OP495GSZ [ADI]

Dual/Quad Rail-to-Rail Operational Amplifiers; 双/四路轨到轨运算放大器
OP495GSZ
型号: OP495GSZ
厂家: ADI    ADI
描述:

Dual/Quad Rail-to-Rail Operational Amplifiers
双/四路轨到轨运算放大器

运算放大器
文件: 总16页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual/Quad Rail-to-Rail  
Operational Amplifiers  
OP295/OP495  
PIN CONFIGURATIONS  
FEATURES  
Rail-to-rail output swing  
Single-supply operation: 3 V to 36 V  
Low offset voltage: 300 μV  
Gain bandwidth product: 75 kHz  
High open-loop gain: 1000 V/mV  
Unity-gain stable  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP295  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 1. 8-Lead Narrow-Body SOIC_N  
(S Suffix)  
Low supply current/per amplifier: 150 μA maximum  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP295  
APPLICATIONS  
Battery-operated instrumentation  
Servo amplifiers  
OUT B  
–IN B  
+IN B  
Actuator drives  
Sensor conditioners  
Power supply control  
Figure 2. 8-Lead PDIP  
(P Suffix)  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
GENERAL DESCRIPTION  
Rail-to-rail output swing combined with dc accuracy are the  
key features of the OP495 quad and OP295 dual CBCMOS  
operational amplifiers. By using a bipolar front end, lower noise  
and higher accuracy than those of CMOS designs have been  
achieved. Both input and output ranges include the negative  
supply, providing the user with zero-in/zero-out capability. For  
users of 3.3 V systems such as lithium batteries, the OP295/OP495  
are specified for 3 V operation.  
OP495  
+IN B  
–IN B  
OUT B  
10 +IN C  
9
8
–IN C  
OUT C  
Figure 3. 14-Lead PDIP  
(P Suffix)  
Maximum offset voltage is specified at 300 μV for 5 V operation,  
and the open-loop gain is a minimum of 1000 V/mV. This yields  
performance that can be used to implement high accuracy systems,  
even in single-supply designs.  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
8
16 OUT D  
15 –IN D  
14 +IN D  
13 V–  
OP495  
TOP VIEW  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
NC  
12 +IN C  
11 –IN C  
10 OUT C  
The ability to swing rail-to-rail and supply 15 mA to the load  
makes the OP295/OP495 ideal drivers for power transistors and  
H bridges. This allows designs to achieve higher efficiencies and  
to transfer more power to the load than previously possible  
without the use of discrete components.  
9
NC  
NC = NO CONNECT  
Figure 4. 16-Lead SOIC_W  
(S Suffix)  
For applications such as transformers that require driving  
inductive loads, increases in efficiency are also possible.  
Stability while driving capacitive loads is another benefit of this  
design over CMOS rail-to-rail amplifiers. This is useful for  
driving coax cable or large FET transistors. The OP295/OP495  
are stable with loads in excess of 300 pF.  
The OP295 and OP495 are specified over the extended indus-  
trial (−40°C to +125°C) temperature range. The OP295 is  
available in 8-lead PDIP and 8-lead SOIC_N surface-mount  
packages. The OP495 is available in 14-lead PDIP and 16-lead  
SOIC_W surface-mount packages.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
OP295/OP495  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Driving Heavy Loads ................................................................. 10  
Direct Access Arrangement ...................................................... 10  
Single-Supply Instrumentation Amplifier .............................. 10  
Single-Supply RTD Thermometer Amplifier ......................... 11  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Applications....................................................................................... 9  
Rail-to-Rail Application Information........................................ 9  
Low Drop-Out Reference............................................................ 9  
Low Noise, Single-Supply Preamplifier..................................... 9  
Cold Junction Compensated, Battery-Powered  
Thermocouple Amplifier .......................................................... 11  
5 V Only, 12-Bit DAC That Swings 0 V to 4.095 V.................... 11  
4 to 20 mA Current-Loop Transmitter.................................... 12  
3 V Low Dropout Linear Voltage Regulator............................. 12  
Low Dropout, 500 mA Voltage Regulator with Foldback  
Current Limiting ........................................................................ 12  
Square Wave Oscillator.............................................................. 13  
Single-Supply Differential Speaker Driver.............................. 13  
High Accuracy, Single-Supply, Low Power Comparator ...... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
5/06—Rev. D to Rev. E  
3/02—Rev. B to Rev. C  
Updated Format..................................................................Universal  
Changes to Features.......................................................................... 1  
Changes to Pin Connections........................................................... 1  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide .......................................................... 15  
Figure changes to Pin Connections ................................................1  
Deleted OP295GBC and OP495GBC from Ordering Guide ......3  
Deleted Wafer Test Limits Table......................................................3  
Changes to Absolute Maximum Ratings........................................4  
Deleted Dice Characteristics............................................................4  
2/04—Rev. C to Rev. D  
Changes to General Description .................................................... 1  
Changes to Specifications................................................................ 2  
Changes to Absolute Maximum Ratings....................................... 4  
Changes to Ordering Guide ............................................................ 4  
Updated Outline Dimensions....................................................... 12  
Rev. E | Page 2 of 16  
 
