAE  
Facility Alarm Event. A 1 indicates a facility alarm occurred (go read FRM_SR3 and  
FRM_SR4).  
3
4
ESE  
Errored Second Event. A 1 indicates an errored second event occurred (go read  
FRM_SR5, FRM_SR6, and FRM_SR7).  
TSSFE  
Transmit Signaling Superframe Event. A 1 indicates that a MOS (or CCS for CEPT)  
superframe block has been transmitted and the transmit signaling data buffers are ready  
for new data.  
5
RSSFE  
Receive Signaling Superframe Event. A 1 indicates that a MOS (or CCS for CEPT)  
superframe block has been received and the receive signaling data buffers must be read.  
6
7
Reserved.  
S96SR  
SLC-96 Stack Ready. A 1 indicates that either the transmit framer SLC-96 stack is ready  
for more data or the receive framer SLC-96 stack contains new data.  
Agere Systems Inc.  
165  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
Facility Alarm Condition Register (FRM_SR1)  
The bits in the facility alarm condition register (FRM_SR1) indicate alarm state of the receive framer section. Inter-  
rupts from this register are generated once at the onset of the alarm condition. If the alarm condition is still present  
at the time of the read, the bit will remain in the 1 state for the duration of the alarm condition. If the alarm condition  
is no longer present at the time of the read, then the bit is cleared on read.  
Table 90. Facility Alarm Condition Register (FRM_SR1) (601; C01)  
Bit  
Symbol  
Description  
0
LFA  
Loss of Frame Alignment. A 1 indicates the receive framer is in a loss of frame  
alignment and is currently searching for a new alignment.  
1
2
LSFA,  
Loss of Signaling Superframe Alignment. A 1 indicates the receive framer is in a loss  
of signaling superframe alignment in the DS1 framing formats. A search for a new  
signaling superframe alignment starts once frame alignment is established.  
LTS16MFA Loss of Time Slot 16 Signaling Multiframe Alignment. A 1 indicates the receive framer  
is in a loss of time slot 16 signaling multiframe alignment in the CEPT mode. A search for  
a new time slot 16 signaling multiframe alignment starts once frame alignment is  
established. This bit is 0 when the T7633 is programmed for the transparent signaling  
mode, register FRM_PR44 bit 0 (TSIG) = 1.  
LTSFA,  
Loss of Transmit Superframe Alignment. A 1 indicates superframe alignment pattern  
in the transmit facility data link as defined for SLC-96 is lost. Only valid for SLC-96 mode.  
This bit is 0 in all other DS1 modes.  
LTS0MFA  
Loss of Time Slot 0 CRC-4 Multiframe Alignment. A 1 indicates an absence of CRC-  
4 multiframe alignment after initial basic frame alignment is established. A 0 indicates  
either CRC-4 checking is disabled or CRC-4 multiframe alignment has been successfully  
detected.  
3
4
LFALR  
LBFA  
Loss of Frame Alignment Since Last Read. A 1 indicates that the LFA state indicated  
in bit 0 of this register is the same LFA state as the previous read.  
Loss of Biframe Alignment. A 1 indicates that the CEPT biframe alignment pattern  
(alternating 10 in bit 2 of time slot 0 of each frame) in the receive system data is errored.  
This alignment pattern is required when transmitting the Si or Sa bits transparently. Only  
valid in the CEPT mode. This bit is 0 in all other modes.  
5
6
7
RTS16AIS Receive Time Slot 16 Alarm Indication Signal. A 1 indicates the receive framer  
detected time slot 16 AIS in the CEPT mode. This bit is 0 in the DS1 modes.  
AUXP  
AIS  
Auxiliary Pattern. A 1 indicates the detection of a valid AUXP (unframed 1010 . . .  
pattern) in the CEPT mode. This bit is 0 in the DS1 modes.  
Alarm Indication Signal. A 1 indicates the receive framer is currently receiving an AIS  
pattern from its remote line end.  
166  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
Remote End Alarm Register (FRM_SR2)  
A bit set to 1 indicates the receive framer has recently received the given alarm. Interrupts from this register are  
generated once at the beginning of the alarm condition. If the alarm is still present at the time of the read, the bit  
will remain in the 1 state for the duration of the alarm condition. If the alarm condition is no longer present at the  
time of the read, then the bit is cleared on read.  
Table 91. Remote End Alarm Register (FRM_SR2) (602; C02)  
Bit  
Symbol  
Description  
0
RFA  
Remote Framer Alarm. A 1 indicates the receive framer detected a remote frame  
(yellow) alarm.  
1
RJYA,  
Remote Japanese Yellow Alarm. A 1 indicates the receive framer detected the  
Japanese format remote frame alarm.  
RTS16MFA Remote Multiframe Alarm. A 1 indicates the receive framer detected a time slot 16  
remote frame alarm in the CEPT mode.  
2
3
4
5
6
7
CREBIT  
Sa6=8  
Sa6=A  
Sa6=C  
Sa6=E  
Sa6=F  
Continuous Received E Bits. A 1 indicates the detection of a five-second interval con-  
taining 991 E bit = 0 events in each second. This bit is 0 in the DS1 mode.  
Received Sa6 = 8. A 1 indicates the receive framer detected a Sa6 code equal to 1000.  
This bit is 0 in the DS1 mode.  
Received Sa6 = A. A 1 indicates the receive framer detected a Sa6 code equal to 1010.  
This bit is 0 in the DS1 mode.  
Received Sa6 = C. A 1 indicates the receive framer detected a Sa6 code equal to 1100.  
This bit is 0 in the DS1 mode.  
Received Sa6 = E. A 1 indicates the receive framer detected a Sa6 code equal to 1110.  
This bit is 0 in the DS1 mode.  
Received Sa6 = F. A 1 indicates the receive framer detected a Sa6 code equal to 1111.  
This bit is 0 in the DS1 mode.  
Agere Systems Inc.  
167  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
Facility Errored Event Register (FRM_SR3)  
A bit set to 1 indicates the receive framer has recently received the given errored event.  
Table 92. Facility Errored Event Register-1 (FRM_SR3) (603; C03)  
Bit  
Symbol  
Description  
0
LFV  
Line Format Violation. A 1 indicates the receive framer detected a bipolar line coding or  
excessive zeros violation.  
1
FBE  
Frame-Bit Errored. A 1 indicates the receive framer detected a frame-bit or frame  
alignment pattern error.  
2
3
CRCE  
ECE  
CRC Errored. A 1 indicates the receive framer detected CRC errors.  
Excessive CRC Errors. A 1 indicates the receive framer detected an excessive CRC  
errored condition. This bit is only valid in the ESF and CEPT with CRC-4 modes;  
otherwise, it is 0.  
4
5
REBIT  
Received E Bit = 0. A 1 indicates the receive framer detected a E bit = 0 in either frame  
13 or 15 of the time slot 0 of CRC-4 multiframe. This bit is 0 in the DS1 modes.  
LCRCATMX Lack of CRC-4 Multiframe Alignment Timer Expire Indication. A 1 indicates that either  
the 100 ms or the 400 ms CRC-4 interworking timer expired. Active only immediately after  
establishment of the initial basic frame alignment. This bit is 0 in the DS1 modes.  
6
7
SLIPO  
Receive Elastic Store Slip: Buffer Overflow. A 1 indicates the receive elastic store  
performed a control slip due to an elastic buffer overflow condition.  
SLIPU  
Receive Elastic Store Slip: Buffer Underflow. A 1 indicates the receive elastic store  
performed a control slip due to an elastic buffer underflow condition.  
168  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
Table 93. Facility Event Register-2 (FRM_SR4) (604; C04)  
Bit  
Symbol  
Description  
0
NFA  
New Frame Alignment. A 1 indicates the receive framer established a new frame  
alignment which differs from the previous alignment.  
1
2
SSFA  
Signaling Superframe Alignment. A 1 indicates the receive framer has established the  
signaling superframe alignment. In the SF modes (D4 and SLC-96) and CEPT modes,  
this alignment is established only after primary frame alignment is determined.  
LLBOFF,  
BFA  
T1 Line Loopback Off Code Detect. A 1 indicates the receive framer detected the DS1  
line loopback disable code in the payload. This code is defined in AT&T Technical  
Reference 62411 as a framed 001 pattern where the frame bit is inserted into the pattern.  
New Biframe Alignment Established. A 1 indicates the transmit framer has established  
a biframe alignment for the transmission of transparent Si and or Sa bits from the system  
data in the CEPT mode.  
3
LLBON,  
CMA  
T1 Line Loopback On Code Detect. A 1 indicates the receive framer detected the line  
loopback enable code in the payload. This code is defined in AT&T Technical Reference  
62411 as a framed 00001 pattern where the frame bit is inserted into the pattern.  
New CEPT CRC-4 Multiframe Alignment. A 1 indicates the CEPT CRC-4 multiframe  
alignment in the receive framer has been established.  
Agere Systems Inc.  
169  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
Table 93. Facility Event Register-2 (FRM_SR4) (604; C04) (continued)  
Bit  
Symbol  
Description  
4
FDL-PLBON, ESF FDL Payload Loopback On Code Detect. A 1 indicates the receive framer detected  
the line loopback enable code in the payload. This code is defined in ANSI T1.403-1995  
as a 1111111100101000 pattern in the facility data link, where the leftmost bit is the MSB.  
SLCRFSR  
SLC-96 Receive FDL Stack Ready. A 1 indicates that the receive FDL stack should be  
read. This bit is cleared on read. Data in the receive FIFO must be read within 9 ms of this  
interrupt. This bit is not updated during loss of frame or signaling superframe alignment.  
5
6
7
FDL-PLBOFF, ESF FDL Payload Loopback Off Code Detect. A 1 indicates the receive framer  
detected the line loopback disable code in the payload. This code is defined in ANSI  
T1.403-1995 as a 1111111101001100 pattern in the facility data link, where the leftmost  
SLCTFSR  
bit is the MSB.  
SLC-96 Transmit FDL Stack Ready. A 1 indicates that the transmit FDL stack is ready  
for new data. This bit is cleared on read. Data written within 9 ms of this interrupt will be  
transmitted in the next SLC-96 D-bit superframe interval.  
FDL-LLBON, ESF FDL Line Loopback On Code Detect. A 1 indicates the receive framer detected the  
line loopback enable code in the payload. This code is defined in ANSI T1.403-1995 as a  
1111111101110000 pattern in the facility data link, where the left most bit is the MSB.  
RSaSR  
CEPT Receive Sa Stack Ready. A 1 indicates that the receive Sa6 stack should be read.  
This bit is clear on the first access to the Sa receive stack or at the beginning of frame 0  
of the CRC-4 double-multiframe. Data in the receive FIFO must be read within 4 ms of  
this interrupt. This bit is not updated during LFA.  
FDL-LLBOFF, ESF FDL Line Loopback Off Code Detect. A 1 indicates the receive framer detected the  
line loopback disable code in the payload. This code is defined in ANSI T1.403-1995 as  
a 1111111100011100 pattern in the facility data link, where the left most bit is the MSB.  
TSaSR  
CEPT Transmit Sa Stack Ready. A 1 indicates that the transmit Sa stack is ready for  
new data. This bit is cleared on the first access to the Sa transmit stack or at the beginning  
of frame 0 of the CRC-4 double multiframe. Data written within 4 ms of this interrupt will  
be transmitted in the next CRC-4 double multiframe interval.  
170  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
The following registers are dedicated to the exchange termination and its remote end interface. The alarm  
conditions to trigger errored seconds and severely errored seconds are defined in Table 44, Event Counters  
Definition on page 97 and the ET and ET-RE enable registers, FRM_PR14 and FRM_PR15. The thresholds are  
defined in registers FRM_PR11—FRM_PR13.  
Table 94. Exchange Termination and Exchange Termination Remote End Interface  
Status Register (FRM_SR5) (605; C05)  
Bit  
Symbol  
Description  
0
ETES  
ET Errored Second. A 1 indicates the receive framer detected an errored second at the  
exchange termination (ET).  
1
2
3
ETBES  
ETSES  
ETUAS  
ET Bursty Errored Second. A 1 indicates the receive framer detected a bursty errored  
second at the ET.  
ET Severely Errored Second. A 1 indicates the receive framer detected a severely  
errored second at the ET.  
ET Unavailable State. A 1 indicates the receive framer has detected at least ten  
consecutive severely errored seconds. Upon detecting ten consecutive nonseverely  
errored seconds, the receive framer will clear this bit. ITU Recommendation G.826 is  
used resulting in a ten-second delay in the reporting of this condition.  
4
5
6
7
ETREES  
ETREBES  
ETRESES  
ET-RE Errored Second. A 1 indicates the receive framer detected an errored second at  
the exchange termination remote end (ET-RE).  
ET-RE Bursty Errored Second. A 1 indicates the receive framer detected a bursty  
errored second at the ET-RE.  
ET-RE Severely Errored Second. A 1 indicates the receive framer detected a severely  
errored second at the ET-RE.  
ETREUAS ET-RE Unavailable State. A 1 indicates the receive framer has detected at least ten  
consecutive severely errored seconds. Upon detecting ten consecutive nonseverely  
errored seconds, the receive framer will clear this bit. ITU Recommendation G.826 is  
used resulting in a ten-second delay in the reporting of this condition.  
Agere Systems Inc.  
171  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
The following status registers are dedicated to the NT1 and the NT1 remote end (NT1-RE) interface. The alarm  
conditions to evaluate errored seconds and severely errored seconds are defined in Table 44, Event Counters  
Definition on page 97 and the NT1 and NT1-RE enable registers, FRM_PR16—FRM_PR18. The thresholds are  
defined in registers FRM_PR11—FRM_PR13.  
Table 95. Network Termination and Network Termination Remote End Interface Status  
Register (FRM_SR6) (606; C06)  
Bit  
Symbol  
Description  
0
NTES  
NT Errored Second. A 1 indicates the receive framer detected an errored second at the  
network termination (NT).  
1
2
3
NTBES  
NTSES  
NTUAS  
NT Bursty Errored Second. A 1 indicates the receive framer detected a bursty errored  
second at the NT.  
NT Severely Errored Second. A 1 indicates the receive framer detected a severely  
errored second at the NT.  
NT Unavailable State. A 1 indicates the receive framer has detected at least ten  
consecutive severely errored seconds. Upon detecting ten consecutive nonseverely  
errored seconds, the receive framer will clear this bit. ITU Recommendation G.826 is used  
resulting in a ten-second delay in the reporting of this condition.  
4
5
6
7
NTREES  
NT-RE Errored Second. A 1 indicates the receive framer detected an errored second at  
the exchange termination remote end (ET-RE).  
NTREBES NT-RE Bursty Errored Second. A 1 indicates the receive framer detected a bursty  
errored second at the ET-RE.  
NTRESES NT-RE Severely Errored Second. A 1 indicates the receive framer detected a severely  
errored second at the NT-RE.  
NTREUAS NT-RE Unavailable State. A 1 indicates the receive framer has detected at least ten  
consecutive severely errored seconds. Upon detecting ten consecutive nonseverely  
errored seconds, the receive framer will clear this bit. ITU Recommendation G.826 is used  
resulting in a ten-second delay in the reporting of this condition.  
172  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
Bit 0—bit 4 in this register are set high when the receive framer comes out of the unavailable state, while bit 4—bit  
7 report detection of the receive test patterns.  
Table 96. Facility Event Register (FRM_SR7) (607; C07)  
Bit  
Symbol  
Description  
0
OUAS  
Out of Unavailable State. A 1 indicates the receive framer detected ten consecutive  
seconds that were not severely errored while in the unavailable state at the ET.  
1
2
3
EROUAS  
Out of Unavailable State at the ET-RE. A 1 indicates the receive framer detected ten  
consecutive seconds that were not severely errored while in the unavailable state at the  
ET-RE.  
NT1OUAS Out of Unavailable State at the NT1. A 1 indicates the receive framer detected ten  
consecutive seconds that were not severely errored while in the unavailable state at the  
NT.  
NROUAS  
DETECT  
Out of Unavailable State NT1-RE. A 1 indicates the receive framer detected ten  
consecutive seconds that were not severely errored while in the unavailable state at the  
NT-RE.  
4
5
6
7
Test Pattern Detected. A 1 indicates the pattern detector has locked onto the pattern  
specified by the PTRN configuration bits defined in register FRM_PR70.  
PTRNBER Test Pattern Bit Error. A 1 indicates the pattern detector has found one or more single  
bit errors in the pattern that it is currently locked onto.  
RPSUEDO Receiving Pseudorandom Pattern. A 1 indicates the receive framer pattern monitor  
circuit is currently detecting the 215 – 1 pseudorandom pattern*.  
RQUASI  
Receiving Quasi-Random Pattern. A 1 indicates the receive framer pattern monitor  
circuit is currently detecting the 220 – 1 quasi-random pattern*.  
* It is possible for one of these bits to be set to 1, if the received line data is all zeros.  
Bipolar Violation Counter Register (FRM_SR8—FRM_SR9)  
This register contains the 16-bit count of received bipolar violations, line code violations, or excessive zeros.  
Table 97. Bipolar Violation Counter Registers (FRM_SR8—FRM_SR9) ((608—609); (C08—C09))  
Register  
FRM_SR8  
FRM_SR9  
Byte  
MSB  
LSB  
Bit  
7—0  
7—0  
Symbol  
Description  
BPV15—BPV8 BPVs Counter.  
BPV7—BPV0 BPVs Counter.  
Frame Bit Errored Counter Register (FRM_SR10—FRM_SR11)  
This register contains the 16-bit count of framing bit errors. Framing bit errors are not counted during loss of frame  
alignment.  
Table 98. Framing Bit Error Counter Registers (FRM_SR10—FRM_SR11) ((60A—60B); (C0A—C0B))  
Register  
FRM_SR10  
FRM_SR11  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
FBE15—FBE8 Frame Bit Counter.  
FBE7—FBE0 Frame Bit Errored Counter.  
Agere Systems Inc.  
173  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
CRC Error Counter Register (FRM_SR12—FRM_SR13)  
This register contains the 16-bit count of CRC errors. CRC errors are not counted during loss of CRC multiframe  
alignment.  
Table 99. CRC Error Counter Registers (FRM_SR12—FRM_SR13) ((60C—60D); (C0C—C0D))  
Register  
FRM_SR12  
FRM_SR13  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
CEC15—CEC8 CRC Errored Counter.  
CEC7—CEC0 CRC Errored Counter.  
E-Bit Counter Register (FRM_SR14—FRM_SR15)  
This register contains the 16-bit count of received E bit = 0 events. E bits are not counted during loss of CEPT  
CRC-4 multiframe alignment.  
Table 100. E-Bit Counter Registers (FRM_SR14—FRM_SR15) ((60E—60F); (C0E—C0F))  
Register  
FRM_SR14  
FRM_SR15  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
REC15—REC8 E-Bit Counter.  
REC7—REC0 E-Bit Counter.  
CRC-4 Errors at NT1 from NT2 Counter Registers (FRM_SR16—FRM_SR17)  
This register contains the 16-bit count of each occurrence of Sa6 code 001X, detected synchronously to the CEPT  
CRC-4 multiframe.  
Table 101. CRC-4 Errors at NT1 from NT2 Counter Registers (FRM_SR16—FRM_SR17) ((610—611);  
(C10—C11))  
Register  
FRM_SR16  
FRM_SR17  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
CNT15—CNT8 CRC-4 Errors at NT1 Counter.  
CNT7—CNT0 CRC-4 Errors at NT1 Counter.  
E Bit at NT1 from NT2 Counter Registers (FRM_SR18—FRM_SR19)  
This register contains the 16-bit count of each occurrence of Sa6 code 00X1, detected synchronously to the CEPT  
CRC-4 multiframe. E bits are not counted during loss of CEPT CRC-4 multiframe alignment.  
Table 102. E Bit at NT1 from NT2 Counter (FRM_SR18—FRM_SR19) ((612—613); (C12—C13))  
Register  
FRM_SR18  
FRM_SR19  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
ENT15—ENT8 E Bit at NT1 Counter.  
ENT7—ENT0 E Bit at NT1 Counter.  
174  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
The following status registers, FRM_SR20—FRM_SR51, contain the 16-bit count of errored seconds, bursty  
errored seconds, severely errored seconds, and unavailable seconds at the ET, ET-RE, NT1, and NT1-RE  
terminals.  
