OP196GP [ADI]

Micropower, Rail-to-Rail Input and Output Operational Amplifiers; 微功耗,轨到轨输入和输出运算放大器
OP196GP
型号: OP196GP
厂家: ADI    ADI
描述:

Micropower, Rail-to-Rail Input and Output Operational Amplifiers
微功耗,轨到轨输入和输出运算放大器

运算放大器 放大器电路 光电二极管 信息通信管理
文件: 总16页 (文件大小:340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower, Rail-to-Rail Input and Output  
Operational Amplifiers  
a
OP196/OP296/OP496  
FEATURES  
P IN CO NFIGURATIO NS  
Rail-to-Rail Input and Output Sw ing  
Low Pow er: 60 A/ Am plifier  
Gain Bandw idth Product: 450 kHz  
Single-Supply Operation: +3 V to +12 V  
Low Offset Voltage: 300 V m ax  
High Open-Loop Gain: 500 V/ m V  
Unity-Gain Stable  
8-Lead Narrow-Body SO  
8-Lead P lastic D IP  
NULL  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
NC  
NC  
1
2
3
4
8
7
6
5
NULL  
–IN A  
+IN A  
V–  
OP196  
V+  
OP196  
V+  
OUT A  
NULL  
OUT A  
NULL  
NC = NO CONNECT  
No Phase Reversal  
NC = NO CONNECT  
APPLICATIONS  
Battery Monitoring  
Sensor Conditioners  
Portable Pow er Supply Control  
Portable Instrum entation  
8-Lead Narrow-Body SO  
8-Lead P lastic D IP  
1
2
3
4
8
7
6
5
V+  
OUT A  
–IN A  
+IN A  
V–  
V+  
1
2
3
4
8
7
6
5
OUT A  
–IN A  
+IN A  
V–  
OP296  
OUT B  
–IN B  
+IN B  
OP296  
OUT B  
–IN B  
+IN B  
GENERAL D ESCRIP TIO N  
T he OP196 family of CBCMOS operational amplifiers features  
micropower operation and rail-to-rail input and output ranges.  
T he extremely low power requirements and guaranteed opera-  
tion from +3 V to +12 V make these amplifiers perfectly suited  
to monitor battery usage and to control battery charging. T heir  
dynamic performance, including 26 nV/Hz voltage noise  
density, recommends them for battery-powered audio applica-  
tions. Capacitive loads to 200 pF are handled without oscillation.  
8-Lead TSSO P  
1
8
V+  
OUT A  
–IN A  
+IN A  
V–  
OUT B  
–IN B  
+IN B  
OP296  
4
5
T he OP196/OP296/OP496 are specified over the HOT extended  
industrial (–40°C to +125°C) temperature range. +3 V opera-  
tion is specified over the 0°C to +125°C temperature range.  
14-Lead Narrow-Body SO  
14-Lead P lastic D IP  
T he single OP196 and the dual OP296 are available in 8-lead  
plastic DIP and SO-8 surface mount packages. T he quad  
OP496 is available in 14-lead plastic DIP and narrow SO-14  
surface mount packages.  
OUT A  
–IN A  
+IN A  
+V  
1
2
3
4
5
6
7
14  
OUT D  
1
2
3
4
5
6
7
14  
13  
12  
OUT A  
–IN A  
+IN A  
+V  
OUT D  
13 –IN D  
12 +IN D  
11 V–  
–IN D  
+IN D  
OP496  
10  
9
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
11 V–  
OP496  
10 +IN C  
+IN B  
–IN B  
OUT B  
8
9
8
–IN C  
OUT C  
14-Lead TSSO P  
(RU Suffix)  
1
14  
OUT A  
–IN A  
+IN A  
V+  
+IN B  
–IN B  
OUT B  
OUT D  
–IN D  
+IN D  
V–  
+IN C  
–IN C  
OUT C  
OP496  
7
8
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
Fax: 781/ 326-8703  
World Wide Web Site: http:/ / w w w .analog.com  
© Analog Devices, Inc., 1998  
OP196/OP296/OP496–SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS (@ V = +5.0 V, V = +2.5 V, T = +25؇C unless otherwise noted)  
S
CM  
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP196G, OP296G, OP496G  
–40°C TA +125°C  
OP296H, OP496H  
–40°C TA +125°C  
–40°C TA +125°C  
35  
300  
650  
800  
1.2  
±50  
±8  
µV  
µV  
µV  
mV  
nA  
nA  
nA  
V
Input Bias Current  
Input Offset Current  
IB  
IOS  
±10  
±1.5  
–40°C TA +125°C  
±20  
+5.0  
Input Voltage Range  
VCM  
0
Common-Mode Rejection Ratio  
CMRR  
0 V VCM 5.0 V,  
–40°C TA +125°C  
RL = 100 k,  
65  
dB  
Large Signal Voltage Gain  
AVO  
0.30 V VOUT 4.7 V,  
–40°C TA +125°C  
G Grade, Note 1  
H Grade, Note 1  
G Grade, Note 2  
150  
200  
V/mV  
µV  
mV  
µV/°C  
µV/°C  
Long-T erm Offset Voltage  
Offset Voltage Drift  
VOS  
550  
1
VOS/T  
1.5  
2
H Grade, Note 2  
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
VOL  
IOUT  
IL = –100 µA  
IL = 1 mA  
IL = 2 mA  
IL = –1 mA  
IL = –1 mA  
IL = –2 mA  
4.85  
4.30  
4.92  
4.56  
4.1  
V
V
V
mV  
mV  
mV  
mA  
Output Voltage Swing Low  
Output Current  
36  
70  
550  
350  
750  
±4  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
±2.5 V VS ≤ ±6 V,  
–40°C TA +125°C  
85  
dB  
µA  
µA  
Supply Current per Amplifier  
VOUT = 2.5 V, RL  
=
60  
80  
–40°C TA +125°C  
45  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
øm  
RL = 100 kΩ  
0.3  
350  
47  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.8  
26  
0.19  
µV p-p  
nV/Hz  
pA/Hz  
NOT ES  
1Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LT PD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