OP295/OP495  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 5.0 V, VCM = 2.5 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
30  
8
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
300  
800  
20  
30  
3
μA  
μA  
nA  
nA  
nA  
nA  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C  
Input Bias Current  
Input Offset Current  
IOS  
1
5
Input Voltage Range  
VCM  
0
4.0  
V
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
CMRR  
AVO  
0 V ≤ VCM ≤ 4.0 V, −40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, 0.005 ≤ VOUT ≤ 4.0 V  
RL = 10 kΩ, −40°C ≤ TA ≤ +125°C  
90  
1000  
500  
110  
10,000  
dB  
V/mV  
V/mV  
μV/°C  
Offset Voltage Drift  
ΔVOS/ΔT  
VOH  
1
5
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
RL = 100 kΩ to GND  
RL = 10 kΩ to GND  
IOUT = 1 mA, −40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to GND  
RL = 10 kΩ to GND  
4.98  
4.90  
5.0  
4.94  
4.7  
0.7  
0.7  
90  
V
V
V
mV  
mV  
mV  
mA  
Output Voltage Swing Low  
VOL  
2
2
IOUT = 1 mA, −40°C ≤ TA ≤ +125°C  
Output Current  
IOUT  
PSRR  
ISY  
11  
18  
POWER SUPPLY  
Power Supply Rejection Ratio  
1.5 V ≤ VS ≤ 15 V  
1.5 V ≤ VS ≤ 15 V, –40°C ≤ TA ≤ +125°C  
VOUT = 2.5 V, RL = ∞, −40°C ≤ TA ≤ +125°C  
90  
85  
110  
dB  
dB  
μA  
Supply Current per Amplifier  
DYNAMIC PERFORMANCE  
Skew Rate  
150  
SR  
GBP  
θO  
RL = 10 kΩ  
0.03  
75  
86  
V/μs  
kHz  
Degrees  
Gain Bandwidth Product  
Phase Margin  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.5  
51  
<0.1  
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
VS = 3.0 V, VCM = 1.5 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
IOS  
VCM  
100  
8
1
500  
20  
3
μV  
nA  
nA  
V
Input Bias Current  
Input Offset Current  
Input Voltage Range  
0
2.0  
Common-Mode Rejection Ration CMRR  
0 V ≤ VCM ≤ 2.0 V, −40°C ≤ TA ≤ +125°C  
RL = 10 kΩ  
90  
110  
750  
1
dB  
V/mV  
μV/°C  
Large Signal Voltage Gain  
Offset Voltage Drift  
AVO  
∆VOS/∆T  
Rev. E | Page 3 of 16  
 
OP295/OP495  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
Output Voltage Swing Low  
POWER SUPPLY  
VOH  
VOL  
RL = 10 kΩ to GND  
RL = 10 kΩ to GND  
2.9  
V
mV  
0.7  
2
Power Supply Rejection Ratio  
PSRR  
ISY  
1.5 V ≤ VS ≤ 15 V  
1.5 V ≤ VS ≤ 15 V, −40°C ≤ TA ≤ +125°C  
VOUT = 1.5 V, RL = ∞, −40°C ≤ TA ≤ +125°C  
90  
85  
110  
dB  
dB  
μA  
Supply Current per Amplifier  
DYNAMIC PERFORMANCE  
Slew Rate  
150  
SR  
GBP  
θO  
RL = 10 kΩ  
0.03  
75  
85  
V/μs  
kHz  
Degrees  
Gain Bandwidth Product  
Phase Margin  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.6  
53  
<0.1  
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
VS = 15.0 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol Conditions  
VOS  
IB  
Min  
Typ  
300  
7
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
500  
800  
20  
μV  
μV  
nA  
−40°C ≤ TA ≤ +125°C  
VCM = 0 V  
Input Bias Current  
VCM = 0 V, −40°C ≤ TA ≤ +125°C  
VCM = 0 V  
30  
3
nA  
nA  
Input Offset Current  
IOS  
1
VCM = 0 V, −40°C ≤ TA ≤ +125°C  
5
nA  
Input Voltage Range  
VCM  
CMRR  
AVO  
−15  
90  
1000  
+13.5  
V
dB  
V/mV  
μV/°C  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift  
−15.0 V ≤ VCM ≤ +13.5 V, −40°C ≤ TA ≤ +125°C  
RL = 10 kΩ  
110  
4000  
1
ΔVOS/ΔT  
OUTPUT CHARACTERISTICS  
Output Voltage Swing High  
VOH  
RL = 100 kΩ to GND  
RL = 10 kΩ to GND  
RL = 100 kΩ to GND  
RL = 10 kΩ to GND  
14.95  
14.80  
V
V
V
V
Output Voltage Swing Low  
VOL  
−14.95  
−14.85  
Output Current  
IOUT  
15  
25  
mA  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
VS = 1.5 V to 15 V  
VS = 1.5 V to 15 V, −40°C ≤ TA ≤ +125°C  
VO = 0 V, RL = ∞, VS = 18 V, −40°C ≤ TA ≤ +125°C  
90  
85  
110  
dB  
dB  
μA  
V
Supply Current per Amplifier  
Supply Voltage Range  
DYNAMIC PERFORMANCE  
Slew Rate  
ISY  
VS  
175  
36 ( 18)  
3 ( 1.5)  
SR  
GBP  
θO  
RL = 10 kΩ  
0.03  
85  
83  
V/μs  
kHz  
Degrees  
Gain Bandwidth Product  
Phase Margin  
NOISE PERFORMANCE  
Voltage Noise  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
1.25  
45  
<0.1  
μV p-p  
nV/√Hz  
pA/√Hz  
Voltage Noise Density  
Current Noise Density  
Rev. E | Page 4 of 16  
OP295/OP495  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter1  
Rating  
18 V  
Supply Voltage  
Input Voltage  
18 V  
Differential Input Voltage2  
Output Short-Circuit Duration  
Storage Temperature Range  
P, S Package  
Operating Temperature Range  
OP295G, OP495G  
36 V  
Indefinite  
−65°C to +150°C  
–40°C to +125°C  
THERMAL RESISTANCE  
θJA is specified for worst case mounting conditions; that is, θJA  
is specified for device in socket for PDIP; θJA is specified for  
device soldered to printed circuit board for SOIC package.  
Junction Temperature Range  
P, S Package  
Lead Temperature (Soldering, 60 sec)  
–65°C to +150°C  
300°C  
Table 5. Thermal Resistance  
1 Absolute maximum ratings apply to packaged parts, unless otherwise noted.  
2 For supply voltages less than 18 V, the absolute maximum input voltage is  
equal to the supply voltage.  
Package Type  
θJA  
103  
158  
83  
θJC  
43  
43  
39  
30  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead PDIP (P Suffix)  
8-Lead SOIC_N (S Suffix)  
14-Lead PDIP (P Suffix)  
16-Lead SOIC_W (S Suffix)  
98  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. E | Page 5 of 16  
 