Table 103. ET Errored Seconds Counter (FRM_SR20—FRM_SR21) ((614—615); (C14—C15))  
Register  
FRM_SR20  
FRM_SR21  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
ET Errored Seconds Counter.  
ET Errored Seconds Counter.  
7—0  
7—0  
ETES15—ETES8  
ETES7—ETES0  
Table 104. ET Bursty Errored Seconds Counter (FRM_SR22—FRM_SR23) ((616—617); (C16—C17))  
Register  
FRM_SR22  
FRM_SR23  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
ETBES15—ETBES8 ET Bursty Errored Seconds Counter.  
ETBES7—ETBES0 ET Bursty Errored Seconds Counter.  
Table 105. ET Severely Errored Seconds Counter (FRM_SR24—FRM_SR25) ((618—619); (C18—C19))  
Register  
FRM_SR24  
FRM_SR25  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
ETSES15—ETSES8 ET Severely Errored Seconds Counter.  
ETSES7—ETSES0 ET Severely Errored Seconds Counter.  
Table 106. ET Unavailable Seconds Counter (FRM_SR26—FRM_SR27) ((61A—61B); (C1A—C1B))  
Register  
FRM_SR26  
FRM_SR27  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
ETUS15—ETUS8  
ETUS7—ETUS0  
ET Unavailable Seconds Counter Bits.  
ET Unavailable Seconds Counter Bits.  
Table 107. ET-RE Errored Seconds Counter (FRM_SR28—FRM_SR29) ((61C—61D); (C1C—C1D))  
Register  
FRM_SR28  
FRM_SR29  
Byte  
MSB  
LSB  
Bit  
7—0 ETREES15—ETREES8 ET-RE Errored Seconds Counter.  
7—0 ETREES7—ETREES0 ET-RE Errored Seconds Counter.  
Symbol  
Description  
Table 108. ET-RE Bursty Errored Seconds Counter (FRM_SR30—FRM_SR31) ((61E—61F); (C1E—C1F))  
Register Byte Bit Symbol Description  
FRM_SR30 MSB 7—0 ETREBES15—ETREBES8 ET-RE Bursty Errored Seconds Counter.  
FRM_SR31 LSB 7—0 ETREBES7—ETREBES0 ET-RE Bursty Errored Seconds Counter.  
Table 109. ET-RE Severely Errored Seconds Counter (FRM_SR32—FRM_SR33) ((620—621); (C20—C21))  
Register Byte Bit Symbol Description  
FRM_SR32 MSB 7—0 ETRESES15—ETRESES8 ET-RE Severely Errored Seconds Counter.  
FRM_SR33 LSB 7—0 ETRESES7—ETRESES0 ET-RE Severely Errored Seconds Counter.  
Agere Systems Inc.  
175  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
Table 110. ET-RE Unavailable Seconds Counter (FRM_SR34—FRM_SR35) ((622—623); (C22—C23))  
Register  
FRM_SR34 MSB  
FRM_SR35 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
ETREUS15—ETRESES8 ET-RE Unavailable Seconds Counter.  
ETRESES7—ETRESES0 ET-RE Unavailable Seconds Counter.  
Table 111. NT1 Errored Seconds Counter (FRM_SR36—FRM_SR37) ((624—625); (C24—C25))  
Register  
FRM_SR36 MSB  
FRM_SR37 LSB  
Byte  
Bit  
Symbol  
Description  
NT1 Errored Seconds Counter.  
NT1 Errored Seconds Counter.  
7—0  
7—0  
NTES15—NTES8  
NTES7—NTES0  
Table 112. NT1 Bursty Errored Seconds Counter (FRM_SR38—FRM_SR39) ((626—627); (C26—C27))  
Register  
FRM_SR38  
FRM_SR39  
Byte  
MSB  
LSB  
Bit  
Symbol  
Description  
7—0  
7—0  
NTBES15—NTBES8  
NTBES7—NTBES0  
NT1 Bursty Errored Seconds Counter.  
NT1 Bursty Errored Seconds Counter.  
Table 113. NT1 Severely Errored Seconds Counter (FRM_SR40—FRM_SR41) ((628—629); (C28—C29))  
Register  
FRM_SR40 MSB  
FRM_SR41 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
NTSES15—NTSES8  
NTSES7—NTSES0  
NT1 Severely Errored Seconds Counter.  
NT1 Severely Errored Seconds Counter.  
Table 114. NT1 Unavailable Seconds Counter (FRM_SR42—FRM_SR43) ((62A—62B); (C2A—C2B))  
Register  
FRM_SR42 MSB  
FRM_SR43 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
NTUS15—NTUS8  
NTUS7—NTUS0  
NT1 Unavailable Seconds Counter Bits.  
NT1 Unavailable Seconds Counter Bits.  
Table 115. NT1-RE Errored Seconds Counter (FRM_SR44—FRM_SR45) ((62C—62D); (C2C—C2D))  
Register  
FRM_SR44 MSB  
FRM_SR45 LSB  
Byte  
Bit  
Symbol  
NTREES15—NTREES8 NT1-RE Errored Seconds Counter.  
NTREES7—NTREES0 NT1-RE Errored Seconds Counter.  
Description  
7—0  
7—0  
176  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
Table 116. NT1-RE Bursty Errored Seconds Counter (FRM_SR46—FRM_SR47) ((62E—62F); (C2E—C2F))  
Register Byte Bit Symbol Description  
FRM_SR46 MSB 7—0 NTREBES15—NTREBES8 NT1-RE Bursty Errored Seconds Counter.  
FRM_SR47 LSB 7—0 NTREBES7—NTREBES0 NT1-RE Bursty Errored Seconds Counter.  
Table 117. NT1-RE Severely Errored Seconds Counter (FRM_SR48—FRM_SR49) ((630—631); (C30—C31))  
Register Byte Bit Symbol Description  
FRM_SR48 MSB 7—0 NTRESES15—NTRESES8 NT1-RE Severely Errored Seconds Counter.  
FRM_SR49 LSB 7—0 NTRESES7—NTRESES0 NT1-RE Severely Errored Seconds Counter.  
Table 118. NT1-RE Unavailable Seconds Counter (FRM_SR50—FRM_SR51) ((632—633); (C32—C33))  
Register  
FRM_SR50 MSB  
FRM_SR51 LSB  
Byte  
Bit  
Symbol  
Description  
7—0  
7—0  
NTREUS15—NTREUS8 NT1-RE Unavailable Seconds Counter Bits.  
NTREUS7—NTREUS0 NT1-RE Unavailable Seconds Counter Bits.  
Received NOT-FAS TS0 RSa Register (FRM_SR52)  
This register contains the last (since last read) valid received RSa8— RSa4 bits, A bit, and Si bit of NOT-FAS time  
slot 0 and the Si bit of FAS time slot 0 while the receive framer was in basic frame alignment.  
Table 119. Receive NOT-FAS TS0 Register (FRM_SR52) (634; C34)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NOT-FAS bit 1  
FAS bit 1  
A bit  
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
(CEPT without CRC-4) (CEPT without CRC-4)  
or  
or  
frame 15 E bit  
(CEPT with CRC-4)  
frame 13 E bit  
(CEPT with CRC-4)  
Received Sa Register (FRM_SR53)  
This register contains the last (since last read) valid time slot 16 spare bits of the frame containing the time slot 16  
signaling multiframe alignment. These bits are updated only when the receive framer is in signaling multiframe  
alignment.  
Table 120. Receive Sa Register (FRM_SR53) (635; C35)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
X2  
X1  
X0  
Agere Systems Inc.  
177  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
SLC-96 FDL/CEPT Sa Receive Stack (FRM_SR54—FRM_SR63)  
In the SLC-96 frame format, FRM_SR54 through FRM_SR58 contain the received SLC-96 facility data link data  
block. When the framer is in a loss of frame alignment or loss of signaling superframe alignment, these registers  
are not updated.  
Note: The RSP[1:4] are the received spoiler bits.  
Table 121. SLC-96 FDL Receive Stack (FRM_SR54—FRM_SR63) ((636—63F); (C36—C3F))  
Register  
Bit 7  
0
Bit 6  
0
Bit 5  
R-0  
R-0  
RC3  
RC11  
RA2  
0
Bit 4  
R-0  
Bit 3  
R-0  
Bit 2  
R-1  
Bit 1  
R-1  
R-1  
RC7  
RM1  
RS4  
0
Bit 0  
R-1  
FRM_SR54  
FRM_SR55  
FRM_SR56  
FRM_SR57  
FRM_SR58  
0
0
R-0  
R-0  
R-1  
R-1  
RC1  
RC9  
RM3  
0
RC2  
RC10  
RA1  
0
RC4  
RC5  
RC6  
RC8  
RSPB1 = 0 RSPB2 = 1 RSPB3 = 0  
RM2  
RS1  
0
RS2  
0
RS3  
0
RSPB4 = 1  
0
FRM_SR59—  
FRM_SR61  
In the CEPT frame format, FRM_SR54 through FRM_SR63 contain the received Sa4 through Sa8 from the last  
valid CRC-4 double-multiframe. In non-CRC-4 mode, these registers are only updated during a basic frame  
aligned state. In CRC-4 mode, these registers are only updated during the CRC-4 multiframe alignment state.  
Table 122. CEPT Sa Receive Stack (FRM_SR54—FRM_SR63) ((636—63F); (C36—C3F))  
Register  
Bit 7  
Sa4-1  
Sa4-17  
Sa5-1  
Sa5-17  
Sa6-1  
Sa6-17  
Sa7-1  
Sa7-17  
Sa8-1  
Sa8-17  
Bit 6  
Sa4-3  
Sa4-19  
Sa5-3  
Sa5-19  
Sa6-3  
Sa6-19  
Sa7-3  
Sa7-19  
Sa8-3  
Sa8-19  
Bit 5  
Sa4-5  
Sa4-21  
Sa5-5  
Sa5-21  
Sa6-5  
Sa6-21  
Sa7-5  
Sa7-21  
Sa8-5  
Sa8-21  
Bit 4  
Sa4-7  
Sa4-23  
Sa5-7  
Sa5-23  
Sa6-7  
Sa6-23  
Sa7-7  
Sa7-23  
Sa8-7  
Sa8-23  
Bit 3  
Sa4-9  
Sa4-25  
Sa5-9  
Sa5-25  
Sa6-9  
Sa6-25  
Sa7-9  
Sa7-25  
Sa8-9  
Sa8-25  
Bit 2  
Bit 1  
Bit 0  
FRM_SR54  
FRM_SR55  
FRM_SR56  
FRM_SR57  
FRM_SR58  
FRM_SR59  
FRM_SR60  
FRM_SR61  
FRM_SR62  
FRM_SR63  
Sa4-11  
Sa4-27  
Sa5-11  
Sa5-27  
Sa6-11  
Sa6-27  
Sa7-11  
Sa7-27  
Sa8-11  
Sa8-27  
Sa4-13  
Sa4-29  
Sa5-13  
Sa5-29  
Sa6-13  
Sa6-29  
Sa7-13  
Sa7-29  
Sa8-13  
Sa8-29  
Sa4-15  
Sa4-31  
Sa5-15  
Sa5-31  
Sa6-15  
Sa6-31  
Sa7-15  
Sa7-31  
Sa8-15  
Sa8-31  
178  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Status/Counter Registers (continued)  
The receive framer stores the current second of the ANSI Performance Report Message transmitted to the  
remote end in registers FRM_SR62 and FRM_SR63. The structure of the PRM status registers is shown in Table  
123.  
Table 123. Transmit Framer ANSI Performance Report Message Status Register Structure  
Transmit  
TSPRM B7  
TSPRM B6  
TSPRM B5 TSPRM B4 TSPRM B3 TSPRM B2 TSPRM B1  
TSPRM B0  
Framer PRM  
Status Bytes  
FRM_SR62  
FRM_SR63  
G3  
FE  
LV  
G4  
LB  
U1  
G1  
U2  
R
G5  
G2  
SL  
G6  
Nl  
SE  
Nm  
Received Signaling Registers: DS1 Format  
Table 124. Received Signaling Registers: DS1 Format (FRM_RSR0—FRM_RSR23) ((640—658); (C40—C58))  
Received Signal Registers  
Bit 7 Bit Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
61  
X
DS1 Received Signaling Registers (0—23)  
Voice Channel with 16-State Signaling  
Voice Channel with 4-State Signaling  
Voice Channel with 2-State Signaling  
Data Channel  
P
X
X
G
0
0
1
1
F
0
1
1
0
D
D
X
C
C
X
B
B
B
A
A
A
X
X
X
X
X
X
X
X
X
X
X
A
X
X
1.Bit 6 and Bit 5 of the DS1 receive signaling registers are copied from bit 6 and bit 5 of the DS1 transmit signaling registers.  
Receive Signaling Registers: CEPT Format  
Table 125. Receive Signaling Registers: CEPT Format (FRM_RSR0—FRM_RSR31) ((640—65F); (C40—  
C5F))  
Receive Signal Registers  
Bit 7  
Bit 6—5  
Bit 41  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
X
X
E0  
X
X
X
X
FRM_RSR0: IRSM Mode  
Only  
P
X
P
X
X
X
E[1:15]  
E16  
D[1:15]  
X
C[1:15]  
X
B[1:15]  
B
A[1:15]  
A
FRM_RSR1—FRM_RSR15  
FRM_RSR16: IRSM Only  
FRM_RSR[17:31]  
E[17:31]  
D[17:31]  
C[17:31]  
B[17:31]  
A[17:31]  
1.This bit contains the IRSM information in time slot 0. In PCS0 or PCS1 signaling mode, this bit is undefined.  
Agere Systems Inc.  
179  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers  
Registers FRM_PR0—FRM_PR70 define the mode configuration of each framer. All are read/write registers.  
These registers are initially set to a default value upon a hardware reset, which is indicated in the register defini-  
tion.  
Interrupt Group Enable Registers (FRM_PR0—FRM_PR7)  
The bits in this register group enable the status registers FRM_SR0—FRM_SR7 to assert the interrupt pin. The  
default value of these registers is 00 (hex).  
FRM_PR0 is the primary interrupt group enable register which enables the event groups in interrupt status register  
FRM_SR0. A bit set to 1 in this register enables the corresponding bit in the interrupt status register FRM_SR0 to  
assert the interrupt pin.  
FRM_PR1—FRM_PR7 are the secondary interrupt enable registers. A bit set to 1 in these registers enables the  
corresponding bit in the status register to assert the interrupt pin.  
Table 126. Summary of Interrupt Group Enable Registers (FRM_PR0—FRM_PR7) ((660—667); (C60—C67))  
Parameter/  
Control  
Register  
Status  
Register  
Enabled  
Status  
Register  
Bit 7  
Status  
Register  
Bit 6  
Status  
Register  
Bit 5  
Status  
Register  
Bit 4  
Status  
Register  
Bit 3  
Status  
Register  
Bit 2  
Status  
Register  
Bit 1  
Status  
Register  
Bit 0  
FRM_PR0 FRM_SR0  
S96SR  
Reserved  
RSSFE  
TSSFE  
ESE  
FAE  
RAC  
FAC  
(read  
(read  
(read  
(read  
FRM_SR5, FRM_SR3 FRM_SR2) FRM_SR1)  
FRM_SR6,  
and  
and  
FRM_SR4)  
FRM_SR7)  
FRM_PR1 FRM_SR1  
FRM_PR2 FRM_SR2  
AIS  
AUXP  
RTS16AIS  
RSa6=C  
LBFA  
LFALR  
LTSFA  
(LTS0MFA) (LTS16MFA)  
LSFA  
LFA  
RFA  
RSa6=F  
RSa6=E  
RSa6=A  
RSa6=8  
CREBIT  
RJYA  
(RTS16MFA  
)
FRM_PR3 FRM_SR3  
FRM_PR4 FRM_SR4  
SLIPU  
SLIPO  
LCRCATMX  
REBIT  
ECE  
CRCE  
FBE  
LFV  
CFA  
FDL_LLBOFF  
(TSaSR)  
FDL_PLBOFF  
(SLCTFSR)  
FDL_LLBON  
(RSaSR)  
FDL_PLBON  
(SLCRFSR)  
LLBON  
(CMA)  
LLBOFF  
(BFA)  
SSFA  
FRM_PR5 FRM_SR5 ETREUAS  
FRM_PR6 FRM_SR6 NTREUAS  
ETRESES  
NTRESES  
RPSUEDO  
ETREBES  
NTREBES  
PTRNBER  
ETREES  
NTREES  
DETECT  
ETUAS  
NTUAS  
ETSES  
NTSES  
ETBES  
NTBES  
ETES  
NTES  
OUAS  
FRM_PR7 FRM_SR7  
RQUASI  
NROUAS NT1OUAS  
EROUAS  
180  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Primary Interrupt Enable Register (FRM_PR0)  
The default value of this register is 00 (hex).  
Table 127. Primary Interrupt Group Enable Register (FRM_PR0) (660; C60)  
Bit  
0
Symbol  
SR1IE  
Description  
Status Register 1 Interrupt Enable Bit. A 1 enables register FRM_SR1 event interrupts.  
Status Register 2 Interrupt Enable Bit. A 1 enables register FRM_SR2 event interrupts.  
1
SR2IE  
2
SR34IE  
Status Registers 3 and 4 Interrupt Enable Bit. A 1 enables registers FRM_SR3 and  
FRM_SR4 event interrupts.  
3
4
5
SR567IE  
TSRIE  
Status Registers 5, 6, and 7 Interrupt Enable Bit. A 1 enables registers FRM_SR5,  
FRM_SR6, and FRM_SR7 event interrupts.  
Transmit Signaling Ready Interrupt Enable Bit. A 1 enables interrupts when transmit  
signaling buffers are ready (MOS or CCS modes).  
RSRIE  
Receive Signaling Ready Interrupt Enable Bit. A 1 enables interrupts when receive  
signaling buffers are ready (MOS or CCS modes).  
6
Reserved. Write to 0.  
7
SLCIE  
SLC-96 Interrupt Enable Bit. A 1 enables interrupts when SLC-96 receive or transmit  
stacks are ready.  
Agere Systems Inc.  
181  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Secondary Interrupt Enable Registers (FRM_PR1—FRM_PR7)  
A bit set to 1 in registers FRM_PR1—FRM_PR7 enables the generation of interrupts whenever the corresponding  
bit in registers FRM_SR1—FRM_SR7 is set. The default value of these registers is 00 (hex).  
Table 128. Interrupt Enable Register (FRM_PR1) (661; C61)  
Bit  
Symbol  
Description  
0—7  
SR1B0IE— Status Register 1 Interrupt Enable. A 1 enables events monitored in register FRM_SR1  
to generate interrupts. Each bit position in this enable register corresponds to the same  
bit position in the status register.  
SR1B7IE  
Table 129. Interrupt Enable Register (FRM_PR2) (662; C62)  
Bit  
Symbol  
Description  
0—7  
SR2B0IE— Status Register 2 Interrupt Enable. A 1 enables events monitored in register FRM_SR2  
to generate interrupts. Each bit position in this enable register corresponds to the same  
bit position in the status register.  
SR2B7IE  
Table 130. Interrupt Enable Register (FRM_PR3) (663; C63)  
Bit  
Symbol  
Description  
0—7  
SR3B0IE— Status Register 3 Interrupt Enable. A 1 enables events monitored in register FRM_SR3  
to generate interrupts. Each bit position in this enable register corresponds to the same  
bit position in the status register.  
SR3B7IE  
Table 131. Interrupt Enable Register (FRM_PR4) (664; C64)  
Bit  
Symbol  
Description  
0—7  
SR4B0IE— Status Register 4 Interrupt Enable. A 1 enables events monitored in register FRM_SR4  
to generate interrupts. Each bit position in this enable register corresponds to the same  
bit position in the status register.  
SR4B7IE  
Table 132. Interrupt Enable Register (FRM_PR5) (665; C65)  
Bit  
Symbol  
Description  
0—7  
SR5B0IE— Status Register 5 Interrupt Enable. A 1 enables events monitored in register FRM_SR5  
to generate interrupts. Each bit position in this enable register corresponds to the same  
bit position in the status register.  
SR5B7IE  
Table 133. Interrupt Enable Register (FRM_PR6) (666; C66)  
Bit  
Symbol  
Description  
0—7  
SR6B0IE— Status Register 6 Interrupt Enable. A 1 enables events monitored in register FRM_SR6  
to generate interrupts. Each bit position in this enable register corresponds to the same  
bit position in the status register.  
SR6B7IE  
Table 134. Interrupt Enable Register (FRM_PR7) (667; C67)  
Bit  
Symbol  
Description  
0—7  
SR7B0IE— Status Register 7 Interrupt Enable. A 1 enables events monitored in register FRM_SR7  
to generate interrupts. Each bit position in this enable register corresponds to the same  
bit position in the status register.  
SR7B7IE  
182  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Framer Mode Option Register (FRM_PR8)  
The default value of this register is C0 (hex).  
Table 135. Framer Mode Bits Decoding (FRM_PR8) (668; C68)  
FRM_PR8 Frame Format Bit 7 Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FMODE4 FMODE3 FMODE2 FMODE1 FMODE0  
ESF  
D4  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
1
0
0
0
1
0
1
0
0
DDS  
DDS with FDL  
SLC-96  
Transmit ESF  
Receive D4  
Transmit D4  
Receive ESF  
X
X
X
1
0
0
0
1
CEPT  
with No CRC-4  
CCS  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
0
0
1
0
0
1
0
1
0
0
1
0
PCS Mode 0  
PCS Mode 1  
CCS  
CEPT  
with CRC-4  
PCS Mode 1  
PCS Mode 0  
Table 136. Line Code Option Bits Decoding (FRM_PR8) (668; C68)  
Line Code Format  
Bit 7  
LC2  
Bit 6  
LC1  
Bit 5  
LC0  
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
B8ZS (T/R)  
0
0
0
1
0
1
1
1
0
0
1
1
1
0
0
1
0
1
0
0
1
0
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
ZCS (T/R)  
HDB3 (T/R)  
Single Rail (DEFAULT)  
AMI (T/R)  
B8ZS (T), AMI (R)  
ZCS (T), B8ZS (R)  
AMI (T), B8ZS (R)  
Agere Systems Inc.  
183  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Framer CRC Control Option Register (FRM_PR9)  
This register defines the CRC options for the framer. The default setting is 00 (hex).  
Table 137. CRC Option Bits Decoding (FRM_PR9) (669, C69)  
FRM_PR9 CRC Options  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Loss of Frame Alignment Due to Excessive CRC  
Errors (ESF 320, CEPT 915 in a one-second  
interval)  
0
X
X
X
X
X
1
1
CRC-4 with 100 ms Timer  
0
0
0
0
0
X
X
X
X
1
X
X
X
1
X
X
1
1
1
X
1
1
X
X
X
X
X
X
X
X
X
1
1
1
1
1
CRC-4 Interworking Search with 400 ms Timer  
CRC-4 with 990 REB Counter  
X
X
X
CRC-4 with 990 REB Counter: A Bit = 1 Restart  
CRC-4 with 990 REB Counter: Sa6-F or Sa6-E  
Restart  
X
XCRC-4/R-NO CRC-4  
X-NOCRC-4/RCRC4  
1
1
0
X
X
0
X
X
0
X
X
0
X
X
0
X
X
0
X
X
0
0
1
0
CRC Default Mode (No CRC)  
184  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Alarm Filter Register (FRM_PR10)  
The bits in this register enable various control options. The default setting is 00 (hex).  
Table 138. Alarm Filter Register (FRM_PR10) (66A; C6A)  
Bit  
Symbol  
Description  
0
SSa6M  
Synchronous Sa6 Monitoring. A 0 enables the asynchronous monitoring of the Sa6  
codes relative to the receive CRC-4 submultiframe. A 1 enables synchronous monitoring  
of the Sa6 pattern relative to the receive CRC-4 submultiframe.  
1
2
AISM  
AIS Detection Mode. A 0 enables the detection of received line AIS as described in  
ETSI Draft prETS 300 233:1992. A 1 enables the detection of received line AIS as  
described in ITU Rec. G.775.  
FEREN  
NFFE  
FER Enable (DS1 Only). A 0 enables only the detection of FT framing bit errors in D4  
and SLC-96 modes. A 1 enables the detection of FT and FS framing bit errors.  
Not FAS Framing Bit Error Control (CEPT Only). A 0 enables the monitoring of  
errored FAS and errored NOT FAS frames in the framing bit error counter, registers  
FRM_SR10 and FRM_SR11. A 1 enables the monitoring of only errored FAS frames in  
this error counter.  
3
CNUCLBEN CNUCLB Enable (CEPT Only). A 0 enables payload loopback with regenerated framing  
and CRC bits in register FRM_PR24. A 1 enables CEPT nailed-up connect loopback in  
register FRM_PR24.  
4
Reserved. Set to 0.  
5
RABF  
Receive A-Bit Filter (CEPT Only). A 0 makes the occurrence of three consecutive  
A bit = 1 events assert and three consecutive A bit = 0 events deassert the remote frame  
alarm, register FRM_SR2 bit 0. A 1 enables the occurrence of a single A-bit event to  
deassert the remote frame alarm.  
Bit 6 and bit 7 of FRM_PR10 control the evaluation of the bursty errored parameter as defined in Table 139 below.  
The EST parameter refers to the errored second threshold defined in register FRM_PR11. The SEST parameter  
refers to the severely errored second threshold defined in registers FRM_PR12 and FRM_PR13.  
Table 139. Errored Event Threshold Definition  
Bit 7,  
FRM_PR10  
ESM1  
Bit 6,  
FRM_PR10  
ESM0  
Errored Second (ES)  
Definition  
Severely Errored  
Second (SES)  
Definition  
Bursty Errored Second  
(BES) Definition  
0
0
0
1
