ADR4540BRZ-R7 [ADI]

Ultralow Noise, High Accuracy; 超低噪声,高精度
ADR4540BRZ-R7
型号: ADR4540BRZ-R7
厂家: ADI    ADI
描述:

Ultralow Noise, High Accuracy
超低噪声,高精度

文件: 总32页 (文件大小:977K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultralow Noise, High Accuracy  
Voltage References  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
FEATURES  
PIN CONFIGURATION  
ADR4520/ADR4525/  
ADR4530/ADR4533/  
ADR4540/ADR4550  
Maximum temperature coefficient (TCVOUT): 2 ppm/°C  
Output noise (0.1 Hz to 10 Hz)  
Less than 1 μV p-p at VOUT of 2.048 V typical  
Initial output voltage error: 0.02% (maximum)  
Input voltage range: 3 V to 15 V  
Operating temperature: −40°C to +125°C  
Output current: +10 mA source/−10 mA sink  
Low quiescent current: 950 μA (maximum)  
Low dropout voltage: 300 mV at 2 mA (VOUT ≥ 3 V)  
8-lead SOIC package  
NC  
1
2
3
4
8
7
6
5
TP  
V
NC  
IN  
NC  
V
OUT  
TOP VIEW  
(Not to Scale)  
GND  
NC  
NOTES  
1. NC = NO CONNECT.  
2. TP = TEST PIN. DO NOT CONNECT.  
Figure 1. 8-Lead SOIC  
APPLICATIONS  
Precision data acquisition systems  
High resolution data converters  
High precision measurement devices  
Industrial instrumentation  
Medical devices  
Automotive battery monitoring  
GENERAL DESCRIPTION  
The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/  
ADR4550 devices are high precision, low power, low noise  
voltage references featuring 0.02% maximum initial error,  
excellent temperature stability, and low output noise.  
Table 1. Selection Guide  
Model  
Output Voltage (V)  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
2.048  
2.5  
3.0  
This family of voltage references uses an innovative core  
topology to achieve high accuracy while offering industry-leading  
temperature stability and noise performance. The low, thermally  
induced output voltage hysteresis and low long-term output  
voltage drift of the devices also improve system accuracy over  
time and temperature variations.  
3.3  
4.096  
5.0  
Table 2. Voltage Reference Choices from Analog Devices  
Low Cost/  
VOUT (V) Low Power Micropower  
Ultralow High Voltage,  
A maximum operating current of 950 μA and a maximum low  
dropout voltage of 300 mV allow the devices to function very  
well in portable equipment.  
Noise  
High Performance  
2.048  
ADR360  
ADR3420  
ADR3425  
AD1582  
ADR361  
ADR3450  
AD1585  
ADR365  
REF191  
ADR430  
ADR440  
ADR431  
ADR441  
2.5  
ADR291  
REF192  
ADR03  
AD780  
The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/  
ADR4550 series of references is provided in an 8-lead SOIC  
package and is available in a wide range of output voltages, all of  
which are specified over the extended industrial temperature  
range of −40°C to +125°C.  
5.0  
ADR293  
REF195  
ADR435  
ADR445  
ADR02  
AD586  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
TABLE OF CONTENTS  
Data Sheet  
Features .............................................................................................. 1  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
ADR4520 Electrical Characteristics........................................... 3  
ADR4525 Electrical Characteristics........................................... 4  
ADR4530 Electrical Characteristics........................................... 5  
ADR4533 Electrical Characteristics........................................... 6  
ADR4540 Electrical Characteristics........................................... 7  
ADR4550 Electrical Characteristics........................................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 11  
ADR4520 ..................................................................................... 11  
ADR4525 ..................................................................................... 14  
ADR4530 ..................................................................................... 17  
ADR4533 ..................................................................................... 20  
ADR4540 ..................................................................................... 23  
ADR4550 ..................................................................................... 26  
Terminology.................................................................................... 29  
Theory of Operation ...................................................................... 30  
Long-Term Drift......................................................................... 30  
Power Dissipation....................................................................... 30  
Applications Information .............................................................. 31  
Basic Voltage Reference Connection ....................................... 31  
Input and Output Capacitors.................................................... 31  
Location of Reference in System .............................................. 31  
Sample Applications................................................................... 31  
Outline Dimensions....................................................................... 32  
Ordering Guide............................................................................... 32  
REVISION HISTORY  
4/12—Revision 0: Initial Version  
Rev. 0 | Page 2 of 32  
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
SPECIFICATIONS  
ADR4520 ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, VIN = 3 V to 15 V, IL = 0 mA, TA = 25°C.  
Table 3.  
Parameter  
Symbol  
VOUT  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OUTPUT VOLTAGE  
2.048  
V
INITIAL OUTPUT VOLTAGE ERROR  
VOUT_ERR  
B grade  
A grade  
0.02  
410  
0.04  
%
μV  
%
820  
μV  
SOLDER HEAT SHIFT  
0.02  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
B grade, −40°C ≤ TA ≤ +125°C  
A grade, −40°C ≤ TA ≤ +125°C  
2
4
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
ΔVOUT/ΔVIN −40°C ≤ TA ≤ +125°C  
1
10  
80  
120  
950  
1
ΔVOUT/ΔIL  
IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C  
30  
100  
700  
IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, IL = 2 mA  
fIN = 1 kHz  
QUIESCENT CURRENT  
DROPOUT VOLTAGE  
IQ  
VDO  
V
V
1
RIPPLE REJECTION RATIO  
OUTPUT CURRENT CAPACITY  
Sinking  
RRR  
IL  
90  
dB  
−8  
10  
mA  
mA  
Sourcing  
OUTPUT VOLTAGE NOISE  
eNp-p  
0.1 Hz to 10.0 Hz  
1 kHz  
1.0  
35.8  
50  
μV p-p  
nV/√Hz  
ppm  
OUTPUT VOLTAGE NOISE DENSITY eN  
OUTPUT VOLTAGE HYSTERESIS  
ΔVOUT_HYS  
TA = temperature cycled from +25°C to −40°C to  
+125°C and back to +25°C  
LONG-TERM DRIFT  
ΔVOUT_LTD  
tR  
1000 hours at 60°C  
25  
90  
ppm  
µs  
TURN-ON SETTLING TIME  
LOAD CAPACITANCE  
IL = 0 mA, CL = 1 µF, CIN = 0.1 µF, RL = 1 kΩ  
1
100  
µF  
Rev. 0 | Page 3 of 32  
 