REV. B  
–2–  
OP196/OP296/OP496  
ELECTRICAL SPECIFICATIONS (@ V = +3.0 V, V = +1.5 V, T = +25؇C unless otherwise noted)  
S
CM  
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP196G, OP296G, OP496G  
0°C T A +125°C  
OP296H, OP496H  
35  
300  
650  
800  
1.2  
±50  
±8  
µV  
µV  
µV  
mV  
nA  
nA  
V
0°C T A +125°C  
Input Bias Current  
Input Offset Current  
Input Voltage Range  
Common-Mode Rejection Ratio  
IB  
IOS  
VCM  
CMRR  
±10  
±1  
0
+3.0  
0 V VCM 3.0 V,  
0°C T A +125°C  
RL = 100 kΩ  
G Grade, Note 1  
H Grade, Note 1  
G Grade, Note 2  
H Grade, Note 2  
60  
80  
dB  
V/mV  
µV  
mV  
µV/°C  
µV/°C  
Large Signal Voltage Gain  
Long-T erm Offset Voltage  
AVO  
VOS  
200  
550  
1
Offset Voltage Drift  
VOS/T  
1.5  
2
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
Output Voltage Swing Low  
VOH  
VOL  
IL = 100 µA  
IL = –100 µA  
2.85  
V
mV  
70  
POWER SUPPLY  
Supply Current per Amplifier  
ISY  
VOUT = 1.5 V, RL  
0°C T A +125°C  
=
40  
60  
80  
µA  
µA  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
øm  
RL = 100 kΩ  
0.25  
350  
45  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.8  
26  
0.19  
µV p-p  
nV/Hz  
pA/Hz  
NOT ES  
1Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LT PD of 1.3.  
2Offset voltage drift is the average of the 0°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
REV. B  
–3–  
OP196/OP296/OP496  
(@ V = +12.0 V, V = +6 V, T = +25؇C unless otherwise noted)  
ELECTRICAL SPECIFICATIONS  
S
CM  
A
P aram eter  
Sym bol  
Conditions  
Min  
Typ  
Max  
Units  
INPUT CHARACT ERIST ICS  
Offset Voltage  
VOS  
OP196G, OP296G, OP496G  
0°C T A +125°C  
OP296H, OP496H  
0°C T A +125°C  
–40°C TA +125°C  
35  
300  
650  
800  
1.2  
±50  
±8  
µV  
µV  
µV  
mV  
nA  
nA  
nA  
V
Input Bias Current  
Input Offset Current  
IB  
IOS  
±10  
±1  
–40°C TA +125°C  
±15  
+12  
Input Voltage Range  
VCM  
0
Common-Mode Rejection Ratio  
CMRR  
0 V VCM +12 V,  
–40°C TA +125°C  
RL = 100 kΩ  
G Grade, Note 1  
H Grade, Note 1  
G Grade, Note 2  
H Grade, Note 2  
65  
dB  
Large Signal Voltage Gain  
Long-T erm Offset Voltage  
AVO  
VOS  
300  
1000  
V/mV  
µV  
mV  
550  
1
Offset Voltage Drift  
VOS/T  
1.5  
2
µV/°C  
µV/°C  
OUT PUT CHARACT ERIST ICS  
Output Voltage Swing High  
VOH  
VOL  
IOUT  
IL = 100 µA  
IL = 1 mA  
IL = –1 mA  
IL = –1 mA  
11.85  
11.30  
V
V
mV  
mV  
mA  
Output Voltage Swing Low  
Output Current  
70  
550  
±4  
POWER SUPPLY  
Supply Current per Amplifier  
ISY  
VS  
VOUT = 6 V, RL  
–40°C TA +125°C  
=
60  
80  
+12  
µA  
µA  
V
Supply Voltage Range  
+3  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Phase Margin  
SR  
GBP  
øm  
RL = 100 kΩ  
0.3  
450  
50  
V/µs  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
f = 1 kHz  
0.8  
26  
0.19  
µV p-p  
nV/Hz  
pA/Hz  
NOT ES  
1Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LT PD of 1.3.  
2Offset voltage drift is the average of the –40°C to +25°C delta and the +25°C to +125°C delta.  
Specifications subject to change without notice.  
–4–  
REV. B  
OP196/OP296/OP496  
ABSO LUTE MAXIMUM RATINGS1  
O RD ERING GUID E  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+15 V  
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15 V  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . +15 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . . Indefinite  
Storage T emperature Range  
P, S, RU Package . . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Operating T emperature Range  
OP196G, OP296G, OP496G, H . . . . . . . –40°C to +125°C  
Junction T emperature Range  
Tem perature  
Range  
P ackage  
D escription  
P ackage  
O ption  
Model  
OP196GP  
OP196GS  
–40°C to +125°C  
–40°C to +125°C  
8-Lead Plastic DIP N-8  
8-Lead SOIC SO-8  
OP296GP  
OP296GS  
–40°C to +125°C  
–40°C to +125°C  
OP296HRU –40°C to +125°C  
8-Lead Plastic DIP N-8  
8-Lead SOIC  
8-Lead T SSOP  
SO-8  
RU-8  
P, S, RU Package . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature Range (Soldering, 60 sec) . . . . . . . +300°C  
OP496GP  
OP496GS  
OP496HRU –40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
14-Lead Plastic DIP N-14  
14-Lead SOIC  
SO-14  
RU-14  
14-Lead T SSOP  
3
P ackage Type  
Units  
JA  
JC  
8-Lead Plastic DIP  
8-Lead SOIC  
8-Lead T SSOP  
14-Lead Plastic DIP  
14-Lead SOIC  
103  
158  
240  
83  
120  
180  
43  
43  
43  
39  
36  
35  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
14-Lead T SSOP  
NOT ES  
1Absolute maximum ratings apply to both DICE and packaged parts, unless  
otherwise noted.  
