CA16 [AGERE]

CA16-Type 2.5 Gbits/s DWDM Transponder with 16-Channel 155 Mbits/s Multiplexer/Demultiplexer; CA16型2.5 Gb / s的DWDM转发器,具有16通道155 Mb / s的复用器/解复用器
CA16
型号: CA16
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

CA16-Type 2.5 Gbits/s DWDM Transponder with 16-Channel 155 Mbits/s Multiplexer/Demultiplexer
CA16型2.5 Gb / s的DWDM转发器,具有16通道155 Mb / s的复用器/解复用器

解复用器
文件: 总30页 (文件大小:442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Multiple alarms:  
— Loss of signal.  
— Loss of reference clock.  
— Loss of framing.  
— Laser degrade alarm.  
Applications  
Telecommunications:  
— Inter- and intraoffice SONET/SDH  
— Subscriber loop  
— Metropolitan area networks  
High-speed data communications  
The CA16-type transponders integrate up to 15 discrete  
ICs and optical components, including a 2.5Gbits/s op-  
tical transmitter and receiver pair, all in a single, com-  
pact package.  
Description  
The CA16-type transponder performs the parallel-to-  
serial-to-optical transport and optical transport-to-  
serial-to-parallel function of the section and photonic  
layers of the SONET/SDH protocol. The CA16 trans-  
mitter section performs the bit serialization and opti-  
cal transmission of SONET/SDH OC-48/STM-16  
data that has been formatted into standard SONET/  
SDH compliant 16-bit parallel format. The CA16  
receiver performs the optical-to-electrical conversion  
function and is then able to detect frame and byte  
boundaries and demultiplex the serial data into 16-bit  
parallel OC-48/STM-16 format.  
Features  
2.5 Gbits/s optical transmitter and receiver with  
16-channel 155 Mbits/s multiplexer/demultiplexer.  
Available with 1.55 µm cooled DFB laser transmit-  
ter and an APD receiver for long-reach applica-  
tions:  
— Offers 45 standard ITU wavelengths with  
100 GHz spacing.  
— Each module is capable of two wavelengths  
under user control.  
The CA16 transponder does not perform byte-level  
multiplexing or interleaving.  
Pigtailed, low-profile package.  
Differential LVPECL data interface.  
Operating case temperature range: 0 °C to 65 °C.  
Automatic transmitter optical power control.  
Laser bias monitor output.  
Transmitter laser disable input.  
Line loopback and diagnostic loopback capability.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Table of Contents  
Contents  
Page  
Tables  
Page  
Features ................................................................... 1  
Applications .............................................................. 1  
Description ............................................................... 1  
Absolute Maximum Ratings ...................................... 3  
Block Diagram........................................................... 4  
Pin Information ......................................................... 5  
Pin Descriptions....................................................... 6  
Functional Description ........................................... 12  
Receiver ............................................................ 12  
Transmitter ........................................................ 12  
Loopback Modes............................................... 13  
Transponder Interfacing ..................................... 13  
Optical Characteristics ........................................... 15  
Electrical Characteristics ........................................ 16  
Timing Characteristics ........................................... 18  
Transmitter Data Input Timing ........................... 18  
Input Timing Mode 1 .......................................... 19  
Input Timing Mode 2 .......................................... 20  
Forward Clocking ............................................... 21  
PCLK-to PICLK Timing ........................................ 22  
PHERR/PHINIT.................................................. 23  
Receiver Framing............................................... 25  
Wavelength Selection ............................................. 26  
Qualification and Reliability .................................... 27  
Laser Safety Information ....................................... 27  
Class I Laser Product......................................... 27  
Electromagnetic Emissions and Immunity.......... 27  
Outline Diagram ..................................................... 28  
Ordering Information .............................................. 29  
Related Product Information ................................... 29  
Table 1. CA16-Type Transponder Pinout .................6  
Table 2. CA16-Type Transponder Input Pin  
Descriptions...............................................10  
Table 3. CA16-Type Transponder Output Pin  
Descriptions ...............................................11  
Table 4. OC-48/STM-16 Transmitter Optical  
Characteristics ..........................................15  
Table 5. OC-48/STM-16 Receiver Optical  
Characteristics ..........................................15  
Table 6. Power Supply Characteristics....................16  
Table 7. Transmitter Electrical I/O Characteristics...16  
Table 8. Receiver Electrical I/O Characteristics ......17  
Table 9. Transmitter ac Timing Characteristics .......24  
Table 10. Receiver ac Timing Characteristics .........24  
Table 11. Ordering Information................................29  
Table 12. Related Product Information ....................29  
Figures  
Page  
Figure 1. CA16-Type Transponder Block Diagram....4  
Figure 2. CA16-Type Transponder Pinout.................5  
Figure 3. Transponder Interfacing............................13  
Figure 4. Interfacing to the TXREFCLK Input.............14  
Figure 5. Block Diagram Timing Mode 1..................19  
Figure 6. Block Diagram Timing Mode 2..................20  
Figure 7. Forward Clocking of the  
CA16 Transponder ..................................21  
Figure 8. PCLK-to PICLK Timing...............................22  
Figure 9. PHERR/PHINIT Timing.............................23  
Figure 10. ac Input Timing .......................................24  
Figure 11. Receiver Output Timing Diagram ...........24  
Figure 12. Frame and Byte Detection......................25  
Figure 13. OOF Timing (FRAMEN = High) ..............25  
Figure 14. FRAMEN Timing.....................................26  
2
Agere Systems Inc..  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
The optical transmitter is available at any ITU grid  
wavelength with a 1.55 µm cooled DFB laser for long-  
reach applications. The optical output signal is SONET  
and ITU compliant for OC-48/STM-16 applications as  
shown in Table 4, OC-48/STM-16Transmitter Optical  
Characteristics.  
Description (continued)  
Figure 1 shows a simplified block diagram of the CA16-  
Type transponder. This device is a bidirectional module  
designed to provide a SONET or SDH compliant elec-  
tro-optical interface between the SONET/SDH photonic  
physical layer and the electrical section layer. The mod-  
ule contains a wavelength-tunable (two channels at  
100 GHz) 2.5 Gbits/s optical transmitter and a  
2.5 Gbits/s optical receiver in the same physical pack-  
age along with the electronics necessary to multiplex  
and demultiplex sixteen 155 Mbits/s electrical channels.  
Clock synthesis, clock recovery, and SONET/SDH  
frame detection circuits are also included within the  
module.  
In the receive direction, the transponder module  
receives a 2488.32 Mbits/s optical signal and converts  
it to an electrical signal, and then extracts a clock sig-  
nal and demultiplexes the data into sixteen 155 Mbits/s  
differential LVPECL data signals. When enabled, the  
module can also detect SONET/SDH frame bound-  
aries. The optical receiver is available with an APD  