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
ADR4525 ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, VIN = 3 V to 15 V, IL = 0 mA, TA = 25°C.  
Table 4.  
Parameter  
Symbol  
VOUT  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
2.500  
INITIAL OUTPUT VOLTAGE ERROR  
VOUT_ERR  
B grade  
A grade  
0.02  
500  
0.04  
%
μV  
%
1
mV  
SOLDER HEAT SHIFT  
0.02  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
B grade, −40°C ≤ TA ≤ +125°C  
A grade, −40°C ≤ TA ≤ +125°C  
2
4
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
ΔVOUT/ΔVIN −40°C ≤ TA ≤ +125°C  
1
10  
ΔVOUT/ΔIL  
IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C  
30  
60  
700  
80  
IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, IL = 2 mA  
fIN = 1 kHz  
120  
950  
500  
500  
QUIESCENT CURRENT  
DROPOUT VOLTAGE  
IQ  
VDO  
mV  
mV  
RIPPLE REJECTION RATIO  
OUTPUT CURRENT CAPACITY  
Sinking  
RRR  
IL  
90  
dB  
−10  
10  
mA  
mA  
Sourcing  
OUTPUT VOLTAGE NOISE  
eNp-p  
0.1 Hz to 10.0 Hz  
1 kHz  
1.25  
41.3  
50  
μV p-p  
nV/√Hz  
ppm  
OUTPUT VOLTAGE NOISE DENSITY eN  
OUTPUT VOLTAGE HYSTERESIS  
ΔVOUT_HYS  
TA = temperature cycled from +25°C to −40°C to  
+125°C and back to +25°C  
LONG-TERM DRIFT  
ΔVOUT_LTD  
tR  
1000 hours at 60°C  
25  
ppm  
µs  
TURN-ON SETTLING TIME  
LOAD CAPACITANCE  
IL = 0 mA, CL = 1 µF, CIN = 0.1 µF, RL = 1 kΩ  
125  
1
100  
µF  
Rev. 0 | Page 4 of 32  
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
ADR4530 ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, VIN = 3.1 V to 15 V, IL = 0 mA, TA = 25°C.  
Table 5.  
Parameter  
Symbol  
VOUT  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
3.000  
INITIAL OUTPUT VOLTAGE ERROR  
VOUT_ERR  
B grade  
A grade  
0.02  
600  
0.04  
%
μV  
%
1.2  
mV  
SOLDER HEAT SHIFT  
0.02  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
B grade, −40°C ≤ TA ≤ +125°C  
A grade, −40°C ≤ TA ≤ +125°C  
2
4
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
ΔVOUT/ΔVIN −40°C ≤ TA ≤ +125°C  
1
10  
ΔVOUT/ΔIL  
IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C  
30  
60  
700  
80  
IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, IL = 2 mA  
fIN = 1 kHz  
120  
950  
100  
300  
QUIESCENT CURRENT  
DROPOUT VOLTAGE  
IQ  
VDO  
mV  
mV  
RIPPLE REJECTION RATIO  
OUTPUT CURRENT CAPACITY  
Sinking  
RRR  
IL  
90  
dB  
−10  
10  
mA  
mA  
Sourcing  
OUTPUT VOLTAGE NOISE  
eNp-p  
0.1 Hz to 10.0 Hz  
1 kHz  
1.6  
60  
50  
μV p-p  
nV/√Hz  
ppm  
OUTPUT VOLTAGE NOISE DENSITY eN  
OUTPUT VOLTAGE HYSTERESIS  
ΔVOUT_HYS  
TA = temperature cycled from +25°C to −40°C to  
+125°C and back to +25°C  
LONG-TERM DRIFT  
ΔVOUT_LTD  
tR  
1000 hours at 60°C  
25  
ppm  
µs  
TURN-ON SETTLING TIME  
LOAD CAPACITANCE  
IL = 0 mA, CL = 0.1 µF, CIN = 0.1 µF, RL = 1 kΩ  
130  
0.1  
100  
µF  
Rev. 0 | Page 5 of 32  
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
ADR4533 ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, VIN = 3.4 V to 15 V, IL = 0 mA, TA = 25°C.  
Table 6.  
Parameter  
Symbol  
VOUT  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
3.300  
INITIAL OUTPUT VOLTAGE ERROR  
VOUT_ERR  
B grade  
A grade  
0.02  
660  
0.04  
1.32  
%
µV  
%
mV  
SOLDER HEAT SHIFT  
0.02  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
B grade, −40°C ≤ TA ≤ +125°C  
A grade, −40°C ≤ TA ≤ +125°C  
2
4
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
ΔVOUT/ΔVIN −40°C ≤ TA ≤ +125°C  
1
10  
ΔVOUT/ΔIL  
IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C  
30  
60  
700  
80  
IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, IL = 2 mA  
fIN =1 kHz  
120  
950  
100  
300  
QUIESCENT CURRENT  
DROPOUT VOLTAGE  
IQ  
VDO  
mV  
mV  
RIPPLE REJECTION RATIO  
OUTPUT CURRENT CAPACITY  
Sinking  
RRR  
IL  
90  
dB  
−10  
10  
mA  
mA  
Sourcing  
OUTPUT VOLTAGE NOISE  
eNp-p  
0.1 Hz to 10.0 Hz  
1 kHz  
2.1  
64.2  
50  
μV p-p  
nV/√Hz  
ppm  
OUTPUT VOLTAGE NOISE DENSITY eN  
OUTPUT VOLTAGE HYSTERESIS  
ΔVOUT_HYS  
TA = temperature cycled from +25°C to −40°C to  
+125°C and back to +25°C  
LONG-TERM DRIFT  
ΔVOUT_LTD  
tR  
1000 hours at 60°C  
25  
ppm  
µs  
TURN-ON SETTLING TIME  
LOAD CAPACITANCE  
IL = 0 mA, CL = 0.1 µF, CIN = 0.1 µF, RL = 1 kΩ  
135  
0.1  
100  
µF  
Rev. 0 | Page 6 of 32  
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
ADR4540 ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, VIN = 4.2 V to 15 V, IL = 0 mA, TA = 25°C.  
Table 7.  
Parameter  
Symbol  
VOUT  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
4.096  
INITIAL OUTPUT VOLTAGE ERROR  
VOUT_ERR  
B grade  
A grade  
0.02  
820  
0.04  
%
μV  
%
1.64  
mV  
SOLDER HEAT SHIFT  
0.02  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
B grade, −40°C ≤ TA ≤ +125°C  
A grade, −40°C ≤ TA ≤ +125°C  
2
4
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
ΔVOUT/ΔVIN −40°C ≤ TA ≤ +125°C  
1
10  
ΔVOUT/ΔIL  
IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C  
25  
50  
700  
80  
IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, IL = 2 mA  
fIN = 1 kHz  
120  
950  
100  
300  
QUIESCENT CURRENT  
DROPOUT VOLTAGE  
IQ  
VDO  
mV  
mV  
RIPPLE REJECTION RATIO  
OUTPUT CURRENT CAPACITY  
Sinking  
RRR  
IL  
90  
dB  
−10  
10  
mA  
mA  
Sourcing  
OUTPUT VOLTAGE NOISE  
eNp-p  
0.1 Hz to 10.0 Hz  
1 kHz  
2.7  
83.5  
50  
μV p-p  
nV/√Hz  
ppm  
OUTPUT VOLTAGE NOISE DENSITY eN  
OUTPUT VOLTAGE HYSTERESIS  
ΔVOUT_HYS  
TA = temperature cycled from +25°C to −40°C to  
+125°C and back to +25°C  
LONG-TERM DRIFT  
ΔVOUT_LTD  
tR  
1000 hours at 60°C  
25  
ppm  
µs  
TURN-ON SETTLING TIME  
LOAD CAPACITANCE  
IL = 0 mA, CL = 0.1 µF, CIN = 0.1 µF, RL = 1 kΩ  
155  
0.1  
100  
µF  
Rev. 0 | Page 7 of 32  
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
ADR4550 ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, VIN = 5.1 V to 15 V, IL = 0 mA, TA = 25°C.  
Table 8.  
Parameter  
Symbol  
VOUT  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
V
OUTPUT VOLTAGE  
5.000  
INITIAL OUTPUT VOLTAGE ERROR  
VOUT_ERR  
B grade  
A grade  
0.02  
0.04  
%
mV  
%
mV  
1
2
SOLDER HEAT SHIFT  
0.02  
%
TEMPERATURE COEFFICIENT  
TCVOUT  
B grade, −40°C ≤ TA ≤ +125°C  
A grade, −40°C ≤ TA ≤ +125°C  
2
4
ppm/°C  
ppm/°C  
ppm/V  
ppm/mA  
ppm/mA  
μA  
LINE REGULATION  
LOAD REGULATION  
ΔVOUT/ΔVIN −40°C ≤ TA ≤ +125°C  
1
10  
ΔVOUT/ΔIL  
IL = 0 mA to +10 mA source, −40°C ≤ TA ≤ +125°C  
25  
35  
700  
80  
IL = 0 mA to −10 mA sink, −40°C ≤ TA ≤ +125°C  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, no load  
−40°C ≤ TA ≤ +125°C, IL = 2 mA  
fIN = 1 kHz  
120  
950  
100  
300  
QUIESCENT CURRENT  
DROPOUT VOLTAGE  
IQ  
VDO  
mV  
mV  
RIPPLE REJECTION RATIO  
OUTPUT CURRENT CAPACITY  
Sinking  
RRR  
IL  
90  
dB  
−10  
10  
mA  
mA  
Sourcing  
OUTPUT VOLTAGE NOISE  
eNp-p  
0.1 Hz to 10.0 Hz  
1 kHz  
2.8  
95.3  
50  
μV p-p  
nV/√Hz  
ppm  
OUTPUT VOLTAGE NOISE DENSITY eN  
OUTPUT VOLTAGE HYSTERESIS  
ΔVOUT_HYS  
TA = temperature cycled from +25°C to −40°C to  
+125°C and back to +25°C  
LONG-TERM DRIFT  
ΔVOUT_LTD  
tR  
1000 hours at 60°C  
25  
ppm  
µs  
TURN-ON SETTLING TIME  
LOAD CAPACITANCE  
IL = 0 mA, CL = 0.1 µF, CIN = 0.1 µF, RL = 1 kΩ  
160  
0.1  
100  
µF  
Rev. 0 | Page 8 of 32  
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions; that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 9.  
Parameter  
Rating  
Supply Voltage  
16 V  
Table 10. Thermal Resistance  
Package Type  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature Range  
−40°C to +125°C  
−65°C to +150°C  
−65°C to +150°C  
θJA  
θJC  
Unit  
8-Lead SOIC  
120  
42  
°C/W  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 9 of 32  
 