Default values in Table 44, Event Counters Definition on page 97.  
ES = 1 when:  
BES = 0  
SES = 1 when:  
Errored events > EST  
Errored events > SEST  
Other Combinations  
Reserved.  
Agere Systems Inc.  
185  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Errored Second Threshold Register (FRM_PR11)  
This register defines the errored event threshold for an errored second (ES). A one-second interval with errors less  
than the ES threshold value will not be detected as an errored second. Programming 00 (hex) into this register dis-  
ables the errored second threshold monitor circuitry if register FRM_PR10 bit 6 = 1 and bit 7 = 0. The default value  
of this register is 00 (hex).  
Table 140. Errored Second Threshold Register (FRM_PR11) (66B; C6B)  
Register  
Symbol  
Description  
FRM_PR11  
EST7—EST0  
ES Threshold Register.  
Severely Errored Second Threshold Register (FRM_PR12—FRM_PR13)  
This 16-bit register defines the errored event threshold for a severely errored second (SES). A one-second interval  
with errors less than the SES threshold value is not a severely errored second. Programming 00 (hex) into these  
two registers disables the severely errored second threshold monitor circuitry if register FRM_PR10 bit 6 = 1 and  
bit 7 = 0. The default value of these registers is 00 (hex).  
Table 141. Severely Errored Second Threshold Registers (FRM_PR12—FRM_PR13) ((66C—66D;  
C6C—C6D))  
Register  
FRM_PR12 SEST15—SEST8 SES MSB Threshold Register.  
FRM_PR13 SEST7—SEST0 SES LSB Threshold Register.  
Symbol  
Description  
ET1 Errored Event Enable Register1 (FRM_PR14)  
These bits enable the errored events used to determine errored and severely errored seconds at the local ET inter-  
face. ETSLIP, ETAIS, ETLMFA, and ETLFA are the SLIP, AIS, LMFA, and LFA errored events, respectively, as  
referred to the local ET interface. A 1 in the bit position enables the corresponding errored event. The default value  
of this register is 00 (hex).  
Table 142. ET1 Errored Event Enable Register (FRM_PR14) (66E; C6E)  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_PR14  
0
0
0
0
ETSLIP  
ETAIS  
ETLMFA  
ETLFA  
186  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
ET1 Remote End Errored Event Enable Register1 (FRM_PR15)  
These bits enable the errored events used to determine errored and severely errored seconds at the ET’s remote  
end interface. ETRESa6-F, ETRESa6-E, ETRESa6-8, ETRERFA, ETRESLIP, ETREAIS, ETRELMFA, and ETRELFA  
are the Sa6-F, Sa6-E, Sa6-8, RFA, SLIP, AIS, LMFA, and LFA errored events, respectively, as referred to the ET  
remote end interface. A 1 in the bit position enables the corresponding errored event. The default value of this reg-  
ister is 00 (hex).  
Table 143. ET1 Remote End Errored Event Enable Register (FRM_PR15) (66F; C6F)  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_PR15 ETRESa6-F ETRESa6-E ETRESa6-8 ETRERFA ETRESLIP ETREAIS ETRELMFA ETRELFA  
NT1 Errored Event Enable Register1 (FRM_PR16)  
These bits enable the errored events used to determine errored and severely errored seconds at the network ter-  
mination-1 interface. NTSa6-C, NTSa6-8, NTSLIP, NTAIS, NTLMFA, and NTLFA are the Sa6-C, Sa6-8, SLIP, AIS,  
LMFA, and LFA errored events, respectively, as referred to the NT1 interface. A 1 in the bit position enables the  
corresponding errored event. The default value of this register is 00 (hex).  
Table 144. NT1 Errored Event Enable Register (FRM_PR16) (670; C70)  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_PR16 NTSa6-C  
0
NTSa6-8  
0
NTSLIP  
NTAIS  
NTLMFA  
NTLFA  
NT1 Remote End Errored Event Enable Register1 (FRM_PR17—FRM_PR18)  
These bits enable the errored events used to determine errored and severely errored seconds at the network ter-  
mination-1 remote end interface. NTRERFA, NTRESLIP, NTREAIS, NTRELMFA, NTRELFA, NTRESa6-C,  
NTRESa6-F, NTRESa6-E, and NTRESa6-8 are the RFA, SLIP, AIS, LMFA, LFA, Sa6-C, Sa6-F, Sa6-E, and Sa6-8  
errored events, respectively, as referred to the NT-1 remote end interface. The default value of this register is 00  
(hex).  
Table 145. NT1 Remote End Errored Event Enable Registers (FRM_PR17—FRM_PR18) ((671—672);  
(C71—C72))  
Register  
FRM_PR17  
FRM_PR18  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
NTRERFA NTRESLIP  
NTRESa6-C NTRESa6-F NTRESa6-E NTRESa6-8  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
NTREAIS NTRELMFA NTRELFA  
0
1. One occurrence of any one of these events causes an errored second count increment and a severely errored second count increment.  
Agere Systems Inc.  
187  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Automatic AIS to the System and Automatic Loopback Enable Register  
The default value of this register is 00 (hex).  
Table 146. Automatic AIS to the System and Automatic Loopback Enable Register (FRM_PR19) (673; C73)  
Bit  
Symbol  
Description  
0
ASAIS  
Automatic System AIS. A 1 transmits AIS to the system whenever the receive framer is  
in the loss of receive frame alignment (RLFA) state.  
1
ASAISTMX Automatic System AIS CEPT CRC-4 Timer Expiration. A 1 transmits AIS to the sys-  
tem after the CRC-4 100 ms or 400 ms timer expires. AIS is transmitted for the duration  
of the loss of CRC-4 multiframe alignment state.  
2
3
4
Reserved. Set to 0.  
TSAIS  
ALLBE  
Transmit System AIS. A 1 transmits AIS to the system.  
Automatic Line Loopback Enable. A 1 enables the framer section to execute the DS1  
line loopback on or off commands without system intervention.  
5
6
Reserved. Set to 0.  
AFDLLBE  
Automatic FDL Line Loopback Enable. A 1 enables the framer section to execute a  
line ESF FDL loopback on or off command without system intervention.  
7
AFDPLBE  
Automatic FDL Payload Loopback Enable. A 1 enables the framer section to execute  
a payload ESF FDL loopback on or off command without system intervention.  
Transmit Test Pattern to the Line Enable Register1  
This register enables the transmit framer to transmit various test signals to the line interface. The default value of  
this register is 00 (hex). Note that between enabling the transmission of line loopback on and off codes this register  
must be set to 00 (hex) (i.e., to enable transmission of line loopback on code and then off code, write into this reg-  
ister 10 (hex), then 00 (hex), and finally 20 (hex)).  
Table 147. Transmit Test Pattern to the Line Enable Register (FRM_PR20) (674; C74)  
Bit  
0
Symbol  
TUFAIS  
Description  
Unframed AIS to Line Interface (All Ones Pattern).  
1
TUFAUXP  
Unframed AUXP to Line Interface in CEPT Mode (Alternating 010101 Unframed  
Pattern).  
2
3
4
5
6
TPRS  
TQRS  
Transmit Pseudorandom Signal to Line Interface (215 – 1).  
Transmit Quasi-Random Signal to Line Interface (220 – 1) (ANSI T1.403).  
Transmit Framed Payload Line Loopback On Code: 00001.  
Transmit Framed Payload Line Loopback Off Code: 001.  
TLLBON  
TLLBOFF  
TLIC  
Transmit Line Idle Code of FRM_PR22. When this bit = 1, the line idle code of  
FRM_PR22 is transmitted to the line in all time slots.  
7
TICRC  
Transmit Inverted CRC.  
1. To transmit test signals using this register, registers FRM_PR69 and FRM_PR70 must be set to 00 (hex).  
188  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Framer FDL Control Command Register (FRM_PR21)  
The default value of this register is 00 (hex).  
Table 148. Framer FDL Control Command Register (FRM_PR21) (675; C75)  
Bit  
0
Symbol  
Description  
Reserved. Must be set to 0.  
Reserved. Must be set to 0.  
Reserved. Must be set to 0.  
Reserved. Must be set to 0.  
1
2
3
4
TFDLLAIS  
Transmit Facility Data Link AIS to the Line. A 1 sends AIS in the line side data link.  
5
TFDLSAIS Transmit Facility Data Link AIS to the System. A 1 sends AIS in the system data link  
side.  
6
7
TFDLC  
TC/R=1  
Transmit FDL Control Bit. A 0 enables the transmission of the FDL bit from the internal  
FDL-HDLC unit (default). A 1 enables the transmission of the FDL bit from either TFDL  
input (pin 67 and 115) or from the internal transmit stack depending on the state of  
FRM_PR29 bit 5—bit 7. When the SLC-96 stack transmission is enabled (register  
FRM_PR26 bit 5—bit 7 = x10 (binary), the FDL bit is sourced from the SLC-96 transmit  
stack (register FRM_PR31—FRM_PR35). Otherwise, it is sourced from TFDL  
(pins 67/115).  
Transmit ESF_PRM C/R = 1 (TC/R = 1). A 0 transmits the ESF performance report mes-  
sage with the C/R bit = 0. (See ANSI T1.403-1995 for the PRM structure and content.) A  
1 transmits the ESF performance report message with the C/R bit = 1.  
Framer Transmit Line Idle Code Register (FRM_PR22)  
The value programmed in this register is transmitted as the line idle code. The default value is 7F (hex).  
Table 149. Framer Transmit Line Idle Code Register (FRM_PR22) (676; C76)  
Bit  
Symbol  
Description  
0—7  
TLIC0—TLIC7 Transmit Line Idle Code 0—7. These 8 bits define the idle code transmitted to the  
line.  
Framer System Stuffed Time-Slot Code Register (FRM_PR23)  
The value programmed in this register is transmitted in the stuffed time slots on the CHI in the DS1 modes. The  
default value is 7F (hex).  
Table 150. Framer System Stuffed Time-Slot Code Register (FRM_PR23) (677; C77)  
Bit  
Symbol  
Description  
0—7  
SSTSC0—  
SSTSC7  
System Stuffed Time-Slot Code 0—7. These 8 bits define the idle code transmitted  
in the stuffed time slots to the system (CHI).  
Agere Systems Inc.  
189  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Primary Loopback Mode Control and Time Slot Address (FRM_PR24)  
This register contains the loopback mode control and the 5-bit address of the line or system time slot to be looped  
back. The default value is 00 (hex) (no loopback).  
Table 151. Primary Time-Slot Loopback Address Register (FRM_PR24) (678; C78)  
Bit  
Symbol  
Description  
0—4  
TSLBA0—  
TSLBA4  
Time-Slot Loopback Address.  
Loopback Control Bits[2:0].  
5—7  
LBC0—LBC2  
Table 152. Loopback Decoding of Bits LBC[2:0] in FRM_PR24, Bits 7—5  
LBC2 LBC1 LBC0 Function  
0
0
0
0
0
1
0
1
0
No Loopback.  
Line Loopback (LLB). The received line data is looped back to the transmit line data.  
Board Loopback (BLB). The received system data is looped back to the transmit  
system data and AIS is sent as the line transmit data.  
0
1
1
0
1
0
Single Time-Slot System Loopback (STSSLB). System (CHI) loopback of the time  
slot selected by bit 4—bit 0. Idle code selected by FRM_PR22 is inserted in the line  
payload in place of the looped back time slot.  
Single Time-Slot Line Loopback (STSSLB). Line loopback of time slot selected by  
bit 4—bit 0. Idle code selected by FRM_PR22 is inserted in the system (CHI) payload  
in place of the looped back time slot.  
1
1
0
1
1
0
CEPT Nailed-up Broadcast Transmission (CNUBT). Time slot selected by  
bit 4—bit 0 is transmitted normally and also placed into time slot 0.  
Payload Line Loopback with Regenerated Framing and CRC Bits. This mode is  
selected if FRM_PR10 bit 3 = 0. The received channelized-payload data is looped  
backed to the line. The framing bits are generated within the transmit framer. The  
regenerated framing information includes the F-bit pattern, the CRC checksum bit,  
and the system’s facility data link bit stream. This loopback mode can be used with  
the CEPT framing mode. The entire time slot 0 data (FAS and NOT FAS) is regener-  
ated by the transmit framer. The receive framer processes and monitors the incoming  
line data normally in this loopback mode and transmits the formatted data to the sys-  
tem in the normal format via the CHI.  
CEPT Nailed-up Connect Loopback (CNUCLB). The received system time slot  
selected by this register bit 4—bit 0 is looped back to the system in time slot 0. This  
mode is selected if FRM_PR10 bit 3 = 1.  
1
1
1
Payload Line Loopback with Passthrough Framing and CRC Bits. The received  
channelized/payload data, the CRC bits, and the frame alignment bits are looped  
back to the line. The system’s facility data link bit stream is inserted into the looped  
back data and transmitted to the line. In ESF, the FDL bits are ignored when calculat-  
ing the CRC-6 checksum. In CEPT, the FDL bits are included when calculating the  
CRC-4 checksum, and as such this loopback mode generates CRC-4 errors back at  
the remote end.  
190  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Secondary Loopback Control and ID and Address (FRM_PR25)  
This register allows for a second single-time-slot loopback mode. This loopback is valid if the secondary time slot  
loopback address is different from the primary loopback address and the device is not in a line, board, or payload  
loopback, see FRM_PR24. This register contains the secondary loopback mode control and the 5-bit address for  
the secondary line or system time slot to be looped back to the line or system. The default value is 00 (hex) (no  
loopback).  
Table 153. Secondary Time-Slot Loopback Address Register (FRM_PR25) (679; C79)  
Bit  
0—4  
5—6  
7
Symbol  
Description  
STSLBA0—STSLBA4 Secondary Time-Slot Loopback Address.  
SLBC0—SLBC1  
Secondary Loopback Control Bits[1:0].  
Reserved. Write to 0.  
Table 154. Loopback Decoding of Bits LBC[1:0] in FRM_PR25, Bits 6—5  
LBC1  
LBC0  
Function  
0
0
1
1
0
1
0
1
No Loopback.  
Secondary Single Time-Slot System Loopback.  
Secondary Single Time-Slot Line Loopback.  
Reserved.  
Agere Systems Inc.  
191  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Framer Reset and Transparent Mode Control Register (FRM_PR26)  
The default value of this register is 00 (hex).  
Table 155. Framer Reset and Transparent Mode Control Register (FRM_PR26) (67A, C7A)  
Bits  
Symbol  
Description  
0
SWRESET Framer Software Reset. The framer and FDL sections are placed in the reset state for  
four clock cycles of the frame internal line clock (RFRMCK). The parameter registers are  
forced to the default values. This bit is self-cleared.  
1
SWRESTART Framer Software Restart. The framer and FDL sections are placed in the reset state as  
long as this bit is set to 1. The framer’s parameter registers are not changed from their  
programmed state. The FDL parameter registers are changed from their programmable  
state. This bit must be cleared.  
2
3
FRFRM  
Framer Reframe. A 0-to-1 transition of this bit forces the receive framer into the loss of  
frame alignment (LFA) state which forces a search of frame alignment. Subsequent  
reframe commands must have this bit in the 0 state first.  
TFM1  
Transparent Framing Mode 1. A 1 forces the transmit framer to pass system data  
unmodified to the line and the receive framer to pass line data unmodified to the system.  
The receive framer is forced not to align to the input receive data.  
DS1: register FRM_PR43 bit 2—bit 0 must be set to 000. The F bit is located in time slot  
0, bit 7. The transmit framer extracts bit 7 of time slot 0 from RCHIDATA and places this  
bit in the F-bit position of the transmit line data. The receive framer inserts the bit in the  
F-bit position of the receive line data into time slot 0, bit 7 of the TCHIDATA.  
CEPT: RCHIDATA time slot 0 is inserted into time slot 0 of the transmit line data. Receive  
line time slot 0 is inserted into time slot 0 of TCHIDATA.  
4
TFM2  
Transparent Framing Mode 2. A 1 forces the transmit framer to pass system data  
unmodified to the line. The receive framer functions normally as programmed.  
DS1: register FRM_PR43 bit 2—bit 0 must be set to 000. The F bit is located in  
time slot 0, bit 7. The transmit framer extracts bit 7 of time slot 0 from RCHIDATA and  
places this bit in the F-bit position of the transmit line data.  
CEPT: RCHIDATA time slot 0 is inserted into time slot 0 of the transmit line data.  
5
SYSFSM  
System Frame Sync Mask. A 1 masks the system frame synchronization signal in the  
transmit framer section.  
Note: The transmit framer must see at least one valid system synchronization pulse to  
initialize its counts; afterwards, this bit may be set. For those applications that have jitter  
on the transmit clock signal relative to the system clock signal, enable this bit so that the  
jitter is isolated from the transmit framer.  
6—7  
Reserved. Write to 0.  
192  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Automatic and Manual Transmission of the Remote Frame Alarm Control Register (FRM_PR27)  
The default value of this register is 00 (hex).  
Table 156. Transmission of Remote Frame Alarm and CEPT Automatic Transmission of A Bit = 1  
Control Register (FRM_PR27) (67B, C7B)  
Bit  
Symbol  
Description  
0
ARLFA  
Automatic Remote Frame Alarm on LFA (ARLFA). A 1 transmits the remote frame  
alarm to the line whenever the receive framer detects loss of frame alignment (RLFA).  
1
AAB16LMFA Automatic A Bit on LMFA (CEPT only). A 1 transmits A = 1 to the line whenever the  
receive framer detects loss of time slot 16 signaling multiframe alignment  
(RTS16LMFA).  
2
3
AAB0LMFA Automatic A Bit on LMFA (CEPT only). A 1 transmits A = 1 to the line whenever the  
receive framer detects loss of time slot 0 multiframe alignment (RTS0LMFA).  
ATMRX  
Automatic A Bit on CRC-4 Multiframe Reframer Timer Expiration (CEPT only). A 1  
transmits A = 1 to the line when the receive framer detects the expiration of either the  
100 ms or 400 ms timers due to loss of multiframe alignment.  
4
5
6
7
AARSa6_8 Automatic A Bit on RSa6_8 (CEPT only). A 1 transmits A = 1 to the line whenever the  
receive framer detects the Sa6 = 1000 pattern.  
AARSa6_C Automatic A Bit on RSa6_C (CEPT only). A 1 transmits A = 1 to the line whenever the  
receive framer detects the Sa6 = 1100 pattern.  
TJRFA  
TRFA  
Transmit D4 Japanese Remote Frame Alarm. A 1 transmits a valid Japanese remote  
frame alarm for the D4 frame format.  
Transmit Remote Frame Alarm. A 1 transmits a valid remote frame alarm for the corre-  
sponding frame format.  
Agere Systems Inc.  
193  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Automatic and Manual Transmission of E Bit = 0 Control Register  
The default value of this register is 00 (hex).  
Table 157. CEPT Automatic Transmission of E Bit = 0 Control Register (FRM_PR28) (67C; C7C)  
Bit  
Symbol  
Description  
0
SIS,  
Si-Bit Source. In CEPT with NO CRC-4 mode, a 1 transmits TSiF and TSiNF in the Si  
bit position to the line in FAS and NOT FAS, respectively. A 0, in non-CRC-4 mode,  
transmits system Si data to the line transparently*.  
T1E  
Transmit One E = 0. In CEPT with CRC-4 mode, a 0 transmits E = TSiF in frame 13 and  
E = TSiNF in frame 15. A 1 transmits one E bit = 0 for each write access to TSiF = 0 or  
TSiNF = 0.  
1
2
3
4
TSiF  
Transmit Bit 1 in FAS. In CEPT with no CRC-4, this bit can be transmitted to the line in  
bit 1 of the FAS. In CRC-4 mode, this bit is used for E-bit data in frame 13.  
TSiNF  
Transmit Bit 1 in NOT FAS. In CEPT with no CRC-4, this bit can be transmitted to the  
line in bit 1 of the NOT FAS. In CRC-4 mode, this bit is used for E-bit data in frame 15.  
ATERCRCE Automatic Transmit E Bit = 0 for Received CRC-4 Errored Events. A 1 transmits  
E = 0 to the line whenever the receive framer detects a CRC-4 errored checksum.  
ATELTS0MFA Automatic Transmit E Bit = 0 for Received Loss of CRC-4 Multiframe Alignment. A  
1 transmits E = 0 to the line whenever the receive framer detects a loss of CRC-4 multi-  
frame alignment condition.  
5
ATERTX  
Automatic Transmit E Bit = 0 on Expiration of CEPT CRC-4 Loss of Multiframe  
Timer. A 1 transmits E = 0 to the line whenever the receive framer detects the expiration  
of either the 100 ms or 400 ms timer due to the loss of CRC-4 multiframe alignment.  
6—7  
These Bits Are Zero.  
* Whenever bits (e.g., Si, Sa, etc.) are transmitted from the system transparently, FRM_PR29 must first be momentarily written to 001XXXXX  
(binary). Otherwise, the transmit framer will not be able to locate the biframe alignment.  
194  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Sa4—Sa8 Source Register (FRM_PR29)  