 
OP295/OP495  
TYPICAL PERFORMANCE CHARACTERISTICS  
140  
200  
175  
150  
125  
100  
75  
BASED ON 600 OP AMPS  
V
T
= 5V  
= 25°C  
S
A
120  
100  
80  
60  
40  
20  
V = 36V  
S
V
= 5V  
= 3V  
S
S
V
50  
25  
0
–50  
–25  
0
25  
50  
75  
100  
–250 –200 –150 –100 –50  
0
50  
100 150 200 250  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (µV)  
Figure 5. Supply Current Per Amplifier vs. Temperature  
Figure 8. OP295 Input Offset (VOS) Distribution  
15.2  
15.0  
14.8  
14.6  
14.4  
14.2  
250  
225  
200  
175  
150  
125  
100  
75  
BASED ON 600 OP AMPS  
V
= 5V  
V
= ±15V  
R
= 100k  
S
S
L
–40°C T +85°C  
A
R
R
= 10kΩ  
= 2kΩ  
L
L
–14.4  
–14.6  
–14.8  
–15.0  
–15.2  
R
R
R
= 2kΩ  
L
L
L
50  
= 10kΩ  
= 100kΩ  
25  
0
0
0.4  
0.8  
1.2  
1.6  
V (µV/°C)  
OS  
2.0  
2.4  
2.8  
3.2  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
T
C
Figure 9. OP295 TCVOS Distribution  
Figure 6. Output Voltage Swing vs. Temperature  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
V
= 3V  
S
V
= 5V  
S
R
R
= 100kΩ  
= 10kΩ  
R
R
= 100kΩ  
L
L
L
= 10kΩ  
L
R
= 2kΩ  
L
R
= 2kΩ  
L
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Output Voltage Swing vs. Temperature  
Figure 10. Output Voltage Swing vs. Temperature  
Rev. E | Page 6 of 16  
 