 
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
Data Sheet  
ADR4520/ADR4525/  
ADR4530/ADR4533/  
ADR4540/ADR4550  
NC  
1
2
3
4
8
7
6
5
TP  
V
NC  
IN  
NC  
V
OUT  
TOP VIEW  
(Not to Scale)  
GND  
NC  
NOTES  
1. NC = NO CONNECT.  
2. TP = TEST PIN. DO NOT CONNECT.  
Figure 2. Pin Configuration  
Table 11. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
NC  
VIN  
NC  
GND  
NC  
VOUT  
NC  
TP  
No Connect. This pin is not connected internally.  
Input Voltage Connection.  
No Connect. This pin is not connected internally.  
Ground.  
No Connect. This pin is not connected internally.  
Output Voltage.  
No Connect. This pin is not connected internally.  
Test Pin. Do not connect.  
Rev. 0 | Page 10 of 32  
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
ADR4520  
2.0485  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ADR4520  
ADR4520  
2.0484  
2.0483  
2.0482  
2.0481  
2.0480  
2.0479  
2.0478  
2.0477  
2.0476  
2.0475  
+125°C  
+25°C  
–40°C  
–10 –8  
–6  
–4  
–2  
I
0
2
4
6
8
10  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
(mA)  
TEMPERATURE (°C)  
LOAD  
Figure 6. ADR4520 Dropout Voltage vs. Load Current  
Figure 3. ADR4520 Output Voltage vs. Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
35  
30  
25  
20  
15  
10  
5
ADR4520  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
ΔV  
(ppm)  
OUT_HYS  
Figure 4. ADR4520 Thermally Induced Output Voltage Hysteresis Distribution  
Figure 7. ADR4520 Load Regulation vs. Temperature (Sourcing)  
100  
ADR4520  
ADR4520  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
(5V/DIV)  
IN  
1
V
(1V/DIV)  
OUT  
C
C
R
= 0.1µF  
= 0.1µF  
= 1kΩ  
IN  
OUT  
2
L
CH1 5.00V CH2 1.00V  
M40.0µs  
A CH1  
9.10V  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 8. ADR4520 Load Regulation vs. Temperature (Sinking)  
Figure 5. ADR4520 Output Voltage Start-Up Response  
Rev. 0 | Page 11 of 32  
 