photodetector. The receiver operates over the wave-  
length range of 1.1 µm to 1.6 µm and is fully compliant  
to SONET/SDH OC-48/STM-16 physical layer specifi-  
cations as shown in Table 5, OC-48/STM-16 Receiver  
Optical Characteristics.  
In the transmit direction, the transponder module multi-  
plexes sixteen 155 Mbits/s PECL electrical data signals  
into an optical signal at 2488.32 Mbits/s for launching  
into optical fiber. An internal 2.488 GHz reference oscil-  
lator is phase-locked to an external 155.52 MHz data  
timing reference.  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-  
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess  
of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended  
periods can adversely affect reliability.  
Parameter  
Symbol  
Min  
Max  
Unit  
Operating Case Temperature Range  
Storage Case Temperature Range  
Supply Voltage  
TC  
TS  
0
75  
85  
°C  
°C  
–40  
–0.5  
5.5  
VCC  
50  
V
Voltage on Any LVPECL Pin  
0
High-speed LVPECL Output Source Current  
mA  
V
1
Static Discharge Voltage  
ESD  
RH  
PIN  
500  
85  
Relative Humidity (noncondensing)  
Receiver Optical Input Power—Biased APD  
Minimum Fiber Bend Radius  
%
0
dBm  
in. (mm)  
1.25 (31.8)  
1. Human body model.  
3
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Block Diagram  
WS (WAVELENGTH  
SELECT)  
TXDIS  
WDEA  
LSR ALRM  
LPM  
16  
TXD[0:15]P  
16:1 PARALLEL  
16  
TO SERIAL  
TXD[0:15]N  
D
OC-48/STM-16  
2
PICLKP/N  
PHINIT  
OPTICAL TRANSMITTER  
TIMING  
GENERATION  
PHERR  
PCLKP/N  
2
2
TXREFCLKP/N  
CLOCK DIVIDER  
AND  
PHASE DETECT  
LOCKDET  
LLOOP  
RESET  
DLOOP  
OOF  
FRAMEN  
SEARCH  
FP  
FRAME/BYTE  
DETECT  
TIMING  
GEN  
2
POCLKP/N  
CK  
OC-48/STM-16  
OPTICAL RECEIVER  
W/CLOCK RECOVERY  
16  
16  
RXQ[0:15]P  
RXQ[0:15]N  
D
1:16 SERIAL  
TO PARALLEL  
LOS  
IPDMON  
1-1011(F).f  
Figure 1. CA16-Type Transponder Block Diagram  
4
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Pin Information  
80  
FGND  
NC  
FGND  
160  
150  
140  
130  
120  
110  
100  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
RXDGND  
RXQ00N  
RXQ00P  
RXQ02N  
RXQ02P  
RXDGND  
RXQ04N  
RXQ04P  
RXQ06N  
RXQ06P  
RXDGND  
RXQ08N  
RXQ08P  
RXQ10N  
RXQ10P  
RXDGND  
RXQ12N  
RXQ12P  
RXQ14N  
RXQ14P  
RXDGND  
VTEC  
RXDGND  
RXQ01N  
RXQ01P  
RXQ03N  
RXQ03P  
RXDGND  
RXQ05N  
RXQ05P  
RXQ07N  
RXQ07P  
RXDGND  
RXQ09N  
RXQ09P  
RXQ11N  
RXQ11P  
RXDGND  
RXQ13N  
RXQ13P  
RXQ15N  
RXQ15P  
RXDGND  
VTEC  
70  
60  
50  
40  
30  
20  
RX  
VTEC  
VTEC  
VTEC  
WS  
RXDGND  
RXAGND  
RXAGND  
RX3.3A  
RXAGND  
RXAGND  
NC  
NC  
POCLKN  
POCLKP  
RX3.3A  
RXAGND  
RXAGND  
SEARCH  
RX3.3D  
RX3.3D  
RXDGND  
OOF  
RX3.3D  
RX3.3D  
RXDGND  
FRAMEN  
FP  
WDEA  
DLOOP  
NC  
RXDGND  
LOS  
LLOOP  
PHERR  
NC  
TXDIS  
PHINIT  
NC  
TX3.3A  
TX3.3D  
TXAGND  
TXDGND  
PCLKN  
PCLKP  
TXDGND  
TXD00N  
TXD00P  
TXDGND  
TXD02N  
TXD02P  
TXD04N  
TXD04P  
TXDGND  
TXD06N  
TXD06P  
TXD08N  
TXD08P  
TXDGND  
TXD10N  
TXD10P  
TXD12N  
TXD12P  
TXDGND  
TXD14N  
TXD14P  
TXREFCLKN  
TXREFCLKP  
TXDGND  
RESET  
FGND  
LSRBIAS  
LSRALM  
LPM  
TXAGND  
TX3.3A  
TX3.3A  
TXAGND  
TX3.3D  
TX3.3D  
TXDGND  
LOCKDET  
PICLKN  
PICLKP  
TXDGND  
TXD01N  
TXD01P  
TXD03N  
TXD03P  
TXDGND  
TXD05N  
TXD05P  
TXD07N  
TXD07P  
TXDGND  
TXD09N  
TXD09P  
TXD11N  
TXD11P  
TXDGND  
TXD13N  
TXD13P  
TXD15N  
TXD15P  
TXDGND  
IPDMON  
FGND  
TX  
90  
81  
10  
TOP VIEW  
1
1-1014(F).d  
Figure 2. CA16-Type Transponder Pinout  
5
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Pin Descriptions  
Table 1. CA16-Type Transponder Pinout  
Pin #  
Pin Name  
I/O  
Logic  
Description  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
FGND  
IPDMON  
TxDGND  
TxD15P  
TxD15N  
TxD13P  
TxD13N  
TxDGND  
TxD11P  
TxD11N  
TxD09P  
TxD09N  
TxDGND  
TxD07P  
TxD07N  
TxD05P  
TxD05N  
TxDGND  
TxD03P  
TxD03N  
TxD01P  
TxD01N  
TxDGND  
PICLKP  
PICLKN  
LOCKDET  
TxDGND  
Tx3.3D  
I
O
I
Supply  
Analog  
Supply  
Frame Ground1  
Receiver Photodiode Current Monitor  
Transmitter Digital Ground  
I
LVPECL Transmitter 155 Mbits/s MSB Data Input  
LVPECL Transmitter 155 Mbits/s MSB Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
I
I
I
I
Supply  
Transmitter Digital Ground  
I
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
SUPPLY Transmitter Digital Ground  
I
I
I
I
I
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
I
I
I
I
Supply  
Transmitter Digital Ground  
I
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
I
I
I
I
Supply  
Transmitter Digital Ground  
I
LVPECL Byte-Aligned Parallel Input Clock at 155 MHz  
LVPECL Byte-Aligned Parallel Input Clock at 155 MHz  
I
O
I
LVTTL  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Analog  
Lock Detect  
Transmitter Digital Ground  
Transmitter 3.3 V Digital Supply  
Transmitter 3.3 V Digital Supply  
Transmitter Analog Ground  
Transmitter 3.3 V Analog Supply  
Transmitter 3.3 V Analog Supply  
Transmitter Analog Ground  
Laser Power Monitor  
I
Tx3.3D  
I
TxAGND  
Tx3.3A  
I
I
Tx3.3A  
I
TxAGND  
LPM  
I
O
O
O
I
LSRALM  
LSRBIAS  
NC  
5 V CMOS Laser Degrade Alarm  
Analog  
Not Implemented on the CA16-TypeTransponder  
No User Connection Permitted2  
DLOOP  
LVTTL  
Diagnostic Loopback  
WDEA  
O
O
I
5 V CMOS Wavelength Deviation Error Alarm  
LVPECL Frame Pulse  
FP  
FRAMEN  
LVTTL  
Frame Enable  
1. Frame ground is connected to the housing and is isolated from all circuit grounds (TxDGND, TxAGND, RxDGND, RxAGND).  
2. Pins labeled no connection must remain open circuits; they have internal voltages and must not be connected to VCC, Ground,  
or any signal node.  
6
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Pin Descriptions (continued)  
Table 1. CA16-Type Transponder Pinout (continued)  
Pin #  
Pin Name  
I/O  
Logic  
Description  
Receiver Digital Ground  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
RxDGND  
Rx3.3D  
Rx3.3D  
NC  
I
I
Supply  
Supply  
Supply  
Receiver 3.3 V Digital Supply  
Receiver 3.3 V Digital Supply  
No User Connection Permitted2  
Receiver Analog Ground  
I
I
RxAGND  
RxAGND  
Rx3.3A  
RxAGND  
RxAGND  
RxDGND  
VTEC  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
I
Receiver Analog Ground  
I
Receiver 3.3 V Analog Supply  
Receiver Analog Ground  
I
I
Receiver Analog Ground  
I
Receiver Digital Ground  
I
TEC Cooler 3 V Analog Supply Voltage  
TEC Cooler 3 V Analog Supply Voltage  
TEC Cooler 3 V Analog Supply Voltage  
Receiver Digital Ground  
VTEC  
I
VTEC  
I
RxDGND  
RxQ14P  
RxQ14N  
RxQ12P  
RxQ12N  
RxDGND  
RxQ10P  
RxQ10N  
RxQ08P  
RxQ08N  
RxDGND  
RxQ06P  
RxQ06N  
RxQ04P  
RxQ04N  
RxDGND  
RxQ02P  
RxQ02N  
RxQ00P  
RxQ00N  
RxDGND  
NC  
I
O
O
O
O
I
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
Supply  
Receiver Digital Ground  
O
O
O
O
I
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
SUPPLY Receiver Digital Ground  
O
O
O
O
I
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
Supply  
Receiver Digital Ground  
O
O
O
O
I
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s LSB Data Output  
LVPECL Receiver 155 Mbits/s LSB Data Output  
Supply  
Receiver Digital Ground  
No User Connection Permitted2  
No User Connection Permitted2  
No User Connection Permitted2  
No User Connection Permitted2  
Frame Ground1  
I
NC  
NC  
NC  
FGND  
Supply  
Supply  
FGND  
I
Frame Ground1  
Reset  
I
Master Reset  
1. Frame ground is connected to the housing and is isolated from all circuit grounds (TxDGND, TxAGND, RxDGND, RxAGND).  
2. Pins labeled no connection must remain open circuits; they have internal voltages and must not be connected to VCC, Ground,  
or any signal node.  
7