OP295/OP495  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
40  
35  
30  
25  
20  
15  
10  
5
BASED ON 1200 OP AMPS  
V
T
= 5V  
= 25°C  
S
SOURCE  
A
SINK  
V
= ±15V  
S
SOURCE  
SINK  
V
= +5V  
S
0
–100  
0
–50  
–50  
0
50  
100  
150  
200  
250  
300  
–25  
0
25  
50  
75  
100  
INPUT OFFSET VOLTAGE (µV)  
TEMPERATURE (°C)  
Figure 11. OP495 Input Offset (VOS) Distribution  
Figure 14. Output Current vs. Temperature  
100  
10  
1
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
BASED ON 1200 OP AMPS  
V
= 5V  
V
V
= ±15V  
= ±10V  
S
S
–40°C T +85°C  
A
O
R
= 100kΩ  
= 10kΩ  
L
R
R
L
= 2kΩ  
L
0
0
0.4  
0.8  
1.2  
1.6  
V (µV/°C)  
OS  
2.0  
2.4  
2.8  
3.2  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
T
C
Figure 15. Open-Loop Gain vs. Temperature  
Figure 12. OP495 TCVOS Distribution  
20  
16  
12  
8
12  
10  
8
V
V
= 5V  
= 4V  
V
= 5V  
S
S
O
R
R
= 100k  
= 10kΩ  
L
6
L
4
R
= 2kΩ  
L
4
2
0
–50  
0
–50  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Open-Loop Gain vs. Temperature  
Figure 13. Input Bias Current vs. Temperature  
Rev. E | Page 7 of 16  
OP295/OP495  
V
T
= 5V  
= 25°C  
S
A
1V  
100mV  
10mV  
1mV  
SOURCE  
SINK  
100µV  
1µA  
10µA  
100µA  
1mA  
10mA  
LOAD CURRENT  
Figure 17. Output Voltage to Supply Rail vs. Load Current  
Rev. E | Page 8 of 16  
OP295/OP495  
APPLICATIONS  
R5 and R6 set the gain of 1000, making this circuit ideal for  
maximizing dynamic range when amplifying low level signals in  
single-supply applications. The OP295/OP495 provide rail-to-  
rail output swings, allowing this circuit to operate with 0 V to  
5 V outputs. Only half of the OP295/OP495 is used, leaving the  
other uncommitted op amp for use elsewhere.  
RAIL-TO-RAIL APPLICATION INFORMATION  
The OP295/OP495 have a wide common-mode input range  
extending from ground to within about 800 mV of the positive  
supply. There is a tendency to use the OP295/OP495 in buffer  
applications where the input voltage could exceed the common-  
mode input range. This can initially appear to work because of  
the high input range and rail-to-rail output range. But above the  
common-mode input range, the amplifier is, of course, highly  
nonlinear. For this reason, there must be some minimal amount  
of gain when rail-to-rail output swing is desired. Based on the  
input common-mode range, this gain should be at least 1.2.  
0.1µF  
LED  
R1  
10µF  
+
Q2  
2N3906  
3
1
5
7
R6  
V
IN  
10  
2
6
LOW DROP-OUT REFERENCE  
Q1 MAT03 Q2  
The OP295/OP495 can be used to gain up a 2.5 V or other low  
voltage reference to 4.5 V for use with high resolution ADCs  
that operate from 5 V only supplies. The circuit in Figure 18  
supplies up to 10 mA. Its no-load drop-out voltage is only  
20 mV. This circuit supplies over 3.5 mA with a 5 V supply.  
C2  
10µF  
R5  
10kΩ  
2
3
+
8
4
V
OUT  
R7  
510Ω  
1
OP295/OP495  
C1  
1500pF  
R2  
27kΩ  
R3  
R4  
R8  
100Ω  
16k  
0.001µF  
5V  
5V  
Figure 19. Low Noise Single-Supply Preamplifier  
20kΩ  
+
V
= 4.5V  
The input noise is controlled by the MAT03 transistor pair and  
the collector current level. Increasing the collector current  
reduces the voltage noise. This particular circuit was tested with  
1.85 mA and 0.5 mA of current. Under these two cases, the  
input voltage noise was 3.1 nV/√Hz and 10 nV/√Hz, respectively.  
The high collector currents do lead to a tradeoff in supply  
current, bias current, and current noise. All of these parameters  
increase with increasing collector current. For example,  
typically the MAT03 has an hFE = 165. This leads to bias  
currents of 11 μA and 3 μA, respectively. Based on the high bias  
currents, this circuit is best suited for applications with low  
source impedance such as magnetic pickups or low impedance  
strain gauges. Furthermore, a high source impedance degrades  
the noise performance. For example, a 1 kΩ resistor generates  
4 nV/√Hz of broadband noise, which is already greater than the  
noise of the preamp.  
OUT  
10Ω  
2
REF43  
4
+
6
1µF TO  
10µF  
1/2  
OP295/OP495  
Figure 18. 4.5 V, Low Drop-Out Reference  
LOW NOISE, SINGLE-SUPPLY PREAMPLIFIER  
Most single-supply op amps are designed to draw low supply  
current at the expense of having higher voltage noise. This tradeoff  
may be necessary because the system must be powered by a  
battery. However, this condition is worsened because all circuit  
resistances tend to be higher; as a result, in addition to the op  
amp’s voltage noise, Johnson noise (resistor thermal noise) is  
also a significant contributor to the total noise of the system.  
The choice of monolithic op amps that combine the character-  
istics of low noise and single-supply operation is rather limited.  
Most single-supply op amps have noise on the order of 30 nV/√Hz  
to 60 nV/√Hz, and single-supply amplifiers with noise below  
5 nV/√Hz do not exist.  
The collector current is set by R1 in combination with the LED  
and Q2. The LED is a 1.6 V Zener diode that has a temperature  
coefficient close to that of the Q2 base-emitter junction, which  
provides a constant 1.0 V drop across R1. With R1 equal to  
270 Ω, the tail current is 3.7 mA and the collector current is half  
that, or 1.85 mA. The value of R1 can be altered to adjust the  
collector current. When R1 is changed, R3 and R4 should also  
be adjusted. To maintain a common-mode input range that  
includes ground, the collectors of the Q1 and Q2 should not go  
above 0.5 V; otherwise, they could saturate. Thus, R3 and R4  
must be small enough to prevent this condition. Their values  
and the overall performance for two different values of R1 are  
summarized in Table 6.  
To achieve both low noise and low supply voltage operation,  
discrete designs may provide the best solution. The circuit in  
Figure 19 uses the OP295/OP495 rail-to-rail amplifier and a  
matched PNP transistor pair—the MAT03—to achieve zero-  
in/zero-out single-supply operation with an input voltage noise  
of 3.1 nV/√Hz at 100 Hz.  
Rev. E | Page 9 of 16  
 