 
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1k  
100  
10  
ADR4520  
ADR4520  
1
0.01  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 9. ADR4520 Line Regulation vs. Temperature  
Figure 12. ADR4520 Output Noise Spectral Density  
1000  
800  
600  
400  
200  
0
0
–10  
ADR4520  
ADR4520  
C
= 1µF  
LOAD  
+125°C  
–20  
–30  
–40  
–50  
+25°C  
–40°C  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 13. ADR4520 Ripple Rejection Ratio vs. Frequency  
Figure 10. ADR4520 Supply Current vs. Supply Voltage  
120  
100  
80  
60  
40  
20  
0
T
ADR4520  
ADR4520  
INPUT  
2
OUTPUT AC  
C
C
= 0.1µF  
IN  
= 1µF  
OUT  
1
B
CH1 1.00V CH2 1.00mV  
M40.0µs  
12.0%  
A CH1  
7.02V  
W
0.4  
0.7  
1.0  
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
T
OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p)  
Figure 11. ADR4520 Output Voltage Noise  
(Maximum Amplitude from 0.1 Hz to 10 Hz)  
Figure 14. ADR4520 Line Transient Response  
Rev. 0 | Page 12 of 32  
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
60  
80  
ADR4520  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
60  
40  
50  
40  
30  
20  
10  
0
R
C
= 1kΩ  
= 1µF  
20  
L
L
R
C
= 1kΩ  
= 10µF  
L
L
0
R
C
= 100kΩ  
= 10µF  
L
L
–20  
–40  
–60  
–80  
R
L
= 100kΩ  
= 1µF  
C
L
10  
100  
1k  
10k  
100k  
1M  
0
100 200 300 400 500 600 700 800 900 1000  
DURATION (Hours)  
FREQUENCY (Hz)  
Figure 17. ADR4520 Typical Long-Term Output Voltage Drift  
(1000 Hours)  
Figure 15. ADR4520 Output Impedance vs. Frequency  
12  
10  
8
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
6
4
2
0
OUTPUT VOLTAGE (%)  
Figure 16. ADR4520 Output Voltage Drift Distribution After Reflow (SHR Drift)  
Rev. 0 | Page 13 of 32  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
ADR4525  
2.5005  
2.5004  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
2.4995  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ADR4525  
ADR4525  
+25°C  
+125°C  
–40°C  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
I
(mA)  
LOAD  
Figure 21. ADR4525 Dropout Voltage vs. Load Current  
Figure 18. ADR4525 Output Voltage vs. Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
35  
30  
25  
20  
15  
10  
5
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
ADR4525  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
ΔV  
(ppm)  
OUT_HYS  
Figure 19. ADR4525 Thermally Induced Output Voltage Hysteresis Distribution  
Figure 22. ADR4525 Load Regulation vs. Temperature (Sourcing)  
100  
ADR4525  
ADR4525  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
(5V/DIV)  
(1V/DIV)  
IN  
1
V
OUT  
2
CH1 5.00V CH2 1.00V  
M40.0µs  
A
CH1  
9.10V  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 20. ADR4525 Output Voltage Start-Up Response  
Figure 23. ADR4525 Load Regulation vs. Temperature (Sinking)  
Rev. 0 | Page 14 of 32  
 
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
1k  
ADR4525  
ADR4525  
100  
10  
1
0.4  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 24. ADR4525 Line Regulation vs. Temperature  
Figure 27. ADR4525 Output Noise Spectral Density  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
–10  
ADR4525  
ADR4525  
+125°C  
+25°C  
–20  
–30  
–40  
–40°C  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 28. ADR4525 Ripple Rejection Ratio vs. Frequency  
Figure 25. ADR4525 Supply Current vs. Supply Voltage  
160  
140  
120  
100  
80  
T
ADR4525  
ADR4525  
INPUT  
2
1
60  
OUTPUT AC  
40  
20  
C
C
= 0.1µF  
IN  
= 1µF  
OUT  
0
B
CH1 1.00V CH2 1.00mV  
M200µs  
10.0%  
A CH1  
4.08V  
W
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
3.0  
T
OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p)  
Figure 26. ADR4525 Output Voltage Noise  
(Maximum Amplitude from 0.1 Hz to 10 Hz)  
Figure 29. ADR4525 Line Transient Response  
Rev. 0 | Page 15 of 32  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
ADR4525  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
60  
40  
R
C
= 1kΩ  
= 1µF  
L
L
20  
R
C
= 1kΩ  
= 10µF  
L
L
0
R
C
= 100kΩ  
= 1µF  
L
L
–20  
–40  
–60  
–80  
R
C
= 100kΩ  
= 10µF  
L
L
10  
100  
1k  
10k  
100k  
1M  
0
100 200 300 400 500 600 700 800 900 1000  
DURATION (Hours)  
FREQUENCY (Hz)  
Figure 32. ADR4525 Typical Long-Term Output Voltage Drift  
(1000 Hours)  
Figure 30. ADR4525 Output Impedance vs. Frequency  
12  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
10  
8
6
4
2
0
OUTPUT VOLTAGE (%)  
Figure 31. ADR4525 Output Voltage Drift Distribution After Reflow (SHR Drift)  
Rev. 0 | Page 16 of 32  
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
ADR4530  
0.0009  
3.0005  
ADR4530  
ADR4530  
+125°C  
+25°C  
3.0004  
3.0003  
3.0002  
3.0001  
3.0000  
2.9999  
2.9998  
2.9997  
2.9996  
2.9995  
0.0008  
0.0007  
0.0006  
0.0005  
0.0004  
0.0003  
0.0002  
0.0001  
0
–40°C  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
TEMPERATURE (°C)  
V
(V)  
IN  
Figure 36. ADR4530 Supply Current vs. Supply Voltage  
Figure 33. ADR4530 Output Voltage vs. Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
ADR4530  
+125°C  
+25°C  
–40°C  
–15  
–10  
–5  
0
5
10  
15  
I
(mA)  
LOAD  
ΔV  
(ppm)  
OUT_HYS  
Figure 34. ADR4530 Thermally Induced Output Voltage Hysteresis Distribution  
Figure 37. ADR4530 Dropout Voltage vs. Load Current  
35  
30  
25  
20  
15  
10  
5
ADR4530  
V
(5V/DIV)  
ADR4530  
IN  
1
2
V
(1V/DIV)  
M40.0µs  
OUT  
C
C
R
= 0.1µF  
IN  
= 0.1µF  
OUT  
= 1kΩ  
L
0
CH1 5.00V CH2 1.00V  
A CH1  
3.10V  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 35. ADR4530 Output Voltage Start-Up Response  
Figure 38. ADR4530 Load Regulation vs. Temperature (Sourcing)  
Rev. 0 | Page 17 of 32  
 