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Pin Descriptions (continued)  
Table 1. CA16-Type Transponder Pinout (continued)  
Pin #  
Pin Name  
I/O  
Logic  
Description  
Transmitter Digital Ground  
83  
84  
TxDGND  
TxREFCLKP  
TxREFCLKN  
TxD14P  
TxD14N  
TxDGND  
TxD12P  
TxD12N  
TxD10P  
TxD10N  
TxDGND  
TxD08P  
TxD08N  
TxD06P  
TxD06N  
TxDGND  
TxD04P  
TxD04N  
TxD02P  
TxD02N  
TxDGND  
TxD00P  
TxD00N  
TxDGND  
PCLKP  
I
I
Supply  
LVPECL Transmitter 155 Mbits/s Reference Clock Input  
LVPECL Transmitter 155 Mbits/s Reference ClockInput  
LVPECL Transmitter 155 Mbits/s Data Input  
85  
I
86  
I
87  
I
LVPECL Transmitter 155 Mbits/s Data Input  
88  
I
Supply  
Transmitter Digital Ground  
89  
I
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
SUPPLY Transmitter Digital Ground  
90  
I
91  
I
92  
I
93  
I
94  
I
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
95  
I
96  
I
97  
I
98  
I
Supply  
Transmitter Digital Ground  
99  
I
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
LVPECL Transmitter 155 Mbits/s Data Input  
SUPPLY Transmitter Digital Ground  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
I
I
I
I
I
LVPECL Transmitter 155 Mbits/s LSB Data Input  
LVPECL Transmitter 155 Mbits/s LSB Data Input  
I
I
Supply  
Transmitter Digital Ground  
O
I
LVPECL Transmitter Parallel Reference Clock Output  
LVPECL Transmitter Parallel Reference Clock Output  
PCLKN  
TxDGND  
TxAGND  
Tx3.3D  
I
Supply  
Supply  
Supply  
Supply  
Transmitter Digital Ground  
I
Transmitter Analog Ground  
Transmitter Digital 3.3 V Supply  
Transmitter Analog 3.3 V Supply  
Future Function (I2C Clock)  
I
Tx3.3A  
I
NC  
I
PHINIT  
TXDIS  
LVPECL Phase Initialization  
I
TTL  
Transmitter Disable  
Future Function (I2C Data)  
NC  
O
I
PHERR  
LLOOP  
LVPECL Phase Error  
LVTTL  
LVTTL  
Supply  
LVTTL  
Supply  
Supply  
Line Loopback (active-low)  
LOS  
O
I
Loss of Signal  
RxDGND  
OOF  
Receiver Digital Ground  
Out of Frame (enable frame detection)  
Receiver Digital Ground  
Receiver Digital 3.3 V Supply  
I
RxDGND  
Rx3.3D  
I
I
1. Frame ground is connected to the housing and is isolated from all circuit grounds (TxDGND, TxAGND, RxDGND, RxAGND).  
2. Pins labeled no connection must remain open circuits; they have internal voltages and must not be connected to VCC, Ground,  
or any signal node.  
8
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Pin Descriptions (continued)  
Table 1. CA16-Type Transponder Pinout (continued)  
Pin #  
Pin Name  
I/O  
Logic  
Description  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
Rx3.3D  
SEARCH  
RxAGND  
RxAGND  
Rx3.3A  
POCLKP  
POCLKN  
NC  
I
O
I
SUPPLY Receiver Digital 3.3 V Supply  
LVTTL  
Supply  
Supply  
Supply  
Frame Search Output  
Receiver Analog Ground  
Receiver Analog Ground  
Receiver Analog 3.3 V Supply  
I
I
O
O
I
LVPECL Byte-Aligned Parallel Output Clock at 155 MHz  
LVPECL Byte-Aligned Parallel Output Clock at 155 MHz  
No User Connection Permitted2  
WS  
LVTTL  
Supply  
Supply  
Supply  
Binary Input to Select One of Two Grid Wavelengths  
TEC Cooler 3 V Analog SupplyVoltage  
TEC Cooler 3 V Analog SupplyVoltage  
Receiver Digital Ground  
VTEC  
I
VTEC  
I
RxDGND  
RxQ15P  
RxQ15N  
RxQ13P  
RxQ13N  
RxDGND  
RxQ11P  
RxQ11N  
RxQ09P  
RxQ09N  
RxDGND  
RxQ07P  
RxQ07N  
RxQ05P  
RxQ05N  
RxDGND  
RxQ03P  
RxQ03N  
RxQ01P  
RxQ01N  
RxDGND  
NC  
I
O
O
O
O
I
LVPECL Receiver MSB 155 Mbits/s Data Output  
LVPECL Receiver MSB 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
Supply  
Receiver Digital Ground  
O
O
O
O
I
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
Supply  
Receiver Digital Ground  
O
O
O
O
I
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
Supply  
Receiver Digital Ground  
O
O
O
O
I
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
LVPECL Receiver 155 Mbits/s Data Output  
Supply  
Receiver Digital Ground  
I
No User Connection Permitted2  
No User Connection Permitted2  
No User Connection Permitted2  
No User Connection Permitted2  
Frame Ground1  
NC  
NC  
NC  
FGND  
Supply  
1. Frame ground is connected to the housing and is isolated from all circuit grounds (TxDGND, TxAGND, RxDGND, RxAGND).  
2. Pins labeled no connection must remain open circuits; they have internal voltages and must not be connected to VCC, Ground, or any signal  
node.  
9
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Pin Descriptions (continued)  
Table 2. CA16-Type Transponder Input Pin Descriptions  
Pin Name  
Pin Description  
TxD[0:15]P 16-Bit Differential LVPECL Parallel Input Data Bus. TxD15P/N is the most significant bit of the  
TxD[0:15]N input word and is the first bit serialized. TxD00P/N is the least significant bit of the input word and  
is the last bit serialized. TxD[0:15]P/N is sampled on the rising edge of PICLK.  
PICLKP  
PICLKN  
Differential LVPECL Parallel Input Clock. A 155 MHz nominally 50% duty cycle input clock to  
which TxD[0:15]P/N is aligned. The rising edge of PICLK transfers the data on the 16 TxD inputs  
into the holding register of the parallel-to-serial converter.  
TxREFCLKP Differential LVPECL Low Jitter 155.520 MHz Input Reference Clock. This input is used as the  
TxREFCLKN reference for the internal clock frequency synthesizer, which generates the 2.5 GHz bit rate clock  
used to shift data out of the parallel-to-serial converter and also for the byte-rate clock, which  
transfers the 16-bit parallel input data from the input holding register into the parallel-to-serial shift  
register. Input is internally terminated and biased. See discussion on timing interface, page 18.  
TxDIS  
Transmitter Disable Input. A logic high on this input pin shuts off the transmitter’s laser so that  
there is no optical output.  
WS  
Wavelength Select. When this input is a logic 0 or left floating, the output wavelength will be the  
nominal wavelength (at 25 °C); when it is a logic 1, the wavelength will increase by approximately  
0.8 nm (100 GHz frequency decrease).  
DLOOP  
Diagnostic Loopback Enable (LVTTL). When the DLOOP input is low, the 2.5 Gbits/s serial data  
stream from the parallel-to-serial converter is looped back internally to the serial-to-parallel con-  
verter along with an internally generated bit synchronous serial clock. The received serial data  
path from the optical receiver is disabled.  
LLOOP  
PHINIT  
Line Loopback Enable (LVTTL). When LLOOP is low, the 2.5 Gbits/s serial data and recovered  
clock from the optical receiver are looped directly back to the optical transmitter. The multiplexed  
serial data from the parallel-to-serial converter is ignored.  
Phase Initialization (Single-Ended LVPECL). This input is used to align the internal elastic store  
(FIFO). A rising edge on PHINIT will realign the internal timing (see FIFO discussion, pages 12  
and 18).  
FRAMEN* Frame Enable Input (LVTTL). Enables the frame detection circuitry to detect A1, A2 byte align-  
ment and to lock to a word boundary. The CA16 transponder will continually perform frame acqui-  
sition as long as FRAMEN is held high. When this input islow, the frame-detection circuitry is  
disabled. Frame-detection process is initiated by rising edge of out-of-frame pulse.  
OOF*  
Out of Frame (LVTTL). This input indicator is typically generated by external SONET/SDH over-  
head monitor circuitry in response to a state in which the frame boundaries of the received  
SONET/SDH signal are unknown, i.e., after system reset or loss of synchronization. The rising  
edge of the OOF input initiates the frame detection function if FRAMEN is high. The FP output  
goes high when the frame boundary is detected in the incoming serial data stream from the opti-  
cal receiver.  
RESET  