These bits contain the fixed transmit Sa bits and define the source of the Sa bits. The default value of this register  
is 00 (hex).  
Table 158. Sa4—Sa8 Source Register (FRM_PR29) (67D; C7D)  
Bit  
Symbol  
Description  
0—4  
5—7  
TSa4—TSa8  
SaS5—SaS7  
Transmit Sa4—Sa8 Bit.  
Sa Source Control Bits[2:0].  
Table 159. Sa Bits Source Control for Bit 5—Bit 7 in FRM_PR29  
SaS7  
SaS6  
SaS5  
Function  
1
0
0
A single Sa bit, selected in register FRM_PR43, is sourced from either the external  
transmit facility data input port TFDL (FRM_PR21 bit 6 = 1) or from the internal FDL-  
HDLC block (FRM_PR21 bit 6 = 0). The remaining Sa bits are sourced by this register  
bit 0—bit 4 if enabled in register FRM_PR30, or transparently from the system inter-  
face*.  
1
1
0
1
1
x
A single Sa bit, selected in register FRM_PR43, is sourced from either the external  
transmit facility data input port TFDL (FRM_PR21 bit 6 = 1) or from the internal FDL-  
HDLC block (FRM_PR21 bit 6 = 0). The remaining Sa bits are transmitted transpar-  
ently from the system interface*.  
A single Sa bit, selected in register FRM_PR43, is sourced from either the external  
transmit facility data input port TFDL (FRM_PR21 bit 6 = 1) or from the internal FDL-  
HDLC block (FRM_PR21 bit 6 = 0). The remaining Sa bits are sourced from the trans-  
mit Sa stack registers (FRM_PR31—FRM_PR40) if enabled in register FRM_PR30,  
or transparently from the system interface*.  
0
1
x
SLC-96 Mode. Transmit SLC-96 stack and the SLC-96 interrupts are enabled. The  
SLC-96 FDL bits are sourced from the transmit SLC-96 stack, registers FRM_PR31—  
FRM_PR40.  
CEPT Mode. Transmit Sa stack and the Sa interrupts are enabled. The Sa bits are  
sourced from the transmit Sa stack (FRM_PR31—FRM_PR40) if enabled in register  
FRM_PR30, or transparently from the system interface*.  
0
0
0
0
1
0
Sa[4:8] bits are transmitted from the system interface transparently through the  
framer*.  
Sa[4:8] bits are sourced by bit 0—bit 4 of this register if enabled in register  
FRM_PR30, or transparently from the system interface*.  
* Whenever bits (e.g., Si, Sa, etc.) are transmitted from the system transparently, FRM_PR29 must first be momentarily written to 001XXXXX  
(binary). Otherwise, the transmit framer will not be able to locate the biframe alignment.  
Agere Systems Inc.  
195  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Sa4—Sa8 Control Register (FRM_PR30)  
In conjunction with FRM_PR29 bit 5—bit 7, these bits define the source of the individual Sa4—Sa8 bits. The  
default value of this register is 00 (hex).  
Table 160. Sa4—Sa8 Control Register (FRM_PR30) (67E; C7E)  
Bit  
Symbol  
Description  
0—4  
TESa4—TESa8 Transparent Enable Sa4—Sa8 Bit Mask. A 1 enables the transmission of the cor-  
responding Sa bits from the Sa source register (FRM_PR29 bit 0—bit 4) or from the  
transmit Sa stack. A 0 allows the corresponding Sa bit to be transmitted transpar-  
ently from the system interface.  
5—6  
7
Reserved. Write to 0.  
TDNF  
Transmit Double NOTFAS System Time Slot. A 0 enables the transmission of the  
FAS and NOTFAS on the TCHIDATA interface. A 1 enables the NOTFAS to be  
transmitted twice on the TCHIDATA interface, and the received time slot 0 from the  
RCHIDATA is assumed to carry NOTFAS data that is repeated twice.  
196  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Sa Transmit Stack Register (FRM_PR31—FRM_PR40)  
In CEPT frame format, registers FRM_PR31—FRM_PR40 are used to program the Sa bits in the CEPT multiframe  
NOT-FAS words. If CRC-4 is enabled, this data is transmitted to the line synchronously to the CRC-4 multiframe.  
The default value of these registers is 00 (hex).  
Table 161. Sa Transmit Stack (FRM_PR31—FRM_PR40) ((67F—688); (C7F—C88))  
Register  
Bit 7  
Sa4-1  
Sa4-17  
Sa5-1  
Sa5-17  
Sa6-1  
Sa6-17  
Sa7-1  
Sa7-17  
Sa8-1  
Sa8-17  
Bit 6  
Sa4-3  
Sa4-19  
Sa5-3  
Sa5-19  
Sa6-3  
Sa6-19  
Sa7-3  
Sa7-19  
Sa8-3  
Sa8-19  
Bit 5  
Sa4-5  
Sa4-21  
Sa5-5  
Sa5-21  
Sa6-5  
Sa6-21  
Sa7-5  
Sa7-21  
Sa8-5  
Sa8-21  
Bit 4  
Sa4-7  
Sa4-23  
Sa5-7  
Sa5-23  
Sa6-7  
Sa6-23  
Sa7-7  
Sa7-23  
Sa8-7  
Sa8-23  
Bit 3  
Sa4-9  
Sa4-25  
Sa5-9  
Sa5-25  
Sa6-9  
Sa6-25  
Sa7-9  
Sa7-25  
Sa8-9  
Sa8-25  
Bit 2  
Bit 1  
Bit 0  
FRM_PR31  
FRM_PR32  
FRM_PR33  
FRM_PR34  
FRM_PR35  
FRM_PR36  
FRM_PR37  
FRM_PR38  
FRM_PR39  
FRM_PR40  
Sa4-11  
Sa4-27  
Sa5-11  
Sa5-27  
Sa6-11  
Sa6-27  
Sa7-11  
Sa7-27  
Sa8-11  
Sa8-27  
Sa4-13  
Sa4-29  
Sa5-13  
Sa5-29  
Sa6-13  
Sa6-29  
Sa7-13  
Sa7-29  
Sa8-13  
Sa8-29  
Sa4-15  
Sa4-31  
Sa5-15  
Sa5-31  
Sa6-15  
Sa6-31  
Sa7-15  
Sa7-31  
Sa8-15  
Sa8-31  
SLC-96 Transmit Stack (FRM_PR31—FRM_PR40)  
In SLC-96 frame format, registers FRM_PR31—FRM_PR35 are used to source the transmit facility data link bits in  
the FS bit positions. The default value of these registers is 00 (hex).  
Table 162. SLC-96 Transmit Stack (FRM_PR31—FRM_PR40) ((67F—688); (C7F—C88))  
Register  
Bit 7  
0
Bit 6  
0
Bit 5  
X-0  
X-0  
XC3  
XC11  
XA2  
0
Bit 4  
X-0  
Bit 3  
X-0  
Bit 2  
X-1  
Bit 1  
X-1  
X-1  
XC7  
XM1  
XS4  
0
Bit 0  
X-1  
FRM_PR31  
FRM_PR32  
FRM_PR33  
FRM_PR34  
FRM_PR35  
0
0
X-0  
X-0  
X-1  
X-1  
XC1  
XC9  
XM3  
0
XC2  
XC10  
XA1  
0
XC4  
XC5  
XC6  
XC8  
XSPB1 = 0 XSPB2 = 1 XSPB3 = 0  
XM2  
XSPB4=1  
0
XS1  
XS2  
XS3  
FRM_PR36—  
FRM_PR40  
0
0
0
In SLC-96 frame format, the bits in registers FRM_PR31—FRM_PR35 are transmitted using the format shown in  
Table 163.  
Table 163. Transmit SLC-96 FDL Format  
FS= 000111000111 XC1 XC2 XC3 XC4 XC5 XC6 XC7 XC8 XC9 XC10 XC11 XSPB1 XSPB2 XSPB3 XM1 XM2 XM3 XA1 XA2 XS1 XS2 XS3 XS4 XSPB4  
Agere Systems Inc.  
197  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
CEPT Time Slot 16 X-Bit Remote Multiframe Alarm and AIS Control Register (FRM_PR41)  
The default value of this register is 00 (hex).  
Table 164. CEPT Time Slot 16 X-Bit Remote Multiframe Alarm and AIS Control Register (FRM_PR41) (689;  
C89)  
Bit  
Symbol  
Description  
0—2 TTS16X0—TTS16X2 Transmit Time Slot 16 X0—X2 Bits. The content of these bits are written into  
CEPT signaling multiframe time slot 16 X bits.  
3
4
XS  
X-Bit Source. A 1 enables the TTS16X[2:0] bits to be written into CEPT time slot  
16 signaling multiframe frame. A 0 transmits the X bits transparently.  
ALTTS16RMFA  
Automatic Line Transmit Time Slot 16 Remote Multiframe Alarm. A 1  
enables the transmission of CEPT time slot 16 signaling remote multiframe alarm  
when the receive framer is in the loss of CEPT signaling (RTS16LMFA) state.  
5
6
7
TLTS16RMFA  
TLTS16AIS  
Transmit Line Time Slot 16 Remote Multiframe Alarm. A 1 enables the trans-  
mission of CEPT time slot 16 signaling remote multiframe alarm.  
Transmit Line Time Slot 16 AIS. A 1 enables the transmission of CEPT time  
slot 16 alarm indication signal.  
Reserved. Write to 0.  
Framer Exercise Register (FRM_PR42)  
This register is used for exercising the device in a test mode. In normal operation, it and should be set to 00 (hex).  
The default value of this register is 00 (hex).  
Table 165. Framer Exercise Register (FRM_PR42) (68A; C8A)  
Bit  
Description  
FEX0—FEX5  
Framer Exercise Bits 0—5 (FEX0—FEX5). See Table 166.  
FEX6  
FEX7 Second Pulse Interval.  
0
0
1
1
0
1
0
1
1 Second Pulse.  
500 ms Pulse.  
100 ms Pulse.  
Reserved.  
198  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Table 166. Framer Exercises, FRM_PR42 Bit 5—Bit 0 (68A; C8A)  
Exercise FEX5 FEX4 FEX3 FEX2 FEX1 FEX0  
Type  
Exercise  
Framing  
Format  
Facility  
Status  
0
0
0
0
1
1
0
0
0
0
0
1
Line format violation  
All  
CRC checksum error  
ESF or CEPT  
D4 or ESF  
All  
Receive remote frame alarm  
Alarm indication signal detection  
Loss of frame alignment  
Receive remote frame alarm  
Time slot 0 1-bit shift  
CEPT  
Japanese D4  
CEPT  
0
0
0
0
1
1
0
0
1
1
0
1
Transmit corrupt CRC  
ESF & CEPT  
Frame-bit error & loss of frame align- All  
ment  
Loss of time slot 16 multiframe align- CEPT  
ment  
Remote frame alarm  
CRC bit errors  
D4 & DDS  
ESF & CEPT  
0
0
0
0
1
1
1
1
0
0
0
1
Frame-bit errors  
All  
All  
Frame-bit errors & loss of frame  
alignment  
Loss of time slot 16 multiframe align- CEPT  
ment  
0
0
0
0
1
1
1
1
1
1
0
1
Frame-bit error & loss of frame align- All  
ment  
Change of frame alignment  
ESF, DDS &  
CEPT  
Loss of time slot 16 multiframe align- CEPT  
ment  
Excessive CRC checksum errors  
ESF & CEPT  
Agere Systems Inc.  
199  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Table 166. Framer Exercises, FRM_PR42 Bit 5—Bit 0 (68A; C8A) (continued)  
Exercise Type FEX5 FEX4 FEX3 FEX2 FEX1 FEX0  
Exercise  
Framing  
Format  
Performance  
Status  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Errored second  
All  
Bursty errored second  
Severely errored second  
Severely errored second count  
Unavailable state  
Factory test  
Increment status counters  
SR6—SR14  
0
1
0
1
1
1
Increment status counters  
SR6—SR14  
Status Counters  
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
X
0
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
CRC error counter  
All  
Errored event counter  
Errored second counter  
Severely errored second counter  
Unavailable second counter  
Line format violation counter  
Frame bit error counter  
Reserved  
All other combinations  
200  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
DS1 System Interface Control and CEPT FDL Source Control Register (FRM_PR43)  
The default value of this register is 00 (hex).  
Table 167. DS1 System Interface Control and CEPT FDL Source Control Register (FRM_PR43) (68B; C8B)  
Bit  
Symbol  
Description  
0—2 STS0—STS2 In DS1 mode, bit 0—bit 2 program the positions of the stuffed time slots on the CHI. The  
content of the stuffed time slot can be programmed using register FRM_PR23.  
Bits  
210  
000 = SDDDSDDDSDDDSDDDSDDDSDDDSDDDSDDD  
001 = DSDDDSDDDSDDDSDDDSDDDSDDDSDDDSDD  
010 = DDSDDDSDDDSDDDSDDDSDDDSDDDSDDDSD  
011 = DDDSDDDSDDDSDDDSDDDSDDDSDDDSDDDS  
100 = DDDDDDDDDDDDDDDDDDDDDDDDSSSSSSSS  
SaFDL0—  
SaFDL2  
In CEPT mode, bit 0—bit 2 program the Sa bit source of the facility data link.  
Bits  
210  
000: Sa4 = FDL  
001: Sa5 = FDL  
010: Sa6 = FDL  
011: Sa7 = FDL  
100: Sa8 = FDL  
In both DS1 and CEPT modes, only the bit values shown above may be selected.  
3
SSC  
SLC-96 Signaling Control (DS1 Only). A 1 enables the SLC-96 9-state signaling mode.  
A 0 enables 16-state signaling in the SLC-96 framing mode.  
4—7  
Reserved. Write to 0.  
Agere Systems Inc.  
201  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Signaling Mode Register (FRM_PR44)  
This register programs various signaling modes. The default value is 00 (hex).  
Table 168. Signaling Mode Register (FRM_PR44) (68C; C8C)  
Bit  
Symbol  
Description  
0
TSIG  
Transparent Signaling. A 0 enables signaling information to be inserted into and  
extracted from the data stream. The signaling source is either the signaling registers or  
the system data (in the associated signaling mode). In DS1 modes, the choice of data or  
voice channels assignment for each channel is a function of the programming of the F  
and G bits in the transmit signaling registers. A 1 enables data to pass through the  
device transparently. All channels are treated as data channels.  
1
2
STOMP  
Stomp Mode. A 0 allows the received signaling bits to pass through the receive signal-  
ing circuit unmodified. In DS1 robbed-bit signaling modes, a 1 enables the receive sig-  
naling circuit to replace (in those time slots programmed for signaling) all signaling bits  
(in the receive line bit stream) with a 1, after extracting the valid signaling information. In  
CEPT time slot 16 signaling modes, a 1 enables the received signaling circuit substitute  
of the signaling combination of ABCD = 0000 to ABCD = 1111.  
ASM  
RSI  
Associated Signaling Mode. A 1 enables the associate signaling mode which config-  
ures the CHI to carry both data and its associated signaling information. Enabling this  
mode must be in conjunction with the programming of the CHI data rate to 4.096 Mbits/s  
or 8.192 Mbit/s. Each channel consists of 16 bits where 8 bits are data and the remaining  
8 bits are signaling information.  
3
4
Receive Signaling Inhibit. A 1 inhibits updating of the receive signaling buffer.  
MOS_CCS Message-Oriented Signaling or Common Channel Signaling. DS1: A 1 enables the  
channel 24 message-oriented signaling mode. CEPT: A 1 enables the time slot 16 com-  
mon channel signaling mode.  
5
IRSM  
IRSM Mode (CEPT Only). A 1 enables the CEPT IRSM mode.  
TSR-ASM  
TSR-ASM Mode (DS1 Only). In the DS1 mode, setting this bit and FRM_PR44 bit 2  
(ASM) to 1 enables the transmit signaling register F and G bits to define the robbed-bit  
signaling format while the ABCD bit information is extracted from the CHI interface. The  
F and G bits are copied to the receive signaling block and are used to extract the signal-  
ing information from the receive line.  
6
7
ASTSAIS  
TCSS  
Automatic System Transmit Signaling AIS (CEPT Only). A 1 transmits AIS in system  
time slot 16 during receive loss of time slot 16 signaling multiframe alignment state.  
Transmit CEPT System Signaling Squelch (CEPT Only). AIS is transmitted in time  
slot 16 of the transmit system data.  
202  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
CHI Common Control Register (FRM_PR45)  
These bits define the common attributes of the CHI for TCHIDATA, TCHIDATAB, RCHIDATA, and RCHDATAB.  
The default value of this register is 00 (hex).  
Table 169. CHI Common Control Register (FRM_PR45) (68D; C8D)  
Bit  
Symbol  
Description  
0
HFLF  
High-Frequency/Low-Frequency PLLCK Clock Mode. A 0 enables the low-frequency  
PLLCK mode for the divide down circuit in the internal phase-lock loop section (DS1  
PLLCK = 1.544 MHz; CEPT PLLCK = 2.048 MHz). The divide down circuit will produce  
an 8 kHz signal on DIV-PLLCK, pin 6 and pin 32. A 1 enables the high-frequency PLLCK  
mode for the divide down circuit in the internal phase-lock loop section (DS1: PLLCK =  
6.176 (4 x 1.544) MHz; CEPT: 8.192 (4 x 2.048) MHz). The divide down circuit will pro-  
duce a 32 kHz signal on DIV-PLLCK.  
1
CMS  
Concentration Highway Clock Mode. A 0 enables the CHI clock frequency and CHI  
data rate to be equal. A 1 enables CHI clock frequency to be twice the CHI data rate.  
This control bit affects both the transmit and receive interfaces.  
2—3  
CDRS0—  
CDRS1  
Concentration Highway Interface Data Rate Select.  
Bits  
2 3  
0 0  
0 1  
1 0  
1 1  
CHI Data Rate  
2.048 Mbits/s  
4.096 Mbits/s  
8.192 Mbits/s  
Reserved  
4
CHIMM  
Concentration Highway Master Mode. A 0 enables external system’s frame synchroni-  
zation signal (TCHIFS) to drive the transmit path of the framer’s concentration highway  
interface. A 1 enables the framer’s transmit concentration interface to generate a system  
frame synchronization signal derived from the receive line interface. The framer’s system  
frame synchronization signal is generated on the TCHIFS output pin. Applications using  
the receive line clock as the reference clock signal of the system are recommended to  
enable this mode and use the TCHIFS signal generated by the framer. The receive CHI  
path is not affected by this mode.  
5—6  
7
Reserved. Write to 0.  
HWYEN  
Highway Enable. A 1 in this bit position enables transmission to the concentration high-  
way. This allows the T7633 to be fully configured before transmission to the highway. A 0  
forces the idle code as defined in register FRM_PR22 to be transmitted to the line in all  
payload time slots and the Transmit CHI pin is forced to a high-impedance state for all  
CHI transmitted time slots.  
Agere Systems Inc.  
203  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
CHI Common Control Register (FRM_PR46)  
This register defines the common attributes of the transmit and receive CHI. The default value is 00 (hex).  
Table 170. CHI Common Control Register (FRM_PR46) (68E; C8E)  
Bit  
Symbol  
Description  
0—2  
TOFF0—  
TOFF2  
Transmit CHI Bit Offset. These 3 bits define the bit offset from TCHIFS for each trans-  
mit time slot.  
CMS = 0: the offset is the number of TCHICK clock periods by which the first bit is  
delayed from TCHIFS.  
CMS = 1: the offset is twice the number of TCHICK clock periods by which the first bit is  
delayed from TCHIFS.  
3
TFE  
Transmit Frame Clock Edge. A 0 (1) enables the falling (rising) edge of TCHICK to  
latch in the frame synchronization signal, TCHIFS.  
4—6  
ROFF0—  
ROFF2  
Receive CHI Bit Offset. These 3 bits define the bit offset from RCHIFS for each  
received time slot.  
CMS = 0: the offset is the number of RCHICK clock periods by which the first bit is  
delayed from RCHIFS.  
CMS = 1: the offset is twice the number of RCHICK clock periods by which the first bit is  
delayed from RCHIFS.  
7
RFE  
Received Frame Clock Edge. A 0 (1) enables the falling (rising) edge of RCHICK to  
latch in the frame synchronization signal, RCHIFS.  
204  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
CHI Transmit Control Register (FRM_PR47)  
The default value of this register is 00 (hex).  
Table 171. CHI Transmit Control Register (FRM_PR47) (68F; C8F)  
Bit  
Symbol  
Description  
0—5  
TBYOFF0— Transmit Byte Offset. Combined with FRM_PR65 bit 0 (TBYOFF6), these 6 bits define  
TBYOFF5  
TCE  
the byte offset from TCHIFS to the beginning of the next transmit CHI frame on TCHI-  
DATA.  
6
7
Transmitter Clock Edge. A 1 (0) enables the rising (falling) edge of TCHICK to clock out  
data on TCHIDATA.  
TLBIT  
Transmit Least Significant Bit First. A 0 forces the most significant bit of each time slot  
(bit 0) to be transmitted first. A 1 forces the least significant bit of each time slot to be  
transmitted first.  
CHI Receive Control Register (FRM_PR48)  
The default value of this register is 00 (hex).  
Table 172. CHI Receive Control Register (FRM_PR48) (690; C90)  
Bit  
Symbol  
Description  
0—5  
RBYOFF0— Receiver Byte Offset. Combined with FRM_PR66 bit 0 (RBYOFF6), these 6 bits define  
RBYOFF5 the byte offset from RCHIFS to the beginning of the next receive CHI frame on RCHI-  
DATA.  
6
7
RCE  
Receiver Clock Edge. A 1 (0) enables the rising (falling) edge of RCHICK to latch  
data on RCHIDATA.  
RLBIT  
Receive Least Significant Bit First. A 0 forces bit 0 of the time slot as the most signifi-  
cant bit of the time slot. A 1 forces bit 7 of the time slot as the most significant bit of the  
time slot.  
Agere Systems Inc.  
205  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
CHI Transmit Time-Slot Enable Registers (FRM_PR49—FRM_PR52)  
These four registers define which transmit CHI time slots are enabled. A 1 enables the TCHIDATA or TCHIDATAB  
time slot. A 0 forces the CHI transmit highway time slot to be 3-stated. The default value of this register is 00 (hex).  
Table 173. CHI Transmit Time-Slot Enable Registers (FRM_PR49—FRM_PR52) ((691—694); (C91—C94))  
Register  
Bit  
Symbol  
Description  
FRM_PR49  
FRM_PR50  
FRM_PR51  
FRM_PR52  
7—0 TTSE31—TTSE24 Transmit Time-Slot Enable Bits 31—24.  
7—0 TTSE23—TTSE16 Transmit Time-Slot Enable Bits 23—16.  
7—0  
7—0  
TTSE15—TTSE8 Transmit Time-Slot Enable Bits 15—8.  
TTSE7—TTSE0 Transmit Time-Slot Enable Bits 7—0.  
CHI Receive Time-Slot Enable Registers (FRM_PR53—FRM_PR56)  
These four registers define which receive CHI time slots are enabled. A 1 enables the RCHIDATA or RCHI-  
DATAB time slots. A 0 disables the time slot and transmits the programmable idle code of register FRM_PR22 to  
the line in the corresponding time slot. The default value of this register is FF (hex).  
Table 174. CHI Receive Time-Slot Enable Registers (FRM_PR53—FRM_PR56) ((695—698); (C95—C98))  
Register  
Bit  
Symbol  
Description  
FRM_PR53  
7—0  
RTSE31—  
RTSE24  
Receive Time-Slot Enable Bits 31—24.  