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ADR4530  
ADR4530  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p)  
Figure 39. ADR4530 Load Regulation vs. Temperature (Sinking)  
Figure 42. ADR4530 Output Voltage Noise  
(Maximum Amplitude from 0.1 Hz to 10 Hz)  
1.4  
1k  
ADR4530  
ADR4530  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
100  
10  
1
0.01  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 40. ADR4530 Line Regulation vs. Temperature  
Figure 43. ADR4530 Output Noise Spectral Density  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
–10  
ADR4530  
ADR4530  
–40°C  
–20  
–30  
+125°C  
–40  
+25°C  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 44. ADR4530 Ripple Rejection Ratio vs. Frequency  
Figure 41. ADR4530 Supply Current vs. Supply Voltage  
Rev. 0 | Page 18 of 32  
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
12  
T
ADR4530  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
10  
8
INPUT  
6
2
4
OUTPUT AC  
2
C
C
= 0.1µF  
IN  
= 1µF  
OUT  
1
0
B
CH1 1.00V CH2 1.00mV  
M200µs  
10.0%  
A CH1  
7.02V  
W
T
OUTPUT VOLTAGE (%)  
Figure 45. ADR4530 Line Transient Response  
Figure 47. ADR4530 Output Voltage Drift Distribution After Reflow (SHR Drift)  
60  
50  
40  
30  
20  
10  
0
80  
ADR4530  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
60  
40  
20  
0
R
C
= 1kΩ  
= 10µF  
L
L
R
C
= 1kΩ  
= 1µF  
L
L
–20  
–40  
–60  
–80  
R
C
= 100kΩ  
= 10µF  
R
C
= 100kΩ  
= 1µF  
L
L
L
L
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
100 200 300 400 500 600 700 800 900 1000  
DURATION (Hours)  
FREQUENCY (Hz)  
Figure 48. ADR4530 Typical Long-Term Output Voltage Drift  
(1000 Hours)  
Figure 46. ADR4530 Output Impedance vs. Frequency  
Rev. 0 | Page 19 of 32  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
ADR4533  
3.3010  
3.3008  
3.3006  
3.3004  
3.3002  
3.3000  
3.2998  
3.2996  
3.2994  
3.2992  
3.2990  
1.0  
0.8  
0.6  
0.4  
0.2  
0
ADR4533  
ADR4533  
+125°C  
+25°C  
–40°C  
–15  
–10  
–5  
0
5
10  
15  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
I
(mA)  
TEMPERATURE (°C)  
LOAD  
Figure 52. ADR4533 Dropout Voltage vs. Load Current  
Figure 49. ADR4533 Output Voltage vs. Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
35  
30  
25  
20  
15  
10  
5
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
ADR4533  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
ΔV  
(ppm)  
OUT_HYS  
Figure 53. ADR4533 Load Regulation vs. Temperature (Sourcing)  
Figure 50. ADR4533 Thermally Induced Output Voltage Hysteresis Distribution  
100  
ADR4533  
V
(5V/DIV)  
ADR4533  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
2
V
(1V/DIV)  
M40.0µs  
OUT  
C
C
R
= 0.1µF  
= 0.1µF  
= 1kΩ  
IN  
OUT  
L
CH1 5.00V CH2 1.00V  
A CH1  
3.10V  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 51. ADR4533 Output Voltage Start-Up Response  
Figure 54. ADR4533 Load Regulation vs. Temperature (Sinking)  
Rev. 0 | Page 20 of 32  
 
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
1k  
ADR4533  
ADR4533  
100  
10  
1
0.2  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 55. ADR4533 Line Regulation vs. Temperature  
Figure 58. ADR4533 Output Noise Spectral Density  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
–10  
ADR4533  
+125°C  
ADR4533  
–20  
–30  
+25°C  
–40°C  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
V
(V)  
IN  
FREQUENCY (kHz)  
Figure 56. ADR4533 Supply Current vs. Supply Voltage  
Figure 59. ADR4533 Ripple Rejection Ratio vs. Frequency  
60  
50  
40  
30  
20  
10  
0
T
ADR4533  
ADR4533  
INPUT  
2
OUTPUT AC  
C
C
= 0.1µF  
= 1µF  
IN  
OUT  
1
B
CH1 1.00V CH2 1.00mV  
M200µs  
12.0%  
A CH1  
7.02V  
W
T
OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p)  
Figure 57. ADR4533 Output Voltage Noise  
(Maximum Amplitude from 0.1 Hz to 10 Hz)  
Figure 60. ADR4533 Line Transient Response  
Rev. 0 | Page 21 of 32  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
60  
50  
40  
30  
20  
10  
0
80  
ADR4533  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
60  
40  
20  
R
C
= 1kΩ  
= 1µF  
0
L
L
R
C
= 1kΩ  
= 10µF  
L
L
–20  
–40  
–60  
–80  
R
C
= 100kΩ  
= 10µF  
R
C
= 100kΩ  
= 1µF  
L
L
L
L
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
100 200 300 400 500 600 700 800 900 1000  
DURATION (Hours)  
FREQUENCY (Hz)  
Figure 63. ADR4533 Typical Long-Term Output Voltage Drift  
(1000 Hours)  
Figure 61. ADR4533 Output Impedance vs. Frequency  
12  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
10  
8
6
4
2
0
OUTPUT VOLTAGE (%)  
Figure 62. ADR4533 Output Voltage Drift Distribution After Reflow (SHR Drift)  
Rev. 0 | Page 22 of 32  
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
ADR4540  
4.0970  
0.8  
ADR4540  
ADR4540  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+125°C  
4.0965  
4.0960  
4.0955  
4.0950  
+25°C  
–40°C  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
I
(mA)  
LOAD  
Figure 67. ADR4540 Dropout Voltage vs. Load Current  
Figure 64. ADR4540 Output Voltage vs. Temperature  
35  
30  
25  
20  
15  
10  
5
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
ADR4540  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
ΔV  
(ppm)  
OUT_HYS  
Figure 68. ADR4540 Load Regulation vs. Temperature (Sourcing)  
Figure 65. ADR4540 Thermally Induced Output Voltage Hysteresis Distribution  
100  
ADR4540  
V
(5V/DIV)  
ADR4540  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
2
V
(1V/DIV)  
M40.0µs  
OUT  
C
C
R
= 0.1µF  
= 0.1µF  
= 1kΩ  
IN  
OUT  
L
CH1 5.00V CH2 1.00V  
A CH1  
3.10V  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 66. ADR4540 Output Voltage Start-Up Response  
Figure 69. ADR4540 Load Regulation vs. Temperature (Sinking)  
Rev. 0 | Page 23 of 32  
 