Master Reset (LVTTL). Reset input for the multiplexer and demultiplexer. A logic low on this input  
clears all buffers and registers. During RESET, POCLK and PCLK do not toggle.  
* Future versions of the cooled transponder will not support the frame-detect function.  
10  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Pin Descriptions (continued)  
Table 3. CA16-Type Transponder Output Pin Descriptions  
Pin Name  
Pin Description  
RxQ[0:15]P 16-Bit Differential LVPECL Parallel Output Data Bus. RxQ[0:15] is the 155 Mbyte/s 16-bit output  
RxQ[0:15]N word. RxQ15P/N is the most significant bit of the received word and is the first bit serialized.  
RxQ00P/N is the least significant bit of the received word and is the last bit serialized. RxQ[0:15]P/  
N is updated on the falling edge of POCLK.  
POCLKP  
POCLKN  
Differential LVPECL Parallel Output Clock. A 155 MHz nominally 50% duty cycle, byte rate out-  
put clock that is aligned to the RxQ[0:15] byte serial output data. RxQ[0:15] and FP are updated on  
the falling edge of POCLK.  
*
FP  
Frame Pulse (LVPECL). Indicates frame boundaries in the received serial data stream. If framing  
pattern detection is enabled (FRAMEN high and OOF), FP pulses high for one POCLK cycle when  
a 32-bit sequence matching the framing pattern is detected in the received serial data. FP is  
updated on the falling edge of POCLK.  
*
SEARCH  
LOS  
A1 A2 Frame Search Output (LVTTL). A high on this output pin indicates that the frame detection  
circuit is active and is searching for a new A1 A2 byte alignment. This output will be high during the  
entire A1 A2 frame search. Once a new alignment is found, this signal will remain high for a mini-  
mum of one 155 MHz clock period beyond the third A2 byte before it will be set low.  
Loss of Signal (LVTTL). A low on this output indicates a loss of clock by the clock recovery circuit  
in the optical receiver.  
LSRBIAS Laser Bias Alarm (Analog). The analog bias alarm is not available on the CA16 transponders.  
LSRALM  
Laser Degrade Alarm (5 V CMOS). This output goes to a logic 0 when the laser output power  
degrades 2 dB below the nominal output power.  
LPM  
Laser Power Monitor (Analog). Provides an indication of the output power level from the transmit-  
ter laser. This output is set at 500 mV for the nominal transmitter optical output power. If the optical  
power decreases by 3 dB, this output will drop to approximately 250 mV, and if the output power  
should increase by 3 dB, this output will increase to1000 mV.  
PCLKP/N  
Parallel Byte Clock (Differential LVPECL). A byte-rate reference clock generated by dividing the  
internal 2.488 GHz serial bit clock by 16. This output is normally used to synchronize byte-wide  
transfers from upstream logic into the CA16 transponder. See timing discussion for additional  
details, page 18.  
PHERR  
Phase Error Signal (Single-Ended LVPECL). Pulses high during each PCLK cycle for which there  
is a potential setup/hold timing violation between the internal byte clock and the PICLK timing  
domain. PHERR is updated on the falling edge of the PCLK outputs.  
IPDMON  
Receiver Photodiode Current Monitor (Analog). This output provides a current output that is a  
mirror of the of the photocurrent generated by the optical receiver’s photodetector diode (APD or  
PIN). A 10 kresistor from pin 2 to ground provides a voltage at this output ranging from ~1 mV to  
~800 mV, depending on the optical input power.  
WDEA  
Wavelength Deviation Alarm (5 V TTL). This output changes logic levels whenever the optical  
transmitter’s wavelength deviates from the nominal wavelength by more than ±100 pm.  
LOCKDET Lock Detect (LVTTL). This output goes low after the transmit side PLL has locked to the clock sig-  
nal provided at the TXREFCLK input pins. LOCKDET is an asychronous output.  
* Future versions of the cooled transponder will not support the frame-detect function.  
11  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
by a serial data stream developed in the parallel-to-serial  
conversion logic and by a 2488.32 MHz serial bit clock sig-  
nal synthesized from the 155.52 MHz TXREFCLK input.  
Functional Description  
Receiver  
Note that the clock divider and phase-detect circuitry  
shown in Figure 1 generates internal reference clocks and  
timing functions for the transmitter. Therefore, it is impor-  
tant that the TxREFCLK input is generated from a precise  
and stable source. To prevent internal timing signals from  
producing jitter in the transmitted serial data that exceeds  
the SDH/SONET jitter generation requirements of 0.01 UI,  
it is required that the TxREFCLK input be generated from a  
crystal oscillator or other source having a frequency accu-  
racy better than 20 ppm. In order to meet the SDH/  
The optical receiver in the CA16-type transponder has an  
APD and is optimized for the particular SDH/SONET  
application segment in which it was designed to operate.  
The detected serial data output of the optical receiver is  
connected to a clock and data recovery circuit (CDR),  
which extracts a 2488.32 MHz clock signal. This recov-  
ered serial bit clock signal and a retimed serial data signal  
are presented to the 16-bit serial-to-parallel converter and  
to the frame and byte detection logic.  
SONET jitter generation requirement, the reference clock  
jitter must be guaranteed to be less than 1 ps rms over the  
12 kHz to 20 MHz bandwidth. When used in SONET net-  
work applications, this input clock must be derived from a  
source that is synchronized to the primary reference clock.  
The serial-to-parallel converter consists of three 16-bit  
registers. The first is a serial-in parallel-out shift register,  
which performs serial-to-parallel conversion. The second  
is an internal 16-bit holding register, which transfers data  
from the serial-to-parallel register on byte boundaries as  
determined by the frame and byte detection logic. On the  
falling edge of the free-running POCLK signal, the data in  
the holding register is transferred to the output holding  
register where it becomes available as RxQ[0:15].  
The timing generation circuitry provides two separate  
functions. It develops a byte rate clock that is synchro-  
nized to the 2488.32 MHz transmit serial clock, and it pro-  
vides a mechanism for aligning the phase between the  
incoming byte clock (PICLK) and the clock that loads the  
parallel data from the input register into the parallel-to-  
serial shift register.  
Note: Future versions of the cooled transponder will  
not support the frame-detect function.  
The frame and byte boundary detection circuitry searches  
the incoming data for three consecutive A1 bytes followed  
immediately by an A2 byte. Framing pattern detection is  
enabled and disabled by the FRAMEN input. The frame  
detection process is started by a rising edge on OOF  
while FRAMEN is active (FRAMEN = high). It is disabled  
when a framing pattern is detected. When framing pattern  
detection is enabled (FRAMEN = high), the framing pat-  
tern is used to locate byte and frame boundaries in the  
incoming serial data stream from the CDR circuits. During  
this time, the parallel output data bus (RxQ[0:15]) will not  
contain valid data. The timing generator circuitry takes the  
located byte boundary and uses it to block the incoming  
serial data stream into bytes for output on the parallel out-  
put data bus (RxQ[0:15]). The frame boundary is reported  
on the framing pulse (FP) output when any 32-bit pattern  
matching the framing pattern is detected in the incoming  
serial data stream. When framing detection is disabled  
(FRAMEN = low), the byte boundary is fixed at the loca-  