 
 
OP295/OP495  
Finally, the potentiometer, R8, is needed to adjust the offset  
voltage to null it to zero. Similar performance can be obtained  
using an OP90 as the output amplifier with a savings of about  
185 ꢀA of supply current. However, the output swing does not  
include the positive rail, and the bandwidth reduces to approxi-  
mately 250 Hz.  
100  
90  
Table 6. Single-Supply Low Noise Preamp Performance  
IC = 1.85 mA  
IC = 0.5 mA  
10  
R1  
270 Ω  
1.0 kΩ  
0%  
R3, R4  
200 Ω  
910 Ω  
1ms  
2V  
2V  
en @ 100 Hz  
en @ 10 Hz  
ISY  
3.15 nV/√Hz  
4.2 nV/√Hz  
4.0 mA  
11 ꢀA  
1 kHz  
1000  
8.6 nV/√Hz  
10.2 nV/√Hz  
1.3 mA  
3 μA  
1 kHz  
1000  
Figure 21. H Bridge Outputs  
IB  
DIRECT ACCESS ARRANGEMENT  
Bandwidth  
Closed-Loop Gain  
The OP295/OP495 can be used in a single-supply direct access  
arrangement (DAA), as shown in Figure 22. This figure shows  
a portion of a typical DM capable of operating from a single 5 V  
supply, and it may also work on 3 V supplies with minor modi-  
fications. Amplifier A2 and Amplifier A3 are configured so that  
the transmit signal, TxA, is inverted by A2 and is not inverted  
by A3. This arrangement drives the transformer differentially so  
the drive to the transformer is effectively doubled over a single  
amplifier arrangement. This application takes advantage of the  
ability of the OP295/OP495 to drive capacitive loads and to save  
power in single-supply applications.  
DRIVING HEAVY LOADS  
The OP295/OP495 are well suited to drive loads by using a  
power transistor, Darlington, or FET to increase the current to  
the load. The ability to swing to either rail can assure that the  
device is turned on hard. This results in more power to the load  
and an increase in efficiency over using standard op amps with  
their limited output swing. Driving power FETs is also possible  
with the OP295/OP495 because of their ability to drive capaci-  
tive loads of several hundred picofarads without oscillating.  
390pF  
Without the addition of external transistors, the OP295/OP495  
can drive loads in excess of 15 mA with 15 V or +30 V  
supplies. This drive capability is somewhat decreased at lower  
supply voltages. At 5 V supplies, the drive current is 11 mA.  
37.4kΩ  
OP295/  
OP495 20kΩ  
0.1µF  
A1  
+
RxA  
0.0047µF  
Driving motors or actuators in two directions in a single-supply  
application is often accomplished using an H bridge. The  
principle is demonstrated in Figure 20. From a single 5 V  
supply, this driver is capable of driving loads from 0.8 V to  
4.2 V in both directions. Figure 21 shows the voltages at the  
inverting and noninverting outputs of the driver. There is a  
small crossover glitch that is frequency-dependent; it does not  
cause problems unless used in low distortion applications, such  
as audio. If this is used to drive inductive loads, diode clamps  
should be added to protect the bridge from inductive kickback.  
3.3kΩ  
20kΩ  
+
475Ω  
A2  
OP295/  
OP495  
22.1kΩ  
0.1µF  
750pF  
20kΩ  
TxA  
1:1  
0.033µF  
20kΩ  
20kΩ  
OP295/  
OP495  
5V  
A3  
+
2.5V REF  
2N2222  
2N2222  
Figure 22. Direct Access Arrangement  
10kΩ  
OUTPUTS  
2N2907  
SINGLE-SUPPLY INSTRUMENTATION AMPLIFIER  
0 V 2.5V  
IN  
5kΩ  
The OP295/OP495 can be configured as a single-supply  
instrumentation amplifier, as shown in Figure 23. For this  
example, VREF is set equal to V+/2, and VO is measured with  
respect to VREF. The input common-mode voltage range  
includes ground, and the output swings to both rails.  
+
1.67V  
2N2907  
10k10kΩ  
+
Figure 20. H Bridge  
Rev. E | Page 10 of 16  
 
 
 
 
 