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1k  
100  
10  
ADR4540  
ADR4540  
1
0.01  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 70. ADR4540 Line Regulation vs. Temperature  
Figure 73. ADR4540 Output Noise Spectral Density  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
–10  
ADR4540  
+125°C  
ADR4540  
–20  
–30  
+25°C  
–40°C  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 74. ADR4540 Ripple Rejection Ratio vs. Frequency  
Figure 71. ADR4540 Supply Current vs. Supply Voltage  
70  
T
ADR4540  
ADR4540  
60  
50  
40  
30  
20  
10  
0
INPUT  
2
OUTPUT AC  
C
C
= 0.1µF  
IN  
= 1µF  
OUT  
1
B
CH1 1.00V CH2 1.00mV  
M200µs  
12.0%  
A CH1  
7.02V  
W
T
OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p)  
Figure 72. ADR4540 Output Voltage Noise  
(Maximum Amplitude from 0.1 Hz to 10 Hz)  
Figure 75. ADR4540 Line Transient Response  
Rev. 0 | Page 24 of 32  
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
60  
80  
ADR4540  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
60  
40  
50  
40  
30  
R
C
= 100kΩ  
= 1µF  
L
L
20  
R
C
= 100kΩ  
= 10µF  
L
L
0
R
C
= 1kΩ  
= 10µF  
L
L
R
C
= 1kΩ  
= 1µF  
–20  
–40  
–60  
–80  
L
L
20  
10  
0
1
10  
100  
1k  
10k  
100k  
1M  
10M  
0
100 200 300 400 500 600 700 800 900 1000  
DURATION (Hours)  
FREQUENCY (Hz)  
Figure 76. ADR4540 Output Impedance vs. Frequency  
Figure 78. ADR4540 Typical Long-Term Output Voltage Drift  
(1000 Hours)  
12  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
10  
8
6
4
2
0
OUTPUT VOLTAGE (%)  
Figure 77. ADR4540 Output Voltage Drift Distribution After Reflow (SHR Drift)  
Rev. 0 | Page 25 of 32  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
ADR4550  
5.0010  
5.0005  
5.0000  
4.9995  
4.9990  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
ADR4550  
ADR4550  
+25°C  
+125°C  
–40°C  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
130  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
I
(mA)  
LOAD  
Figure 82. ADR4550 Dropout Voltage vs. Load Current  
Figure 79. ADR4550 Output Voltage vs. Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
35  
30  
25  
20  
15  
10  
5
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
ADR4550  
0
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
ΔV  
(ppm)  
OUT_HYS  
Figure 80. ADR4550 Thermally Induced Output Voltage Hysteresis Distribution  
Figure 83. ADR4550 Load Regulation vs. Temperature (Sourcing)  
100  
ADR4550  
ADR4550  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
(5V/DIV)  
IN  
V
(1V/DIV)  
OUT  
1
2
CH1 5.00V CH2 1.00V  
M40.0µs  
A
CH1  
9.10V  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 84. ADR4550 Load Regulation vs. Temperature (Sinking)  
Figure 81. ADR4550 Output Voltage Start-Up Response  
Rev. 0 | Page 26 of 32  
 