2For supply voltages less than +15 V, the absolute maximum input voltage is  
equal to the supply voltage.  
3θJA is specified for the worst case conditions, i.e., θJA is specified for device in  
socket for P-DIP package; θJA is specified for device soldered in circuit board  
for SOIC and T SSOP packages.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the OP196/OP296/OP496 feature proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. T herefore, pro per  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–5–  
OP196/OP296/OP496–Typical Performance Characteristics  
25  
20  
15  
10  
5
250  
200  
150  
V
V
= ؉5V  
S
= ؉2.5V  
CM  
V
T
= ؉3V  
S
T
= –40؇C TO ؉125؇C  
A
= ؉25؇C  
A
COUNT = 400  
100  
50  
0
0
–4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0  
–250 –200 –150 –100 –50  
0
50  
100 150 200 250  
INPUT OFFSET DRIFT, TCV V/؇C  
INPUT OFFSET VOLTAGE – V  
OS  
Figure 1. Input Offset Voltage Distribution  
Figure 4. Input Offset Voltage Distribution (TCVOS )  
25  
250  
200  
150  
100  
50  
V
V
= ؉12V  
S
= ؉6V  
V
T
= ؉5V  
CM  
S
T
= –40؇C TO ؉125؇C  
A
20  
15  
10  
5
= ؉25؇C  
A
COUNT = 400  
0
0
–4.0 –3.5 –3.0 –2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5 1.0 1.5  
–250 –200 –150 –100 –50  
0
50  
100 150 200 250  
INPUT OFFSET DRIFT, TCV V/؇C  
INPUT OFFSET VOLTAGE – V  
OS  
Figure 2. Input Offset Voltage Distribution  
Figure 5. Input Offset Voltage Distribution (TCVOS  
)
250  
200  
150  
100  
50  
600  
V
T
= ؉12V  
S
؉3V  
V
؉12V  
S
= ؉25؇C  
400  
200  
0
A
V
S
COUNT = 400  
V
=
CM  
2
–200  
0
–400  
–250 –200 –150 –100 –50  
0
50  
100 150 200 250  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
150  
INPUT OFFSET VOLTAGE – V  
TEMPERATURE – ؇C  
Figure 3. Input Offset Voltage Distribution  
Figure 6. Input Offset Voltage vs. Tem perature  
REV. B  
–6–  
OP196/OP296/OP496  
25  
20  
15  
10  
5
1000  
100  
10  
V
V
= ؉5V  
S
= ؉2.5V  
CM  
V
= ؎1.5V  
S
SOURCE  
SINK  
0
1
–75  
–50  
–25  
0
25  
50  
75  
100  
125 150  
0.001  
0.01  
0.1  
LOAD CURRENT – mA  
1
10  
TEMPERATURE – ؇C  
Figure 7. Input Bias Current vs. Tem perature  
Figure 10. Output Voltage to Supply Rail vs. Load Current  
16  
1000  
V
= ؎2.5V  
S
12  
100  
10  
1
SOURCE  
SINK  
8
4
2
3
5
12  
14  
0.001  
0.01  
0.1  
LOAD CURRENT – mA  
1
10  
SUPPLY VOLTAGE – Volts  
Figure 8. Input Bias Current vs. Supply Voltage  
Figure 11. Output Voltage to Supply Rail vs. Load Current  
40  
1000  
V
= ؎2.5V  
= ؉25؇C  
S
30  
20  
T
A
V
= ؎6V  
S
100  
SOURCE  
10  
0
SINK  
–10  
–20  
–30  
–40  
10  
1
0.001  
0.01  
0.1  
LOAD CURRENT – mA  
1
10  
–2.5 –2.0 –1.5 –1.0 –0.5  
0
0.5  
1.0 1.5  
2.0 2.5  
COMMON-MODE VOLTAGE – Volts  
Figure 9. Input Bias Current vs. Com m on-Mode Voltage  
Figure 12. Output Voltage to Supply Rail vs. Load Current  
REV. B  
–7–  
OP196/OP296/OP496–Typical Performance Characteristics  
4.95  
4.70  
4.45  
4.2  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 100A  
L
V
= ؎2.5V  
= –40؇C  
S
T
A
I
= 1mA  
L
GAIN  
0
I
= 2mA  
45  
L
90  
V
= ؉5V  
S
PHASE  
3.85  
3.7  
135  
180  
225  
–10  
–75  
–50  
–25  
0
25  
50  
75  
100 125  
150  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
Figure 13. Output Voltage Swing vs. Tem perature  
Figure 16. Open-Loop Gain and Phase vs. Frequency  
(No Load)  
0.80  
90  
V
= ؉5V  
S
V
T
= ؎2.5V  
= ؉125؇C  
S
A
80  
70  
60  
50  
40  
30  
20  
10  
0
0.60  
0.50  
0.30  
0.10  
I
= –1mA  
L
GAIN  
0
45  
90  
PHASE  
135  
180  
225  
I
= –100A  
L
–10  
–75 –50  
–25  
0
25  
50  
75  
100  
125  
150  
10  
100  
1k  
10k  
100k  
1M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
Figure 14. Output Voltage Swing vs. Tem perature  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
(No Load)  
90  
950  
V
= ؉5V  
V
T
= ؎2.5V  
= ؉25؇C  
S
S
80  
70  
60  
50  
40  
30  
20  
10  
0
0.3V < VO < 4.7V  
= 100k⍀  
A
800  
650  
500  
350  