FRM_PR54  
7—0  
RTSE23—  
RTSE16  
Receive Time-Slot Enable Bits 23—16.  
FRM_PR55  
FRM_PR56  
7—0 RTSE15—RTSE8 Receive Time-Slot Enable Bits 15—8.  
7—0 RTSE7—RTSE0 Receive Time-Slot Enable Bits 7—0.  
CHI Transmit Highway Select Registers (FRM_PR57—FRM_PR60)  
These four registers define which transmit CHI highway TCHIDATA or TCHIDATAB contains valid data for the  
active time slot. A 0 enables TCHIDATA, and a 1 enables TCHIDATAB. The default value of this register is  
00 (hex).  
Table 175. CHI Transmit Highway Select Registers (FRM_PR57—FRM_PR60) ((699—69C); (C99—C9C))  
Register  
Bit  
Symbol  
Description  
FRM_PR57  
FRM_PR58  
FRM_PR59  
FRM_PR60  
7—0  
7—0  
7—0  
7—0  
THS31—THS24 Transmit Highway Select Bits 31—24.  
THS23—THS16 Transmit Highway Select Bits 23—16.  
THS15—THS8  
THS7—THS0  
Transmit Highway Select Bits 15—8.  
Transmit Highway Select Bits 7—0.  
206  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
CHI Receive Highway Select Registers (FRM_PR61—FRM_PR64)  
These four registers define which receive CHI highway RCHIDATA or RCHIDATAB contains valid data for the  
active time slot. A 0 enables RCHIDATA and a 1 enables RCHIDATAB. The default value of these registers is 00  
(hex).  
Table 176. CHI Receive Highway Select Registers (FRM_PR61—FRM_PR64) ((69D—6A0); (C9D—CA0))  
Register  
Bit  
Symbol  
Description  
FRM_PR61  
FRM_PR62  
FRM_PR63  
FRM_PR64  
7—0  
7—0  
7—0  
7—0  
RHS31—RHS24 Receive Highway Select Bits 31—24.  
RHS23—RHS16 Receive Highway Select Bits 23—16.  
RHS15—RHS8 Receive Highway Select Bits 15—8.  
RHS7—RHS0  
Receive Highway Select Bits 7—0.  
CHI Transmit Control Register (FRM_PR65)  
The default value of this register is 00 (hex).  
Table 177. CHI Transmit Control Register (FRM_PR65) (6A1; CA1)  
Bit  
Symbol  
Description  
0
TBYOFF6  
Transmit CHI 64-Byte Offset. A 1 enables a 64-byte offset from TCHIFS to the begin-  
ning of the next transmit CHI frame on TCHIDATA. A 0 enables a 0-byte offset (if bit 0—  
bit 5 of FRM_PR47 = 0). Combing bit 0—bit 5 of FRM_PR47 with this bit allows pro-  
gramming the byte offset from 0—127.  
1
TCHIDTS  
Transmit CHI Double Time-Slot Mode. A 1 enables the transmit CHI double time-slot  
mode. In this mode, the TCHI clock runs at twice the rate of TCHIDATA.  
2—7  
Reserved. Write to 0.  
CHI Receive Control Register (FRM_PR66)  
The default value of this register is 00 (hex).  
Table 178. CHI Receive Control Register (FRM_PR66) (6A2; CA2)  
Bit  
Symbol  
Description  
0
RBYOFF6  
Receive CHI 64-Byte Offset. A 1 enables a 64-byte offset from RCHIFS to the begin-  
ning of the next receive CHI frame on RCHIDATA. A 0 enables a 0-byte offset (if bit 0—  
bit 5 of FRM_PR48 = 0). Combing bit 0—bit 5 of FRM_PR48 with this bit allows pro-  
gramming the byte offset from 0—127.  
1
RCHIDTS  
Receive CHI Double Time-Slot Mode. A 1 enables the transmit CHI double time-slot  
mode. In this mode, the RCHI clock runs at twice the rate of RCHIDATA.  
2—7  
Reserved. Write to 0.  
Reserved Parameter/Control Registers  
Registers FRM_PR67 and FRM_PR68, addresses 6A3 and 6A4 or CA3 and CA4, are reserved. Write these regis-  
ters to 0.  
Agere Systems Inc.  
207  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Auxiliary Pattern Generator Control Register (FRM_PR69)  
The following register programs the auxiliary pattern generator in the transmit framer. The default value of this reg-  
ister is 00 (hex).  
Table 179. Auxiliary Pattern Generator Control Register (FRM_PR69) (6A5; CA5)*  
Bit  
0
Symbol  
ITD  
Description  
Invert Transmit Data. Setting this bit to 1 inverts the transmitted pattern.  
1
TPEI  
Test Pattern Error Insertion. Toggling this bit from a 0 to a 1 inserts a single bit error in  
the transmitted test pattern.  
2
3
GBLKSEL  
Generator Block Select. Setting this bit to 1 enables the generation of test patterns in  
this register.  
GFRMSEL Generator Frame Test Pattern. Setting this bit to 1 results in the generation of an  
unframed pattern. A 0 results in a framed pattern (T1 and CEPT).  
4—7  
GPTRN0— Generator Pattern Select. These 4 bits select which random pattern is to be transmit-  
GPTRN3  
ted.  
Bits  
7
0
0
0
0
0
0
0
0
1
1
1
1
1
6
5
0
0
1
1
0
0
1
1
0
0
1
1
0
4
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
MARK (all ones) (AIS)  
QRSS (220 – 1 with zero suppression)  
25 – 1  
63 (26 – 1)  
511 (29 – 1) (V.52)  
29 – 1  
2047 (211 – 1) (O.151)  
2
2
2
2
2
11 – 1 (reversed)  
15 – 1 (O.151)  
20 – 1 (V.57)  
20 – 1 (CB113/CB114)  
23 – 1 (O.151)  
1:1 (alternating)  
* To generate test pattern signals using this register, register FRM_PR20 must be set to 00 (hex).  
208  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Pattern Detector Control Register (FRM_PR70)  
The following register programs the pattern detector in the receive framer. The default value of this register is 00  
(hex).  
Table 180. Pattern Detector Control Register (FRM_PR70) (6A6; CA6)*  
Bit  
Symbol  
Description  
0
IRD  
Invert Receive Data. Setting this bit to 1 enables the pattern detector to detect the  
inverse of the selected pattern.  
1
Reserved. Write to 0.  
2
DBLKSEL  
Detector Block Select. Setting this bit to 1 enables the detection of test patterns in this  
register.  
3
DUFTP  
Detect Unframed Test Pattern. Setting this bit to 1 results in the search for an unframed  
pattern. A 0 results in a search for a framed pattern (T1 and CEPT).  
4—7  
DPTRN0— Detector Pattern Select. These 4 bits select which random pattern is to be detected.  
DPTRN3 Bits  
7
0
0
0
0
0
0
0
0
1
1
1
1
1
6
5
0
0
1
1
0
0
1
1
0
0
1
1
0
4
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
MARK (all ones) (AIS)  
QRSS (220 – 1 with zero suppression)  
25 – 1  
63 (26 – 1)  
511 (29 – 1) (V.52)  
29 – 1  
2047 (211 – 1) (O.151)  
2
2
2
2
2
11 – 1 (reversed)  
15 – 1 (O.151)  
20 – 1 (V.57)  
20 – 1 (CB113/CB114)  
23 – 1 (O.151)  
1:1 (alternating)  
* To generate/detect test pattern signals using this register, register FRM_PR20 must be set to 00 (hex).  
Agere Systems Inc.  
209  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Framer Register Architecture (continued)  
Framer Parameter/Control Registers (continued)  
Transmit Signaling Registers: DS1 Format (FRM_TSR0—FRM_TSR23)  
These registers program the transmit signaling registers for the DS1 and CEPT mode. The default value of these  
registers is 00 (hex).  
Table 181. Transmit Signaling Registers: DS1 Format (FRM_TSR0—FRM_TSR23) ((6E0—6F7); (CE0—CF7))  
Transmit Signal Registers  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
DS1 Transmit Signaling Registers (0—23)  
P
X
G
0
F
0
X
X
D
D
C
C
B
B
A
A
ESF Format: Voice Channel with 16-State Signaling  
SLC-96: 9-State Signaling (depending on the setting in  
register FRM_PR43)  
Voice Channel with 4-State Signaling  
Voice Channel with 2-State Signaling  
Data Channel (no signaling)  
X
X
X
0
1
1
1
1
0
X
X
X
X
X
X
X
X
X
B
A
X
A
A
X
Transmit Signaling Registers: CEPT Format (FRM_TSR0—FRM_TSR31)  
Table 182. Transmit Signaling Registers: CEPT Format (FRM_TSR0—FRM_TSR31) ((6E0—6FF); (CE0—  
CFF))  
Transmit Signal Registers  
Bit 7  
Bit 6—5  
Bit 4*  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRM_TSR0: IRSM Mode  
Only  
X
X
E0  
X
X
X
X
FRM_TSR1—FRM_TSR15  
P
X
X
X
E[1:15]  
E16  
D[1:15]  
X
C[1:15]  
X
B[1:15]  
B
A[1:15]  
A
FRM_TSR16: IRSM Mode  
Only  
FRM_TSR17—FRM_TSR31  
P
X
E[17:31]  
D[17:31]  
C[17:31]  
B[17:31]  
A[17:31]  
* This bit contains the IRSM information in time slot 0. In PCS0 or PCS1 signaling mode, this bit is undefined.  
210  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
FDL Register Architecture  
REGBANK5 and REGBANK7 contain the status and programmable control registers for the facility data link chan-  
nels FDL1 and FDL2, respectively. The base address for REGBANK5 is 400 (hex) and for REGBANK7 is  
E00 (hex). Within these register banks, the bit map is identical for both FDL1 and FDL2.  
The register bank architecture for FDL1 and FDL2 is shown in Table 183. The register bank consists of 8-bit regis-  
ters classified as either (programmable) parameter registers or status registers. Default values are shown in paren-  
theses.  
Table 183. FDL Register Set (800—80E); (E00—E0E)  
FDL Register  
[Address (hex)]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRANSIT3 FRANSIT2  
FRANSIT1  
(1)  
FRANSIT0 Reserved  
Reserved  
(0)  
FLAGS  
(0)  
FDINT  
(0)  
FDL_PR0[800;E00]  
(1)  
(0)  
(0)  
(0)  
FTPRM  
(0)  
FRPF  
(0)  
FTR  
(0)  
FRR  
(0)  
FTE  
(0)  
FRE  
(0)  
FLLB  
(0)  
FRLB  
(0)  
FDL_PR1[801;E01]  
FDL_PR2[802;E02]  
FDL_PR3[803;E03]  
FDL_PR4[804;E04]  
FDL_PR5[805;E05]  
FDL_PR6[806;E06]  
FDL_PR8[808;E08]  
FDL_PR9[809;E09]  
FDL_PR10[80A;E0A]  
FTBCRC  
(0)  
FRIIE  
(0)  
FROVIE  
(0)  
FREOFIE  
(0)  
FRFIE  
(0)  
FTUNDIE  
(0)  
FTEIE  
(0)  
FTDIE  
(0)  
FTFC  
(0)  
FTABT  
(0)  
FTIL5  
(0)  
FTIL4  
(0)  
FTIL3  
(0)  
FTIL2  
(0)  
FTIL1  
(0)  
FTIL0  
(0)  
FTD7  
(0)  
FTD6  
(0)  
FTD5  
(0)  
FTD4  
(0)  
FTD3  
(0)  
FTD2  
(0)  
FTD1  
(0)  
FTD0  
(0)  
FTIC7  
(0)  
FTIC6  
(0)  
FTIC5  
(0)  
FTIC4  
(0)  
FTIC3  
(0)  
FTIC2  
(0)  
FTIC1  
(0)  
FTIC0  
(0)  
FRANSIE  
(0)  
AFDLBPM  
(0)  
FRIL5  
(0)  
FRIL4  
(0)  
FRIL3  
(0)  
FRIL2  
(0)  
FRIL1  
(0)  
FRIL0  
(0)  
FRMC7  
(0)  
FRMC6  
(0)  
FRMC5  
(0)  
FRMC4  
(0)  
FRMC3  
(0)  
FRMC2  
(0)  
FRMC1  
(0)  
FRMC0  
(0)  
Reserved  
(0)  
FTM  
(0)  
FMATCH  
(0)  
FALOCT  
(0)  
FMSTAT  
(0)  
FOCTOF2  
(0)  
FOCTOF1 FOCTOF0  
(0)  
(0)  
FTANSI  
(0)  
Reserved  
(0)  
FTANSI5  
(0)  
FTANSI4  
(0)  
FTANSI3  
(0)  
FTANSI2  
(0)  
FTANSI1  
(0)  
FTANSI0  
(0)  
FDL_SR0[80B;E0B]  
FDL_SR1[80C;E0C]  
FDL_SR2[80D;E0D]  
FDL_SR3[80E;E0E]  
FDL_SR4[807;E0F]  
FRANSI  
FTED  
FREOF  
0
FRIL  
FTQS6  
FRQS6  
0
FROUERUN  
FTQS5  
FRQS5  
X5  
FREOF  
FTQS4  
FRQS4  
X4  
FRF  
FTQS3  
FRQS3  
X3  
FTUNDABT  
FTQS2  
FRQS2  
X2  
FTE77  
FTQS1  
FRQS1  
X1  
FTDONE  
FTQS0  
FRQS0  
X0  
FRD7  
FRD6  
FRD5  
FRD4  
FRD3  
FRD2  
FRD1  
FRD0  
Agere Systems Inc.  
211  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
FDL Parameter/Control Registers (800—80E; E00—E0E)  
These registers define the mode configuration of each framer unit. These registers are initially set to a default value  
upon a hardware reset. These registers are all read/write registers.  
Default states of all bits in this register group are also indicated in the parameter/control register map.  
Table 184. FDL Configuration Control Register (FDL_PR0) (800; E00)  
Bit  
Symbol  
Description  
0
FDINT  
Dynamic Interrupt. FDINT = 0 causes multiple occurrences of the same event to gener-  
ate a single interrupt before the interrupt bit is cleared by reading register FDL_SR0.  
FDINT = 1 causes multiple interrupts to be generated. This bit should normally be set to  
0.  
1
FLAGS  
Flags. FLAGS = 0 forces the transmission of the idle pattern (11111111) in the absence  
of transmit FDL information. FLAGS = 1 forces the transmission of the flag pattern  
(01111110) in the absence of transmit FDL information. This bit resets to 0.  
2—3  
Reserved. Write to 0.  
4—7 FRANSIT0— Receive ANSI Bit Code Threshold. These bits define the number of ESF ANSI bit  
FRANSIT3 codes needed for indicating a valid code. The default is ten (1010 (binary))*.  
* The FRANSIT bits (FDL_PR0 bits 4—7) must be changed only following an FDL reset or when the FDL is idle.  
Table 185. FDL Control Register (FDL_PR1) (801; E01)  
Bit  
Symbol  
Description  
0
FRLB  
Remote Loopback. FRLB = 1 loops the received facility data back to the transmit facility  
data interface. This bit resets to 0.  
1
FLLB  
Local Loopback. FLLB = 1 loops transmit facility data back to the receive facility data  
link interface. The receive facility data link information from the framer interface is  
ignored. This bit resets to 0.  
2
3
4
FRE  
FTE  
FRR  
FDL Receiver Enable. FRE = 1 activates the FDL receiver. FRE = 0 forces the FDL  
receiver into an inactive state. This bit resets to 0.  
FDL Transmitter Enable. FTE = 1 activates the FDL transmitter. FTE = 0 forces the FDL  
transmitter into an inactive state. This bit resets to 0.  
FDL Receiver Reset. FRR = 1 generates an internal pulse that resets the FDL receiver.  
The FDL receiver FIFO and related circuitry are cleared. The FREOF, FRF, FRIDL, and  
OVERRUN interrupts are cleared. This bit resets to 0.  
5
FTR  
FDL Transmitter Reset. FTR = 1 generates an internal pulse that resets the FDL trans-  
mitter. The FDL transmit FIFO and related circuitry are cleared. The FTUNDABT bit is  
cleared, and the FTEM interrupt is set; the FTDONE bit is forced to 0 in the HDLC mode  
and forced to 1 in the transparent mode. This bit resets to 0.  
6
7
FRPF  
FDL Receive PRM Frames. FRPF = 1 allows the receive FDL unit to write the entire  
receive performance report message including the frame header and CRC data into the  
receive FDL FIFO. This bit resets to 0.  
FTPRM  
Transmit PRM Enable. When this bit is set, the receive framer will write into the transmit  
FDL FIFO its performance report message data. The current second of this data is  
stored in the receive framer’s status registers. The receive framer’s PRM is transmitted  
once per second. The PRM is followed by either idles or flags transmitted after the PRM.  
When this bit is 0, the transmit FDL expects data from the microprocessor interface.  
212  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 186. FDL Interrupt Mask Control Register (FDL_PR2) (802; E02)  
Bit  
Symbol  
Description  
0
FTDIE  
FDL Transmit-Done Interrupt Enable. When this interrupt enable bit is set, an  
INTERRUPT pin transition is generated after the last bit of the closing flag or abort  
sequence is sent. In the transparent mode (register FDL_PR9 bit 6 = 1), an INTERRUPT  
pin transition is generated when the transmit FIFO is completely empty. FTDIE is cleared  
upon reset.  
1
2
3
4
5
6
7
FTEIE  
FTUNDIE  
FRFIE  
FDL Transmitter-Empty Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the transmit FIFO has reached the pro-  
grammed empty level (see register FDL_PR3). FTEIE is cleared upon reset.  
FDL Transmit Underrun Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the transmit FIFO has underrun. FTUNDIE  
is cleared upon reset and is not used in the transparent mode.  
FDL Receiver-Full Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the receive FIFO has reached the pro-  
grammed full level (see register FDL_PR6). FRFIE is cleared upon reset.  
FREOFIE  
FROVIE  
FRIIE  
FDL Receive End-of-Frame Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when an end-of-frame is detected by the FDL  
receiver. FREOFIE is cleared upon reset and is not used in the transparent mode.  
FDL Receiver Overrun Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the receive FIFO overruns. FROVIE is  
cleared upon reset.  
FDL Receiver Idle-Interrupt Enable. When this interrupt-enable bit is set, an  
INTERRUPT pin transition is generated when the receiver enters the idle state. FRIIR is  
cleared upon reset and is not used in the transparent mode.  
FTBCRC  
FDL Transmit Bad CRC. Setting this bit to 1 forces bad CRCs to be sent on all transmit-  
ted frames (for test purposes) until the FTBCRC bit is cleared to 0.  
Agere Systems Inc.  
213  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 187. FDL Transmitter Configuration Control Register (FDL_PR3) (803; E03)  
Bit  
Symbol  
Description  
0—5 FTIL0—FTIL5 FDL Transmitter Interrupt Level. These bits specify the minimum number of empty  
positions in the transmit FIFO which triggers a transmitter-empty (FTEM) interrupt.  
Encoding is in binary; bit 0 is the least significant bit. A code of 001010 will generate an  
interrupt when the transmit FIFO has ten or more empty locations. The code 000000  
generates an interrupt when the transmit FIFO is empty. The number of empty transmit  
FIFO locations is obtained by reading the transmit FDL status register FDL_SR1.  
61  
FTABT  
FDL Transmitter Abort. FTABT = 1 forces the transmit FDL unit to abort the frame at the  
last user data byte waiting for transmission. When the transmitter reads the byte tagged  
with FTABT, the abort sequence (01111111) is transmitted in its place. A full byte is guar-  
anteed to be transmitted. Once set for a specific data byte, the internal FTABT status  
cannot be cleared by writing to this bit. Clearing this bit has no effect on a previously writ-  
ten FTABT. The last value written to FTABT is available for reading.  
71  
FTFC  
FDL Transmitter Frame Complete. FTFC = 1 forces the transmit FDL unit to terminate  
the frame normally after the last user data byte is written to the transmit FIFO. The CRC  
sequence and a closing flag are appended. FTFC should be set to 1 within 1 ms of writ-  
ing the last byte of the frame in the transmit FIFO. When the transmit FIFO is empty, writ-  
ing two data bytes to the FIFO before setting FTCF provides a minimum of 1 ms to write  
FTFC = 1. Once set for a specific data byte, the internal FTFC status bit cannot be  
cleared by writing to this bit. Clearing this bit has no effect on a previously written FTFC.  
The last value written to FTFC is available for reading.  
1. Do not set FTABT = 1 and FTFC = 1 at the same time.  
Table 188. FDL Transmitter FIFO Register (FDL_PR4) (804; E04)  
Bit  
Symbol  
Description  
0—7 FTD0—FTD7 FDL Transmit Data. The user data to be transmitted via the FDL block are loaded  
through this register.  
Table 189. FDL Transmitter Mask Register (FDL_PR5) (805; E05)  
Bit  
Symbol  
Description  
0—7  
FTIC0—  
FTIC7  
FDL Transmitter Idle Character. This character is used only in transparent mode (regis-  
ter FDL_PR9 bit 6 = 1). When the pattern match bit (register FDL_PR9 bit 5) is set to 1,  
the FDL transmit unit sends this character whenever the transmit FIFO is empty. The  
default is to send the 1s idle character, but any character can be programmed by the  
user.  
214  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 190. FDL Receiver Interrupt Level Control Register (FDL_PR6) (806; E06)  
Bit  
Symbol  
Description  
0—5 FRIL0—FRIL5 FDL Receive Interrupt Level. Bit 0—bit 5 define receiver FIFO full threshold value that  
will generate the corresponding FRF interrupt. FRIL = 000000 forces the receive FDL  
FIFO to generate an interrupt when the receive FIFO is completely full. FRIL = 001111  
will force the receive FDL FIFO to generate an interrupt when the receive FIFO contains  
15 or more bytes.  
6
7
Reserved. Write to 0.  
FRANSIE  
FDL Receiver ANSI Bit Codes Interrupt Enable. If this bit is set to 1, an interrupt pin  
condition is generated whenever a valid ANSI code is received.  
Table 191. FDL Register FDL_PR7  
Bit  
Symbol  
Description  
0—7  
Reserved.  
Table 192. FDL Receiver Match Character Register (FDL_PR8) (808; E08)  
Bit  
Symbol  
Description  
0—7  
FRMC0—  
FRMC7  
Receiver FDL Match Character. This character is used only in transparent mode (regis-  
ter FDL_PR9 bit 6 = 1). When the pattern match bit (register FDL_PR9 bit 5) is set to 1,  
the receive FDL unit searches the incoming bit stream for the receiver match character.  
Data is loaded into the receive FIFO only after this character has been identified. The  
byte identified as matching the receiver match character is the first byte loaded into the  
receive FIFO. The default is to search for a flag, but any character can be programmed  
by the user. The search for the receiver match character can be in a sliding window fash-  
ion (register FDL_PR9 bit 4 = 0) or only on byte boundaries (register FDL_PR9 bit 4 = 1).  
Agere Systems Inc.  
215  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 193. FDL Transparent Control Register (FDL_PR9) (809; E09)  
Bit  
Symbol  
Description  
0—2  
FOCTOF0— FDL Octet Offset (Read Only). These bits record the offset relative to the octet bound-  