tion found when frame detection was previously enabled.  
The PCLK output is a byte rate (155 MHz) version of the  
serial transmit clock and is intended for use by upstream  
multiplexing and overhead processing circuits. Using  
PCLK for upstream circuits will ensure a stable frequency  
and phase relationship between the parallel data coming  
into the transmitter and the subsequent parallel-to-serial  
timing functions. In the parallel-to-serial conversion pro-  
cess, the incoming data is passed from the PICLK byte  
clock timing domain to the internally generated byte clock  
timing domain that is phase aligned to the internal serial  
transmit clock. The timing generator also produces a feed-  
back reference clock to the phase detector. A counter  
divides the synthesized clock down to the same frequency  
as the reference clock TxREFCLK.  
The parallel-to-serial converter shown in Figure 1 is com-  
prised of an FIFO and a parallel-to-serial register. The  
FIFO input latches the data from the TxD[0:15]P/N bus on  
the rising edge of PICLK. The parallel-to-serial register is a  
loadable shift register that takes parallel input from the  
FIFO output. An internally generated divide-by-16 clock,  
which is phase aligned to the transmit serial clock, as  
described above, activates the parallel data transfer  
between registers. The serial data is shifted out of the par-  
allel-to-serial register at the transmit serial clock rate.  
Transmitter  
The optical transmitter in the CA16-type transponder is  
optimized for the particular SDH/SONET segment in  
which it is destined to operate. The transmitter has a  
cooled DFB laser as the optical element and operates at a  
nominal 1550 nm (45 standard ITU wavelengths are avail-  
able for DWDM applications). Under user control, the  
transmitter can switch to either one of two adjacent ITU  
wavelengths (100 GHz spacing). The transmitter is driven  
12  
12  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Functional Description (continued)  
Transponder Interfacing  
The TxD[0:15]P/N, TxREFCLKP/N, and PICLKP/N  
inputs and the RxQ[0:15]P/N, POCLKP/N, and PCLKP/  
N outputs are high-speed (155 Mbits/s),LVPECL differ-  
ential data and clock signals.To maintain optimum sig-  
nal fidelity, these inputs and outputs must be  
Loopback Modes  
The CA16-type transponder is capable of operating in  
either of two loopback modes: diagnostic loopback or  
line loopback.  
connected to their terminating devices via 50 ¾ con-  
trolled-impedance transmission lines. The transmitter  
inputs (TxD[0:15]P/N, TxREFCLKP/N, and PICLKP/N)  
must be terminated as close as possible to the CA16  
transponder connector with a Thevenin equivalent  
impedance equal to 50 terminated to Vcc – 2 V. The  
receiver outputs (RxQ[0:15]P/N, POCLKP/N, and  
PCLKP/N) must be terminated as close as possible to  
the device (IC) that these signals interface to with a  
Thevenin equivalent impedance equal to 50 termi-  
nated to Vcc – 2 V.  
Line Loopback  
When LLOOP is pulled low, the received serial data  
stream and recovered 2488.32 MHz serial clock from  
the optical receiver are connected directly to the serial  
data and clock inputs of the optical transmitter. This  
establishes a receive-to-transmit loopback at the serial  
line rate.  
Diagnostic Loopback  
When DLOOP is pulled low, a loopback path is estab-  
lished from the transmitter to the receiver. In this mode,  
the serial data from the parallel-to-serial converter and  
the transmit serial clock is looped back to the serial-to-  
parallel converter and the frame and byte detect cir-  
cuitry, respectively.  
Figure 3, below, shows one example of the proper ter-  
minations. Other methods may be used, provided they  
meet the requirements stated above.  
3.3 V  
SONET/SDH  
INTERFACE IC  
CA16-TYPE TRANSPONDER  
130 Ω  
80 Ω  
130 Ω  
80 Ω  
TxD[0:15]P  
(LVPECL)  
50 IMPEDANCE  
TRANSMISSION LINES  
TxLINE  
MUX  
Tx  
TxD[0:15]N  
(LVPECL)  
3.3 V  
130 Ω  
80 Ω  
130 Ω  
80 Ω  
RxD[0:15]P  
(LVPECL)  
50 IMPEDANCE  
TRANSMISSION LINES  
RxLINE  
DEMUX  
Rx  
RxD[0:15]N  
(LVPECL)  
1-1054(F)  
Figure 3. Transponder Interfacing  
13  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
differently than the TXD and PICLK inputs. Differentially,  
the input impedance at this input is 100 , but due to  
the way it is biased internally, when driven single-  
ended, the impedance appears as 60 . The proper  
termination scheme for the TXREFCLK input is shown in  
Figure 4.  
Functional Description (continued)  
Transponder Interfacing (continued)  
TxREFCLKP/N  
The TXREFCLK input is different than the other inputs to  
the transmitter because it is internally terminated, ac-  
coupled, and self-biased. Therefore, it must be treated  
CA16 TRANSPONDER  
MULTIPLEXER  
LVPECL  
SONET/SDH  
INTERFACE  
IC  
TXREFCLKP  
PLL  
CLOCK  
SYNTHESIZER  
TXREFCLKN  
(VCC = 3.3 V)  
50 TRANSMISSION LINES  
DIFFERENTIAL INTERFACE  
CA16 TRANSPONDER  
MULTIPLEXER  
LVPECL  
SONET/SDH  
INTERFACE  
IC  
TXREFCLKP  
TXREFCLKN  
PLL  
CLOCK  
SYNTHESIZER  
(VCC = 3.3 V)  
0.1 µF  
50 TRANSMISSION LINES  
FOR A SINGLE-ENDED INPUT,  
THE INPUT IMPEDANCE IS  
EQUIVALENT TO 60 Ω.  
SINGLE-ENDED INTERFACE  
1-1084 (F).c  
Figure 4. Interfacing to the TxRefClk Input  
14  
14  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Optical Characteristics  
Minimum and maximum values specified over operating case temperature range at 50% duty cycle data signal.  
Typical values are measured at room temperature unless otherwise noted.  
Table 4. OC-48/STM-16 Transmitter Optical Characteristics (Tc = 0 °C to 65 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
1
Average Output Power:  
Long Reach (1.55 µm DFB laser)  
Po  
λ
–2  
0
3
dBm  
nm  
Operating Wavelength:  
Long Reach (1.55 µm DFB laser);  
All 48 100 GHz ITU Grid Channels Available  
1528  
–0.06  
1563  
0.06  
Variation in Center Wavelength Over Operating  
Temperature (EOL)  
∆λ  
nm  
Spectral Width:  
2
Long Reach (DFB laser)  
∆λ20  
SSR  
re  
30  
1
nm  
dB  
dB  
3
Side-mode Suppression Ratio (DFB laser)  
4
Extinction Ratio  
8.2  
Optical Rise and Fall Time:  
CA16A2-Type  
tR, tF  
140  
130  
ps  
ps  
CA16B2-Type  
Dispersion Penalty:  
CA16A2-Type  
DP  
2.0  
2.0  
dB  
dB  
CA16B2-Type  
5, 6  
Eye Mask of Optical Output  
Compliant with GR-253 and ITU-T G.957  
Compliant with GR-253 and ITU-T G.958  
Jitter Generation  
1. Output power definitions and measurements per ITU-T Recommendation G.957.  
2. Full spectral width measured 20 dB down from the central wavelength peak under fully modulated conditions.  
3. Ratio of the average output power in the dominant longitudinal mode to the power in the most significant side mode under fulyl modulated  
conditions.  
4. Ratio of logic 1 output power to logic 0 output power under fully modulated conditions.  
5. GR-253-CORE, Synchronous Optical Network (SONET) Transport Systems: Common Generic Criteria.  
6. ITU-T Recommendation G.957, Optical Interfaces for Equipment and Systems Relating to the Synchronous Digital Hierarchy.  
Table 5. OC-48/STM-16 Receiver Optical Characteristics (Tc = 0 °C to 65 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Average Receiver Sensitivity1:  
APD Receiver  
–29  
–8  
–34  
–6  
dBm  
dBm  
PRMIN  
Maximum Optical Power:  
APD Receiver (long reach)  
PRMAX  
Link Status Switching Threshold:  
APD Decreasing Light Input  
LSTD  
3
TBD  
100  
2
dBm  
µs  
Link Status Response Time  
Optical Path Penalty  
dB  
Receiver Reflectance  
–27  
dB  
Jitter Tolerance and Jitter Transfer  
Compliant with GR-253 and ITU-T G.958  
1. At 1310 nm, 1 x 10–10 BER, 223 – 1 pseudorandom data input.  
15  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Electrical Characteristics  