200  
R
L
GAIN  
0
45  
90  
PHASE  
135  
180  
225  
–10  
10  
100  
1k  
10k  
100k  
1M  
–75  
–50  
–25  
0
25  
50  
75  
100  
125 150  
FREQUENCY – Hz  
TEMPERATURE – ؇C  
Figure 15. Open-Loop Gain and Phase vs. Frequency  
(No Load)  
Figure 18. Open-Loop Gain vs. Tem perature  
–8–  
REV. B  
OP196/OP296/OP496  
600  
500  
400  
300  
200  
100  
0
160  
140  
120  
100  
80  
V
T
= ؎2.5V  
= ؉25؇C  
S
V
T
= ؉5V  
S
A
= ؉25؇C  
A
ALL CHANNELS  
60  
40  
20  
0
–20  
–40  
150  
100  
50  
10  
2
1
100  
1k  
10k  
100k  
1M  
10M  
LOAD – k⍀  
FREQUENCY – Hz  
Figure 19. Open Loop Gain vs. Resistive Load  
Figure 22. CMRR vs. Frequency  
70  
160  
140  
120  
100  
80  
V
T
= ؉5V  
V
= ؎2.5V  
= 10k⍀  
= ؉25؇C  
S
S
60  
50  
= ؉25؇C  
R
T
A
L
A
40  
30  
+PSRR  
20  
60  
10  
40  
–PSRR  
0
20  
–10  
–20  
–30  
0
–20  
–40  
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
FREQUENCY – Hz  
Figure 20. Closed-Loop Gain vs. Frequency  
Figure 23. PSRR vs. Frequency  
1000  
6
5
4
3
2
V
V
= ؎2.5V  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
S
= ؉5V p-p  
= ؉1  
IN  
V
= ؎2.5V  
= ؉25؇C  
S
A
R
V
L
T
A
= 100k⍀  
A
= 10  
CL  
A
= 1  
CL  
1
0
1k  
100  
1k  
10k  
FREQUENCY – Hz  
100k  
1M  
10k  
100k  
FREQUENCY – Hz  
1M  
Figure 21. Output Im pedance vs. Frequency  
Figure 24. Maxim um Output Swing vs. Frequency  
REV. B  
–9–  
OP196/OP296/OP496–Typical Performance Characteristics  
90  
0.6  
V
= ؎2.5V  
= ؉25؇C  
= 0V  
S
80  
T
A
0.5  
V
CM  
70  
0.4  
V
= ؉12V  
S
60  
50  
40  
30  
20  
0.3  
0.2  
0.1  
0
V
= ؉5V  
S
V
= ؉3V  
S
–75 –50 –40 –25  
0
25 50  
85 75  
100 125 150  
1
10  
100  
FREQUENCY – Hz  
1k  
TEMPERATURE – ؇C  
Figure 25. Supply Current/Am plifier vs. Tem perature  
Figure 28. Input Bias Current Noise Density vs. Frequency  
55  
10  
T
= ؉25؇C  
V
= ؎6V  
8
6
A
S
T
= ؉25؇C  
A
TO 0.1%  
؉OUTPUT SWING  
50  
45  
40  
35  
4
2
0
–2  
–4  
–6  
–8  
–10  
– OUTPUT SWING  
1
3
5
7
9
11  
12  
13  
0
5
10  
15  
20  
25  
30  
SUPPLY VOLTAGE – Volts  
SETTLING TIME – s  
Figure 26. Supply Current/Am plifier vs. Supply Voltage  
Figure 29. Settling Tim e to 0.1% vs. Step Size  
80  
V
= ؎2.5V  
= ؉25؇C  
S
70  
60  
50  
40  
30  
20  
10  
0
T
A
V
= 0V  
CM  
2mV  
1s  
100  
90  
10  
V
= ؎2.5V  
S
0%  
A
= 10k  
V
e
= 0.8V p-p  
n
1
10  
100  
FREQUENCY – Hz  
1k  
Figure 27. Voltage Noise Density vs. Frequency  
Figure 30. 0.1 Hz to 10 Hz Noise  
REV. B  
–10–  
OP196/OP296/OP496  
V
R
= ؎2.5V  
= 10k⍀  
L
S
100  
90  
100mV  
100  
90  
V
=
2.5V  
S
A
R
C
= 1  
V
L
10  
= 10k⍀  
= 100pF  
= ؉25؇C  
10  
0%  
0V  
0%  
L
T
A
20mV  
2s  
1V  
10s  
Figure 31. Sm all Signal Transient Response  
Figure 33. Large Signal Transient Response  
V
= ؎2.5V  
= 100k⍀  
S
R
100  
90  
L
100  
100mV  
90  
V
= ؎2.5V  
= 1  
S
A
R
C
T
V
L
L
10  
10  
= 100k⍀  
= 100pF  
= ؉25؇C  
0%  
0%  
0V  
1V  
10s  
20mV  
A
2s  
Figure 32. Sm all Signal Transient Response  
Figure 34. Large Signal Transient Response  
CH A: 40.0V FS  
MKR: 36.8V/ Hz  
5.00V/DIV  
10Hz  
0Hz  
MKR: 1.00Hz  
BW: 145mHz  
Figure 35. 1/f Noise Corner, VS = ±5 V, AV = 1,000  
V
CC  
R2  
R1  
R8  
R7  
I1  
R6  
I4  
I5  
D3  
Q22  
D9  
QL1  
Q11  
Q12  
Q6  
Q5  
Q7  
D4  
Q17  
D8  
Q21  
2x  
2x  
Q4  
QC1  
Q3  
CC2  
OUT  
1x  
1x  
CF1  
1x  
1x  
CF2  
Q13  
Q14  
Q8  
2x  
D5  
D6  
2x  
Q10  
Q18  
Q19  
1x  
Q9  
2x  
+IN  
–IN  
Q1  
Q2  
QC2  
Q23  
R5  
CC1  
R9  
R3A  
R3B  
R4A  
R4B  
Q20  
1.5x  
I3  
I2  
Q16  
Q15  
D7  
D10  
1x  
V
EE  
1*  
5*  
*OP196 ONLY  
Figure 36. Sim plified Schem atic  
–11–  
REV. B  
OP196/OP296/OP496  
AP P LICATIO NS INFO RMATIO N  
Functional D escr iption  
input current must be limited if the inputs are driven beyond the  
supply rails. In the circuit of Figure 38, the source amplitude is  
±15 V, while the supply voltage is only ±5 V. In this case, a  
2 ksource resistor limits the input current to 5 mA.  