FOCTOF2  
FMSTAT  
ary when the receive character was matched. The FOCTOF bits are valid when register  
FDL_PR9 bit 3 (FMSTAT) is set to 1. A value of 111 (binary) indicates byte alignment.  
3
Match Status (Read Only). When this bit is set to 1 by the receive FDL unit, the receiver  
match character has been recognized. The octet offset status bits (FDL_PR9 bit[2:0])  
indicates the offset relative to the octet boundary* at which the receive character was  
matched. If no match is being performed (register FDL_PR9 bit 5 = 0), the FMSTAT bit is  
set to 1 automatically when the first byte is received, and the octet offset status bits (reg-  
ister FDL_PR9 bit 0—bit 2) are set to 111 (binary).  
4
5
FALOCT  
FMATCH  
Frame-Sync Align. When this bit is set to 1, the receive FDL unit searches for the  
receive match character (FDL-PR8) only on an octet boundary. When this bit is 0, the  
receive FDL unit searches for the receive match character in a sliding window fashion.  
Pattern Match. FMATCH affects both the transmitter and receiver. When this bit is set to  
1, the FDL does not load data into the receive FIFO until the receive match character  
programmed in register FDL_PR8 has been detected. The search for the receive match  
character is in a sliding window fashion if register FDL_PR9 bit 4 is 0, or only on octet  
boundaries if register FDL_PR9 bit 4 is set to 1. When this bit is 0, the receive FDL unit  
loads the matched byte and all subsequent data directly into the receive FIFO. On the  
transmit side, when this bit is set to 1 the transmitter sends the transmit idle character  
programmed into register FDL_PR5 when the transmit FIFO has no user data. The  
default idle is to transmit the HDLC 1s idle character (FF hexadecimal); however, any  
value can be used by programming the transmit idle character register FDL_PR5. If this  
bit is 0, the transmitter sends 1s idle characters when the transmit FIFO is empty.  
6
7
FTM  
FDL Transparent Mode. When this bit is set to 1, the FDL unit performs no HDLC pro-  
cessing on incoming or outgoing data.  
Reserved. Write to 0.  
* The octet boundary is relative the first receive clock edge after the receiver has been enabled (ENR, FDL_PR1 bit 2 = 1).  
Table 194. FDL Transmit ANSI ESF Bit Codes (FDL_PR10) (80A; E0A)  
Bit  
Symbol  
Description  
0—5  
FTANSI0— FDL ESF Bit-Oriented Message Data. The transmit ESF FDL bit messages are in the  
FTANSI5  
form 111111110X0X1X2X3X4X50, where the order of transmission is from left to right.  
Reserved. Write to 0.  
6
7
FTANSI  
Transmit ANSI Bit Codes. When this bit is set to 1, the FDL unit will continuously trans-  
mit the ANSI code defined using register FDL_PR10 bit 0—bit 5 as the ESF bit code  
messages. This bit must stay high long enough to ensure the ANSI code is sent at least  
10 times.  
216  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 195. FDL Interrupt Status Register (Clear on Read) (FDL_SR0) (80B; E0B)  
Bit  
Symbol  
Description  
0
FTDONE  
Transmit Done. This status bit is set to 1 when transmission of the current FDL frame  
has been completed, either after the last bit of the closing flag or after the last bit of an  
abort sequence. In the transparent mode (FDL_PR9 bit 6 = 1), this status bit is set when  
the transmit FIFO is completely empty. A hardware interrupt is generated only if the cor-  
responding interrupt-enable bit (FDL_PR2 bit 0) is set. This status bit is cleared to 0 by a  
read of this register.  
1
FTEM  
Transmitter Empty. If this bit is set to 1, the FDL transmit FIFO is at or below the pro-  
grammed depth. A hardware interrupt is generated only if the corresponding interrupt-  
enable bit (FDL_PR2 bit 1) is set. If DINT (FDL_PR0 bit 0) is 0, this status bit is cleared  
by a read of this register. If FDINT (FDL_PR0 bit 0) is set to 1, this bit actually represents  
the dynamic transmit empty condition, and is cleared to 0 only when the transmit FIFO is  
loaded above the programmed empty level.  
2
3
FTUNDABT FDL Transmit Underrun Abort. A 1 indicates that an abort was transmitted because of  
a transmit FIFO underrun. A hardware interrupt is generated only if the corresponding  
interrupt-enable bit (FDL_PR2 bit 2) is set. This status bit is cleared to 0 by a read of this  
register. This bit must be cleared to 0 before further transmission of data is allowed. This  
interrupt is not generated in the transparent mode.  
FRF  
FDL Receiver Full. This bit is set to 1 when the receive FIFO is at or above the pro-  
grammed full level (FDL_PR6). A hardware interrupt is generated if the corresponding  
interrupt-enable bit (FDL_PR2 bit 3) is set. If FDINT (FDL_PR0 bit 0) is 0, this status bit  
is cleared to 0 by a read of this register. If FDINT (FDL_PR0 bit 0) is set to 1, then this bit  
is cleared only when the receive FIFO is read (or emptied) below the programmed full  
level*.  
4
FREOF  
FDL Receive End of Frame. This bit is set to 1 when the receiver has finished receiving  
a frame. It becomes 1 upon reception of the last bit of the closing flag of a frame or the  
last bit of an abort sequence. A hardware interrupt is generated only if the corresponding  
interrupt-enable bit (FDL_PR2 bit 4) is set. This status bit is cleared to 0 by a read of this  
register. This interrupt is not generated in the transparent mode.  
5
6
FROVERUN FDL Receiver Overrun. This bit is set to 1 when the receive FIFO has overrun its  
capacity. A hardware interrupt is generated only if the corresponding interrupt-enable bit  
(FDL_PR2 bit 5) is set. This status bit is cleared to 0 by a read of this register*.  
FRIDL  
FDL Receiver Idle. This bit is set to 1 when the FDL receiver is idle (i.e., 15 or more  
consecutive 1s have been received). A hardware interrupt is generated only if the corre-  
sponding interrupt-enable bit (FDL_PR2 bit 6) is set. This status bit is cleared to 0 by a  
read of this register. This interrupt is not generated in the transparent mode.  
7
FRANSI  
FDL Receive ANSI Bit Codes. This bit is set to 1 when the FDL receiver recognizes a  
valid T1.403 ESF FDL bit code. The receive ANSI bit code is stored in register  
FDL_SR3. An interrupt is generated only if the corresponding interrupt enable of register  
FDL_PR6 bit 7 = 1. This status bit is cleared to 0 by a read this register.  
* If an FDL receive FIFO overrun occurs, as indicated by register FDL_SR0 bit 5 (FROVERUN) = 1, the FDL must be reset to restore proper  
operation of the FIFO. Following an FDL receive FIFO overrun, data extracted prior to the required reset may be corrupted.  
Agere Systems Inc.  
217  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
FDL Parameter/Control Registers (800—80E; E00—E0E) (continued)  
Table 196. FDL Transmitter Status Register (FDL_SR1) (80C; E0C)  
Bit  
Symbol  
Description  
0—6  
FTQS0—  
FTQS6  
FDL Transmit Queue Status. Bit 0—bit 6 indicate how many bytes can be added to the  
transmit FIFO. The bits are encoded in binary where bit 0 is the least significant bit.  
7
FTED  
FDL Transmitter Empty Dynamic. FTED = 1 indicates that the number of empty loca-  
tions available in the transmit FIFO is greater than or equal to the value programmed in  
the FTIL bits (FDL_PR3).  
Table 197. FDL Receiver Status Register (FDL_SR2) (80D; E0D)  
Bit  
Symbol  
Description  
0—6  
FRQS0—  
FRQS6  
FDL Receive Queue Status. Bit 0—bit 6 indicate how many bytes are in the receive  
FIFO, including the first status of Frame (SF) byte. The bits are encoded in binary where  
bit 0 is the least significant bit*.  
7
FEOF  
FDL End of Frame. When FEOF = 1, the receive queue status indicates the number of  
bytes up to and including the first SF byte.  
* Immediately following an FDL reset, the value in bit 0—bit 6 of this status register equals the number of bytes that may be read from the FDL  
receive FIFO, register FDL_SR4. After the initial read of the FDL receive FIFO, the value is bit 0—bit 6 of this status register is one greater  
than the actual number of bytes that may be read from the FIFO. Only valid FIFO bytes, as specified by this status register, may be read from  
the FIFO.  
Received FDL ANSI Bit Codes Status Register (FDL_SR3)  
The 6-bit code extracted from the ANSI code 111111110X0X1X2X3X4X50 is stored in this register.  
Table 198. Receive ANSI FDL Status Register (FDL_SR3) (80E; E0E)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
0
0
X5  
X4  
X3  
X2  
X1  
X0  
Receive FDL FIFO Register (FDL_SR4)  
This FIFO stores the received FDL data. Only valid FIFO bytes indicated in register FDL_SR2 may be read. Read-  
ing nonvalid FIFO locations or reading the FIFO when it is empty will corrupt the FIFO pointer and will require an  
FDL reset to restore proper FDL operation.  
Table 199. FDL Receiver FIFO Register (FDL_SR4) (807; E07)  
Bit  
Symbol  
Description  
0—7 FRD0—FRD7 FDL Receive Data. The user data received via the FDL block are read through this reg-  
ister.  
218  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps  
Global Registers  
Table 200. Global Register Set  
CLEAR-  
ON-READ  
REGISTER  
REG  
(COR)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADDRESS  
READ (R)  
WRITE (W)  
(hexadecimal)  
COR  
R/W  
R/W  
R/W  
R/W  
Reserved  
(0)  
FDL2INT  
(0)  
FRMR2INT  
(0)  
LIU2INT  
(0)  
Reserved  
(0)  
FDL1INT  
(0)  
FRMR1INT  
(0)  
LIU1INT  
(0)  
000  
001  
002  
003  
004  
GREG0  
GREG1  
GREG2  
GREG3  
GREG4  
Reserved  
(0)  
FDL2IE  
(0)  
FRMR2IE  
(0)  
LIU2IE  
(0)  
Reserved  
(0)  
FDL1IE  
(0)  
FRMR1IE  
(0)  
LIU1IE  
(0)  
TID2-RSD1  
(0)  
TSD2-RSD1  
(0)  
TID1-RSD1  
(0)  
TSD1-RSD1  
(0)  
TSD2-RID1  
(0)  
TID2-RID1  
(0)  
TSD1-RID1  
(0)  
TID1-RID1  
(0)  
TID1-RSD2  
(0)  
TSD1-RSD2  
(0)  
TID2-RSD2  
(0)  
TSD2-RSD2  
(0)  
TSD1-RID2  
(0)  
TID1-RID2  
(0)  
TSD2-RID2  
(0)  
TID2-RID2  
(0)  
Reserved  
(0)  
ALIE  
(0)  
SECCTRL  
(0)  
ITC  
(0)  
T1-R2  
(0)  
T2-R1  
(0)  
Reserved  
(0)  
Reserved  
(0)  
R
R
R
005  
006  
007  
GREG5  
GREG6  
GREG7  
0
0
0
1
0
0
1
1
0
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
Line Interface Unit Parameter/Control and Status Registers  
Table 201. Line Interface Unit Register Set1  
CLEAR-  
ON-READ  
(COR)  
READ (R)  
WRITE  
(W)  
REGISTER ADDRESS  
(hexadecimal)  
LIU_REG  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FRAMER 1  
FRAMER 2  
LIU_REG0  
LIU_REG1  
COR  
R/W  
served  
served  
served  
served  
LOTC  
TDM  
DLOS  
ALOS  
400  
401  
A00  
A01  
served  
(0)  
served  
(0)  
served  
(0)  
served  
(0)  
LOTCIE  
(0)  
TDMIE  
(0)  
DLOSIE  
(0)  
ALOSIE  
(0)  
LIU_REG2  
LIU_REG3  
LIU_REG4  
LIU_REG5  
LIU_REG6  
R/W  
R/W  
R/W  
R/W  
R/W  
served  
(0)  
served  
(0)  
RESTART  
(0)  
HIGHZ  
(0)  
Reserved  
(0)  
LOSSTD  
(0)  
Reserved  
(0)  
Reserved  
(0)  
402  
403  
404  
405  
406  
A02  
A03  
A04  
A05  
A06  
LOSSD  
(0)  
DUAL  
(0)  
CODE  
(1)  
JAT  
(0)  
JAR  
(0)  
(1)  
(1)  
(1)  
served  
(0)  
served  
(0)  
JABW0  
(0)  
PHIZALM  
(0)  
PRLALM  
(0)  
PFLALM  
(0)  
RCVAIS  
(0)  
ALTIMER  
(0)  
served  
(0)  
served  
(0)  
served  
(0)  
served  
(0)  
LOOPA  
(0)  
LOOPB  
(0)  
XLAIS  
(1)  
PWRDN  
(0)  
served  
(0)  
served  
(0)  
served  
(0)  
served  
(0)  
Reserved  
(0)  
EQ2  
(0,DS1)  
(1,CEPT)  
EQ1  
(0,DS1)  
(1,CEPT)  
EQ0  
(0)  
1. The logic value in parentheses below each bit definition is the default state upon completion of hardware reset.  
2. These bits must be written to 1.  
Agere Systems Inc.  
219  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps (continued)  
Framer Parameter/Control Registers (READ-WRITE)  
Table 202. Framer Unit Status Register Map  
FRAMER  
STATUS  
REGISTER ADDRESS  
(hexadecimal)  
CLEAR-ON-  
READ  
(COR)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
READ (R)  
WRITE (W)  
FRAMER  
1
FRAMER  
2
FRM_SR0  
FRM_SR1  
COR  
COR  
S96SR  
AIS  
0
RSSFE  
TSSFE  
LBFA  
ESE  
FAE  
RAC  
FAC  
LFA  
600  
601  
C00  
C01  
AUXP  
RTS16AIS  
LFALR  
LTSFA  
LSFA  
LTS0MFA  
LTS16MFA  
FRM_SR2  
COR  
RSa6=F  
SLIPU  
RSa6=E  
SLIPO  
RSa6=C  
RSa6=A  
REBIT  
RSa6=8  
ECE  
CREBIT  
RJYA  
RTS16MFA  
RFA  
602  
C02  
FRM_SR3  
FRM_SR4  
COR  
COR  
LCRCATMX  
CRCE  
FBE  
LFV  
NFA  
603  
604  
C03  
C04  
FDL-LLBOFF  
TSaSR  
FDL-LLBON  
RSaSR  
FDL-PLBOFF FDL-PLBON  
LLBON  
CMA  
LLBOFF  
BFA  
SSFA  
FRM_SR5  
FRM_SR6  
FRM_SR7  
FRM_SR8  
FRM_SR9  
FRM_SR10  
FRM_SR11  
FRM_SR12  
FRM_SR13  
FRM_SR14  
FRM_SR15  
FRM_SR16  
FRM_SR17  
FRM_SR18  
FRM_SR19  
FRM_SR20  
FRM_SR21  
FRM_SR22  
FRM_SR23  
FRM_SR24  
FRM_SR25  
FRM_SR26  
FRM_SR27  
FRM_SR28  
FRM_SR29  
FRM_SR30  
FRM_SR31  
FRM_SR32  
FRM_SR33  
FRM_SR34  
FRM_SR35  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
ETREUAS  
NTREUAS  
RQUASI  
BPV15  
ETRESES  
NTRESES  
RPSEUDO  
BPV14  
ETREBES  
NTREBES  
PTRNBER  
BPV13  
ETREES  
NTREES  
DETECT  
BPV12  
ETUAS  
NTUAS  
ETSES  
NTSES  
ETBES  
NTBES  
EROUAS  
BPV9  
ETES  
NTES  
605  
606  
607  
608  
609  
60A  
60B  
60C  
60D  
60E  
60F  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
61A  
61B  
61C  
61D  
61E  
61F  
620  
621  
622  
623  
C05  
C06  
C07  
C08  
C09  
C0A  
C0B  
C0C  
C0D  
C0E  
C0F  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C1A  
C1B  
C1C  
C1D  
C1E  
C1F  
C20  
C21  
C22  
C23  
NROUAS  
BPV11  
NT1OUAS  
BPV10  
OUAS  
BPV8  
BPV7  
BPV6  
BPV5  
BPV4  
BPV3  
BPV2  
BPV1  
BPV0  
FE15  
FE14  
FE13  
FE12  
FE11  
FE10  
FE9  
FE8  
FE7  
FE6  
FE5  
FE4  
FE3  
FE2  
FE1  
FE0  
CEC15  
CEC14  
CEC13  
CEC12  
CEC11  
CEC10  
CEC9  
CEC8  
CEC7  
CEC6  
CEC5  
CEC4  
CEC3  
CEC2  
CEC1  
CEC0  
REC15  
REC14  
REC13  
REC12  
REC11  
REC10  
REC9  
REC8  
REC7  
REC6  
REC5  
REC4  
REC3  
REC2  
REC1  
REC0  
CNT15  
CNT14  
CNT13  
CNT12  
CNT11  
CNT10  
CNT9  
CNT8  
CNT7  
CNT6  
CNT5  
CNT4  
CNT3  
CNT2  
CNT1  
CNT0  
ENT15  
ENT14  
ENT13  
ENT12  
ENT11  
ENT10  
ENT9  
ENT8  
ENT7  
ENT6  
ENT5  
ENT4  
ENT3  
ENT2  
ENT1  
ENT0  
ETES15  
ETES7  
ETES14  
ETES6  
ETES13  
ETES5  
ETES12  
ETES4  
ETES11  
ETES3  
ETES10  
ETES2  
ETES9  
ETES8  
ETES0  
ETBES8  
ETBES0  
ETSES8  
ETSES0  
ETUS8  
ETUS0  
ETREES8  
ETREES0  
ETREBES8  
ETREBES0  
ETRESES8  
ETRESES0  
ETREUS8  
ETREUS0  
ETES1  
ETBES15  
ETBES7  
ETSES15  
ETSES7  
ETUS15  
ETUS7  
ETBES14  
ETBES6  
ETSES14  
ETSES6  
ETUS14  
ETUS6  
ETBES13  
ETBES5  
ETSES13  
ETSES5  
ETUS13  
ETUS5  
ETBES12  
ETBES4  
ETSES12  
ETSES4  
ETUS12  
ETUS4  
ETBES11  
ETBES3  
ETSES11  
ETSES3  
ETUS11  
ETUS3  
ETBES10  
ETBES2  
ETSES10  
ETSES2  
ETUS10  
ETUS2  
ETBES9  
ETBES1  
ETSES9  
ETSES1  
ETUS9  
ETUS1  
ETREES9  
ETREES1  
ETREBES9  
ETREBES1  
ETRESES9  
ETRESES1  
ETREUS9  
ETREUS1  
ETREES15  
ETREES7  
ETREBES15  
ETREBES7  
ETRESES15  
ETRESES7  
ETREUS15  
ETREUS7  
ETREES14  
ETREES6  
ETREBES14  
ETREBES6  
ETRESES14  
ETRESES6  
ETREUS14  
ETREUS6  
ETREES13  
ETREES5  
ETREBES13  
ETREBES5  
ETRESES13  
ETRESES5  
ETREUS13  
ETREUS5  
ETREES12  
ETREES4  
ETREBES12  
ETREBES4  
ETRESES12  
ETRESES4  
ETREUS12  
ETREUS4  
ETREES11  
ETREES3  
ETREBES11  
ETREBES3  
ETRESES11  
ETRESES3  
ETREUS11  
ETREUS3  
ETREES10  
ETREES2  
ETREBES10  
ETREBES2  
ETRESES10  
ETRESES2  
ETREUS10  
ETREUS2  
220  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps (continued)  
Framer Parameter/Control Registers (READ-WRITE) (continued)  
Table 202. Framer Unit Status Register Map (continued)  
FRAMER  
STATUS  
REGISTER ADDRESS  
(hexadecimal)  
CLEAR-ON-  
READ (COR)  
READ (R)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WRITE (W)  
FRAMER 1 FRAMER 2  
FRM_SR36  
FRM_SR37  
FRM_SR38  
FRM_SR39  
FRM_SR40  
FRM_SR41  
FRM_SR42  
FRM_SR43  
FRM_SR44  
FRM_SR45  
FRM_SR46  
FRM_SR47  
FRM_SR48  
FRM_SR49  
FRM_SR50  
FRM_SR51  
FRM_SR52  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
NTES15  
NTES7  
NTES14  
NTES6  
NTES13  
NTES5  
NTES12  
NTES4  
NTES11  
NTES3  
NTES10  
NTES2  
NTES9  
NTES1  
NTES8  
NTES0  
624  
625  
626  
627  
628  
629  
62A  
62B  
62C  
62D  
62E  
62F  
630  
631  
632  
633  
634  
C24  
C25  
C26  
C27  
C28  
C29  
C2A  
C2B  
C2C  
C2D  
C2E  
C2F  
C30  
C31  
C32  
C33  
C34  
NTBES15  
NTBES7  
NTSES15  
NTSES7  
NTUS15  
NTUS7  
NTBES14  
NTBES6  
NTSES14  
NTSES6  
NTUS14  
NTUS6  
NTBES13  
NTBES5  
NTSES13  
NTSES5  
NTUS13  
NTUS5  
NTBES12  
NTBES4  
NTSES12  
NTSES4  
NTUS12  
NTUS4  
NTBES11  
NTBES3  
NTSES11  
NTSES3  
NTUS11  
NTUS3  
NTBES10  
NTBES2  
NTSES10  
NTSES2  
NTUS10  
NTUS2  
NTBES9  
NTBES1  
NTSES9  
NTSES1  
NTUS9  
NTBES8  
NTBES0  
NTSES8  
NTSES0  
NTUS8  
NTUS1  
NTUS0  
NTREES15  
NTREES7  
NTREES14  
NTREES6  
NTREES13  
NTREES5  
NTREES12  
NTREES4  
NTREES11  
NTREES3  
NTREES10  
NTREES2  
NTREES9  
NTREES1  
NTREBES9  
NTREBES1  
NTRESES9  
NTRESES1  
NTREUS9  
NTREUS1  
Sa7  
NTREES8  
NTREES0  
NTREBES8  
NTREBES0  
NTRESES8  
NTRESES0  
NTREUS8  
NTREUS0  
Sa8  
NTREBES15 NTREBES14 NTREBES13 NTREBES12 NTREBES11 NTREBES10  
NTREBES7 NTREBES6 NTREBES5 NTREBES4 NTREBES3 NTREBES2  
NTRESES15 NTRESES14 NTRESES13 NTRESES12 NTRESES11 NTRESES10  
NTRESES7  
NTREUS15  
NTREUS7  
NTRESES6  
NTREUS14  
NTREUS6  
NTRESES5  
NTREUS13  
NTREUS5  
A bit  
NTRESES4  
NTREUS12  
NTREUS4  
Sa4  
NTRESES3  
NTREUS11  
NTREUS3  
Sa5  
NTRESES2  
NTREUS10  
NTREUS2  
Sa6  
NFB1  
[FI5E]  
FBI  
[FI3E]  
FRM_SR53  
COR  
COR  
0
0
0
0
0
RX2  
RX1  
RX0  
635  
636  
C35  
C36  
1
FRM_SR54  
FRM_SR55  
FRM_SR56  
FRM_SR57  
FRM_SR58  
FRM_SR59  
FRM_SR60  
0
0
R-0  
[Sa4-5]  
R-0  
[Sa4-7]  
R-0  
[Sa4-9]  
R-1  
[Sa4-11]  
R-1  
[Sa4-13]  
R-1  
[Sa4-15]  
[Sa4-1]  
[Sa4-3]  
1
1
1
1
1
1
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
COR  
0
0
R-0  
[Sa4-21]  
R-0  
[Sa4-23]  
R-0  
[Sa4-25]  
R-1  
[Sa4-27]  
R-1  
[Sa4-29]  
R-1  
[Sa4-31]  
637  
638  
639  
63A  
63B  
63C  
63D  
63E  
63F  
C37  
C38  
C39  
C3A  
C3B  
C3C  
C3D  
C3E  
C3F  
[Sa4-17]  
[Sa4-19]  
RC1  
[Sa5-1]  
RC2  
[Sa5-3]  
RC3  
[Sa5-5]  
RC4  
[Sa5-7]  
RC5  
[Sa5-9]  
RC6  
[Sa5-11]  
RC7  
[Sa5-13]  
RC8  
[Sa5-15]  
RC9  
[Sa5-17]  
RC10  
[Sa5-19]  
RC11  
[Sa5-21]  
RSPB1 = 0  
[Sa5-23]  
RSPB2 = 1  
[Sa5-25]  
RSPB3 = 0  
[Sa5-27]  
RM1  
[Sa5-29]  
RM2  
[Sa5-31]  
RM3  
[Sa6-1]  
RA1  
[Sa6-3]  
RA2  
[Sa6-5]  
RS1  
[Sa6-7]  
RS2  
[Sa6-9]  
RS3  
[Sa6-11]  
RS4  
[Sa613]  
RSPB4 = 1  
[Sa6-15]  
0
0
0
0
0
0
0
0
[Sa6-17]  
[Sa6-19]  
[Sa6-21]  
[Sa6-23]  
[Sa6-25]  
[Sa6-27]  
[Sa6-29]  
[Sa6-31]  
0
0
0
0
0
0
0
0
[Sa7-1]  
[Sa7-3]  
[Sa7-5]  
[Sa7-7]  
[Sa7-9]  
[Sa7-11]  
[Sa7-13]  
[Sa7-15]  
1
FRM_SR61  
0
0
0
0
0
0
0
0
[Sa7-17]  
[Sa7-19]  
[Sa7-21]  
[Sa7-23]  
[Sa7-25]  
[Sa7-27]  
[Sa7-29]  
[Sa7-31]  
1
FRM_SR62  
FRM_SR63  
G3  
[Sa8-1]  
LV  
[Sa8-3]  
G4  
[Sa8-5]  
U1  
[Sa8-7]  
U2  
[Sa8-9]  
G5  
[Sa8-11]  
SL  
[Sa8-13]  
G6  
[Sa8-15]  
1
FE  
SE  
LB  
G1  
R
G2  
Nm  
Nl  
[Sa8-17]  
[Sa8-19]  
[Sa8-21]  
[Sa8-23]  
[Sa8-25]  
[Sa8-27]  
[Sa8-29]  
[Sa8-31]  
1. Unbracketed contents are valid for DS1 modes. Bracketed contents, [], are valid for CEPT mode.  
Agere Systems Inc.  
221  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps (continued)  
Receive Framer Signaling Registers (READ-ONLY)  
Table 203. Receive Signaling Registers Map  
Receive  
CLEAR-  
REGISTER ADDRESS  
(hexadecimal)  
Signaling  
ON-READ  
(COR)  
1
1,2  
1,2  
3
4
4
5
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
READ (R)  
WRITE (W)  
FRAMER 1 FRAMER 2  
6
FRM_RSR0  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
G_0  
G_1  
F_0  
F_1  
F_2  
F_3  
F_4  
F_5  
F_6  
F_7  
F_8  
F_8  
F_10  
F_11  
F_12  
F_13  
F_14  
F_15  
F_16  
F_17  
F_18  
F_19  
F_20  
F_21  
F_22  
F_23  
X
E_0  
E_1  
D_0  
D_1  
C_0  
C_1  
B_0  
B_1  
B_2  
B_3  
B_4  
B_5  
B_6  
B_7  
B_8  
B_8  
A_0  
A_1  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
64A  
64B  
64C  
64D  
64E  
64F  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