OP295/OP495  
1/2  
V+  
8
COLD JUNCTION COMPENSATED, BATTERY-  
POWERED THERMOCOUPLE AMPLIFIER  
OP295/  
OP495  
5
6
+
+
V
7
O
1/2  
V
The 150 μA quiescent current per amplifier consumption of the  
OP295/OP495 makes them useful for battery-powered temperature  
measuring instruments. The K-type thermocouple terminates  
into an isothermal block where the terminated junctions’ ambient  
temperatures can be continuously monitored and corrected by  
summing an equal but opposite thermal EMF to the amplifier,  
thereby canceling the error introduced by the cold junctions.  
IN  
4
OP295/  
OP495  
3
2
+
1
R1  
100kΩ  
R2  
20kΩ  
R3  
R4  
100kΩ  
20kΩ  
V
REF  
R
G
24.9k  
1.235V  
200kΩ  
AD589  
V
=
5 +  
V
IN  
)
+ V  
REF  
+
O
(
R
9V  
G
SCALE  
ADJUST  
ISOTHERMAL  
BLOCK  
1N914  
Figure 23. Single-Supply Instrumentation Amplifier  
7.15kΩ  
1%  
24.3kΩ  
1%  
20kΩ  
1.5MΩ  
24.9kΩ  
4.99kΩ  
Resistor RG sets the gain of the instrumentation amplifier.  
Minimum gain is 6 (with no RG). All resistors should be matched  
in absolute value as well as temperature coefficient to maximize  
common-mode rejection performance and minimize drift. This  
instrumentation amplifier can operate from a supply voltage as  
low as 3 V.  
1.33MΩ  
ALUMEL  
1%  
1%  
1%  
8
4
2
AL  
COLD  
JUNCTIONS  
500Ω  
10-TURN  
1
V
O
3
+
OP295/  
OP495  
+
ZERO  
ADJUST  
CR  
5V = 500°C  
0V = 0°C  
CHROMEL  
475Ω  
1%  
2.1kΩ  
1%  
K-TYPE  
THERMOCOUPLE  
40.7µV/°C  
Figure 25. Battery-Powered, Cold-Junction Compensated Thermocouple  
Amplifier  
SINGLE-SUPPLY RTD THERMOMETER AMPLIFIER  
This RTD amplifier takes advantage of the rail-to-rail swing of  
the OP295/OP495 to achieve a high bridge voltage in spite of a  
low 5 V supply. The OP295/OP495 amplifier servos a constant  
200 ꢀA current to the bridge. The return current drops across  
the parallel resistors 6.19 kΩ and 2.55 Mꢁ, developing a voltage  
that is servoed to 1.235 V, which is established by the AD589  
band gap reference. The 3-wire RTD provides an equal line  
resistance drop in both 100 ꢁ legs of the bridge, thus improving  
the accuracy.  
To calibrate, immerse the thermocouple measuring junction in  
a 0°C ice bath and adjust the 500 Ω zero-adjust potentiometer  
to 0 V out. Then immerse the thermocouple in a 250°C tem-  
perature bath or oven and adjust the scale-adjust potentiometer  
for an output voltage of 2.50 V, which is equivalent to 250°C.  
Within this temperature range, the K-type thermocouple is  
quite accurate and produces a fairly linear transfer characteristic.  
Accuracy of 3°C is achievable without linearization.  
Even if the battery voltage is allowed to decay to as low as 7 V,  
the rail-to-rail swing allows temperature measurements to 700°C.  
However, linearization may be necessary for temperatures above  
250°C, where the thermocouple becomes rather nonlinear. The  
circuit draws just under 500 ꢀA supply current from a 9 V  
battery.  
The AMP04 amplifies the differential bridge signal and converts  
it to a single-ended output. The gain is set by the series resis-  
tance of the 332 ꢁ resistor plus the 50 ꢁ potentiometer. The  
gain scales the output to produce a 4.5 V full scale. The 0.22 ꢀF  
capacitor to the output provides a 7 Hz low-pass filter to keep  
noise at a minimum.  
5 V ONLY, 12-BIT DAC THAT SWINGS 0 V TO 4.095 V  
ZERO ADJ  
50Ω  
200Ω  
Figure 26 shows a complete voltage output DAC with wide  
output voltage swing operating off a single 5 V supply. The  
serial input, 12-bit DAC is configured as a voltage output device  
10-TURNS  
5V  
7
332Ω  
26.7kΩ  
0.5%  
26.7kΩ  
0.5%  
1
3
2
0.22µF  
6
+
8
with the 1.235 V reference feeding the current output pin (IOUT  
)
V
AMP04  
O
100Ω  
RTD  
5
of the DAC. The VREF, which is normally the input, now becomes  
the output.  
1/2  
4
1
100Ω  
0.5%  
4.5V = 450°C  
0V = 0°C  
OP295/  
OP495  
2
+
3
The output voltage from the DAC is the binary weighted voltage  
of the reference, which is gained up by the output amplifier such  
that the DAC has a 1 mV per bit transfer function.  
1.235  
5V  
37.4kΩ  
2.55MΩ  
6.19kΩ  
1%  
1%  
AD589  
Figure 24. Low Power RTD Amplifier  
Rev. E | Page 11 of 16  
 