The OP196 family of operational amplifiers is comprised of single-  
supply, micropower, rail-to-rail input and output amplifiers. Input  
offset voltage (VOS) is only 300 µV maximum, while the output  
will deliver ±5 mA to a load. Supply current is only 50 µA, while  
bandwidth is over 450 kHz and slew rate is 0.3 V/µs. Figure 36  
is a simplified schematic of the OP196—it displays the novel  
circuit design techniques used to achieve this performance.  
5V  
V
5V  
S
A
= 1  
V
100  
90  
V
IN  
0
Input O ver voltage P r otection  
T he OPx96 family of op amps uses a composite PNP/NPN  
input stage. T ransistor Q1 in Figure 36 has a collector-base  
voltage of 0 V if +IN = VEE. If +IN then exceeds VEE, the junc-  
tion will be forward biased and large diode currents will flow,  
which may damage the device. T he same situation applies to  
+IN on the base of transistor Q5 being driven above VCC . There-  
fore, the inverting and noninverting inputs must not be driven  
above or below either supply rail unless the input current is  
limited.  
V
OUT  
10  
0
0%  
5V  
1ms  
TIME – 1ns/DIV  
Figure 38. Output Voltage Phase Reversal Behavior  
Input O ffset Voltage Nulling  
Figure 37 shows the input characteristics for the OPx96 family.  
T his photograph was generated with the power supply pins  
connected to ground and a curve tracer’s collector output drive  
connected to the input. As shown in the figure, when the input  
voltage exceeds either supply by more than 0.6 V, internal pn-  
junctions energize and permit current flow from the inputs to  
the supplies. If the current is not limited, the amplifier may be  
damaged. T o prevent damage, the input current should be  
limited to no more than 5 mA.  
T he OP196 provides two offset adjust terminals that can be  
used to null the amplifier’s internal VOS. In general, operational  
amplifier terminals should never be used to adjust system offset  
voltages. A 100 kpotentiometer, connected as shown in Fig-  
ure 39, is recommended to null the OP196s offset voltage.  
Offset nulling does not adversely affect T CVOS performance,  
providing that the trimming potentiometer temperature coeffi-  
cient does not exceed ±100 ppm/°C.  
V+  
8
7
2
6
100  
OP196  
6
90  
4
4
3
5
2
0
1
100k⍀  
V–  
–2  
10  
–4  
0%  
–6  
Figure 39. Offset Nulling Circuit  
D r iving Capacitive Loads  
–8  
–1.5 –1 –0.5  
0
0.5  
1
1.5  
OP196 family amplifiers are unconditionally stable with capaci-  
tive loads less than 170 pF. When driving large capacitive loads  
in unity-gain configurations, an in-the-loop compensation  
technique is recommended, as illustrated in Figure 40.  
INPUT VOLTAGE – Volts  
Figure 37. Input Overvoltage I-V Characteristics of the  
OPx96 Fam ily  
R
R
O utput P hase Rever sal  
G
F
V
IN  
Some other operational amplifiers designed for single-supply  
operation exhibit an output voltage phase reversal when their  
inputs are driven beyond their useful common-mode range.  
T ypically for single-supply bipolar op amps, the negative supply  
determines the lower limit of their common-mode range. With  
these common-mode limited devices, external clamping diodes  
are required to prevent input signal excursions from exceeding  
the device’s negative supply rail (i.e., GND) and triggering  
output phase reversal.  
C
F
R
X
V
OP296  
OUT  
C
L
R
R
G
O
R
=
WHERE R = OPEN-LOOP OUTPUT RESISTANCE  
O
X
R
F
(R  
|
)
C R  
L O  
+ R  
I
F
G
I +  
(
|A  
R
CL  
F
T he OPx96 family of op amps is free from output phase reversal  
effects due to its novel input structure. Figure 38 illustrates the  
performance of the OPx96 op amps when the input is driven  
beyond the supply rails. As previously mentioned, amplifier  
Figure 40. In-the-Loop Com pensation Technique for  
Driving Capacitive Loads  
–12–  
REV. B  
OP196/OP296/OP496  
A Micr opower False-Gr ound Gener ator  
same potential. T he result is that both terminals of R1 are at the  
same potential and no current flows in R1. Since there is no  
current flow in R1, the same condition must exist in R2; thus,  
the output of the circuit tracks the input signal. When the input  
signal is below 0 V, the output voltage of A1 is forced to 0 V.  