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1k  
ADR4550  
ADR4550  
100  
10  
1
0
–50  
0
50  
100  
150  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 85. ADR4550 Line Regulation vs. Temperature  
Figure 88. ADR4550 Output Noise Spectral Density  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
–20  
ADR4550  
+125°C  
ADR4550  
+25°C  
–40°C  
–40  
–60  
–80  
–100  
–120  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
FREQUENCY (Hz)  
V
(V)  
IN  
Figure 86. ADR4550 Supply Current vs. Supply Voltage  
Figure 89. ADR4550 Ripple Rejection Ratio vs. Frequency  
9
T
ADR4550  
ADR4550  
8
7
6
5
4
3
2
1
0
INPUT  
2
OUTPUT AC  
C
C
= 0.1µF  
IN  
= 1µF  
OUT  
1
B
CH1 1.00V CH2 1.00mV  
M200µs  
12.0%  
A CH1  
7.02V  
W
1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7  
OUTPUT VOLTAGE NOISE DISTRIBUTION (µV p-p)  
T
Figure 87. ADR4550 Output Voltage Noise  
(Maximum Amplitude from 0.1 Hz to 10 Hz)  
Figure 90. ADR4550 Line Transient Response  
Rev. 0 | Page 27 of 32  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Data Sheet  
140  
120  
100  
80  
80  
ADR4550  
R
C
= 100kΩ  
= 0.1µF  
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
L
L
60  
R
C
= 100kΩ  
= 1µF  
L
L
40  
20  
R
C
= 1kΩ  
= 0.1µF  
L
L
0
60  
–20  
–40  
–60  
–80  
40  
R
C
= 1kΩ  
= 1µF  
L
L
20  
0
10  
100  
1k  
10k  
100k  
1M  
0
100 200 300 400 500 600 700 800 900 1000  
DURATION (Hours)  
FREQUENCY (Hz)  
Figure 93. ADR4550 Typical Long-Term Output Voltage Drift  
(1000 Hours)  
Figure 91. ADR4550 Output Impedance vs. Frequency  
12  
10  
8
ADR4520  
ADR4525  
ADR4530  
ADR4533  
ADR4540  
ADR4550  
6
4
2
0
OUTPUT VOLTAGE (%)  
Figure 92. ADR4550 Output Voltage Drift Distribution After Reflow (SHR Drift)  
Rev. 0 | Page 28 of 32  
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
TERMINOLOGY  
Long-Term Stability (ΔVOUT_LTD  
)
Dropout Voltage (VDO  
)
Long-term stability refers to the shift in the output voltage at 60°C  
after 1000 hours of operation in a 60°C environment. The ambient  
temperature is kept at 60°C to ensure that the temperature chamber  
does not switch randomly between heating and cooling, which  
can cause instability over the 1000 hour measurement. This is  
also expressed as either a shift in voltage or a difference in ppm  
from the nominal output.  
Dropout voltage, sometimes referred to as supply voltage  
headroom or supply output voltage differential, is defined as the  
minimum voltage differential between the input and output such  
that the output voltage is maintained to within 0.1% accuracy.  
VDO = (VIN − VOUT)min|IL = constant  
Because the dropout voltage depends on the current passing  
through the device, it is always specified for a given load current.  
In series mode devices, the dropout voltage typically increases  
proportionally to the load current (see Figure 6, Figure 21,  
Figure 37, Figure 52, Figure 67, and Figure 82).  
VOUT (t1)VOUT (t0 )  
VOUT _ LTD  
=
×106 [ppm]  
VOUT (t0 )  
where:  
Temperature Coefficient (TCVOUT  
)
V
V
OUT(t0) is the VOUT at 60°C at Time 0.  
OUT(t1) is the VOUT at 60°C after 1000 hours of operation at 60°C.  
The temperature coefficient relates the change in the output  
voltage to the change in the ambient temperature of the device, as  
normalized by the output voltage at 25°C. This parameter is  
determined by the box method, which is represented by the  
following equation:  
Line Regulation  
Line regulation refers to the change in output voltage in response  
to a given change in input voltage and is expressed in percent  
per volt, ppm per volt, or μV per volt change in input voltage.  
This parameter accounts for the effects of self-heating.  
max{VOUT (T1 ,T2 ,T3 )}min{VOUT (T1 ,T2 ,T3 )}  
TCVOUT  
=
×106  
VOUT (T2 )× (T3 T1 )  
Load Regulation  
Load regulation refers to the change in output voltage in response  
to a given change in load current and is expressed in μV per mA,  
ppm per mA, or ohms of dc output resistance. This parameter  
accounts for the effects of self-heating.  
where:  
TCVOUT is expressed in ppm/°C.  
OUT(Tx) is the output voltage at Temperature Tx.  
T1 = −40°C.  
T2 = +25°C.  
T3 = +125°C.  
V
Solder Heat Resistance (SHR) Shift  
SHR shift refers to the permanent shift in output voltage that is  
induced by exposure to reflow soldering and is expressed in units  
of ppm. This shift is caused by changes in the stress exhibited  
on the die by the package materials when these materials are  
exposed to high temperatures. This effect is more pronounced  
in lead-free soldering processes due to higher reflow temperatures.  
This three-point method ensures that TCVOUT accurately portrays  
the maximum difference between any of the three temperatures  
at which the output voltage of the part is measured.  
The TCVOUT for the ADR4520/ADR4525/ADR4530/ADR4533/  
ADR4540/ADR4550 is fully tested over three temperatures:  
−40°C, +25°C, and +125°C.  
Thermally Induced Output Voltage Hysteresis (ΔVOUT_HYS  
Thermally induced output voltage hysteresis represents the  
change in the output voltage after the device is exposed to a  
)
specified temperature cycle. This is expressed as either a shift in  
voltage or a difference in ppm from the nominal output.  
V
OUT _25°C VOUT _TC  
VOUT _ HYS  
=
×106  
[ppm]  
VOUT _25°C  
where:  
V
V
OUT_25°C is the output voltage at 25°C.  
OUT_TC is the output voltage after temperature cycling.  
Rev. 0 | Page 29 of 32  
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
THEORY OF OPERATION  
Data Sheet  
The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/  
ADR4550 series of references uses a unique core topology for  
extremely high accuracy, stability, and noise performance.  
Effect of Long-Term Drift on Voltage References, at www.analog.com  
for more information regarding the effects of long-term drift  
and how it can be minimized.  
Three parameters contribute to the accuracy of the dc output of  
a voltage reference: initial accuracy, temperature coefficient, and  
long-term drift. With an outstanding guaranteed initial error of  
0.02% and a low temperature coefficient of 2 ppm/°C maximum,  
this series of voltage references is perfect for high precision  
applications. The industry-leading long-term stability of the  
devices means that systems need less frequent field calibration  
and that there is a reduction in the costly preshipment system  
burn-in time.  
POWER DISSIPATION  
The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/  
ADR4550 voltage references are capable of sourcing and sinking  
up to 10 mA of load current at room temperature across the rated  
input voltage range. However, when used in applications subject  
to high ambient temperatures, the input voltage and load current  
should be carefully monitored to ensure that the device does not  
exceeded its maximum power dissipation rating. The maximum  
power dissipation of the device can be calculated via the  
following equation:  
LONG-TERM DRIFT  
One of the key parameters of the ADR4520/ADR4525/ADR4530/  
ADR4533/ADR4540/ADR4550 references is long-term  
stability—the output drift over time that the device is powered  
up. Regardless of output voltage, internal testing during  
development showed a typical drift of approximately 25 ppm  
after 1000 hours of continuous, nonloaded operation in a 60°C  
extremely stable temperature controlled environment.  
TJ TA  
PD =  
θJA  
where:  
PD is the device power dissipation.  
TJ is the device junction temperature.  
TA is the ambient temperature.  
θ
JA is the package (junction-to-air) thermal resistance.  
Note that the majority of the long-term drift typically occurs in  
the first 200 hours to 300 hours of operation. For systems that  
require highly stable output voltages over long periods of time,  
the designer should consider burning in the devices prior to use  
to minimize the amount of output drift exhibited by the  
reference over time. See the AN-713 Application Note, The  
Due to this relationship, acceptable load current in high  
temperature conditions may be less than the maximum current  
sourcing capability of the device. In no case should the part be  
operated outside of its maximum power rating because doing so  
may result in premature failure or permanent damage to the device.  
Rev. 0 | Page 30 of 32  
 