 
OP295/OP495  
5V  
5V  
I
< 50mA  
+
L
8
MJE 350  
5V  
8
V
R1  
O
2
1
V
DD  
R
FB  
17.8kΩ  
+
44.2kΩ  
D
V
100µF  
IN  
5V TO 3.2V  
1%  
V
=
(4.096V)  
O
3
I
3
2
V
+
4096  
REF  
1.23V  
8
4
DAC8043  
OUT  
3
2
+
1
30.9kΩ  
1%  
1
4
GND CLK SRI LD  
OP295/  
OP495  
AD589  
4
7
6
5
1/2  
OP295/  
OP495  
1000pF  
R4  
100kΩ  
R2  
41.2kΩ  
1.235V  
DIGITAL  
CONTROL  
R3  
5kΩ  
43kΩ  
AD589  
TOTAL POWER DISSIPATION = 1.6mW  
Figure 28. 3 V Low Dropout Voltage Regulator  
Figure 26. A 5 V 12-Bit DAC with 0 V to 4.095 Output Swing  
Figure 29 shows the regulators recovery characteristic when its  
output underwent a 20 mA to 50 mA step current change.  
4 TO 20 mA CURRENT-LOOP TRANSMITTER  
Figure 27 shows a self-powered 4 to 20 mA current-loop  
transmitter. The entire circuit floats up from the single-supply  
(12 V to 36 V) return. The supply current carries the signal  
within the 4 to 20 mA range. Thus, the 4 mA establishes the  
baseline current budget within which the circuit must operate.  
This circuit consumes only 1.4 mA maximum quiescent  
current, making 2.6 mA of current available to power additional  
signal conditioning circuitry or to power a bridge circuit.  
2V  
100  
50mA  
90  
STEP  
CURRENT  
CONTROL  
WAVEFORM  
20mA  
NULL ADJ  
REF02  
6
2
OUTPUT  
10  
+
GND  
4
100k  
10-TURN  
SPAN ADJ  
0%  
5V  
20mV  
1ms  
1.21MΩ  
10kΩ  
10-TURN  
100Ω  
1%  
V
8
4
IN  
0V + 3V  
3
2
+
12V  
TO  
36V  
220Ω  
182kΩ  
1%  
Figure 29. Output Step Load Current Recovery  
1
2N1711  
1/2  
OP295/  
OP495  
LOW DROPOUT, 500 mA VOLTAGE REGULATOR  
WITH FOLDBACK CURRENT LIMITING  
4mA  
TO  
20mA  
R
100Ω  
L
220pF  
Adding a second amplifier in the regulation loop, as shown in  
Figure 30, provides an output current monitor as well as  
foldback current limiting protection.  
100Ω  
1%  
100kΩ  
HP  
5082-2800  
1%  
Figure 27. 4 to 20 mA Current Loop Transmitter  
I
I
(NORM) = 0.5A  
(MAX) = 1A  
O
O
RSENSE  
0.1Ω  
1/4W  
3 V LOW DROPOUT LINEAR VOLTAGE REGULATOR  
IRF9531  
S
D
5V V  
O
Figure 28 shows a simple 3 V voltage regulator design. The  
regulator can deliver 50 mA load current while allowing a  
0.2 V dropout voltage. The OP295/OP495 rail-to-rail output  
swing drives the MJE350 pass transistor without requiring  
special drive circuitry. At no load, its output can swing less than  
the pass transistors base-emitter voltage, turning the device  
nearly off. At full load, and at low emitter-collector voltages, the  
transistor beta tends to decrease. The additional base current is  
easily handled by the OP295/OP495 output.  
+
6V  
210kΩ  
205kΩ  
G
1%  
1%  
8
5
6
+
1N4148  
A2  
7
1/2  
45.3kΩ  
1%  
45.3kΩ  
1%  
OP295/  
OP495  
100kΩ  
5%  
0.01µF  
3
2
+
124kΩ  
1%  
124kΩ  
1%  
A1  
1
1/2  
OP295/  
OP495  
4
The amplifier servos the output to a constant voltage, which  
feeds a portion of the signal to the error amplifier.  
2.5V  
REF43  
2
6
4
Higher output current, to 100 mA, is achievable at a higher  
dropout voltage of 3.8 V.  
Figure 30. Low Dropout, 500 mA Voltage Regulator  
with Foldback Current Limiting  
Rev. E | Page 12 of 16  
 
 
 
 
 