T his condition now forces A2 to operate as an inverting voltage  
follower because the noninverting terminal of A2 is also at 0 V.  
T he output voltage of VOUT A is then a full-wave rectified  
version of the input signal. A resistor in series with A1’s  
noninverting input protects the ESD diodes when the input  
signal goes below ground.  
Some single supply circuits work best when inputs are biased  
above ground, typically at 1/2 of the supply voltage. In these  
cases, a false-ground can be created by using a voltage divider  
buffered by an amplifier. One such circuit is shown in Figure 41.  
T his circuit will generate a false-ground reference at 1/2 of the  
supply voltage, while drawing only about 55 µA from a 5 V  
supply. T he circuit includes compensation to allow for a 1 µF  
bypass capacitor at the false-ground output. T he benefit of a  
large capacitor is that not only does the false-ground present a  
very low dc resistance to the load, but its ac impedance is low  
as well.  
Squar e Wave O scillator  
T he oscillator circuit in Figure 43 demonstrates how a rail-to-  
rail output swing can reduce the effects of power supply varia-  
tions on the oscillator’s frequency. T his feature is especially  
valuable in battery powered applications, where voltage regula-  
tion may not be available. T he output frequency remains stable  
as the supply voltage changes because the RC charging current,  
which is derived from the rail-to-rail output, is proportional to  
the supply voltage. Since the Schmitt trigger threshold level is  
also proportional to supply voltage, the frequency remains rela-  
tively independent of supply voltage. For a supply voltage  
change from 9 V to 5 V, the output frequency only changes  
about 4 Hz. T he slew rate of the amplifier limits the oscillation  
frequency to a maximum of about 200 Hz at a supply voltage  
of +5 V.  
+5V OR +12V  
10k⍀  
0.022F  
240k⍀  
2
3
7
100⍀  
+2.5V OR +6V  
6
OP196  
1F  
4
240k⍀  
1F  
Figure 41. A Micropower False-Ground Generator  
Single-Supply H alf-Wave and Full-Wave Rectifier s  
An OP296, configured as a voltage follower operating from a  
single supply, can be used as a simple half-wave rectifier in low  
frequency (<400 Hz) applications. A full-wave rectifier can be  
configured with a pair of OP296s as illustrated in Figure 42.  
V+  
100k⍀  
59k⍀  
R2  
100k⍀  
R1  
100k⍀  
8
4
3
2
1
FREQ OUT  
1
100k⍀  
1/2  
OP296/  
OP496  
+5V  
8
f
=
< 200Hz @ V+ = +5V  
OSC  
V
A
6
5
OUT  
2k⍀  
RC  
+2Vp-p  
<500Hz  
FULL-WAVE  
RECTIFIED  
OUTPUT  
A2  
7
3
2
R
1
A1  
1/2  
OP296  
C
4
1/2  
OP296  
V
B
OUT  
HALF-WAVE  
RECTIFIED  
OUTPUT  
Figure 43. Square Wave Oscillator Has Stable Frequency  
Regardless of Supply Voltage Changes  
A 3 V Low D r opout, Linear Voltage Regulator  
1V  
500mV  
500µs  
Figure 44 shows a simple +3 V voltage regulator design. T he  
regulator can deliver 50 mA load current while allowing a 0.2 V  
dropout voltage. T he OP296’s rail-to-rail output swing easily  
drives the MJE350 pass transistor without requiring special  
drive circuitry. With no load, its output can swing to less than  
the pass transistor’s base-emitter voltage, turning the device  
nearly off. At full load, and at low emitter-collector voltages, the  
transistor beta tends to decrease. T he additional base current is  
easily handled by the OP296 output.  
100  
90  
INPUT  
V
B
OUT  
(HALF-WAVE  
OUTPUT)  
f = 500Hz  
10  
V
A
0%  
OUT  
(FULL-WAVE  
OUTPUT)  
500mV  
T he AD589 provides a 1.235 V reference voltage for the regula-  
tor. T he OP296, operating with a noninverting gain of 2.43,  
drives the base of the MJE350 to produce an output voltage of  
3.0 V. Since the MJE350 operates in an inverting (common-  
emitter) mode, the output feedback is applied to the OP296’s  
noninverting input.  
Figure 42. Single-Supply Half-Wave and Full-Wave  
Rectifiers Using an OP296  
T he circuit works as follows: When the input signal is above  
0 V, the output of amplifier A1 follows the input signal. Since  
the noninverting input of amplifier A2 is connected to A1’s  
output, op amp loop control forces A2’s inverting input to the  
REV. B  
–13–  
OP196/OP296/OP496  
T he next two DACs, B and C, sum their outputs into the other  
OP296 amplifier. In this circuit DAC C provides the coarse  
output voltage setting and DAC B is used for fine adjustment.  
T he insertion of R1 in series with DAC B attenuates its contri-  
bution to the voltage sum node at the DAC C output.  