Table 6. Power Supply Characteristics (Tc = 0 °C to 65 °C)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Supply Voltage  
VCC  
ICC  
3.13  
3.3  
2000  
3.3  
3.47  
V
mA  
V
dc Power Supply Current Drain  
TEC Voltage  
VTEC  
TEC_ICC  
PDISS  
3.0  
3.5  
TEC-Only Current Drain  
Power Dissipation  
0.6  
1200  
mA  
W
<9  
Table 7. Transmitter Electrical I/O Characteristics (TC = 0 °C to 65 °C, VCC = 3.3 V ± 5%)  
Parameter  
Parallel Input Clock  
Symbol  
Logic  
Min  
Typ  
Max  
Unit  
PICLKP/N  
Diff.  
153.90  
155.52  
157.00  
MHz  
LVPECL  
Parallel Clock in Duty Cycle  
40  
60  
20  
%
Reference Clock Freq. Tolerance  
TxREFCLKP/N  
Diff.  
–20  
ppm  
LVPECL  
Reference Clock Input Duty Cycle  
30  
70  
%
1
Reference Clock Rise and Fall Time  
tR, tF  
0.5  
ns  
2
Reference Clock Signal Levels :  
TxREFCLK  
Diff.  
Differential Input Signal Level, VINDIFF  
Single-ended Input Sig. Level, VINSINGLE  
Differential Input Resistance, R  
LVPECL  
300  
150  
80  
100  
1200  
600  
120  
mV  
mV  
Input Data Signal Levels:  
Input High, VIH  
TxD[0:15]P/N  
Diff.  
LVPECL VCC – 1.2  
VCC – 2.0  
VCC – 0.3  
VCC – 1.5  
V
V
mV  
Input Low, VIL  
Input Voltage Swing, VIN  
300  
3
Transmitter Disable Input  
TxDIS  
TxEN  
WS  
TTL (5 V)  
TTL (5 V)  
TTL  
2.0  
0
5.0  
0.8  
V
V
3
Transmitter Enable Input  
Wavelength-Select Voltage:  
Channel N Select, VλN  
0
2.0  
0.8  
VCC  
V
V
Channel N – 1 Select, VλN–1  
Wavelength Deviation Alarm:  
Normal Mode, VNO-ALARM  
Wavelength Alarm, VALARM  
Alarm Setting (active-high)4  
WDEA  
TTL  
TTL  
0
4.5  
–100  
0.3  
5
100  
V
V
pm  
Laser Degrade Alarm:  
Normal Mode, VNO-ALARM  
Laser Degraded, VALARM  
LSRALM  
4.5  
0
5
0.3  
V
V
5
Laser Power Monitor Output  
LPM  
Analog  
35  
500  
1000  
mV  
Phase Initialization:  
Input High, VIH  
Input Low, VIL  
PHINIT  
LVPECL  
VCC – 1.0  
VCC – 2.3  
VCC – 0.57  
VCC – 1.44  
V
V
1. 20% to 80%.  
2. Internally biased and ac-coupled.  
3. The transmitter is normally enabled and only requires an external voltage to disable.  
4. The WDEA alarm becomes active when the optical wavelength deviates from the nominal center wavelength by more than 100 pm.  
5. Set at 500 mV at nominal optical output power. Provides linear PO tracking (–3 dB = 250 mV, +3 dB = 1000 V).  
6. Terminated into 200 to GND and 100 line-to-line.  
16  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Electrical Characteristics (continued)  
Table 7. Transmitter Electrical I/O Characteristics (TC = 0 °C to 65 °C, VCC = 3.3 V ± 5%) (continued)  
Parameter  
Symbol  
Logic  
Min  
Typ  
Max  
Unit  
Phase Error5:  
PHERR  
LVPECL  
Output High, VOH  
Output Low, VOL  
VCC – 1.2  
VCC – 2.2  
VCC – 0.65  
VCC – 1.5  
V
V
Line Loopback Enable:  
Active-low:  
LLOOP  
LVTTL  
LVTTL  
Input High, VIH  
Input Low, VIL  
2.0  
0
VCC + 1.0  
0.8  
V
V
Diagnostic Loopback Enable:  
Active- low:  
DLOOP  
Input High, VIH  
Input Low, VIL  
2.0  
0
VCC + 1.0  
0.8  
V
V
Parallel Output Clock6:  
PCLKP/N  
Output High, VOH  
Output Low, VOL  
Differential Voltage Swing, VDIFF  
S-E Voltage Swing, VSINGLE  
Differential VCC – 1.15  
LVPECL VCC – 1.95  
VCC – 0.6  
VCC – 1.45  
1900  
V
V
mV  
mV  
800  
400  
950  
1. 20% to 80%.  
2. Internally biased and ac-coupled.  
3. The transmitter is normally enabled and only requires an external voltage to disable.  
4. The WDEA alarm becomes active when the optical wavelength deviates from the nominal center wavelength by more than 100 pm.  
5. Set at 500 mV at nominal optical output power. Provides linear PO tracking (–3 dB = 250 mV, +3 dB = 1000 V).  
6. Terminated into 200 to GND and 100 line-to-line.  
Table 8. Receiver Electrical I/O Characteristics (Tc = 0 °C to 65 °C, Vcc = 3.3 V ± 5%)  
Parameter  
Symbol  
Logic  
Min  
Typ  
Max  
Unit  
Parallel Output Clock:  
Output High, VOH  
Output Low, VOL  
POCLKP/N  
Differential  
LVPECL  
VCC – 1.3  
VCC – 2.0  
VCC – 0.7  
VCC – 1.4  
V
V
POCLk Duty Cycle  
40  
60  
%
Output Data Signal Levels1:  
Output High, VOH  
Output Low, VOL  
RxQ[0:15]P/N Differential  
LVPECL  
VCC – 1.3  
VCC – 2.0  
VCC – 0.7  
VCC – 1.4  
V
V
RxQ[0:15] Rise/Fall Time2  
1.0  
ns  
Frame Pulse:  
Output High, VOH  
Output Low, VOL  
FP  
LVPECL  
VCC – 1.3  
VCC – 2.0  
VCC – 0.7  
VCC – 1.4  
V
V
Loss-of-Signal Output:  
Output High, VOH  
Output Low, VOL  
LOS  
LVTTL  
2.4  
0
VCC  
0.4  
V
V
Out-of-Frame Input:  
Input High, VIH  
Input Low, VIL  
OOF  
LVTTL  
LVTTL  
V
V
2.0  
0.0  
TTL VCC + 1.0  
0.8  
Frame Enable Input  
Input High, VIH  
Input Low, VIL  
FRAMEN  
2.0  
0.0  
TTL VCC + 1.0  
0.8  
V
V
1. Terminated into 330 to ground.  
2. 20% to 80%, 330 to ground.  
17  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
During normal operation, the incoming data is passed  
from the PICLK input timing domain to the internally  
generated divide-by-16 PCLK timing domain. Although  
the frequency of PICLK and PCLK is the same, their  
phase relationship is arbitrary. To prevent errors caused  
by short setup or hold times between the two domains,  
the timing generator circuitry monitors the phase rela-  
tionship between PICLK and PCLK.  
Timing Characteristics  
Transmitter Data Input Timing  
The CA16 transponder utilizes a unique FIFO to  
decouple the internal and external (PICLK) clocks. The  
FIFO can be initialized, which allows the system  
designer to have an infinite PCLK-to-PICLK delay  
through this interfacing logic (ASIC or commercial chip  
set). The configuration of the FIFO is dependent upon  
the I/O pins, which comprise the synch timing loop.  
This loop is formed from PHERR to PHINIT and PCLK  
to PICLK.  
When an FIFO timing violation is detected, the phase  
error (PHERR) signal pulses high. If the condition per-  
sists, PHERR will remain high. When PHERR is fed  
back into the PHINIT input (by shorting them on the  
printed-circuit board [PCB]), PHINIT will initialize the  
FIFO if PHINIT is held high for at least two byte clocks.  
The initialization of the FIFO prevents PCLK and PICLK  
from concurrently trying to read and write over the  
same FIFO bank.  
The FIFO can be thought of as a memory stack that  
can be initialized by PHINT or LOCKDET. The PHERR  
signal is a pointer that goes high when a potential tim-  
ing mismatch is detected between PICLK and the inter-  
nally generated PCLK clock. When PHERR is fed back  
to PHINIT, it initializes the FIFO so that it does not over-  
flow or underflow.  
During realignment, one-to-three bytes (16 bits wide)  
will be lost. Alternatively, the customer logic can take in  
the PHERR signal, process it, and send an output to  
the PHINIT input in such a way that only idle bytes are  
lost during the initialization of the FIFO. Once the FIFO  
has been initialized, PHERR will go inactive.  
The internally generated divide-by-16 clock is used to  
clock-out data from the FIFO. PHINIT and LOCKDET  
signals will center the FIFO after the third PICLK pulse.  
This is done to ensure that PICLK is stable. This  
scheme allows the user to have an infinite PCLK to  
PICLK delay through the ASIC. Once the FIFO is cen-  
tered, the PCLK and PICLK can have a maximum drift of  
±5 ns.  
18  
1
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Timing Characteristics (continued)  
Since the delay in the customer ASIC is unknown, the  
two clocks (PCLK and PICLK) might drift in respect to  
each other and try to perform the read and writer oper-  
ation on the same bank in the FIFO at the same time.  
However, before such a clock mismatch can occur,  
Input Timing Mode 1  
In the configuration shown in Figure 5, PHERR to  
PHINIT has a zero delay (shorted on the PCB) and the  
PCLK is used to clock 16-bit-wide data out of the cus-  
tomer ASIC. The FIFO in the multiplexer ia 16-bits wide  
and six registers deep.  
PHERR goes high and, if externally connected to  
PHINIT, will initialize the FIFO provided PHINIT  
remains high for at least two byte clocks. One to three  
16-bit words of data will be lost during the initialization  
of the FIFO.  
The PCLK and PICLK signals respectively control the  
READ and WRITE counters for the FIFO. The data  
bank from the FIFO has to be read by the internally  
generated clock (PCLK) only once after it has been writ-  
ten by the PICLK input.  
OSCILLATOR  
155.52 MHz ± 20 ppm  
TXREFCLK  
PCLK  
DIVIDER  
PLL  
INTERNAL  
PCLK  
PICLK  
CLOCK  
TXD[0:15]  
16  
DATA  
FIFO  
TIMING  
GENERATOR  
PHERR  
PHINIT  
CENTERS  
FIFO  
D
Q
LOCKDET  
CUSTOMER LOGIC  
CA16 TRANSPONDER  
1-1121(F).b  
Figure 5. Block Diagram Timing Mode 1  
19  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
dummy bytes to the CA16 on the TXD[0:15] bus. This  
should continue until PHERR goes low.  
Transmitter Data Input Timing (continued)  
Input Timing Mode 2  
The FIFO is initialized two-to-eight byte clocks after  
PHINIT goes high for two byte clocks. PHERR goes low  
after the FIFO is initialized. Upon detecting a low on  
PHERR, the customer logic can start sending real data  
bytes on TXD[0:15]. The two timing loops (PCLK to  
PICLK and PHERR to PHINIT) do not have to be of  
equal length.  
To avoid the loss of data, idle or dummy bytes should  
be sent on the TXD[0:15] bus whenever PHERR goes  
high. In the configuration shown in Figure 6, the  
PHERR signal is used as an input to the customer  
logic. Upon detecting a high on the PHERR signal, the  
customer logic should return a high signal, one that  
remains high for at least two byte-clock cycles, to the  
PHINIT input of the CA16. Also, when PHERR goes  
high, the customer logic should start sending idle or  
OSCILLATOR  
155.52 MHz ± 20 ppm  
TXREFCLK  
PCLK  
DIVIDER  
PLL  
INTERNAL  
PCLK  
PICLK  
CLOCK  
TXD[0:15]  
16  
DATA  
FIFO  
TIMING  
GENERATOR  
PHERR  
PHINIT  
CENTERS  
FIFO  
D
Q
LOCKDET  
CUSTOMER LOGIC  
CA16 TRANSPONDER  
1121(F).b  
Figure 6. Block Diagram Timing Mode 2  
20  
20  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Timing Characteristics (continued)  
reference clock to the internal load signal over temper-  
ature and voltage. The connections required to imple-  
ment this clocking method are shown in Figure 7. The  
setup and hold times for PICLK to TxD[0:15] must be  
met by the customer logic.  
Forward Clocking  
In some applications, it is necessary to forward-clock  
the data in a SONET/SDH system. In this application,  
the reference clock from which the high-speed serial  
clock is synthesized and the parallel data clock both  
originate from the same source on the customer appli-  
cation circuit. The timing control logic in the CA16 tran-  
sponder transmitter automatically generates an internal  
load signal that has a fixed relationship to the reference  
clock. The logic takes into account the variation of the  
Possible problems: to meet the jitter generation specifi-  
cations required by SONET/SDH, the jitter of the refer-  
ence clock must be minimized. It could be difficult to  
meet the SONET jitter generation specifications using  
a reference clock generated from the customer logic.  
OSCILLATOR  
155.52 MHz ± 20 ppm  
CLOCK  
BUFFER  
TXREFCLK  
TXREFCLK  
PCLK  
DIVIDER  
PLL  
INTERNAL  
PCLK  
PICLK  
CLOCK  
TXD[0:15]  
16  
DATA  
FIFO  
TIMING  
GENERATOR  
CENTERS  
FIFO  
PHERR  
PHINIT  
LOCKDET  
CUSTOMER LOGIC  
CA16 TRANSPONDER  
1-1122(F).a  
Figure 7. Forward Clocking of the CA16Transponder  
21  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Timing Characteristics (continued)  
on the third PICLK after LOCKDET goes active. The  
PCLK-to-PICLK delay (tD) can have any value before the  
FIFO is initialized. The tD is fixed at the third PICLK  
after LOCKDET goes active. Once the FIFO is initial-  
ized, PCLK and PICLK cannot drift more than 5.2 ns;  
tCH cannot be more than 5.2 ns.  
PCLK-to-PICLK Timing  
After powerup or RESET, the LOCKDET signal will go  
active, signifying that the PLL has locked to the clock  
provided on the TXREFCLK input. The FIFO is initialized  
PCLK  
tD  
tD  
PICLK  
1ST  
2ND  
3RD  
tCH  
tCH  
LOCKDET  
PCLK-TO-PICLK DELAY IS FIXED AND FIFO  
IS INITALIZED AT THE THIRD RISING EDGE OF  
PICLK AFTER LOCKDET GOES ACTIVE.  
ACTIVE  
1-1123(F)  
Figure 8. PCLK-to-PICLK Timing  
22  
22  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Case 2—PHERR signal is input to the customer logic  
and the customer logic outputs a signal to PHINIT:  
Timing Characteristics (continued)  
PHERR/PHINIT  
Another possible configuration is where the PHERR  
signal is input into the customer logic and the customer  
logic sends an output to the PHINIT input. However,  
the customer logic must ensure that, upon detecting a  
high on PHERR, the PHINIT signal remains high for  
more than two byte clocks. If PHINIT is high for less  
than two byte clocks, the FIFO is not guaranteed to be  
initialized. Also, the customer logic must ensure that  
PHINIT goes low after the FIFO is initialized (PHERR  
goes low).  
Case 1—PHERR and PHINIT are shorted on the  
printed-circuit board:  
PHINIT would go high whenever there is a potential tim-  
ing mismatch between PCLK and PICLK. PHINIT would  
remain high as long as the timing mismatch between  
PCLK and PICLK. If PHINIT is high for more than two  
byte clocks, the FIFO will be initialized. PHINIT will ini-  
tialize the FIFO two-to-eight byte clocks after it is high  
for at least two byte clocks, PHERR (and thus PHINIT)  
goes active once the FIFI is initialized.  
2 BYTE  
CLOCKS  
2—8 BYTE CLOCKS  
PHERR  
MINIMUM PULSE  
WIDTH REQUIRED  
TO CENTER  
THE FIFO  
CUSTOMER ASIC SENDS A  
MINIMUM PULSE WIDTH OF  
2 BYTE CLOCKS UPON DETECTING  
A HIGH ON PHERR  
PHINIT  
PCLK  
PICLK  
INTERNAL  
PCLK  
PHERR GOES HIGH ON  
FIFO IS INITIALIZED 2—8 BYTE CLOCKS  
DETECTING A FIFO TIMING ERROR  
AFTER PHINIT IS HIGH FOR 2 BYTE CLOCKS  
1125(F)  
Figure 9. PHERR/PHINIT Timing  
23  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Timing Characteristics (continued)  
Transmitter Data Input Timing (continued)  
Table 9. Transmitter ac Timing Characteristics  
Symbol  
Description  
Min  
Max  
Unit  
tSTXD  
tHTXD  
TxD[0:15] Setup Time w. r. t. PICLK  
TxD[0:15] Hold Time w. r. t. PICLK  
PCLKP/N Duty Cycle  
1.5  
0.5  
40  
40  
55  
60  
5
ns  
ns  
%
PICLKP/N Duty Cycle  
%
tPPICLK  
PICLK-to-PICLK Drift After FIFO Centered  
ns  
tSTXD  
tHTXD  
PICLKP  
TXD[0:15]  
Figure 10. ac Input Timing  
Table 10. Receiver ac Timing Characteristics  
Symbol  
Description  
Min  
Max  
Unit  
POCLK Duty Cycle  
45  
–1  
2
55  
1.0  
1
%
1
RxD[15:0] Rise and Fall Time  
ns  
ns  
ns  
ns  
tPPOUT  
tSPOUT  
tHPOUT  
POCLK Low to RxD[15:0] Valid Propagation Delay  
RxD[15:0] and FP Setup Time w. r. t. POCLK  
RxD[15:0] and FP Hold Time w. r. t. POCLK  
2
1. 20% to 80%; 330 to GND.  
POCLKP  
tPPOUT  
tSPOUT  
tHPOUT  
FP  
RXD[15:0]  
Figure 11. Receiver Output Timing Diagram  
24  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
going data bus (RxD[15:0]). Concurrently, the frame  
pulse (FP) is set high for one POCLK cycle.  
Timing Characteristics (continued)  
Receiver Framing  
The frame and byte boundary detection block is acti-  
vated by the rising edge of OOF and stays active until  
the first FP pulse.  
Note: Future versions of the cooled transponder  
will not support the frame-detect function.  
Figure 13 shows the frame and byte boundary detec-  
Figure 12 shows a typical reframe sequence in which a  
byte realignment is made. The frame and byte bound-  
ary detection is enabled by the rising edge of OOF.  
Both the frame and byte boundaries are recognized  
upon receipt of the first A2 byte following three consec-  
utive A1 bytes. The third A2 byte is the first data byte to  
be reported with the correct byte alignment on the out-  
tion activation by a rising edge of OOF and deactiva-  
tion by the first FP pulse.  
Figure 14 shows the frame and byte boundary detec-  
tion by the activation of a rising edge of OOF and deac-  
tivation by the FRAMEN input.  
RECOVERED  
CLOCK  
OOF  
SERIAL  
DATA  
A1  
A1  
A1  
A2  
A2  
A2  
A2  
A2  
A2  
RXD[15:0]  
A1, A1 A1, A1 A1, A1 A2, A2 A2, A2 A2, A2 A2, A2  
INVALID DATA VALID DATA  
ROCLK  
FP  
1-1023(F)r.3  
Figure 12. Frame and Byte Detection  
BOUNDARY DETECTION ENABLED  
OOF  
FP  
SEARCH  
1-1024(F)  
Figure 13. OOF Timing (FRAMEN = High)  
25  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Timing Characteristics (continued)  
BOUNDARY DETECTION ENABLED  
OOF  
FRAMEN  
FP  
SEARCH  
1-1025(F)  
Figure 14. FRAMEN Timing  
Wavelength Selection  
When the wavelength select (WS) pin is at a logic low or open circuited, the optical wavelength from the CA16  
transmitter will be a nominal wavelength as determined by the device code purchased. If the WS pin is pulled high  
(logic 1), the optical wavelength will change to the next lower ITU channel number (100 GHz spacing, λ will  
increase approximately 0.8 nm).  
During the wavelength change, the transmitter’s optical output will be disabled and the wavelength deviation error  
alarm will be active until the wavelength has stabilized at its new value. The LSRALM will also be active (logic 1)  
during the wavelength change process.  
26  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Qualification and Reliability  
To help ensure high product reliability and customer satisfaction, Agere Systems Inc. is committed to an intensive  
quality pro-gram that starts in the design phase and proceeds through the manufacturing process. Optoelectronics  
modules are qualified to Agere internal standards using MIL-STD-883 test methods and procedures and using  
sampling techniques consistent with Telcordia Technologies* requirements. This qualification program fully meets  
the intent of Telcordia Technologies reliability practices TR-NWT-000468 andTA-TSY-000983. In addition, the  
Agere Optoelectronics design, development, and manufacturing facility has been certified to be in full compliance  
with the latest ISO 9001 Quality System Standards.  
* Telcordia Technologies is a trademark of Telcordia Technologies, Inc.  
ISO is a registered trademark of The International Organization for Standardization.  
Laser Safety Information  
Class I Laser Product  
All versions of the CA16-type transponders are classified as Class I laser products per FDA/CDRH, 21 CFR 1040  
Laser Safety requirements. The transponders have been registered/certified with the FDA under accession number  
8720009. All versions are classified as Class I laser products per IEC825-1:1993.  
CAUTION: Use of controls, adjustments, and procedures other than those specified herein may result in  
hazardous laser radiation exposure.  
This product complies with 21 CFR 1040.10 and 1040.11.  
8.8 µm single-mode pigtail with connector.  
Wavelength = 1.5 µm.  
Maximum power = 2.0 mW.  
Product is not shipped with power supply.  
Because of size constraints, laser safety labeling is not affixed to the module but is attached to the outside of the  
shipping carton.  
NOTICE  
Unterminated optical connectors can emit laser radiation.  
Do not view with optical instruments.  
Electromagnetic Emissions and Immunity  
The CA16 transponder will be tested against CENELEC EN50 081 part 1 and part 2, FCC 15, Class B limits for  
emissions.  
The CA16 transponder will be tested against CENELEC EN50 082 part 1 immunity requirements.  
IEC is a registered trademark of The International Electrotechnical Commission.  
27  
Agere Systems Inc.  
CA16-Type 2.5 Gbits/sDWDMTransponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Advance Data Sheet  
March 2001  
Outline Diagram  
Dimensions are in inches and (millimeters) (for initial samples; production version will be slightly smaller).  
4.00 (101.6)  
1.02 (25.91)  
0.76 (19.3)  
0.25 (6.4)  
1.65 (41.9)  
3.50 (88.9)  
0.87 (22.1)  
0.29 (7.4)  
0.55 (14.0)  
0.17 (4.3)  
0.015 (0.38)  
0.20 (5.08)  
0.45 (11.4)  
0.30 (7.6)  
0.83 (21.1)  
(3x) M2.5 x 0.45 MOUNTING HOLES  
2 mm MAXIMUM LENGTH INTO PACKAGE  
1.84 (46.7)  
1.70 (43.2)  
0.83 (21.1)  
1.80 (45.7)  
1-1103(F)  
28  
Agere Systems Inc.  
Advance Data Sheet  
March 2001  
CA16-Type 2.5 Gbits/s DWDM Transponder with  
16-Channel 155 Mbits/s Multiplexer/Demultiplexer  
Ordering Information  
ORDER CODE: CA 16–XX–X–XX  
BASIC PART NUMBER  
OPTIONS  
AA = Unspecified  
17—61 = ITU frequency (191.7 THz—196.1 THz)  
STM LEVEL  
16 = STM-16 (SONET OC-48)  
CONNECTOR*  
C = SC  
F = FC  
APPLICATION  
A2 = 1800 ps-nm (100 km)  
B2 = 3000 ps-n (170 km)  
* Other connectors may be made available.  
Table 11. Ordering Information  
Code  
Application  
Connector  
Comcode  
CA16A2CAA  
CA16A2FAA  
CA16A2Cnn  
CA16A2Fnn  
CA16B2CAA  
CA16B2FAA  
CA16B2Cnn  
CA16B2Fnn  
Unspecified wavelength (1800 ps-nm)  
Unspecified wavelength (1800 ps-nm)  
Specified wavelength (1800 ps-nm)  
Specified wavelength (1800 ps-nm)  
Unspecified wavelength (3000 ps-nm)  
Unspecified wavelength (3000 ps-nm)  
Specified wavelength (3000 ps-nm)  
Specified wavelength (3000 ps-nm)  
SC  
FC/PC  
SC  
108701475  
108701483  
FC/PC  
SC  
108701491  
108701509  
FC/PC  
SC  
FC/PC  
† For specific order codes for these products, please contact your local Agere account manager.  
Related Product Information  
Table 12. Related Product Information  
Description  
Document Number  
AP00-017OPTO  
Using the LucentTechnologiesTransponderTest Board Application Note  
29  
Agere Systems Inc.  
For additional information, contact your Agere Systems Account Manager or the following:  
INTERNET:  
http://www.agere.com  
E-MAIL:  
docmaster@agere.com  
N. AMERICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA:  
Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon  
Tel. (852) 3129-2000, FAX (852) 3129-2020  
CHINA: (86) 21-5047-1212 (Shanghai), (86) 10-6522-5566 (Beijing), (86) 755-695-7224 (Shenzhen)  
JAPAN: (81) 3-5421-1600 (Tokyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)  
Tel. (44) 7000 624624, FAX (44) 1344 488 045  
EUROPE:  
Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liabi lity is assumed as a result of their use or application. ST is a  
registered trademark of Agere Systems Inc.  
Copyright © 2001 Agere Systems Inc.  
All Rights Reserved  
Printed in U.S.A.  
March 2001  
DS01-120OPTO (Replaces DS99-352LWP)  

相关型号:

CA16-2

Cascadable Amplifier 10 to 1200 MHz
TE

CA16127

OLGA Assembly
LEDIL

CA16127_18

~11° spot beam beam. Assembly with holder and installation tape.
LEDIL

CA16127_OLGA-S

OLGA Assembly
LEDIL

CA16128

~30° spot beam beam. Assembly with holder and installation tape.
LEDIL

CA16128_18

~30° spot beam beam. Assembly with holder and installation tape.
LEDIL

CA16128_OLGA-M

OLGA Assembly
LEDIL

CA16129

~40° wide beam with flange. Assembly with holder and installation tape.
LEDIL

CA16129_18

~40° wide beam with flange. Assembly with holder and installation tape.
LEDIL

CA16129_OLGA-W

OLGA Assembly
LEDIL

CA16A2CAA

CA16-Type 2.5 Gbits/s DWDM Transponder with 16-Channel 155 Mbits/s Multiplexer/Demultiplexer
AGERE

CA16A2CNN

CA16-Type 2.5 Gbits/s DWDM Transponder with 16-Channel 155 Mbits/s Multiplexer/Demultiplexer
AGERE