 
 
Data Sheet  
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
APPLICATIONS INFORMATION  
BASIC VOLTAGE REFERENCE CONNECTION  
SAMPLE APPLICATIONS  
Bipolar Output Reference  
The circuit shown in Figure 94 illustrates the basic configuration  
for the ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/  
ADR4550 family of voltage references.  
Figure 95 shows a bipolar reference configuration. By connecting  
the output of the ADR4550 to the inverting terminal of an  
operational amplifier, it is possible to obtain both positive and  
negative reference voltages. R1 and R2 must be matched as closely  
as possible to ensure minimal difference between the negative  
and positive outputs. Resistors with low temperature coefficients  
must also be used if the circuit is used in environments with large  
temperature swings; otherwise, a voltage difference develops  
between the two outputs as the ambient temperature changes.  
V
IN  
BAND GAP  
V
REF  
2
6
V
+5V  
V
V
OUT  
IN  
IN  
R1  
10kΩ  
GND  
1µF  
0.1µF  
0.1µF  
Figure 94. ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
Simplified Schematic  
ADR4550  
R2  
10kΩ  
4
GND  
INPUT AND OUTPUT CAPACITORS  
+15V  
Input Capacitors  
–5V  
ADA4000-1  
A 1 μF to 10 μF electrolytic or ceramic capacitor can be connected  
to the input to improve transient response in applications where  
the supply voltage may fluctuate. An additional 0.1 μF ceramic  
capacitor should be connected in parallel to reduce supply noise.  
R3  
5kΩ  
–15V  
Figure 95. ADR4550 Bipolar Output Reference  
Output Capacitors  
Boosted Output Current Reference  
An output capacitor is required for stability and to filter out low  
level voltage noise. The minimum value of the output capacitor  
is shown in Table 12.  
Figure 96 shows a configuration for obtaining higher current  
drive capability from the ADR4520/ADR4525/ADR4530/  
ADR4533/ADR4540/ADR4550 references without sacrificing  
accuracy. The op amp regulates the current flow through the  
MOSFET until VOUT equals the output voltage of the reference;  
current is then drawn directly from VIN instead of from the  
reference itself, allowing increased current drive capability.  
Table 12. Minimum COUT Value  
Part Number  
Minimum COUT Value  
ADR4520, ADR4525  
ADR4530, ADR4533,  
ADR4540, ADR4550  
1.0 µF  
0.1 µF  
V
IN  
+16V  
U6  
R1  
An additional 1 μF to 10 μF electrolytic or ceramic capacitor can be  
added in parallel to improve transient performance in response to  
sudden changes in load current; however, the designer should keep  
in mind that doing so will increase the turn-on time of the device.  
2N7002  
100Ω  
2
6
V
V
OUT  
IN  
AD8663  
V
OUT  
1µF 0.1µF  
ADR4520/ADR4525/  
ADR4530/ADR4533/  
ADR4540/ADR4550  
C
L
0.1µF  
R
200Ω  
L
C
L
LOCATION OF REFERENCE IN SYSTEM  
PART  
NUMBER  
MINIMUM  
L
The ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/  
ADR4550 reference should be placed as close to the load as possible  
to minimize the length of the output traces and, therefore, the error  
introduced by the voltage drop. Current flowing through a PCB  
trace produces an IR voltage drop; with longer traces, this drop  
can reach several millivolts or more, introducing considerable  
error into the output voltage of the reference. A 1 inch long, 5 mm  
wide trace of 1 ounce copper has a resistance of approximately  
100 mΩ at room temperature; at a load current of 10 mA, this  
can introduce a full millivolt of error.  
C
4
GND  
ADR4520, 1.0µF  
ADR4525  
ADR4530, 0.1µF  
ADR4533,  
ADR4540,  
ADR4550  
Figure 96. Boosted Output Current Reference  
Because the current-sourcing capability of this circuit depends only  
on the ID rating of the MOSFET, the output drive capability can  
be adjusted to the application simply by choosing an appropriate  
MOSFET. In all cases, the VOUT pin should be tied directly to the  
load device to maintain maximum output voltage accuracy.  
Rev. 0 | Page 31 of 32  
 
 
 
 
 
 
 
 
 
ADR4520/ADR4525/ADR4530/ADR4533/ADR4540/ADR4550  
OUTLINE DIMENSIONS  
Data Sheet  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 97. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
Package Option  
Ordering Quantity  
ADR4520ARZ  
ADR4520ARZ-R7  
ADR4520BRZ  
ADR4520BRZ-R7  
ADR4525ARZ  
ADR4525ARZ-R7  
ADR4525BRZ  
ADR4525BRZ-R7  
ADR4530ARZ  
ADR4530ARZ-R7  
ADR4530BRZ  
ADR4530BRZ-R7  
ADR4533ARZ  
ADR4533ARZ-R7  
ADR4533BRZ  
ADR4533BRZ-R7  
ADR4540ARZ  
ADR4540ARZ-R7  
ADR4540BRZ  
ADR4540BRZ-R7  
ADR4550ARZ  
ADR4550ARZ-R7  
ADR4550BRZ  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
98  
1,000  
98  
ADR4550BRZ-R7  
1,000  
1 Z = RoHS Compliant Part.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10203-0-4/12(0)  
Rev. 0 | Page 32 of 32  
 
 
 

相关型号:

ADR4550

Ultralow Noise, High Accuracy
ADI

ADR4550ARZ

Ultralow Noise, High Accuracy
ADI

ADR4550ARZ-R7

Ultralow Noise, High Accuracy
ADI

ADR4550BRZ

Ultralow Noise, High Accuracy
ADI

ADR4550BRZ-R7

Ultralow Noise, High Accuracy
ADI

ADR5040

Precision Micropower Shunt Mode Voltage References
ADI

ADR5040A

Precision Micropower Shunt Mode Voltage References
ADI

ADR5040AKSZ-R2

Precision Micropower Shunt Mode Voltage References
ADI

ADR5040AKSZ-REEL

Precision Micropower Shunt Mode Voltage References
ADI

ADR5040AKSZ-REEL7

Precision Micropower Shunt Mode Voltage References
ADI

ADR5040ARTZ

Precision Micropower Shunt Mode Voltage References
ADI

ADR5040ARTZ-R2

Precision Micropower Shunt Mode Voltage References
ADI