I
L < 50mA  
MJE 350  
V
O
V
IN  
44.2k⍀  
1%  
100F  
5V TO 3.2V  
8
3
2
30.9k⍀  
1%  
1/2  
OP296  
1
A H igh-Side Cur r ent Monitor  
4
In the design of power supply control circuits, a great deal of  
design effort is focused on ensuring a pass transistor’s long-term  
reliability over a wide range of load current conditions. As a  
result, monitoring and limiting device power dissipation is of  
prime importance in these designs. T he circuit illustrated in  
Figure 47 is an example of a +5 V, single-supply high-side cur-  
rent monitor that can be incorporated into the design of a volt-  
age regulator with fold-back current limiting or a high current  
power supply with crowbar protection. T his design uses an  
OP296s rail-to-rail input voltage range to sense the voltage  
drop across a 0.1 current shunt. A p-channel MOSFET is  
used as the feedback element in the circuit to convert the op  
amps differential input voltage into a current. T his current is  
then applied to R2 to generate a voltage that is a linear represen-  
tation of the load current. T he transfer equation for the current  
monitor is given by:  
1000pF  
1.235V  
43k⍀  
AD589  
Figure 44. 3 V Low Dropout Voltage Regulator  
Figure 45 shows the regulator’s recovery characteristics when its  
output underwent a 20 mA to 50 mA step current change.  
2V  
50mA  
STEP  
CURRENT  
CONTROL  
100  
90  
WAVEFORM  
30mA  
10  
OUTPUT  
RSENSE  
0%  
Monitor Output = R2 ×  
× IL  
10mV  
50µs  
R1  
For the element values shown, the Monitor Output’s transfer  
characteristic is 2.5 V/A.  
Figure 45. Output Step Load Current Recovery  
Buffer ing a D AC O utput  
Multichannel T rimDACs such as the AD8801/AD8803, are  
R
SENSE  
I
L
®
0.1⍀  
+5V  
+5V  
widely used for digital nulling and similar applications. T hese  
DACs have rail-to-rail output swings, with a nominal output  
resistance of 5 k. If a lower output impedance is required, an  
OP296 amplifier can be added. T wo examples are shown in  
Figure 45. One amplifier of an OP296 is used as a simple buffer  
to reduce the output resistance of DAC A. T he OP296 provides  
rail-to-rail output drive while operating down to a 3 V supply  
and requiring only 50 µA of supply current.  
+5V  
R1  
100⍀  
3
2
8
1/2  
OP296  
4
1
S
D
G
M1  
3N163  
MONITOR  
OUTPUT  
R2  
2.49k⍀  
+5V  
Figure 47. A High-Side Load Current Monitor  
V
V
REFH DD  
OP296  
V
H
A Single-Supply RTD Am plifier  
SIMPLE BUFFER  
0V TO +5V  
+4.983V  
V
L
T he circuit in Figure 48 uses three op amps on the OP496 to  
produce a bridge driver for an RT D amplifier while operating  
from a single +5 V supply. T he circuit takes advantage of the  
OP496s wide output swing to generate a bridge excitation  
voltage of 3.9 V. An AD589 provides a 1.235 V reference for  
the bridge current. Op amp A1 drives the bridge to maintain  
1.235 V across the parallel combination of the 6.19 kand  
2.55 Mresistors, which generates a 200 µA current source.  
T his current divides evenly and flows through both halves of  
the bridge. T hus, 100 µA flows through the RT D to generate  
an output voltage which is proportional to its resistance. For  
improved accuracy, a 3-wire RT D is recommended to balance  
the line resistance in both 100 legs of the bridge.  
V
H
+1.1mV  
V
L
R1  
100k⍀  
V
H
SUMMER CIRCUIT  
WITH FINE TRIM  
ADJUSTMENT  
V
L
AD8801/  
AD8803  
V
GND  
REFL  
DIGITAL INTERFACING  
OMITTED FOR CLARITY  
Figure 46. Buffering a Trim DAC Output  
T rimDAC is a registered trademark of Analog Devices Inc.  
–14–  
REV. B  
OP196/OP296/OP496  
Amplifiers A2 and A3 are configured in a two op amp instru-  
mentation amplifier configuration. For ease of measurement,  
the IA resistors are chosen to produce a gain of 259, so that  
each 1°C increase in temperature results in a 10 mV increase in  
the output voltage. T o reduce measurement noise, the band-  
width of the amplifier is limited. A 0.1 µF capacitor, connected  
in parallel with the 100 kresistor on amplifier A3, creates a pole  
at 16 Hz.  
GAIN = 259  
+5V  
200⍀  
10-TURNS  
26.7k⍀  
26.7k⍀  
1/4  
OP496  
1/4  
OP496  
A3  
V
100⍀  
RTD  
OUT  
A2  
100⍀  
2.55M⍀  
392⍀  
100k⍀  
0.1F  
392⍀  
1/4  
OP496  
6.17k⍀  
20k⍀  
100k⍀  
A1  
NOTE:  
AD589  
37.4k⍀  
ALL RESISTORS 1% OR BETTER  
+5V  
Figure 48. A Single Supply RTD Am plifier  
CIN  
*
* GAIN ST AGE  
*
1
2
1P  
* OP496 SPICE Macro-model  
*
REV. B, 5/95  
ARG / ADSC  
*
* Copyright 1995 by Analog Devices  
*
EREF 98  
0
POLY(2)  
POLY(2)  
251.641MEG  
8P  
DX  
DX  
(99,0) (50,0) 0 0.5 0.5  
(6,5) (13,12) 0 10U 10U  
G1  
R10  
CC  
D1  
D2  
*
98  
15  
15  
15  
50  
15  
98  
49  
99  
15  
* Refer to “README.DOC” file for License Statement.  
* Use of this model indicates your acceptance of the  
* terms and provisions in the License Statement.  