 
OP295/OP495  
V+  
Amplifier A1 provides error amplification for the normal  
voltage regulation loop. As long as the output current is less  
than 1 A, the output of Amplifier A2 swings to ground, reverse-  
biasing the diode and effectively taking itself out of the circuit.  
However, as the output current exceeds 1 A, the voltage that  
develops across the 0.1 ꢁ sense resistor forces the output of  
Amplifier A2 to go high, forward-biasing the diode, which in  
turn closes the current-limit loop. At this point, the A2s lower  
output resistance dominates the drive to the power MOSFET  
transistor, thereby effectively removing the A1 voltage regula-  
tion loop from the circuit.  
100k  
58.7kΩ  
8
4
3
2
+
1
FREQ OUT  
1/2  
OP295/  
OP495  
1
F
=
< 350Hz @ V+ = 5V  
OSC  
100kΩ  
RC  
+
R
C
Figure 31. Square Wave Oscillator Has Stable Frequency Regardless of  
Supply Changes  
If the output current greater than 1 A persists, the current limit  
loop forces a reduction of current to the load, which causes a  
corresponding drop in output voltage. As the output voltage  
drops, the current-limit threshold also drops fractionally,  
resulting in a decreasing output current as the output voltage  
decreases, to the limit of less than 0.2 A at 1 V output. This fold-  
back effect reduces the power dissipation considerably during a  
short circuit condition, thus making the power supply far more  
forgiving in terms of the thermal design requirements. Small  
heat sinking on the power MOSFET can be tolerated.  
90.9kΩ  
10kΩ  
10kΩ  
V+  
2.2µF  
+
+
1/4  
OP295/  
OP495  
V
+
IN  
100kΩ  
SPEAKER  
+
+
1/4  
1/4  
OP295/  
OP495  
OP295/  
OP495  
20kΩ  
20kΩ  
V+  
The rail-to-rail swing of the OP295 exacts higher gate drive to  
the power MOSFET, providing a fuller enhancement to the tran-  
sistor. The regulator exhibits 0.2 V dropout at 500 mA of load  
current. At 1 A output, the dropout voltage is typically 5.6 V.  
Figure 32. Single-Supply Differential Speaker Driver  
HIGH ACCURACY, SINGLE-SUPPLY, LOW POWER  
COMPARATOR  
SQUARE WAVE OSCILLATOR  
The OP295/OP495 make accurate open-loop comparators.  
With a single 5 V supply, the offset error is less than 300 ꢀV.  
Figure 33 shows the response time of the OP295/OP495 when  
operating open-loop with 4 mV overdrive. They exhibit a 4 ms  
response time at the rising edge and a 1.5 ms response time at  
the falling edge.  
The circuit in Figure 31 is a square wave oscillator (note the  
positive feedback). The rail-to-rail swing of the OP295/OP495  
helps maintain a constant oscillation frequency even if the supply  
voltage varies considerably. Consider a battery-powered system  
where the voltages are not regulated and drop over time. The  
rail-to-rail swing ensures that the noninverting input sees the  
full V+/2, rather than only a fraction of it.  
1V  
100  
The constant frequency comes from the fact that the 58.7 kꢁ  
feedback sets up Schmitt trigger threshold levels that are directly  
proportional to the supply voltage, as are the RC charge voltage  
levels. As a result, the RC charge time, and therefore, the frequency,  
remain constant independent of supply voltage. The slew rate of  
the amplifier limits oscillation frequency to a maximum of about  
800 Hz at a 5 V supply.  
90  
INPUT  
(5mV OVERDRIVE  
@ OP295 INPUT)  
OUTPUT  
10  
SINGLE-SUPPLY DIFFERENTIAL SPEAKER DRIVER  
0%  
2V  
5ms  
Connected as a differential speaker driver, the OP295/OP495  
can deliver a minimum of 10 mA to the load. With a 600 ꢁ load,  
the OP295/OP495 can swing close to 5 V p-p across the load.  
Figure 33. Open-Loop Comparator Response Time with 5 mV Overdrive  
Rev. E | Page 13 of 16  
 
 
 
OP295/OP495  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
1
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-BA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 34. 8-Lead Plastic Dual In-Line Package [PDIP]  
(N-8) P Suffix  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 35. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8) S Suffix  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 14 of 16  
 
OP295/OP495  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
PIN 1  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210  
(5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001-AA  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 36. 14-Lead Plastic Dual In-Line Package [PDIP]  
(N-14) P Suffix  
Dimensions shown in inches and (millimeters)  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.27 (0.0500)  
0.75 (0.0295)  
0.25 (0.0098)  
2.65 (0.1043)  
2.35 (0.0925)  
BSC  
×
45°  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 37. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16) S Suffix  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 15 of 16  
OP295/OP495  
ORDERING GUIDE  
Model  
OP295GP  
OP295GPZ1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
P-Suffix (N-8)  
P-Suffix (N-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
OP295GS  
OP295GS-REEL  
OP295GS-REEL7  
OP295GSZ1  
OP295GSZ-REEL1  
OP295GSZ-REEL71  
OP495GP  
OP495GPZ1  
OP495GS  
OP495GS-REEL  
OP495GSZ1  
OP495GSZ-REEL1  
14-Lead Plastic DIP  
14-Lead Plastic DIP  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
16-Lead SOIC_W  
P-Suffix (N-14)  
P-Suffix (N-14)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
S-Suffix (RW-16)  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C00331-0-5/06(E)  
Rev. E | Page 16 of 16  
 
 
 

相关型号:

OP495GSZ-REEL

Dual/Quad Rail-to-Rail Operational Amplifiers
ADI

OP496

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP496GBC

IC QUAD OP-AMP, 300 uV OFFSET-MAX, 0.35 MHz BAND WIDTH, UUC14, 0.062 X 0.092 INCH, DIE-14, Operational Amplifier
ADI

OP496GP

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP496GRU

Voltage-Feedback Operational Amplifier
ETC

OP496GS

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP496GS-REEL

Micropower RRIO Operational Amplifiers
ADI

OP496GS-REEL7

Micropower RRIO Operational Amplifiers
ADI

OP496GSZ

Micropower RRIO Operational Amplifiers
ADI

OP496GSZ-REEL

Micropower RRIO Operational Amplifiers
ADI

OP496GSZ-REEL7

Micropower RRIO Operational Amplifiers
ADI

OP496HRU

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
ADI