65A  
65B  
65C  
65D  
65E  
65F  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
C4A  
C4B  
C4C  
C4D  
C4E  
C4F  
C50  
C51  
C52  
C53  
C54  
C55  
C56  
C57  
C58  
C59  
C5A  
C5B  
C5C  
C5D  
C5E  
C5F  
FRM_RSR1  
FRM_RSR2  
FRM_RSR3  
FRM_RSR4  
FRM_RSR5  
FRM_RSR6  
FRM_RSR7  
FRM_RSR8  
FRM_RSR9  
FRM_RSR10  
FRM_RSR11  
FRM_RSR12  
FRM_RSR13  
FRM_RSR14  
FRM_RSR15  
G_2  
E_2  
D_2  
C_2  
A_2  
G_3  
E_3  
D_3  
C_3  
A_3  
G_4  
E_4  
D_4  
C_4  
A_4  
G_5  
E_5  
D_5  
C_5  
A_5  
G_6  
E_6  
D_6  
C_6  
A_6  
G_7  
E_7  
D_7  
C_7  
A_7  
G_8  
E_8  
D_8  
C_8  
A_8  
G_9  
E_8  
D_8  
C_8  
A_8  
G_10  
G_11  
G_12  
G_13  
G_14  
G_15  
G_16  
G_17  
G_18  
G_19  
G_20  
G_21  
G_22  
G_23  
E_10  
E_11  
E_12  
E_13  
E_14  
E_15  
E_16  
E_17  
E_18  
E_19  
E_20  
E_21  
E_22  
E_23  
E_24  
E_25  
E_26  
E_27  
E_28  
E_29  
E_30  
E_31  
D_10  
D_11  
D_12  
D_13  
D_14  
D_15  
D_16  
D_17  
D_18  
D_19  
D_20  
D_21  
D_22  
D_23  
D_24  
D_25  
D_26  
D_27  
D_28  
D_29  
D_30  
D_31  
C_10  
C_11  
C_12  
C_13  
C_14  
C_15  
C_16  
C_17  
C_18  
C_19  
C_20  
C_21  
C_22  
C_23  
C_24  
C_25  
C_26  
C_27  
C_28  
C_29  
C_30  
C_31  
B_10  
B_11  
B_12  
B_13  
B_14  
B_15  
B_16  
B_17  
B_18  
B_19  
B_20  
B_21  
B_22  
B_23  
B_24  
B_25  
B_26  
B_27  
B_28  
B_29  
B_30  
B_31  
A_10  
A_11  
A_12  
A_13  
A_14  
A_15  
A_16  
A_17  
A_18  
A_19  
A_20  
A_21  
A_22  
A_23  
A_24  
A_25  
A_26  
A_27  
A_28  
A_29  
A_30  
A_31  
6
FRM_RSR16  
FRM_RSR17  
FRM_RSR18  
FRM_RSR19  
FRM_RSR20  
FRM_RSR21  
FRM_RSR22  
FRM_RSR23  
3
7
FRM_RSR24  
FRM_RSR25  
FRM_RSR26  
FRM_RSR27  
FRM_RSR28  
FRM_RSR29  
FRM_RSR30  
FRM_RSR31  
X
3
3
3
3
3
3
3
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1. In the CEPT IRSM signaling modes, these bits are in the 0 state and should be ignored.  
2. In the DS1 robbed-bit signaling modes, these bits are copied from the corresponding transmit signaling registers. In the CEPT signaling  
modes, these bits are in the 0 state and should be ignored.  
3. In the DS1 signaling modes, these registers contain unknown data.  
4. In DS1 4-state and 2-state signaling, these bits contain unknown data.  
5. In DS1 2-state signaling, these bits contain unknown data.  
6. In the CEPT signaling modes, the A-, B-, C-, D-, and P-bit information of these registers contains unknown data.  
7. Signifies unknown data.  
222  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps (continued)  
Framer Unit Parameter Register Map  
Table 204. Framer Unit Parameter Register Map  
FRAMER  
CLEAR-  
REGISTER ADDRESS  
(hexadecimal)  
CONTROL  
ON-READ  
(COR)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
READ (R)  
WRITE (W)  
FRAMER 1 FRAMER 2  
FRM_PR0  
FRM_PR1  
FRM_PR2  
FRM_PR3  
FRM_PR4  
FRM_PR5  
FRM_PR6  
FRM_PR7  
FRM_PR8  
FRM_PR9  
FRM_PR10  
SLCIE  
(0)  
Reserved  
(0)  
RSRIE  
(0)  
TSRIE  
(0)  
SR567IE  
(0)  
SR34IE  
(0)  
SR2IE  
(0)  
SR1IE  
(0)  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
66A  
C60  
C61  
C62  
C63  
C64  
C65  
C66  
C67  
C68  
C69  
C6A  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SR1B7IE  
(0)  
SR1B6IE  
(0)  
SR1B5IE  
(0)  
SR1B4IE  
(0)  
SR1B3IE  
(0)  
SR1B2IE  
(0)  
SR1B1IE  
(0)  
SR1B0IE  
(0)  
SR2B7IE  
(0)  
SR2B6IE  
(0)  
SR2B5IE  
(0)  
SR2B4IE  
(0)  
SR2B3IE  
(0)  
SR2B2IE  
(0)  
SR2B1IE  
(0)  
SR2B0IE  
(0)  
SR3B7IE  
(0)  
SR3B6IE  
(0)  
SR3B5IE  
(0)  
SR3B4IE  
(0)  
SR3B3IE  
(0)  
SR3B2IE  
(0)  
SR3B1IE  
(0)  
SR3B0IE  
(0)  
SR4B7IE  
(0)  
SR4B6IE  
(0)  
SR4B5IE  
(0)  
SR4B4IE  
(0)  
SR4B3IE  
(0)  
SR4B2IE  
(0)  
SR4B1IE  
(0)  
SR4B0IE  
(0)  
SR5B7IE  
(0)  
SR5B6IE  
(0)  
SR5B5IE  
(0)  
SR5B4IE  
(0)  
SR5B3IE  
(0)  
SR5B2IE  
(0)  
SR5B1IE  
(0)  
SR5B0IE  
(0)  
SR6B7IE  
(0)  
SR6B6IE  
(0)  
SR6B5IE  
(0)  
SR6B4IE  
(0)  
SR6B3IE  
(0)  
SR6B2IE  
(0)  
SR6B1IE  
(0)  
SR6B0IE  
(0)  
SR7B7IE  
(0)  
SR7B6IE  
(0)  
SR7B5IE  
(0)  
SR7B4IE  
(0)  
SR7B3IE  
(0)  
SR7B2IE  
(0)  
SR7B1IE  
(0)  
SR7B0IE  
(0)  
LC2  
(1)  
LC1  
(1)  
LC0  
(0)  
FMODE4  
(0)  
FMODE3  
(0)  
FMODE2  
(0)  
FMODE1  
(0)  
FMODE0  
(0)  
CRCO7  
(0)  
CRCO6  
(0)  
CRCO5  
(0)  
CRCO4  
(0)  
CRCO3  
(0)  
CRCO2  
(0)  
CRCO1  
(0)  
CRCO0  
(0)  
ESM1  
(0)  
ESM0  
(0)  
RABF  
(0)  
Reserved  
(0)  
CNUCLBEN  
(0)  
FEREN  
AISM  
(0)  
SSa6M  
(0)  
1
[NFFE]  
(0)  
FRM_PR11  
FRM_PR12  
FRM_PR13  
FRM_PR14  
FRM_PR15  
FRM_PR16  
FRM_PR17  
FRM_PR18  
FRM_PR19  
FRM_PR20  
EST7  
(0)  
EST6  
(0)  
EST5  
(0)  
EST4  
(0)  
EST3  
(0)  
EST2  
(0)  
EST1  
(0)  
EST0  
(0)  
66B  
66C  
66D  
66E  
66F  
670  
671  
672  
673  
674  
C6B  
C6C  
C6D  
C6E  
C6F  
C70  
C71  
C72  
C73  
C74  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
SEST15  
(0)  
SEST14  
(0)  
SEST13  
(0)  
SEST12  
(0)  
SEST11  
(0)  
SEST10  
(0)  
SEST9  
(0)  
SEST8  
(0)  
SEST7  
(0)  
SEST6  
(0)  
SEST5  
(0)  
SEST4  
(0)  
SEST3  
(0)  
SEST2  
(0)  
SEST1  
(0)  
SEST0  
(0)  
0
0
0
0
ETSLIP  
(0)  
ETAIS  
(0)  
ETLMFA  
(0)  
ETLFA  
(0)  
ETRESa6-F ETRESa6-E  
ETRESa6-8  
(0)  
ETRERFA  
(0)  
ETRESLIP  
(0)  
ETREAIS  
(0)  
ETRELMFA  
(0)  
ETRELFA  
(0)  
(0)  
(0)  
NTSa6-C  
(0)  
0
NTSa6-8  
(0)  
0
NTSLIP  
(0)  
NTAIS  
(0)  
NTLMFA  
(0)  
NTLFA  
(0)  
0
0
0
0
NTRERFA  
(0)  
NTRESLIP  
(0)  
NTREAIS  
(0)  
NTRELMFA  
(0)  
NTRELFA  
(0)  
0
0
0
NTRESa6-C  
(0)  
NTRESa6-F  
(0)  
NTRESa6-E  
(0)  
NTRESa6-8  
(0)  
AFDPLBE  
(0)  
AFDLLBE  
(0)  
Reserved  
(0)  
ALLBE  
(0)  
TSAIS  
(0)  
Reserved  
(0)  
ASAISTMX  
(0)  
ASAIS  
(0)  
TICRC  
(0)  
TLIC  
(0)  
TLLBOFF  
(0)  
TLLBON  
(0)  
TQRS  
(0)  
TPRS  
(0)  
TUFAUXP  
(0)  
TUFAIS  
(0)  
1. Definition in CEPT mode.  
Agere Systems Inc.  
223  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps (continued)  
Framer Unit Parameter Register Map (continued)  
Table 204. Framer Unit Parameter Register Map (continued)  
FRAMER  
CLEAR-  
REGISTER ADDRESS  
(hexadecimal)  
CONTROL  
ON-READ  
(COR)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
READ (R)  
WRITE (W)  
FRAMER 1 FRAMER 2  
FRM_PR21  
FRM_PR22  
FRM_PR23  
FRM_PR24  
FRM_PR25  
FRM_PR26  
FRM_PR27  
FRM_PR28  
TC/R=1  
(0)  
TFDLC  
(0)  
TFDLSAIS  
(0)  
TFDLLAIS  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
675  
676  
677  
678  
679  
67A  
67B  
67C  
C75  
C76  
C77  
C78  
C79  
C7A  
C7B  
C7C  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TLIC7  
(0)  
TLIC6  
(1)  
TLIC5  
(1)  
TLIC4  
(1)  
TLIC3  
(1)  
TLIC2  
(1)  
TLIC1  
(1)  
TLIC0  
(1)  
SSTSC7  
(0)  
SSTSC6  
(1)  
SSTSC5  
(1)  
SSTSC4  
(1)  
SSTSC3  
(1)  
SSTSC2  
(1)  
SSTSC1  
(1)  
SSTSC0  
(1)  
LBC2  
(0)  
LBC1  
(0)  
LBC0  
(0)  
TSLBA4  
(0)  
TSLBA3  
(0)  
TSLBA2  
(0)  
TSLBA1  
(0)  
TSLBA0  
(0)  
Reserved  
(0)  
SLBC1  
(0)  
SLBC0  
(0)  
STSLBA4  
(0)  
STSLBA3  
(0)  
STSLBA2  
(0)  
STSLBA1  
(0)  
STSLBA0  
(0)  
Reserved  
(0)  
Reserved  
(0)  
SYSFSM  
(0)  
TFM2  
(0)  
TFM1  
(0)  
FRFRM  
(0)  
SWRESTART  
(0)  
SWRESET  
(0)  
TRFA  
(0)  
TJRFA  
(0)  
AARSa6_C  
(0)  
AARSa6_8  
(0)  
ATMX  
(0)  
AAB0LMFA  
(0)  
AAB16LMFA  
(0)  
ARLFA  
(0)  
0
0
ATERTX  
(0)  
ATELTS0MFA  
(0)  
ATECRCE  
(0)  
TSiNF  
(0)  
TSiF  
(0)  
SIS,  
T1E  
(0)  
FRM_PR29  
FRM_PR30  
FRM_PR31  
FRM_PR32  
FRM_PR33  
FRM_PR34  
FRM_PR35  
SaS7  
(0)  
SaS6  
(0)  
SaS5  
(0)  
TSa8  
(0)  
TSa7  
(0)  
TSa6  
(0)  
TSa5  
(0)  
TSa4  
(0)  
67D  
67E  
67F  
680  
681  
682  
683  
C7D  
C7E  
C7F  
C80  
C81  
C82  
C83  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
TDNF  
(0)  
Reserved  
(0)  
Reserved  
(0)  
TESa8  
(0)  
TESa7  
(0)  
TESa6  
(0)  
TESa5  
(0)  
TESa4  
(0)  
0
0
X-0  
Sa4-5  
X-0  
Sa4-7  
X-0  
Sa4-9  
X-1  
Sa4-11  
X-1  
Sa4-13  
X-1  
Sa4-15  
Sa4-1  
Sa4-3  
0
0
X-0  
Sa4-21  
X-0  
Sa4-23  
X-0  
Sa4-25  
X-1  
Sa4-27  
X-1  
Sa4-29  
X-1  
Sa4-31  
Sa4-17  
Sa4-19  
XC1  
Sa5-1  
XC2  
Sa5-3  
XC3  
Sa5-5  
XC4  
Sa5-7  
XC5  
Sa5-9  
XC6  
Sa5-11  
XC7  
Sa5-13  
XC8  
Sa5-15  
XC9  
Sa5-17  
XC10  
Sa5-19  
XC11  
Sa5-21  
XSPB1 = 0  
Sa5-23  
XSPB2 = 1  
Sa5-25  
XSPB3 = 0  
Sa5-27  
XM1  
Sa5-29  
XM2  
Sa5-31  
XM3  
Sa6-1  
XA1  
Sa6-3  
XA2  
Sa6-5  
XS1  
Sa6-7  
XS2  
Sa6-9  
XS3  
Sa6-11  
XS4  
Sa613  
XSPB4 = 1  
Sa6-15  
FRM_PR36  
FRM_PR37  
FRM_PR38  
FRM_PR39  
FRM_PR40  
FRM_PR41  
Sa6-17  
Sa7-1  
Sa6-19  
Sa7-3  
Sa6-21  
Sa7-5  
Sa6-23  
Sa7-7  
Sa6-25  
Sa7-9  
Sa6-27  
Sa7-11  
Sa7-27  
Sa8-11  
Sa8-27  
Sa6-29  
Sa7-13  
Sa7-29  
Sa8-13  
Sa8-29  
Sa6-31  
Sa7-15  
Sa7-31  
Sa8-15  
Sa8-31  
684  
685  
686  
687  
688  
689  
C84  
C85  
C86  
C87  
C88  
C89  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Sa7-17  
Sa8-1  
Sa7-19  
Sa8-3  
Sa7-21  
Sa8-5  
Sa7-23  
Sa8-7  
Sa7-25  
Sa8-9  
Sa8-17  
Sa8-19  
Sa8-21  
Sa8-23  
Sa8-25  
Reserved  
(0)  
TLTS16AIS  
(0)  
TLTS16RMFA ALTTS16RMF  
XS  
(0)  
TTS16X2  
(0)  
TTS16X1  
(0)  
TTS16X0  
(0)  
(0)  
A
(0)  
224  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps (continued)  
Framer Unit Parameter Register Map (continued)  
Table 204. Framer Unit Parameter Register Map (continued)  
FRAMER  
CLEAR-  
REGISTER  
ADDRESS  
(hexadecimal)  
CONTROL  
ON-READ  
(COR)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
READ (R)  
WRITE (W)  
FR 1  
FR 2  
FRM_PR42  
FRM_PR43  
R/W  
R/W  
FEX7  
(0)  
FEX6  
(0)  
FEX5  
(0)  
FEX4  
(0)  
FEX3  
(0)  
FEX2  
(0)  
FEX1  
(0)  
FEX0  
(0)  
68A  
C8A  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
SSC  
(0)  
STS2  
[SaFDL2]  
(0)  
STS1  
[SaFDL1]  
(0)  
STS0  
[SaFDL0]  
(1)  
68B  
68C  
C8B  
C8C  
FRM_PR44  
R/W  
TCSS  
(0)  
ASTSAIS  
(0)  
IRSM  
TSR-ASM  
(0)  
MOS_CSS  
(0)  
RSI  
(0)  
ASM  
(0)  
STOMP  
(0)  
TSIG  
(0)  
FRM_PR45  
FRM_PR46  
FRM_PR47  
FRM_PR48  
FRM_PR49  
FRM_PR50  
FRM_PR51  
FRM_PR52  
FRM_PR53  
FRM_PR54  
FRM_PR55  
FRM_PR56  
FRM_PR57  
FRM_PR58  
FRM_PR59  
FRM_PR60  
FRM_PR61  
FRM_PR62  
FRM_PR63  
FRM_PR64  
FRM_PR65  
FRM_PR66  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
HWYEN  
(0)  
Reserved  
(0)  
Reserved  
(0)  
CHIMM  
(0)  
CDRS1  
(0)  
CDRS0  
(0)  
CMS  
(0)  
HFLF  
(0)  
68D  
68E  
68F  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
69A  
69B  
69C  
69D  
69E  
69F  
6A0  
6A1  
6A2  
C8D  
C8E  
C8F  
C90  
C91  
C92  
C93  
C94  
C95  
C96  
C97  
C98  
C99  
C9A  
C9B  
C9C  
C9D  
C9E  
C9F  
CA0  
CA1  
CA2  
RFE  
(0)  
ROFF2  
(0)  
ROFF1  
(0)  
ROFF0  
(0)  
TFE  
(0)  
TOFF2  
(0)  
TOFF1  
(0)  
TOFF0  
(0)  
TLBIT  
(0)  
TCE  
(0)  
TBYOFF5  
(0)  
TBYOFF4  
(0)  
TBYOFF3  
(0)  
TBYOFF2  
(0)  
TBYOFF1  
(0)  
TBYOFF0  
(0)  
RLBIT  
(0)  
RCE  
(0)  
RBYOFF5  
(0)  
RBYOFF4  
(0)  
RBYOFF3  
(0)  
RBYOFF2  
(0)  
RBYOFF1  
(0)  
RBYOFF0  
(0)  
TTSE31  
(0)  
TTSE30  
(0)  
TTSE29  
(0)  
TTSE28  
(0)  
TTSE27  
(0)  
TTSE26  
(0)  
TTSE25  
(0)  
TTSE24  
(0)  
TTSE23  
(0)  
TTSE22  
(0)  
TTSE21  
(0)  
TTSE20  
(0)  
TTSE19  
(0)  
TTSE18  
(0)  
TTSE17  
(0)  
TTSE16  
(0)  
TTSE15  
(0)  
TTSE14  
(0)  
TTSE13  
(0)  
TTSE12  
(0)  
TTSE11  
(0)  
TTSE10  
(0)  
TTSE9  
(0)  
TTSE8  
(0)  
TTSE7  
(0)  
TTSE6  
(0)  
TTSE5  
(0)  
TTSE4  
(0)  
TTSE3  
(0)  
TTSE2  
(0)  
TTSE1  
(0)  
TTSE0  
(0)  
RTSE31  
(0)  
RTSE30  
(0)  
RTSE29  
(0)  
RTSE28  
(0)  
RTSE27  
(0)  
RTSE26  
(0)  
RTSE25  
(0)  
RTSE24  
(0)  
RTSE23  
(0)  
RTSE22  
(0)  
RTSE21  
(0)  
RTSE20  
(0)  
RTSE19  
(0)  
RTSE18  
(0)  
RTSE17  
(0)  
RTSE16  
(0)  
RTSE15  
(0)  
RTSE14  
(0)  
RTSE13  
(0)  
RTSE12  
(0)  
RTSE11  
(0)  
RTSE10  
(0)  
RTSE9  
(0)  
RTSE8  
(0)  
RTSE7  
(0)  
RTSE6  
(0)  
RTSE5  
(0)  
RTSE4  
(0)  
RTSE3  
(0)  
RTSE2  
(0)  
RTSE1  
(0)  
RTSE0  
(0)  
THS31  
(0)  
THS30  
(0)  
THS29  
(0)  
THS28  
(0)  
THS27  
(0)  
THS26  
(0)  
THS25  
(0)  
THS24  
(0)  
THS23  
(0)  
THS22  
(0)  
THS21  
(0)  
THS20  
(0)  
THS19  
(0)  
THS18  
(0)  
THS17  
(0)  
THS16  
(0)  
THS15  
(0)  
THS14  
(0)  
THS13  
(0)  
THS12  
(0)  
THS11  
(0)  
THS10  
(0)  
THS9  
(0)  
THS8  
(0)  
THS7  
(0)  
THS6  
(0)  
THS5  
(0)  
THS4  
(0)  
THS3  
(0)  
THS2  
(0)  
THS1  
(0)  
THS0  
(0)  
RHS31  
(0)  
RHS30  
(0)  
RHS29  
(0)  
RHS28  
(0)  
RHS27  
(0)  
RHS26  
(0)  
RHS25  
(0)  
RHS24  
(0)  
RHS23  
(0)  
RHS22  
(0)  
RHS21  
(0)  
RHS20  
(0)  
RHS19  
(0)  
RHS18  
(0)  
RHS17  
(0)  
RHS16  
(0)  
RHS15  
(0)  
RHS14  
(0)  
RHS13  
(0)  
RHS12  
(0)  
RHS11  
(0)  
RHS10  
(0)  
RHS9  
(0)  
RHS8  
(0)  
RHS7  
(0)  
RHS6  
(0)  
RHS5  
(0)  
RHS4  
(0)  
RHS3  
(0)  
RHS2  
(0)  
RHS1  
(0)  
RHS0  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
TCHIDTS  
(0)  
TBYOFF6  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
Reserved  
(0)  
RCHIDTS  
(0)  
RBYOFF6  
(0)  
FRM_PR67  
FRM_PR68  
FRM_PR69  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6A3  
6A4  
6A5  
CA3  
CA4  
CA5  
R/W  
GPTRN3  
(0)  
GPTRN2  
(0)  
GPTRN1  
(0)  
GPTRN0  
(0)  
GFRMSEL  
(0)  
GBLKSEL  
(0)  
TPEI  
(0)  
ITD  
(0)  
FRM_PR70  
R/W  
DPTRN3  
(0)  
DPTRN2  
(0)  
DPTRN1  
(0)  
DPTRN0  
(0)  
DUFTP  
(0)  
DBLKSEL  
(0)  
reserved  
(0)  
IRD  
(0)  
6A6  
CA6  
Agere Systems Inc.  
225  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps (continued)  
Transmit Signaling Registers (READ/WRITE)  
Table 205. Transmit Signaling Registers Map  
TRANSMIT  
CLEAR-  
REGISTER ADDRESS  
(hexadecimal)  
SIGNALING  
ON-READ  
(COR)  
1
1
2
3
3
4
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
READ (R)  
WRITE (W)  
FR 1  
FR 2  
5
FRM_TSR0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
G_0  
G_1  
F_0  
F_1  
F_2  
F_3  
F_4  
F_5  
F_6  
F_7  
F_8  
F_8  
E_0  
E_1  
D_0  
D_1  
C_0  
C_1  
B_0  
B_1  
B_2  
B_3  
B_4  
B_5  
B_6  
B_7  
B_8  
B_8  
A_0  
A_1  
6E0  
6E1  
6E2  
6E3  
6E4  
6E5  
6E6  
6E7  
6E8  
6E9  
6EA  
6EB  
6EC  
6ED  
6EE  
6EF  
6F0  
6F1  
6F2  
6F3  
6F4  
6F5  
6F6  
6F7  
6F8  
6F9  
6FA  
6FB  
6FC  
6FD  
6FE  
6FF  
CE0  
CE1  
CE2  
CE3  
CE4  
CE5  
CE6  
CE7  
CE8  
CE9  
CEA  
CEB  
CEC  
CED  
CEE  
CEF  
CF0  
CF1  
CF2  
CF3  
CF4  
CF5  
CF6  
CF7  
CF8  
CF9  
CFA  
CFB  
CFC  
CFD  
CFE  
CFF  
FRM_TSR1  
FRM_TSR2  
FRM_TSR3  
FRM_TSR4  
FRM_TSR5  
FRM_TSR6  
FRM_TSR7  
FRM_TSR8  
FRM_TSR9  
FRM_TSR10  
FRM_TSR11  
FRM_TSR12  
FRM_TSR13  
FRM_TSR14  
FRM_TSR15  
G_2  
E_2  
D_2  
C_2  
A_2  
G_3  
E_3  
D_3  
C_3  
A_3  
G_4  
E_4  
D_4  
C_4  
A_4  
G_5  
E_5  
D_5  
C_5  
A_5  
G_6  
E_6  
D_6  
C_6  
A_6  
G_7  
E_7  
D_7  
C_7  
A_7  
G_8  
E_8  
D_8  
C_8  
A_8  
G_9  
E_8  
D_8  
C_8  
A_8  
G_10  
G_11  
G_12  
G_13  
G_14  
G_15  
G_16  
G_17  
G_18  
G_19  
G_20  
G_21  
G_22  
G_23  
F_10  
F_11  
F_12  
F_13  
F_14  
F_15  
F_16  
F_17  
F_18  
F_19  
F_20  
F_21  
F_22  
F_23  
X
E_10  
E_11  
E_12  
E_13  
E_14  
E_15  
E_16  
E_17  
E_18  
E_19  
E_20  
E_21  
E_22  
E_23  
E_24  
E_25  
E_26  
E_27  
E_28  
E_29  
E_30  
E_31  
D_10  
D_11  
D_12  
D_13  
D_14  
D_15  
D_16  
D_17  
D_18  
D_19  
D_20  
D_21  
D_22  
D_23  
D_24  
D_25  
D_26  
D_27  
D_28  
D_29  
D_30  
D_31  
C_10  
C_11  
C_12  
C_13  
C_14  
C_15  
C_16  
C_17  
C_18  
C_19  
C_20  
C_21  
C_22  
C_23  
C_24  
C_25  
C_26  
C_27  
C_28  
C_29  
C_30  
C_31  
B_10  
B_11  
B_12  
B_13  
B_14  
B_15  
B_16  
B_17  
B_18  
B_19  
B_20  
B_21  
B_22  
B_23  
B_24  
B_25  
B_26  
B_27  
B_28  
B_29  
B_30  
B_31  
A_10  
A_11  
A_12  
A_13  
A_14  
A_15  
A_16  
A_17  
A_18  
A_19  
A_20  
A_21  
A_22  
A_23  
A_24  
A_25  
A_26  
A_27  
A_28  
A_29  
A_30  
A_31  
5
FRM_TSR16  
FRM_TSR17  
FRM_TSR18  
FRM_TSR19  
FRM_TSR20  
FRM_TSR21  
FRM_TSR22  
FRM_TSR23  
6
7
FRM_TSR24  
FRM_TSR25  
FRM_TSR26  
FRM_TSR27  
FRM_TSR28  
FRM_TSR29  
FRM_TSR30  
FRM_TSR31  
X
6
6
6
6
6
6
6
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1. In the normal DS1 robbed-bit signaling modes, these bits define the corresponding receive channel signaling mode and are copied into the  
received signaling registers. In the CEPT signaling modes, these bits are ignored.  
2. In the CEPT IRSM signaling mode, E-bit information is valid. In all other CEPT modes, these bits contain unknown data. In DS1 modes, this  
bit contains unknown data.  
3. In DS1 4-state and 2-state signaling modes, these bits contain unknown data.  
4. In DS1 2-state signaling mode, these bits contain unknown data.  
5. In the CEPT signaling modes, the A-, B-, C-, D-, and P-bit information of these registers contains unknown data.  
6. In the DS1 signaling modes, these registers contain unknown data.  
7. Signifies known data.  
226  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Register Maps (continued)  
Facility Data Link Parameter/Control and Status Registers (READ-WRITE)  
Table 206. Facility Data Link Register Map  
TRANSMIT  
CLEAR-  
REGISTER ADDRESS  
(hexadecimal)  
SIGNALING  
ON-READ  
(COR)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
READ (R)  
WRITE  
(W)  
FR 1  
FR 2  
FDL_PR0  
FDL_PR1  
FDL_PR2  
FDL_PR3  
FDL_PR4  
FDL_PR5  
FDL_PR6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FRANSIT3 FRANSIT2  
FRANSIT1  
(1)  
FRANSIT0  
(0)  
Reserved  
(0)  
Reserved  
(0)  
FLAGS  
(0)  
FDINT  
(0)  
800  
801  
802  
803  
804  
805  
806  
E00  
E01  
E02  
E03  
E04  
E05  
E06  
(1)  
(0)  
FTPRM  
(0)  
FRPF  
(0)  
FTR  
(0)  
FRR  
(0)  
FTE  
(0)  
FRE  
(0)  
FLLB  
(0)  
FRLB  
(0)  
FTBCRC  
(0)  
FRIIE  
(0)  
FROVIE  
(0)  
FREOFIE  
(0)  
FRFIE  
(0)  
FTUNDIE  
(0)  
FTEIE  
(0)  
FTDIE  
(0)  
FTFC  
(0)  
FTABT  
(0)  
FTIL5  
(0)  
FTIL4  
(0)  
FTIL3  
(0)  
FTIL2  
(0)  
FTIL1  
(0)  
FTIL0  
(0)  
FTD7  
(0)  
FTD6  
(0)  
FTD5  
(0)  
FTD4  
(0)  
FTD3  
(0)  
FTD2  
(0)  
FTD1  
(0)  
FTD0  
(0)  
FTIC7  
(0)  
FTIC6  
(0)  
FTIC5  
(0)  
FTIC4  
(0)  
FTIC3  
(0)  
FTIC2  
(0)  
FTIC1  
(0)  
FTIC0  
(0)  
FRANSIE  
(0)  
Reserved  
(0)  
FRIL5  
(0)  
FRIL4  
(0)  
FRIL3  
(0)  
FRIL2  
(0)  
FRIL1  
(0)  
FRIL0  
(0)  
FDL_PR7  
FDL_PR8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
R/W  
FRMC7  
(0)  
FRMC6  
(0)  
FRMC5  
(0)  
FRMC4  
(0)  
FRMC3  
(0)  
FRMC2  
(0)  
FRMC1  
(0)  
FRMC0  
(0)  
808  
E08  
FDL_PR9  
R/W  
R/W  
Reserved  
(0)  
FTM  
(0)  
FMATCH  
(0)  
FALOCT  
(0)  
FMSTAT  
(0)  
FOCTOF2  
(0)  
FOCTOF1  
(0)  
FOCTOF0  
(0)  
809  
80A  
E09  
E0A  
FDL_PR10  
FTANSI  
(0)  
Reserved  
(0)  
FTANSI5  
(0)  
FTANSI4  
(0)  
FTANSI3  
(0)  
FTANSI2  
(0)  
FTANSI1  
(0)  
FTANSI0  
(0)  
FDL_SR0  
FDL_SR1  
FDL_SR2  
FDL_SR3  
FDL_SR4  
COR  
R
FRANSI  
FTED  
FREOF  
0
FRIDL  
FTQS6  
FRQS6  
0
FROVERUN  
FTQS5  
FRQS5  
X5  
FREOF  
FTQS4  
FRQS4  
X4  
FRF  
FTQS3  
FRQS3  
X3  
FTUNDABT  
FTQS2  
FRQS2  
X2  
FTEM  
FTQS1  
FRQS1  
X1  
FTDONE  
FTQS0  
FRQS0  
X0  
80B  
80C  
80D  
80E  
807  
E0B  
E0C  
E0D  
E0E  
E07  
R
R
R
FRD7  
(0)  
FRD6  
(0)  
FRD5  
(0)  
FRD4  
(0)  
FRD3  
(0)  
FRD2  
(0)  
FRD1  
(0)  
FRD0  
(0)  
Agere Systems Inc.  
227  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
VDD Supply Voltage Range  
Symbol  
VDD  
Min  
0
Max  
4.6  
0.3  
Unit  
V
Maximum Voltage (digital pins) with Respect to VDD  
V
Minimum Voltage (digital pins) with Respect to GRND  
–0.3  
V
Maximum Allowable Voltages (RTIP, RRING) with  
0.5  
V
Respect to VDD  
Minimum Allowable Voltages (RTIP, RRING) with  
Respect to GRND  
–0.5  
–65  
V
Storage Temperature Range  
Tstg  
125  
°C  
Operating Conditions  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply  
VDD  
PD  
3.13  
3.30  
400  
3.47  
650  
85  
V
Power Dissipation  
mW  
°C  
Ambient Temperature  
TA  
–40  
Handling Precautions  
Although ESD protection circuitry has been designed into this device, proper precautions must be taken to avoid  
exposure to electrostatic discharge (ESD) and electrical overstress (EOS) during all handling, assembly, and test  
operations. Agere employs both a human-body model (HBM) and a charged-device model (CDM) qualification  
requirement in order to determine ESD-susceptibility limits and protection design evaluation. ESD voltage thresh-  
olds are dependent on the circuit parameters used in each of the models, as defined by JEDEC’s JESD22-A114  
(HBM) and JESD22-C101 (CDM) standards.  
Table 207. ESD Protection Characteristics  
Minimum Threshold  
Device  
CDM  
HBM  
Corner  
Noncorner  
T7633  
2000 V  
1000 V  
CAUTION:MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling  
and packaging MOS devices should be observed.  
228  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Electrical Characteristics  
Logic Interface Characteristics  
Table 208. Logic Interface Characteristics (TA = –40 °C to +85 °C, VDD = 3.3 V ± 5%, VSS = 0)  
Parameter  
Input Voltage:  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Low  
High  
VIL  
VIH  
IIL = –70 µA*  
IIH = 10 µA†  
0
2.0  
0.8  
VDD  
V
V
Input Leakage  
IL  
10  
µA  
Output Voltage:  
Low  
High  
VOL  
VOH  
IOL = –5.0 mA*  
IOH = 5.0 mA†  
0
0.5  
VDD  
V
V
VDD – 0.5  
Input Capacitance  
Load Capacitance‡  
CI  
3.0  
50  
pF  
pF  
CL  
* Sinking.  
† Sourcing.  
‡ 100 pF allowed for AD[7:0] (pins 86 to 79), and A[11:0] (pins 98 to 87).  
Notes:  
All buffers use TTL levels.  
All inputs are driven between 2.4 V and 0.4 V.  
An internal 50 kpull-up is provided on the 3-STATE, RESET, DS1/CEPT, FRAMER, SYSCLK, CKSEL, MPMODE, MPMUX, CS, MPCLK,  
JTAGTDI, JTAGTCK, and JTAGTMS pins.  
An internal 50 kpull-down is provided on the JTAGRST pin.  
Power Supply Bypassing  
External bypassing is required for each channel. A 1.0 µF capacitor must be connected between VDDX and  
GRNDX. In addition, a 0.1 µF capacitor must be connected between VDD and GRND, and a 0.1 µF capacitor must  
be connected between VDDA and GRNDA. Ground plane connections are required for GRNDX, GRND, and  
GRNDA. Power plane connections are also required for VDDX and VDD. The need to reduce high-frequency cou-  
pling into the analog supply (VDDA) may require an inductive bead to be inserted between the power plane and the  
VDDA pin of each channel.  
Capacitors used for power supply bypassing should be placed as close as possible to the device pins for maximum  
effectiveness.  
Agere Systems Inc.  
229  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Outline Diagram  
144-Pin TQFP  
Dimensions are in millimeters.  
22.00 ± 0.20  
20.00 ± 0.20  
PIN #1 IDENTIFIER ZONE  
144  
109  
1
108  
20.00  
± 0.20  
22.00  
± 0.20  
36  
73  
37  
72  
DETAIL A  
DETAIL B  
1.40 ± 0.05  
1.60 MAX  
SEATING PLANE  
0.08  
0.05/0.15  
0.50 TYP  
1.00 REF  
0.25  
0.106/0.200  
GAGE PLANE  
0.19/0.27  
SEATING PLANE  
0.45/0.75  
0.08  
M
DETAIL B  
DETAIL A  
5-3815(F)r.6  
230  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
Ordering Information  
Device Code  
Package  
Temperature  
Comcode  
(Ordering Number)  
T - 7633 - - - TL - DB  
144-Pin TQFP  
–40 °C to +85 °C  
108194895  
Agere Systems Inc.  
231  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
C
Index  
CAS 76  
CEPT  
Numerics  
High-Density Bipolar of Order 3 (HDB3) 54  
CEPT 2.048 frame 66  
100 ms timer 72  
1-byte Frames 117  
3-State Procedures 139  
8 ms 72  
CEPT Loss of Basic Frame Alignment 69  
CEPT Loss of Frame Alignment Recovery Algorithm 69  
CEPT nailed-up broadcast transmission (CNUBT) 99  
CEPT nailed-up connect loopback (CNUCLB) 99  
CEPT Sa Receive Stack 178  
CER 132  
A
A bit 80, 94, 107  
Aborts 116  
aborts 115  
Absolute Maximum Ratings 228  
AIS 102, 106  
Alarm Filter Register 185  
Alarm Indication Signal 35  
alarm indication signal 62, 92  
Alarm Register 159  
alternate mark inversion 52  
AMI 52  
CEX 132  
Channel Associated Signaling 76  
channel associated signaling multiframe structures 66  
CHI 125  
CHI Common Control Register 204  
CHI Data Rate 126  
CHI Offset Programming 132  
CHI parameters 126  
CHI Receive Control Register 205, 207  
CHI Receive Highway Select Registers 207  
CHI system interface 79  
CHI timing with associated signaling mode enabled 131  
CHI Transmit Control Register 205, 207  
CHI Transmit Highway Select Registers 206  
CHIDATA 125  
Clock Select Mode 126  
clocking 122  
CMS 132, 133  
CNUBT mode 99  
CNUCLB mode 100  
Concentration Highway Interface (CHI) 125  
Concentration Highway Master Mode 126  
continuous E-bit 94  
CRC Error Counter Register 174  
CRC Option Bits Decoding 184  
CRC-16 117  
AMI Encoding 52  
Analog Loss of Signal 30, 31  
Analog Loss of Signal (ALOS) 28  
Analog Loss of Signal (ALOS) Alarm 28  
ANSI 108  
ASM 85  
ASM time-slot format 86  
Associated Signaling Mode 85, 128  
Automatic AIS 188  
Automatic and On-Demand Commands 106  
automatically transmitting E bits 79  
auxiliary pattern 102  
B
B8ZS 27  
B8ZS Encoding 53  
Basic Frame Structure 66, 67  
biframe alignment 79, 80  
Binary 8 Zero Code Suppression 53  
Bipolar Violation Counter Register 173  
bit destuffing 115  
bit offset 132  
bit stuffing 115  
BLB 99  
Blue alarm 92  
CRC-4 70, 79, 82  
CRC-4 error counter 71  
CRC-4 Errors at NT1 from NT2 Counter Register 174  
CRC-4 multiframe 66, 70  
CRC-4 multiframe alignment 74  
CRC-4 Multiframe Alignment Algorithm with 100 ms  
Timer 72  
CRC-4 Multiframe Alignment Algorithm with 8 ms Timer  
72  
CRC-4 Multiframe Alignment Search Algorithm with  
400 ms Timer 74  
CRC-4/Non-CRC-4 Equipment Interworking 75  
CRC-4-to-Non-CRC-4 equipment interworking 74  
cyclic redundancy check-4 70  
Cyclic redundancy checking 62  
Board loopback 99  
boundary scan 135  
Boundary-Scan Register 139  
Boundary-Scan Test Logic 135  
BYPASS 139  
BYPASS Register 139  
BYPASS register 135  
Bypassing 47, 229  
Index (continued)  
232  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633Dual T1/E13.3VShort-HaulTerminator
F
D
D4 57  
F and G bits 85  
D4 Frame Format 57  
data link interface 81  
Facility Alarm Condition Register 166  
Facility Data Link 108  
Data Recovery 26  
facility data link 80  
DDS 58  
default mode 52  
Delay 45  
Facility Data Link Access Timing 58  
Facility Errored Event Register-1 168  
Facility Event Register 173  
Facility Event Register-3 170  
Failed state 95  
Device ID and Version Registers 157  
diagnostic loopback modes 120  
Digital Data Service 58  
Digital Local Loopback (DLLOOP) 44  
Digital Loss of Signal 30, 31  
Digital Loss of Signal (DLOS) 28  
Digital Loss of Signal (DLOS) Alarm 28  
double CRC-4 multiframe 82  
DS0 55  
FAS 67  
FAS/NOT FAS Si- and E-Bit Source 79  
FDL 108  
FDL Control Command Register 189  
FDL Control Register 212  
FDL HDLC 108  
FDL interface 109  
DS1 55  
FDL Interrupt Mask Control Register 213  
FDL Interrupt Status Register 217  
FDL Parameter/Control Registers 212  
FDL Receiver Interrupt Level Control Register 215  
Alternate Mark Inversion (AMI) 52  
Binary 8 Zero Code Suppression (B8ZS) 53  
Zero Code Suppression (ZCS) 53  
DSX-1 Transmitter Pulse Template and Specifications  
37  
DUAL 27  
FDL Receiver Match Character Register 215  
FDL Receiver Status Register 218  
FDL Transmit ANSI ESF Bit Codes 216  
FDL Transmitter Configuration Control Register 214  
FDL Transmitter Mask Register 214  
FDL Transmitter Status Register 218  
FDL Transparent Control Register 216  
Flags 116  
flags 115  
Frame Alignment Signal 67  
frame check sequence 117  
Frame Format 55  
E
E bit 106  
E Bit at NT1 from NT2 Counter Register 174  
E bits 70  
E-bit 94  
E-Bit Counter Register 174  
E-bit monitoring 71  
elastic store buffers 122  
Electrical Characteristics 229  
electrostatic discharge 228  
Frame Formats 55  
Frame, Superframe, and Extended Superframe Defini-  
tions 55  
error events 97  
Framer Exercise Register 198  
Errored Event Threshold Definition 185  
Errored Second Threshold Register 186  
ESF 61  
Framer Mode Bits Decoding 183  
Framer Parameter/Control Registers 180, 181, 182,  
183, 184, 185, 186, 187, 188, 189, 190, 191,  
192, 193, 194, 195, 196, 197, 198, 199, 200,  
201, 202, 203, 204, 205, 206, 207, 208, 209,  
210  
Framer Register Structure 164  
Framer Status/Counter Registers 165, 166, 167, 168,  
169, 170, 171, 172, 173, 174, 175, 176, 177,  
178, 179  
ESF bit-oriented messages 109, 114  
ET Bursty Errored Seconds Counter 175  
ET Errored Seconds Counter 175  
ET Severely Errored Seconds Counter 175  
ET Unavailable Seconds Counter 175  
ET1 Errored Event Enable Register 186  
ET1 Remote End Errored Event Enable Register 187  
ET-RE Bursty Errored Seconds Counter 175  
ET-RE Errored Seconds Counter 175  
ET-RE Severely Errored Seconds Counter 175  
ET-RE Unavailable Seconds Counter 176  
Exchange Termination and Exchange Termination Re-  
mote End Interface Status Register 171  
Extended Superframe 61  
Framer Transmit Line Idle Code 189  
Framer Transmit System Idle Code 189  
Framing Bit Errored Counter Register 173  
Full Local Loopback (FLLOOP) 44  
EXTEST 138  
Agere Systems Inc.  
233  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
J
Index (continued)  
JAR 41  
Jitter 27  
G
Jitter Accommodation 27, 30, 31, 41  
Jitter Attenuator 27, 40  
Jitter Attenuator Enable (Transmit or Receive Path) 41  
Jitter Tolerance 41  
Jitter Transfer 27, 30, 31, 40  
Jitter Transfer Function 40  
Generated (Intrinsic) Jitter 40  
Global Internal Interface Control Register 157  
Global Loopback Control Register 156  
Global Loopback Control Register 156  
Global Register Architecture 154  
Global Register Set 154  
Global Register Structure 155  
Global Terminal Control Register 157  
L
LFA 62  
Line Code Option Bits Decoding 183  
Line Enable Register 188  
Line Interface Unit 26  
Jitter Attenuator 40  
Line Circuitry 48  
Loopbacks 44  
Receiver 26  
Transmit 34  
Line Interface Units (LIU) Register Architecture 158  
Line Interface Units Register Set 158  
Line loopback 99  
Line Termination 48  
LIU Alarms 28  
H
Handling Precautions 228  
HDB3 27  
HDB3 Coding 54  
HDLC Operation 115  
High-Impedance State 45  
Highway Enable 126  
HIGHZ 138  
human-body model 228  
I
IDCODE 138  
IDCODE Register 139  
IDCODE register 135  
idle code 86, 103  
Idles 116  
idles 115  
In-Circuit Testing 45  
instruction register 138  
Interrupt Enable Register 159  
Interrupt Generation 149  
Interrupt Group Enable Registers 180  
Interrupt Status Register 165  
interworking 168  
IRSM Signaling 77  
ITU 66  
ITU Rec. 0.151 102  
ITU Rec. 706 Annex B 74  
ITU Rec. G.704 Section 2.3.1 67  
ITU Rec. G.704 Section 2.3.3.1 70  
ITU Rec. G.704 Section 2.3.3.4 79  
ITU Rec. G.704 Section 2.3.3.5.2 71  
ITU Rec. G.704 Section 2.3.3.5.3 71  
ITU Rec. G.706 Annex C 67  
ITU Rec. G.706 Section 4.1.1 69  
ITU Rec. G.706 Section 4.2 72, 74  
ITU Rec. G.706 Section 4.3.2 69  
ITU Rec. G.706 Section B.2.2 79  
ITU Rec. G.706 Section B.2.3 74  
ITU Rec. G.706.4.1.2 69  
ITU Rec. G.732 Section 5.2 78  
ITU Rec. G.775 93  
LIU Powerdown (PD) 45  
LIU Receiver Bipolar Violation (BPV) Alarm 29  
LIU Transmitter Alarm Indication Signal Generator  
(XLAIS) 35  
LIU Transmitter Alarms 35  
LIU Transmitter Configuration Modes 35  
LIU Transmitter Driver Monitor (TDM) Alarm 36  
LIU Transmitter Zero Substitution Encoding (CODE) 35  
LIU-bypass mode 51  
LIU-Framer Physical Interface 50  
LLB 99  
local loopback 120  
Logic Interface Characteristics 229  
loopback 99  
Loopback Decoding 190, 191  
Loopbacks 44  
loss of CRC-4 multiframe alignment 71  
Loss of Frame Alignment 62  
loss of frame alignment 91  
Loss of LIU Transmit Clock (LOTC) Alarm 35  
loss of PLL clock 93  
loss of receive clock 93  
Loss of SYSCK (LORLCK) 45  
loss of time slot 16 signaling multiframe alignment 78  
Loss Shutdown (LOSSD) and Receiver AIS (RCVAIS)  
29  
LOSSD and RCVAIS Control Configurations 29  
ITU-T standard polynomial 117  
234  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633Dual T1/E13.3VShort-HaulTerminator
Q
Index (continued)  
quasi-random test signal 102  
M
R
Maintenance  
Rate adaptation 125  
RCE 133  
LoopBack and Transmission Modes 99, 100, 101  
match bit 119  
Rec. G.704 66  
Microprocessor Clock (MPCLK) Specifications 142  
microprocessor interface 140  
microprocessor modes 140  
MPMODE 140  
Receive ANSI FDL Status Register 218  
Receive ANSI T1.403 Bit-Oriented Messages 109  
Receive CRC-4 Multiframe Search Algorithm Using the  
100 ms Internal Timer 73  
Receive Facility Data Link Interface 108  
Receive FDL FIFO 112  
MPMUX 140  
N
Receive Frame Edge 126  
receive framer 50  
negative slip 93  
Network Termination and Network Termination Remote  
End Interface Status Register 172  
no CRC-4 79  
NOT FAS 80  
NOT FAS frames 67  
Receive Framer Reframe 107  
Receive HDLC Mode 112  
Receive Highway Select 127  
Receive Least Significant Bit First 128  
receive line elastic store buffer 124  
Receive Line Interface Configuration Modes 27  
Receive NOT-FAS TS0 Register 177  
receive queue status 113  
receive Sa stack 71  
Receive Signaling Inhibit 107  
Receive Signaling Registers  
CEPT Format 179  
Receive Time-Slot Enable 127  
Receive Time-Slot Enable Registers 206  
received E-bit counter 71  
received end of frame 119  
Received Sa Register 177  
Received Signaling Registers 179  
DS1 Format 179  
Receiver Alarms 28, 29  
Receiver Bit Offset 127  
Receiver Byte Offset 127  
Receiver Clock Edge 126  
Receiver FDL FIFO Register 218  
receiver full 113, 119  
receiver idle 119  
receiver overrun 113, 119  
Red alarm 91  
NOT FAS Sa Stack Source and Destination 82, 83, 84  
NOT FAS Sa4 bit Sources 80  
NT1 Bursty Errored Seconds Counter 176  
NT1 Errored Event Enable Register 187  
NT1 Errored Seconds Counter 176  
NT1 Remote End Errored Event Enable Register 187  
NT1 Severely Errored Seconds Counter 176  
NT1 Unavailable Seconds Counter 176  
NT1-RE Bursty Errored Seconds Counter 177  
NT1-RE Errored Seconds Counter 176  
NT1-RE Severely Errored Seconds Counter 177  
NT1-RE Unavailable Seconds Counter 177  
O
Operating Conditions 228  
Ordering 231  
Ordering Information 231  
Outline Diagram 230  
Output Pulse Generation 34  
P
Parameters 126, 127, 128  
Payload loopback 99  
performance report message 108, 115  
Performance Report Messages 110  
performance report messages 114  
phase-lock 122  
PLLB 100  
positive slip 93  
Power Supply 47, 229  
Powerdown 45  
Register Maps 219  
remote alarm indication 67  
Remote End Alarm Register 167  
Remote Frame Alarm 106  
remote frame alarm 62, 92  
remote loopback 120, 121  
Remote Loopback (RLOOP) 44  
Reset 149  
Return Loss 30, 31  
RFE 132, 133  
Robbed-Bit Signaling 85  
Primary Block Interrupt Enable Register 155  
Primary Block Interrupt Status Register 155  
Principle of the Boundary Scan 135  
PRM 110  
pseudorandom test pattern 102  
Pulse Template 37, 38, 39  
Agere Systems Inc.  
235  
Advance Data Sheet  
May 2002  
T7633 Dual T1/E1 3.3 V Short-Haul Terminator  
TFE 132, 133  
Index (continued)  
time slot 16 multiframe alignment recovery algorithm 78  
Time Slot 16 Signaling 86  
timing requirements for the transmit and receive framer  
interfaces 51  
Transformer 48  
Transmission of E Bit 194  
Transmit ANSI T1.403 Bit-Oriented Messages 114  
transmit elastic store buffer 122  
Transmit Facility Data Link Interface 114  
Transmit FDL FIFO 117  
Transmit Frame Edge 126  
Transmit Framer ANSI Performance Report Message  
Status Register 179  
transmit framer interface 50  
Transmit Highway Select 127  
transmit idle character 118  
Transmit Least Significant Bit First 128  
Transmit Remote Frame Alarm 107  
Transmit Signaling Registers  
CEPT Format 210  
S
Sa bits 80, 81  
Sa Bits Sourcing Decoding 195  
Sa Facility Data Link Access 81  
Sa stack 80, 82  
Sa4—Sa8 Control Register 196  
Sa4—Sa8 Source Register 195  
Sa6 code monitoring 71  
Sa6 codes 95, 96  
Sa6 patterns 95  
SAMPLE/PRELOAD 138  
Secondary Loopback Control 191  
secondary loopback modes 100  
Secondary System Time-Slot Loopback Address 191  
Secondary-single time-slot line loopback 100  
Secondary-single time-slot system loopback 100  
Severely Errored Second Threshold Register 186  
Si bit 79  
Si bits in frames 13 and 15 79  
Si-Bit Source Register 198  
Signaling Access 85  
Signaling Mode Register 202  
Single Rail 52  
Single time-slot line loopback (STSLLB) 99  
Single time-slot system loopback (STSSLB) 99  
SLC-96 58  
SLC-96 9-State Signaling 64  
SLC-96 Data Link Block Format 59  
SLC-96 FDL Receive Stack 178  
SLC-96 FDL stack 60  
SLC-96 Transmit Stack 197  
SLIP 93  
spurious frame alignment 72  
status of frame (SF) byte 112  
status registers 91  
DS1 Format 210  
transmit signaling registers 85  
Transmit Time Slot 16 Remote Multiframe Alarm 107  
Transmit Time-Slot Enable 127  
Transmit Time-Slot Enable Registers 206  
Transmitter FDL FIFO Register 214  
Transmitter Bit Offset 127  
Transmitter Byte Offset 127  
Transmitter Clock Edge 126  
transmitter empty 118  
Transmitter Underrun 117  
Transparent Framing 56  
transparent framing mode 1 56  
transparent framing mode 2 56  
Transparent Mode 118  
transparent mode 119  
TR-TSY-000194 Issue 1, 12-87 108  
STSLLB 99  
STSSLB 99  
Stuffed Time Slots 128  
U
unavailable state alarm 95  
System Frame Sync Mask Source 192  
System Interface Control Register 201  
System Time-Slot Loopback Address 190  
X
XCE 133  
T
Y
T1 Frame Recovery Alignment Algorithms 63  
T1 Frame Structure 55  
Yellow alarm 92  
T1 framing formats 128  
T1 Framing Structures 55  
T1 Robbed-Bit Signaling 64, 65  
T1 stuffed channels 86  
T1.403-1995 108  
TAP 135  
Telcordia Technologies 108  
test access port 135  
Z
ZCS 53  
ZCS Encoding 53  
Zero Code Suppression 53  
Zero Substitution 27  
Zero Substitution Decoding (CODE) 27  
Zero-Bit Insertion/Deletion 115  
test access port controller 136  
236  
Agere Systems Inc.  
Advance Data Sheet  
May 2002  
T7633Dual T1/E13.3VShort-HaulTerminator
Notes  
Agere Systems Inc.  
237  
SLC is a registered trademark of Lucent Technologies Inc.  
AT&T is a registered trademark of AT&T Inc.  
ANSI is a registered trademark of the American National Standards Institute.  
Intel is a registered trademark of Intel Corporation.  
Motorola is a registered trademark of Motorola, Inc.  
Telcordia Technologies is a registered trademark of Telcordia Technologies Inc.  
Mitel is a registered trademark of Mitel Corporation.  
AMD is a registered trademark of Advanced Micro Devices, Inc.  
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.  
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.agere.com  
docmaster@agere.com  
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA:  
Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon  
Tel. (852) 3129-2000, FAX (852) 3129-2020  
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)  
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)  
Tel. (44) 7000 624624, FAX (44) 1344 488 045  
EUROPE:  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.  
Copyright © 2002 Agere Systems Inc.  
All Rights Reserved  
May 2002  
DS02-244BBAC (Replaces DS98-244TIC)  

相关型号:

T76651B

766.5 MHz SAW Filter
ITF

T77-G37-10.0MHZ

Clipped Sine Output Oscillator, 10MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-G37-12.0MHZ

Clipped Sine Output Oscillator,
EUROQUARTZ

T77-G37-20.0MHZ

Clipped Sine Output Oscillator, 20MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-G37-50.000MHZ

Oscillator, 10MHz Min, 50MHz Max, 50MHz Nom,
EUROQUARTZ

T77-G37-50.0MHZ

Clipped Sine Output Oscillator, 50MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-G37-FREQ

Clipped Sine Output Oscillator, 10MHz Min, 50MHz Max, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-N57-10.000MHZ

Oscillator, 10MHz Min, 50MHz Max, 10MHz Nom,
EUROQUARTZ

T77-N57-10.0MHZ

Clipped Sine Output Oscillator, 10MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-N57-20.0MHZ

Clipped Sine Output Oscillator, 20MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ

T77-N57-50.000MHZ

Oscillator, 10MHz Min, 50MHz Max, 50MHz Nom,
EUROQUARTZ

T77-N57-50.0MHZ

Clipped Sine Output Oscillator, 50MHz Nom, ROHS COMPLIANT, MINIATURE PACKAGE-6
EUROQUARTZ