*
* Node assignments  
*
*
Noninverting input  
Inverting input  
* COMMON MODE ST AGE  
*
ECM 16  
R11  
R12  
*
* OUT PUT ST AGE  
*
ISY  
EIN  
Q24  
QD4 37  
Q27  
R5  
R6  
Q26  
QD5 40  
Q28 41  
QL1 37  
R7  
I4  
QD7 42  
QD6 43  
Q29  
Q30  
QD10 45  
R9  
Q31  
QD8 47  
QD9 48  
R8  
I5  
Q32  
Q33  
.MODEL  
.MODEL  
.MODEL  
.ENDS  
*
*
*
*
Positive supply  
98  
17  
98  
POLY(2)  
1MEG  
10  
(1,98) (2,98)  
0
0.5 0.5  
Negative supply  
Output  
16  
17  
*
.SUBCKT OP496  
*
1
2
99  
50  
49  
99  
35  
37  
50  
50  
35  
37  
37  
39  
38  
42  
40  
40  
41  
41  
43  
42  
43  
43  
45  
46  
46  
47  
47  
48  
51  
46  
48  
44  
20U  
POLY(1)  
* INPUT ST AGE  
*
(15,98) 1.42735  
1
36  
38  
38  
50  
99  
99  
QN  
QP  
QP  
1
1
1
IREF 21  
QB1 21  
QB2 22  
50  
21  
21  
21  
22  
22  
4
4
4
4
1
3
2
1
3
11  
11  
11  
11  
5
1U  
99  
99  
99  
50  
50  
7
8
7
8
7
40  
36  
99  
39  
99  
99  
99  
50  
50  
50  
50  
50  
50  
99  
99  
QP  
QP  
QP  
QN  
QN  
QN  
QN  
QN  
QN  
QP  
QP  
1
1
1.5  
150K  
45K  
50  
QB3  
4
50  
50  
50  
99  
QN  
QN  
QN  
QP  
3
1
1
1
QB4 22  
QB5 11  
2
3
2
2
1
1
2
2
39  
44  
99  
Q1  
Q2  
5
6
99  
99  
10.7K  
2U  
50  
Q3  
Q4  
4
4
50  
50  
50  
50  
50  
QN  
QN  
QN  
QN  
QN  
2
2
1
1.5  
1
Q5  
Q6  
EOS  
Q7  
Q8  
50  
50  
3
42  
44  
50  
50  
8
47  
44  
POLY(1)  
9
10  
9
10  
9
10  
50K  
50K  
50K  
50K  
0.75N  
3.183P  
3.183P  
(17,98) 35U  
1
99  
99  
12  
13  
11  
11  
99  
99  
12  
13  
1
50  
QN  
QN  
QP  
QP  
QP  
QP  
2
2
2
2
1
1
50  
99  
99  
99  
99  
45  
46  
175  
48  
Q9  
99  
99  
99  
QP  
QP  
QP  
1
1
5
Q10  
Q11  
Q12  
R1  
R2  
R3  
48  
51  
99  
99  
49  
49  
2.9K  
1U  
99  
6
99  
50  
QP  
QN  
10  
4
50  
50  
2
6
13  
50  
R4  
DX D()  
QN NPN(BF=120VAF=100)  
QP PNP(BF=80 VAF=60)  
IOS  
C10  
C11  
5
12  
REV. B  
–15–  
OP196/OP296/OP496  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
8-Lead P lastic D IP  
14-Lead P lastic D IP  
(N-14)  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
0.795 (20.19)  
0.725 (18.42)  
14  
1
8
7
8
5
4
0.280 (7.11)  
0.240 (6.10)  
0.280 (7.11)  
0.240 (6.10)  
1
0.325 (8.25)  
0.300 (7.62)  
0.325 (8.25)  
0.300 (7.62)  
0.195 (4.95)  
0.115 (2.93)  
0.060 (1.52)  
0.015 (0.38)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
PIN 1  
0.195 (4.95)  
0.210 (5.33)  
0.210 (5.33)  
MAX  
0.115 (2.93)  
MAX  
0.130  
0.130  
(3.30)  
MIN  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
SEATING  
PLANE  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
0.100 0.070 (1.77)  
0.022 (0.558)  
0.014 (0.356)  
0.100  
(2.54)  
BSC  
(2.54)  
0.045 (1.15)  
BSC  
14-Lead Nar r ow-Body SO IC  
(SO -14)  
8-Lead Nar r ow Body SO IC  
(SO -8)  
0.1968 (5.00)  
0.1890 (4.80)  
0.3444 (8.75)  
0.3367 (8.55)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
14  
1
8
7
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
0.0099 (0.25)  
0.0688 (1.75)  
0.0532 (1.35)  
x 45°  
PIN 1  
0.0196 (0.50)  
0.0098 (0.25)  
0.0040 (0.10)  
x 45°  
0.0098 (0.25)  
0.0040 (0.10)  
0.0099 (0.25)  
8°  
0°  
8°  
0°  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0500 (1.27)  
0.0160 (0.41)  
0.0099 (0.25)  
0.0075 (0.19)  
8-Lead TSSO P  
(RU-8)  
14-Lead TSSO P  
(RU-14)  
0.122 (3.10)  
0.114 (2.90)  
0.201 (5.10)  
0.193 (4.90)  
8
5
14  
8
7
1
4
1
PIN 1  
0.0256 (0.65)  
BSC  
0.006 (0.15)  
0.002 (0.05)  
PIN 1  
0.0433  
(1.10)  
MAX  
0.006 (0.15)  
0.002 (0.05)  
0.0433  
(1.10)  
MAX  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
0.028 (0.70)  
0.020 (0.50)  
8°  
0°  
0.0118 (0.30)  
0.0075 (0.19)  
0.0256  
(0.65)  
BSC  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
–16–  
REV. B  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY