ADP2370ACPZ-1.5-R7 [ADI]

High Voltage, 1.2 MHz/600 kHz, 800 mA; 高电压, 1.2 MHz的/ 600千赫, 800毫安
ADP2370ACPZ-1.5-R7
型号: ADP2370ACPZ-1.5-R7
厂家: ADI    ADI
描述:

High Voltage, 1.2 MHz/600 kHz, 800 mA
高电压, 1.2 MHz的/ 600千赫, 800毫安

文件: 总32页 (文件大小:2227K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Voltage, 1.2 MHz/600 kHz, 800 mA,  
Low Quiescent Current Buck Regulator  
Data Sheet  
ADP2370/ADP2371  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
V
= 6V  
IN  
Input voltage range: 3.2 V to 15 V, output current: 800 mA  
Quiescent current < 14 µA in power saving mode (PSM)  
>90% efficiency  
C
IN  
10µF  
POWER GOOD  
Force PWM pin (SYNC), 600 kHz/1.2 MHz frequency pin  
(FSEL)  
Fixed outputs: 0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V, 3.3 V, 5 V,  
and adjustable option  
100% duty cycle capability  
Initial accuracy: 1%  
ADP2370/  
ADP2371  
VIN  
PGND  
1
2
3
4
8
7
6
5
1.2MHz  
V
= 3.3V  
OUT  
SW  
PG  
FSEL  
EN  
600kHz  
C
OUT  
ON  
10µF  
OFF  
Low shutdown current: <1.2 µA  
AGND  
(EXPOSED PAD)  
Quick output discharge (QOD) option  
Synchronizable to an external clock  
8-lead, 0.75 mm × 3 mm × 3 mm LFCSP (QFN) package  
Supported by ADIsimPower design tool  
SYNC  
FB  
Figure 1.  
APPLICATIONS  
Portable and battery-powered equipment  
Automatic meter readers (WSN)  
Point of sales and transaction processing instruments  
Medical instruments  
Medium format display tablets and pads  
GENERAL DESCRIPTION  
The ADP2370/ADP2371 are high efficiency, low quiescent current,  
800 mA buck (step-down) dc-to-dc converters in small 8-lead,  
3 mm × 3 mm LFCSP (QFN) packages. The total solution requires  
only three tiny external components.  
A power-good output is available to indicate when the output  
voltage is below 92% of its nominal value.  
The ADP2371 is identical to the ADP2370 except that the  
ADP2371 includes the addition of an integrated switched  
resistor, quick output discharge function (QOD) that auto-  
matically discharges the output when the device is disabled.  
The buck regulator uses a proprietary high speed current mode,  
constant frequency PWM control scheme for excellent stability  
and transient response. The need for an external rectifier is elimi-  
nated by using a high efficiency synchronous rectifier architecture.  
Both devices include an internal power switch and a synchronous  
rectifier for minimal external part count and high efficiency.  
The ADP2370/ADP2371 also include internal soft start and  
internal compensation for ease of use.  
To ensure the longest battery life in portable applications, the  
ADP2370/ADP2371 employ a power saving variable frequency  
mode that reduces the switching frequency under light load  
conditions. The ADP2370/ADP2371 operate from input voltages  
of 3.2 V to 15 V allowing the use of multiple alkaline/NiMH,  
lithium cells, or other standard power sources.  
During a logic controlled shutdown, the input is disconnected  
from the output and the regulator draws less than 1.2 μA from  
the input source. Other key features include undervoltage lockout  
to prevent deep battery discharge and soft start to prevent input  
overcurrent at startup. Short-circuit protection and thermal over-  
load protection circuits prevent damage under adverse conditions.  
The ADP2370/ADP2371 offer multiple options for setting the  
operational frequency. The ADP2370/ADP2371 can be synchro-  
nized to a 600 kHz to 1.2 MHz external clock or it can be forced  
to operate at 600 kHz or 1.2 MHz via the FSEL pin. The ADP2370/  
ADP2371 can be forced to operate in PWM mode (FPWM)  
when noise considerations are more important than efficiency.  
The ADP2370/ADP2371 each use one 0805 capacitor, one 1206  
capacitor, and one 4 mm × 4 mm inductor. The total solution  
size is about 53 mm2 resulting in a very small footprint solution  
to meet a variety of portable applications.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADP2370/ADP2371  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Undervoltage Lockout ............................................................... 22  
Thermal Protection.................................................................... 22  
Soft Start ...................................................................................... 22  
Current Limit.............................................................................. 22  
100% Duty Cycle ........................................................................ 23  
Synchronizing ............................................................................. 23  
Power Good ................................................................................ 24  
Applications Information.............................................................. 25  
ADIsimPower Design Tool ....................................................... 25  
External Component Selection ................................................ 25  
Selecting the Inductor................................................................ 25  
Output Capacitor........................................................................ 25  
Input Capacitor........................................................................... 25  
Adjustable Output Voltage Programming .............................. 25  
Efficiency..................................................................................... 26  
Recommended Buck External Components .......................... 26  
Capacitor Selection .................................................................... 28  
Thermal Considerations................................................................ 29  
PCB Layout Considerations...................................................... 30  
Packaging and Ordering Information ......................................... 32  
Outline Dimensions................................................................... 32  
Ordering Guide .......................................................................... 32  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Recommended Specifications: Capacitors................................ 5  
Absolute Maximum Ratings ....................................................... 6  
Thermal Data................................................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Buck Output.................................................................................. 8  
Theory of Operation ...................................................................... 20  
PWM Operation......................................................................... 20  
PSM Operation ........................................................................... 21  
Features Descriptions..................................................................... 22  
Precision Enable ......................................................................... 22  
Forced PWM or PWM/PSM Selection.................................... 22  
Quick Output Discharge (QOD) Function............................. 22  
Short-Circuit Protection............................................................ 22  
REVISION HISTORY  
5/12—Rev. 0 to Rev. A  
Changed Voltage Range for SW to PGND and Ground Plane  
from −0.3 V to VIN + 0.3 V to −0.7 V to VIN + 0.3 V ............... 6  
Changes to Ordering Guide .......................................................... 32  
4/12—Revision 0: Initial Version  
Rev. A | Page 2 of 32  
 
Data Sheet  
ADP2370/ADP2371  
SPECIFICATIONS  
VIN = VOUT + 1 V or 3.2 V, whichever is greater, EN = VIN, IOUT = 100 mA, CIN = 10 μF, COUT = 10 µF, TA = 25°C for typical specifications,  
TJ = −40°C to +125°C for minimum/maximum specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SUPPLY  
Input Voltage Range  
Quiescent Current  
VIN  
IQ-PSM  
3.2  
15  
V
μA  
FSEL = VIN, SYNC = 0 V, no load, device not  
switching  
FSEL = VIN, SYNC = VIN, no load, device not  
switching  
13.5  
725  
IQ-PWM  
μA  
ISW-PWM  
ISHUT  
FSEL = VIN, SYNC = VIN, no load, device switching  
EN = GND, TJ = −40°C to +85°C  
5.7  
1.2  
mA  
μA  
Shutdown Current  
FIXED OUTPUT  
3.5  
Output Current  
Fixed Output Accuracy  
IOUT  
VOUT  
800  
−1  
−1.5  
−3  
mA  
%
%
Initial set point, IOUT = 250 mA, TJ = 25°C  
IOUT = 250 mA  
No load to full load, PWM mode  
+1  
+1.5  
+3  
%
ADJUSTABLE OUTPUT  
Feedback Voltage  
Feedback Voltage Accuracy  
Output Voltage Range  
FIXED AND ADJUSTABLE OUTPUT  
Load Regulation  
VFB  
VFB-TOL  
VOUT-ADJ  
0.8  
V
%
V
Initial set point, IOUT = 250 mA, TJ = 25°C  
No load to full load  
−1  
0.8  
+1  
14  
∆VOUT/∆IOUT  
∆VOUT/∆VIN  
EFF  
No load to full load  
IOUT = 250 mA  
IOUT = 250 mA, VIN = 7.2 V, VOUT = 3.3 V  
0.125  
0.01  
92  
%/A  
%/V  
%
Line Regulation  
Efficiency  
Overcurrent Frequency Foldback Threshold  
Rising  
Falling  
OCFOLDBACK-RISE % of VOUT, VOUT rising  
OCFOLDBACK-FALL % of VOUT, VOUT falling  
PSMTHRESHOLD VIN = 7.2 V, VOUT = 3.3 V  
50  
37.5  
170  
%
%
mA  
PSM Threshold  
Feedback Pin Input Current  
Fixed  
Adjustable  
IFB-FIXED  
IFB-ADJUST  
ON-TIMEMIN  
Fixed output voltage model  
Adjustable output voltage model  
VIN < 5.5 V  
2.5  
10  
65  
40  
350  
260  
μA  
nA  
ns  
ns  
μs  
Ω
Minimum On Time  
100  
60  
VIN > 5.5 V  
Soft Start Time  
Active Pull-Down Resistance  
(ADP2371)  
SSTIME  
RPULL-DOWN  
When EN rises from 0 V to VIN, and VOUT = 0.9 × VOUT  
400  
POWER SWITCH  
P-Channel On Resistance  
RDSON-P  
RDSON-N  
VIN > 5.5 V, IOUT = 400 mA  
VIN < 5.5 V, IOUT = 400 mA  
VIN > 5.5 V, IOUT = 400 mA  
VIN < 5.5 V, IOUT = 400 mA  
400  
500  
280  
400  
mΩ  
mΩ  
mΩ  
mΩ  
N-Channel On Resistance  
Current Limit  
P-Channel  
N-Channel  
ILIM-P  
ILIM-N  
Peak inductor current  
Peak inductor current  
1200 1300 mA  
500  
550  
mA  
Leakage Current  
P-Channel  
N-Channel  
ILEAK-SW  
0.01  
0.01  
1
1
μA  
μA  
OSCILLATOR  
Oscillator Frequency  
fOSC  
FSEL = VIN, 3.2 V ≤ VIN ≤ 15 V  
FSEL = 0 V, 3.2 V ≤ VIN ≤ 15 V  
1.0  
500  
1.2  
600  
1.4  
700  
MHz  
kHz  
Rev. A | Page 3 of 32  
 
ADP2370/ADP2371  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
FSEL = 0 V, 3.2 V ≤ VIN ≤ 15 V  
FSEL = VIN, 3.2 V ≤ VIN ≤ 15 V  
Min  
400  
0.8  
Typ  
Max  
800  
1.6  
Unit  
kHz  
MHz  
Frequency Synchronization Range  
fSYNC_RANGE  
Synchronization Threshold  
High  
Low  
SYNCHIGH  
SYNCLOW  
SYNCHYS  
SYNCDUTY  
3.2 V ≤ VIN ≤ 15 V  
3.2 V ≤ VIN ≤ 15 V  
3.2 V ≤ VIN ≤ 15 V  
VIN (1.2 MHz), 3.2 V ≤ VIN ≤ 5 V, FSEL = VIN  
VIN (1.2 MHz), 5 V ≤ VIN ≤ 15 V, FSEL = VIN  
SYNC = 0 V or SYNC = VIN  
3.2 V ≤ VIN ≤ 15 V  
1.2  
V
V
mV  
%
%
0.4  
Hysteresis  
Typical Sync Duty Cycle Range  
200  
20  
20  
55  
70  
1
SYNC Pin Leakage Current  
FSEL Threshold  
High  
Low  
Hysteresis  
FSEL Pin Leakage Current  
POWER GOOD (PG PIN)  
PG Threshold  
Rising  
Falling  
Hysteresis  
PG Output Low  
PG Delay  
SYNCLKG  
0.05  
μA  
FESLHIGH  
FSELLOW  
FSELHYS  
FSELLKG  
1
V
V
mV  
μA  
0.4  
1
125  
0.04  
FSEL = 0 V or FSEL = VIN  
3.2 V ≤ VIN ≤ 15 V  
PGRISE  
PGFALL  
PGHYS  
PGLOW  
92  
87  
5
95  
%
%
%
V
82.5  
Pull-up current < 1 mA  
0.3  
Rising  
PGDELAYRISE  
PGDELAYFALL  
PGLKG  
VOUT crossing PG rising threshold, pull-up  
current < 1 mA  
VOUT crossing PG falling threshold, pull-up  
current < 1 mA  
20  
μs  
μs  
μA  
Falling  
0.5  
0.04  
PG Leakage  
1
UNDERVOLTAGE LOCKOUT (UVLO)  
Input Voltage Rising  
Input Voltage Falling  
Hysteresis  
UVLORISE  
UVLOFALL  
UVLOHYS  
3.19  
V
V
mV  
2.80  
1
190  
125  
ENABLE INPUT STANDBY (EN PIN)  
EN Input Logic  
3.2 V ≤ VIN ≤ 15 V  
3.2 V ≤ VIN ≤ 15 V  
EN = VIN or GND  
V
High  
Low  
Hysteresis  
ENSTBY-HIGH  
ENSTBY-LOW  
ENSTBY-HYS  
0.4  
V
mV  
ENABLE INPUT PRECISION (EN PIN)  
EN Input Logic  
High  
Low  
ENHIGH  
ENLOW  
ENHYS  
IEN-LKG  
TIEN-DLY  
1.135 1.2  
1.045 1.1  
100  
1.26  
1.155  
V
V
mV  
µA  
μs  
Hysteresis  
EN Input Leakage Current  
EN Input Delay Time  
0.05  
70  
1
For VOUT = 0 V to 0.1 × VOUT when EN rises from  
0 V to VIN  
THERMAL SHUTDOWN  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
3.2 V ≤ VIN ≤ 15 V  
TJ rising  
TSSD  
TSSD-HYS  
150  
15  
°C  
°C  
Rev. A | Page 4 of 32  
Data Sheet  
ADP2370/ADP2371  
RECOMMENDED SPECIFICATIONS: CAPACITORS  
Table 2.  
Parameter  
MINIMUM INPUT and OUTPUT CAPACITANCE1  
Symbol  
Test Conditions/Comments  
TA = −40°C to +125°C  
Min  
6.5  
1
Typ  
Max  
Unit  
µF  
CMIN  
RESR  
10  
TA = −40°C to +125°C  
CAPACITOR ESR  
10  
mΩ  
1 The minimum input and output capacitance should be greater than 7 μF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R- and X5R-type capacitors are recommended;  
Y5V and Z5U capacitors are not recommended for use with any buck.  
Rev. A | Page 5 of 32  
 
 
ADP2370/ADP2371  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
attention to thermal board design is required. The value of θJA can  
vary, depending on PCB material, layout, and environmental con-  
ditions.  
Table 3.  
Parameter  
Rating  
VIN to PGND and Ground Plane  
SW to PGND and Ground Plane  
FB to PGND and Ground Plane  
EN to PGND and Ground Plane  
PG to PGND and Ground Plane  
SYNC to PGND and Ground Plane  
FSEL to PGND and Ground Plane  
Temperature Range  
−0.3 V to +17 V  
−0.7 V to VIN + 0.3 V  
−0.3 V to +6 V  
−0.3 V to +17 V  
−0.3 V to +17 V  
−0.3 V to +17 V  
−0.3 V to +17 V  
The specified values of θJA are based on a 4-layer, 4 in. × 3 in.  
circuit board. See JESD 51-7, High Effective Thermal Conduc-  
tivity Test Board for Leaded Surface Mount Packages, for detailed  
information on board construction. For more information, see  
Application Note AN-772, A Design and Manufacturing Guide for  
the Lead Frame Chip Scale Package (LFCSP).  
ΨJB is the junction to board thermal characterization parameter  
with units of °C/W. The ΨJB of the package is based on modeling  
and calculation using a 4-layer board. The JESD51-12, Guidelines  
for Reporting and Using Electronic Package Thermal Information,  
states that thermal characterization parameters are not the same  
as thermal resistances. ΨJB measures the component power flowing  
through multiple thermal paths rather than a single path as in  
thermal resistance, θJB. Therefore, ΨJB thermal paths include  
convection from the top of the package as well as radiation  
from the package, factors that make ΨJB more useful in real-  
world applications. Maximum junction temperature (TJ) is  
calculated from the board temperature (TB) and power  
dissipation (PD) using the formula  
Storage  
Operating Ambient  
Operating Junction  
Soldering Conditions  
−65°C to +150°C  
−40°C to +85°C  
−40°C to +125°C  
JEDEC J-STD-020  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL DATA  
TJ = TB + (PD × ΨJB)  
Absolute maximum ratings apply individually only, not in com-  
bination. Exceeding the junction temperature (TJ) limit can  
cause damage to the ADP2370/ADP2371. Monitoring ambient  
temperature does not guarantee that TJ is within the specified  
temperature limits. The maximum ambient temperature may  
require derating in applications with high power dissipation and  
poor thermal resistance.  
For more detailed information regarding ΨJB, see JESD51-12  
and JESD51-8, Integrated Circuit Thermal Test Method Envi-  
ronmental Conditions—Junction-to-Board.  
THERMAL RESISTANCE  
θJA and ΨJB are specified for the worst-case conditions, that is, a  
device soldered in a circuit board for surface-mount packages.  
In applications with moderate power dissipation and low  
printed circuit board (PCB) thermal resistance, the maximum  
ambient temperature can exceed the maximum limit as long  
as the junction temperature is within specification limits. The  
junction temperature of the device is dependent on the ambient  
temperature, the power dissipation of the device, and the junction  
to ambient thermal resistance of the package (θJA).  
θ
JC is a parameter for surface-mount packages with top mounted  
heat sinks.  
Table 4. Thermal Resistance  
Package Type  
θJA  
θJC  
ΨJB  
Unit  
8-Lead 3 mm × 3 mm LFCSP  
36.7  
23.5 17.2 °C/W  
Maximum junction temperature (TJ) is calculated from the  
ambient temperature (TA) and power dissipation (PD) using  
the formula  
ESD CAUTION  
TJ = TA + (PD × θJA)  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. θJA is  
highly dependent on the application and board layout. In applica-  
tions where high maximum power dissipation exists, close  
Rev. A | Page 6 of 32  
 
 
 
 
Data Sheet  
ADP2370/ADP2371  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADP2370/ADP2371  
VIN  
FSEL  
EN  
1
2
3
4
8
7
6
5
PGND  
SW  
TOP VIEW  
(Not to  
Scale)  
PG  
FB  
SYNC  
NOTES  
1. THE EXPOSED PAD ON THE BOTTOM OF THE PACKAGE ENHANCES  
THE THERMAL PERFORMANCE AND IS ELECTRICALLY CONNECTED  
TO GROUND INSIDE THE PACKAGE. THE EXPOSED PAD MUST BE  
CONNECTED TO THE GROUND PLANE ON THE CIRCUIT BOARD  
FOR PROPER OPERATION.  
Figure 2. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
VIN  
FSEL  
EN  
SYNC  
Power Input.  
Frequency Select. High = 1.2 MHz, low = 600 kHz.  
Enable. Enable input with precision thresholds.  
Synchronize. This pin is used to synchronize the device to an external 600 kHz to 1.2 MHz clock or forces  
PWM mode when it is held high. SYNC held low forces automatic PWM/PSM operation.  
5
6
7
8
FB  
PG  
SW  
PGND  
EPAD  
Feedback. This pin provides feedback from the output.  
Power Good. PG is an open-drain output.  
Switch. This pin serves as the connection from the power MOSFETs to the inductor.  
Power Ground.  
Exposed Pad. The exposed pad on the bottom of the package enhances the thermal performance and is  
electrically connected to ground inside the package. The exposed pad must be connected to the ground  
plane on the circuit board for proper operation.  
Rev. A | Page 7 of 32  
 
ADP2370/ADP2371  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
BUCK OUTPUT  
Using recommended inductor values, IOUT = 10 mA, CIN = COUT = 10 µF, automatic PSM/PWM mode, TA = 25°C, unless otherwise noted.  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
0.65  
0.63  
0.61  
0.59  
0.57  
0.55  
25  
20  
15  
10  
5
600kHz  
1.2MHz  
+125°C  
+85°C  
+25°C  
–5°C  
–40°C  
0
3
5
7
9
11  
13  
15  
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 3. Quiescent Supply Current vs. Input Voltage, Nonswitching,  
Different Temperatures  
Figure 6. Switching Frequency vs. Input Voltage, FPWM Mode  
800  
3.40  
3.35  
3.30  
+125°C  
+85°C  
+25°C  
–5°C  
–40°C  
750  
700  
650  
600  
550  
500  
3.25  
0.1mA  
3.20  
3.15  
3.10  
1mA  
5mA  
10mA  
50mA  
100mA  
300mA  
800mA  
3
4
5
6
7
8
9
10 11 12 13 14 15  
–40  
–5  
25  
85  
125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 4. FPWM Quiescent Supply Current vs. Input Voltage, Nonswitching,  
Different Temperatures  
Figure 7. Output Voltage vs. Temperature, VOUT = 3.3 V, VIN = 7.3 V,  
Different Loads  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
0.65  
0.63  
0.61  
0.59  
0.57  
0.55  
5.20  
5.15  
5.10  
5.05  
600kHz  
1.2MHz  
5.00  
0.1mA  
1mA  
4.95  
4.90  
4.85  
5mA  
10mA  
50mA  
100mA  
300mA  
800mA  
4.80  
–40  
–45  
–25  
–5  
15  
35  
55  
75  
95  
115  
135  
–5  
25  
85  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Switching Frequency vs. Temperature, FPWM Mode, VIN = 8 V  
Figure 8. Output Voltage vs. Temperature, VOUT = 5 V, VIN = 7.2 V,  
Different Loads  
Rev. A | Page 8 of 32  
 
 
Data Sheet  
ADP2370/ADP2371  
1.25  
1.23  
1.21  
1.19  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.8V  
4.55V  
6.05V  
7.30V  
10.55V  
12.05V  
15.05V  
0.1mA  
1mA  
5mA  
10mA  
50mA  
100mA  
300mA  
800mA  
1.17  
1.15  
–40  
–5  
25  
85  
125  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
LOAD (mA)  
Figure 12. Load Regulation, VOUT = 3.3 V  
Figure 9. Output Voltage vs. Temperature, VOUT = 1.2 V, VIN = 4 V,  
Different Loads  
1.90  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
1.85  
1.80  
0.1mA  
1mA  
5mA  
10mA  
50mA  
100mA  
300mA  
800mA  
0.1mA  
1m  
A
5mA  
1.75  
10mA  
50mA  
100mA  
300mA  
800mA  
1.70  
3
5
7
9
11  
13  
15  
–40  
–5  
25  
85  
125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 10. Output Voltage vs. Temperature, VOUT = 1.8 V, VIN = 7.2 V,  
Different Loads  
Figure 13. Line Regulation, VOUT = 5.0 V, Different Loads  
3.40  
3.35  
3.30  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
3.25  
0.1mA  
5.40V  
3.20  
3.15  
3.10  
1mA  
6.00V  
5mA  
7.20V  
10mA  
50mA  
100mA  
300mA  
800mA  
9.00V  
10.80V  
12.00V  
15.05V  
3
5
7
9
11  
13  
15  
0.1  
1
10  
100  
1000  
INPUT VOLTAGE (V)  
LOAD (mA)  
Figure 11. Line Regulation, VOUT = 3.3 V, Different Loads  
Figure 14. Load Regulation, VOUT = 5.0 V  
Rev. A | Page 9 of 32  
ADP2370/ADP2371  
Data Sheet  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.90  
1.85  
1.80  
1.75  
1.70  
3.20V  
3.95V  
5.45V  
7.20V  
9.95V  
11.95V  
15.20V  
1.19  
0.1mA  
1mA  
1.18  
1.17  
1.16  
1.15  
5mA  
10mA  
50mA  
100mA  
300mA  
800mA  
3
5
7
9
11  
13  
15  
0.1  
1
10  
100  
1000  
INPUT VOLTAGE (V)  
LOAD (mA)  
Figure 15. Line Regulation, VOUT = 1.2 V, Different Loads  
Figure 18. Load Regulation, VOUT = 1.8 V  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
1.17  
1.16  
1.15  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.80V  
4.55V  
6.05V  
7.30V  
10.55V  
12.05V  
15.05V  
3.20V  
3.95V  
5.45V  
7.20V  
9.95V  
11.95V  
15.20V  
0.01  
0.10  
1.0  
10  
100  
1000  
0.1  
1
10  
100  
1000  
LOAD (mA)  
LOAD (mA)  
Figure 19. Efficiency vs. Load Current, VOUT = 3.3 V, Different Input Voltages  
Figure 16. Load Regulation, VOUT = 1.2 V  
1.90  
1.85  
1.80  
1.75  
1.70  
100  
90  
80  
70  
60  
50  
–40°C  
–5°C  
+25°C  
+85°C  
+125°C  
40  
0.1mA  
1mA  
30  
20  
10  
0
5mA  
10mA  
50mA  
100mA  
300mA  
800mA  
0.01  
0.10  
1.0  
10  
100  
1000  
3
5
7
9
11  
13  
15  
LOAD (mA)  
INPUT VOLTAGE (V)  
Figure 20. Efficiency vs. Load Current, VOUT = 3.3 V, Different Temperatures,  
IN = 7.3 V  
Figure 17. Line Regulation, VOUT = 1.8 V, Different Loads  
V
Rev. A | Page 10 of 32  
Data Sheet  
ADP2370/ADP2371  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5.4V  
–40°C  
–5°C  
+25°C  
+85°C  
+125°C  
6.0V  
7.2V  
9.0V  
10.8V  
12.8V  
15.0V  
0.01  
0.10  
1.0  
10  
100  
1000  
0.01  
0.10  
1.0  
10  
100  
1000  
LOAD (mA)  
LOAD (mA)  
Figure 21. Efficiency vs. Load Current, VOUT = 5.0 V, Different Input Voltages  
Figure 24. Efficiency vs. Load Current, VOUT = 1.2 V, Different Temperatures,  
VIN = 4 V  
100  
90  
80  
70  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
–40°C  
–5°C  
+25°C  
+85°C  
+125°C  
40  
3.20V  
3.95V  
5.50V  
7.20V  
9.95V  
12.45V  
15.20V  
30  
20  
10  
0
0.01  
0.10  
1.0  
10  
100  
1000  
0.01  
0.10  
1.0  
10  
100  
1000  
LOAD (mA)  
LOAD (mA)  
Figure 22. Efficiency vs. Load Current, VOUT = 5.0 V, Different Temperatures  
Figure 25. Efficiency vs. Load Current, VOUT = 1.8 V, Different Input Voltages  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
–40°C  
–5°C  
+25°C  
+85°C  
+125°C  
40  
40  
3.20V  
30  
20  
10  
0
3.95V  
5.50V  
7.20V  
9.95V  
12.45V  
15.20V  
30  
20  
10  
0
0.01  
0.10  
1.0  
10  
100  
1000  
0.01  
0.10  
1.0  
10  
100  
1000  
LOAD (mA)  
LOAD (mA)  
Figure 23. Efficiency vs. Load Current, VOUT = 1.2 V, Different Input Voltages  
Figure 26. Efficiency vs. Load Current, VOUT = 1.8 V, Different Temperatures,  
IN = 4 V  
V
Rev. A | Page 11 of 32  
ADP2370/ADP2371  
Data Sheet  
90  
85  
V
IN  
80  
600kHz  
75  
INDUCTOR CURRENT  
1.2MHz  
70  
65  
60  
55  
50  
45  
40  
1
V
OUT  
2
3
B
B
W
CH1 500mA Ω  
CH2 20.0mV  
M10.0µs A CH3 4.56V  
W
0.01  
0.1  
1
10  
100  
1000  
B
CH3 1.00V  
W
T
11.0%  
LOAD (mA)  
Figure 30. Line Transient, VOUT = 1.2 V, PSM Mode, 100 mA, VIN1 = 4 V to 5 V,  
2 μs Rise Time, CIN = 3.3 μF  
Figure 27. Efficiency vs. Load Current, Different Switching Frequency,  
OUT = 1.8 V, VIN = 9 V  
V
V
IN  
V
IN  
INDUCTOR CURRENT  
1
INDUCTOR CURRENT  
1
2
V
OUT  
V
OUT  
2
3
3
B
B
W
B
B
W
CH1 500mA Ω  
B
CH3 1.00V  
W
CH2 10.0mV  
M10.0µs A CH3 5.44V  
10.80%  
CH1 500mA Ω  
B
CH3 1.00V  
W
CH2 20.0mV  
M10.0µs A CH3 4.56V  
11.00%  
W
W
T
T
Figure 31. Line Transient, VOUT = 1.2 V, PWM Mode, 800 mA, VIN1 = 4 V to 5 V,  
2 μs Rise Time, CIN = 3.3 μF  
Figure 28. Line Transient, VOUT = 1.8 V, PSM Mode, 100 mA, VIN1 = 4 V to 5 V,  
2 μs Rise Time, CIN = 3.3 μF  
V
IN  
V
IN  
1
INDUCTOR CURRENT  
INDUCTOR CURRENT  
1
2
3
V
OUT  
V
OUT  
B
B
W
B
B
W
CH1 200mA Ω  
B
CH3 1.00V  
W
CH2 20.0mV  
M10.0µs A CH3 6.78V  
11.40%  
CH1 200mA Ω  
B
CH3 1.00V  
W
CH2 20.0mV  
M10.0µs A CH3 4.64V  
11.20%  
W
W
T
T
Figure 32. Line Transient, VOUT = 3.3 V, PSM Mode, 100 mA, VIN1 = 6 V to 7 V,  
2 μs Rise Time, CIN = 3.3 μF  
Figure 29. Line Transient, VOUT = 1.8 V, PWM Mode, 800 mA, VIN1 = 4 V to 5 V,  
2 μs Rise Time, CIN = 3.3 μF  
Rev. A | Page 12 of 32  
Data Sheet  
ADP2370/ADP2371  
LOAD CURRENT  
V
IN  
1
2
INDUCTOR CURRENT  
V
OUT  
V
OUT  
INDUCTOR CURRENT  
2
1
3
B
B
B
B
CH1 200mA Ω  
CH2 10.0mV  
M10.0µs A CH3 6.78V  
11.40%  
CH1 500mA Ω  
CH2 50.0mV  
M20.0µs A CH1 560mA  
W
W
W
W
W
B
B
CH3 1.00V  
CH3 500mA Ω  
W
T
T
10.40%  
Figure 33. Line Transient, VOUT = 3.3 V, PWM Mode, 800 mA, VIN1 = 6 V to 7 V,  
2 μs Rise Time, CIN = 3.3 μF  
Figure 36. Load Transient, VOUT = 1.8 V, 300 mA to 800 mA,  
Load Current Rise Time = 200 ns  
V
IN  
LOAD CURRENT  
1
2
INDUCTOR CURRENT  
V
OUT  
1
2
3
V
OUT  
INDUCTOR CURRENT  
3
B
B
B
B
W
CH1 200mA Ω  
CH2 50.0mV  
M10.0µs A CH3 6.74V  
10.60%  
CH1 500mA Ω  
CH2 100mV  
M40.0µs A CH1 320mA  
W
W
W
W
B
B
CH3 1.00V  
CH3 500mA Ω  
W
T
T
72.00%  
Figure 34. Line Transient, VOUT = 5 V, PSM Mode, 100 mA, VIN1 = 6 V to 7 V,  
2 μs Rise Time, CIN = 3.3 μF  
Figure 37. Load Transient, VOUT = 1.8 V, 10 mA to 800 mA,  
Load Current Rise Time = 200 ns  
V
IN  
LOAD CURRENT  
1
2
V
INDUCTOR CURRENT  
OUT  
V
OUT  
INDUCTOR CURRENT  
2
1
3
B
B
B
B
W
CH1 200mA Ω  
CH2 10.0mV  
M10.0µs A CH3 6.52V  
11.00%  
CH1 100mA Ω  
CH2 20.0mV  
M10.0µs A CH1 76.0mA  
W
W
W
W
B
B
CH3 1.00V  
CH3 200mA Ω  
W
T
T
50.40%  
Figure 35. Line Transient, VOUT = 5 V, PWM Mode, 800 mA, VIN1 = 6 V to 7 V,  
2 μs Rise Time, CIN = 3.3 μF  
Figure 38. Load Transient, VOUT = 1.8 V,10 mA to 110 mA,  
Load Current Rise Time = 200 ns  
Rev. A | Page 13 of 32  
ADP2370/ADP2371  
Data Sheet  
LOAD CURRENT  
LOAD CURRENT  
1
1
2
V
V
OUT  
OUT  
2
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
B
B
W
CH1 200mA Ω  
CH2 50.0mV  
M20.0µs A CH1 208mA  
CH1 100mA Ω  
CH2 50.0mV  
M20.0µs A CH1 46.0mA  
W
W
W
W
W
B
B
CH3 200mA Ω  
CH3 200mA Ω  
T
50.40%  
T
50.40%  
Figure 39. Load Transient, VOUT = 1.8 V,100 mA to 300 mA,  
Load Current Rise Time = 200 ns  
Figure 42. Load Transient, VOUT = 3.3 V, 10 mA to 110 mA,  
Load Current Rise Time = 200 ns  
LOAD CURRENT  
LOAD CURRENT  
1
2
1
2
V
OUT  
V
OUT  
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
B
B
W
CH1 500mA Ω  
CH2 50.0mV  
M40.0µs A CH1 580mA  
CH1 200mA Ω  
CH2 50.0mV  
M20.0µs A CH1 184mA  
W
W
W
W
W
B
B
CH3 500mA Ω  
CH3 200mA Ω  
T
10.20%  
T
29.80%  
Figure 40. Load Transient, VOUT = 3.3 V, 300 mA to 800 mA,  
Load Current Rise Time = 200 ns  
Figure 43. Load Transient, VOUT = 3.3 V, 100 mA to 300 mA,  
Load Current Rise Time = 200 ns  
LOAD CURRENT  
LOAD CURRENT  
1
2
1
2
V
OUT  
V
OUT  
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
B
B
W
CH1 500mA Ω  
CH2 200mV  
M40.0µs A CH1 530mA  
CH1 500mA Ω  
CH3 500mA Ω  
CH2 50.0mV  
M10.0µs A CH1 560mA  
W
W
W
W
W
B
B
CH3 500mA Ω  
T
71.80%  
T
10.40%  
Figure 41. Load Transient, VOUT = 3.3 V, 10 mA to 800 mA,  
Load Current Rise Time = 200 ns  
Figure 44. Load Transient, VOUT = 1.2 V, 300 mA to 800 mA,  
Load Current Rise Time = 200 ns, VIN = 5 V  
Rev. A | Page 14 of 32  
Data Sheet  
ADP2370/ADP2371  
LOAD CURRENT  
LOAD CURRENT  
1
2
1
2
V
OUT  
V
OUT  
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
B
B
W
CH1 500mA Ω  
CH2 100mV  
M40.0µs A CH1 320mA  
72.00%  
CH1 500mA Ω  
CH2 100mV  
M20.0µs A CH1 530mA  
T 10.00%  
W
W
W
W
W
B
B
CH3 500mA Ω  
CH3 500mA Ω  
T
Figure 45. Load Transient, VOUT = 1.2 V, 10 mA to 800 mA, Load Current Rise  
Time = 200 ns, VIN = 5 V  
Figure 48. Load Transient, VOUT = 5 V, 300 mA to 800 mA, Load Current Rise  
Time = 200 ns, VIN = 8 V  
LOAD CURRENT  
1
LOAD CURRENT  
1
V
V
OUT  
OUT  
2
2
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
B
B
W
CH1 100mA Ω  
CH3 500mA Ω  
CH2 20.0mV  
M10.0µs A CH1 112mA  
CH1 500mA Ω  
CH2 200mV  
M40.0µs A CH1 320mA  
T 72.00%  
W
W
W
W
W
B
B
CH3 500mA Ω  
T
50.40%  
Figure 46. Load Transient, VOUT = 1.2 V,10 mA to 110 mA, Load Current Rise  
Time = 200 ns, VIN = 5 V  
Figure 49. Load Transient, VOUT = 5 V, 1 mA to 800 mA, Load Current Rise  
Time = 200 ns, VIN = 8 V  
LOAD CURRENT  
1
LOAD CURRENT  
1
V
V
OUT  
OUT  
2
2
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
B
B
W
CH1 100mA Ω  
CH2 50.0mV  
M20.0µs A CH1 220mA  
CH1 100mA Ω  
CH2 50.0mV  
M20.0µs A CH1 80.0mA  
W
W
W
W
W
B
B
CH3 200mA Ω  
CH3 200mA Ω  
T
50.40%  
T
50.40%  
Figure 47. Load Transient, VOUT = 1.2 V,100 mA to 300 mA, Load Current Rise  
Time = 200 ns, VIN = 5 V  
Figure 50. Load Transient, VOUT = 5 V,10 mA to 110 mA, Load Current Rise  
Time = 200 ns, VIN = 8 V  
Rev. A | Page 15 of 32  
ADP2370/ADP2371  
Data Sheet  
V
V
IN  
LOAD CURRENT  
1
1
2
V
OUT  
OUT  
2
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
W
B
B
W
CH1 200mA Ω  
CH2 100mV  
M20.0µs A CH1 208mA  
30.40%  
CH1 5.00V  
CH3 200mA Ω  
CH2 2.00V  
M100µs A CH1 2.50V  
10.00%  
W
W
W
B
B
CH3 200mA Ω  
W
T
T
Figure 51. Load Transient, VOUT = 5 V, 100 mA to 300 mA, Load Current Rise  
Time = 200 ns, VIN = 8 V  
Figure 54. Startup, VOUT = 3.3 V, 10 mA  
V
V
V
IN  
IN  
1
1
2
OUT  
V
OUT  
2
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
B
B
CH2 2.00V  
W
CH1 5.00V  
CH3 200mA Ω  
CH2 1.00V  
M100µs A CH1 2.50V  
10.00%  
CH1 5.00V  
CH3 500mA Ω  
M100µs A CH1 2.50V  
T 10.00%  
W
W
W
B
B
W
W
T
Figure 52. Startup, VOUT = 1.8 V, 10 mA  
Figure 55. Startup, VOUT = 3.3 V, 800 mA  
V
V
IN  
IN  
1
2
1
2
V
V
OUT  
OUT  
INDUCTOR CURRENT  
INDUCTOR CURRENT  
3
3
B
B
B
B
CH2 1.00V  
W
CH1 5.00V  
CH3 500mA Ω  
CH2 1.00V  
M100µs A CH1 2.50V  
10.00%  
CH1 5.00V  
CH3 200mA Ω  
M100µs A CH1 2.50V  
T 10.00%  
W
W
W
B
B
W
W
T
Figure 53. Startup, VOUT = 1.8 V, 800 mA  
Figure 56. Startup, VOUT = 1.2 V, 10 mA, VIN = 5 V  
Rev. A | Page 16 of 32  
Data Sheet  
ADP2370/ADP2371  
250  
200  
150  
100  
50  
V
IN  
1
2
V
OUT  
INDUCTOR CURRENT  
–40°C  
–5°C  
+25°C  
+85°C  
+125°C  
3
0
B
B
W
CH1 5.00V  
CH3 500mA Ω  
CH2 500mV  
M100µs A CH1 2.50V  
10.00%  
W
3
5
7
9
11  
13  
15  
B
W
INPUT VOLTAGE (V)  
T
Figure 57. Startup, VOUT = 1.2 V, 800 mA, VIN = 5 V  
Figure 60. PSM to PWM Mode Transition vs. Input Voltage,  
Different Temperatures  
1200  
V
IN  
1150  
1100  
1050  
1000  
950  
1
2
V
OUT  
INDUCTOR CURRENT  
5.4V  
7.2V  
12.0V  
15.0V  
900  
3
850  
800  
B
B
W
CH1 5.00V  
CH3 200mA Ω  
CH2 2.00mV  
M100µs A CH1 2.50V  
10.00%  
W
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
B
W
TEMPERATURE (°C)  
T
Figure 61. Overcurrent Limit vs. Temperature, VOUT = 5 V,  
Different Input Voltages  
Figure 58. Startup, VOUT = 5 V, 10 mA, VIN = 7 V  
0.05  
V
IN  
0.04  
0.03  
0.02  
0.01  
0
1
2
V
OUT  
3.2V  
5.0V  
9.0V  
15V  
INDUCTOR CURRENT  
3
B
B
W
CH1 5.00V  
CH3 500mA Ω  
CH2 2.00mV  
M100µs A CH1 2.50V  
10.00%  
W
0
100  
200  
300  
400  
500  
600  
700  
800  
B
W
LOAD CURRENT (mA)  
T
Figure 59. Startup, VOUT = 5 V, 800 mA, VIN = 7 V  
Figure 62. Output Ripple vs. Load Current, VOUT = 1.2 V, Different Input  
Voltages, Automatic Mode  
Rev. A | Page 17 of 32  
ADP2370/ADP2371  
Data Sheet  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
3.2V  
5.0V  
9.0V  
15V  
4V  
5V  
9V  
15V  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
600  
700  
800  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 63. Output Ripple vs. Load Current, VOUT = 1.8 V, Different Input  
Voltages, Automatic Mode  
Figure 66. Output Ripple vs. Load Current, VOUT = 3.3 V, Different Input  
Voltages, Force PWM Mode  
1.0  
0.08  
3.0V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.5V  
4.0V  
5.0V  
6.0V  
7.0V  
10.0V  
0.06  
0.04  
4.5V  
5.0V  
9.0V  
15V  
0.02  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
100  
200  
300  
400  
500  
600  
700  
800  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
Figure 64. Output Ripple vs. Load Current, VOUT = 3.3 V, Different Input  
Voltages, Automatic Mode  
Figure 67. PMOS RDSON vs. Temperature at 400 mA, Different Input Voltages  
1.0  
0.10  
0.08  
0.06  
3.0V  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.5V  
4.0V  
5.0V  
6.0V  
7.0V  
10.0V  
5.8V  
6.0V  
9.0V  
15V  
0.04  
0.02  
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
100  
200  
300  
400  
500  
600  
700  
800  
LOAD CURRENT (mA)  
TEMPERATURE (°C)  
Figure 65. Output Ripple vs. Load Current, VOUT = 5 V, Different Input  
Voltages, Automatic Mode  
Figure 68. NMOS RDSON vs. Temperature at 400 mA, Different Input Voltages  
Rev. A | Page 18 of 32  
Data Sheet  
ADP2370/ADP2371  
1.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+125°C  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
+85°C  
+25°C  
–5°C  
+125°C  
+85°C  
+25°C  
–5°C  
–40°C  
–40°C  
3
4
5
6
7
8
9
10  
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 69. PMOS RDSON vs. Input Voltage at 400 mA, Different Temperatures  
Figure 70. NMOS RDSON vs. Input Voltage at 400 mA, Different Temperatures  
Rev. A | Page 19 of 32  
ADP2370/ADP2371  
Data Sheet  
THEORY OF OPERATION  
5V  
VIN  
REG  
1.2V  
V
SW  
EN_PREC  
STANDBY  
EN  
VIN  
1.0V  
P_I  
LIMIT  
1.2A  
VIN  
VIN  
UVLO  
2.95V  
RDS  
RDS  
× Kr  
ON  
ON  
I
MIN  
N_I  
LIMIT  
200mA  
Kr  
–0.5A – (PWM)  
0A – (PSM)  
VIN  
× Kr  
SW  
ADP2371  
ONLY  
PWM  
PSM  
VIN  
CONTROL  
LOGIC  
I
SLOPE  
SLOPE COMP  
PGND  
0.808V  
0.8V  
H = FPWM  
L = PWM/PSM  
SYNC  
FSEL  
OSCILLATOR  
DEFAULT = 1.2MHz  
VOUT ÷ 2 FREQUENCY  
FOLDBACK  
H = 1.2MHz  
L = 600kHz  
FB  
150°C  
135°C  
THSD  
I
V
COMP  
COMP  
0.8V  
V
g
M
TOL  
PG  
0.736V  
0.696V  
FB  
SOFT  
START  
Figure 71. Functional Block Diagram  
The ADP2370/ADP2371 use a high speed, current mode, con-  
stant frequency PWM control scheme for excellent stability and  
transient response. To ensure the longest battery life in portable  
applications, the ADP2370/ADP2371 has a power saving mode.  
Under light load conditions, the output capacitor is charged as  
needed to maintain regulation; otherwise, the ADP2370/ADP2371  
enter sleep mode, a low 14 μA quiescent state. The architecture  
ensures smooth transitions from PWM mode to and from PSM,  
and maintains high efficiencies at light loads. The following sec-  
tions describe the two modes of operation and provide detailed  
descriptions of the ADP2370/ADP2371 features.  
The ADP2370/ADP2371 use a constant slope compensation  
scheme where the inductor scales with the output voltage. The  
equation for choosing the inductor for a particular output  
voltage is  
1.2×VOUT  
L =  
0.478× fSW  
See the Applications Information section for details regarding  
choosing an appropriate inductor value.  
Cycle to cycle operation of the PWM mode begins with the  
falling edge of the internal clock. Note that when using an  
external clock, the rising edge synchronizes the regulator and  
the falling edge is determined by the internal clock, typically a  
25 ns pulse width. The falling edge of the clock starts the cycle  
by turning on the high-side switch, which produces a positive  
di/dt current in the inductor. The PWM comparator controls  
when the high-side switch turns off. The positive input of the  
comparator monitors the peak inductor current via the SW node.  
PWM OPERATION  
The ADP2370/ADP2371 PWM mode is a fixed frequency,  
1.2 MHz typical, current mode architecture. Use the SYNC pin  
to synchronize the regulator to an external clock frequency or  
use the FSEL pin to select an internal clock frequency of  
600 kHz or 1.2 MHz.  
Rev. A | Page 20 of 32  
 
 
Data Sheet  
ADP2370/ADP2371  
The negative side of the comparator input voltage is set by the  
voltage control loop minus the slope compensation. When the  
high-side switch turns off, the low-side switch turns on for the  
remainder of the clock period.  
LOAD CURRENT  
1
2
V
OUT  
While in PWM/PSM mode, the low-side switch turns off when  
the inductor current reaches zero, operating in discontinuous  
conduction (DCC) mode. If SYNC is tied high to force the device  
into PWM only mode, the low-side switch stays on until the  
next clock cycle or until the inductor current reaches the  
negative current limit.  
INDUCTOR CURRENT  
3
PSM OPERATION  
B
B
W
CH1 200mA Ω  
CH3 200mA Ω  
CH2 50.0mV  
M20.00µs A CH1 156mA  
W
W
The ADP2370/ADP2371 smoothly transition to the variable  
frequency PSM operation. The ADP2370/ADP2371 select a  
minimum current value, IMIN, for the peak current of the inductor  
based on the input and output voltages. The design of the IMIN  
value is based on the recommended inductor values. Deviating  
from the recommended inductor value for a particular output  
voltage results in shifting the PSM to PWM threshold and could  
result in the device entering DCC mode.  
B
T
50.40%  
Figure 72. PSM to PWM Transition Waveforms, VOUT = 1.8 V,  
10 mA Load to 300 mA Load  
LOAD CURRENT  
1
2
As long as the required peak inductor current is above IMIN, the  
regulator remains in PWM mode. As the load decreases, the  
PSM circuitry prevents the peak inductor current from dropping  
below the PSM peak current value. This circuitry causes the  
regulator to supply more current to the output filter than the  
load requires, resulting in the output voltage increasing and the  
output of the internal compensation node of the error amplifier,  
V
OUT  
INDUCTOR CURRENT  
3
V
COMP, decreasing.  
B
B
W
CH1 200mA Ω  
CH2 50.0mV  
M20.00µs A CH1 156mA  
W
W
B
CH3 200mA Ω  
T
50.40%  
When the FB pin voltage rises above 1% of the nominal output  
voltage and the VCOMP node voltage is below a predetermined  
PSM threshold voltage level, the regulator enters sleep mode.  
While in sleep mode, the high-side and low-side switches and a  
majority of the circuitry are disabled to allow for a low sleep  
mode quiescent current as well as high efficiency performance.  
Figure 73. PWM to PSM Transition Waveforms, VOUT = 1.8 V,  
300 mA Load to 10 mA Load  
During sleep mode, the output voltage decreases as the output  
capacitor discharges into the load. Fixed frequency operation  
starts when the FB voltage reaches the nominal output voltage.  
When the load requirement increases past the IMIN peak current  
level, the VCOMP node rises and the PWM control loop sets the  
duty cycle. While the part is entering and exiting sleep mode,  
the PSM voltage ripple is larger than 1% because of the delay in  
the comparators.  
Figure 72 and Figure 73 illustrate how the output voltage and  
inductor current change with loads and transitions in and out of  
PSM operation. The output voltage ripple in PSM is ~40 mV p-p,  
and the ripple in PWM is <10 mV p-p.  
Rev. A | Page 21 of 32  
 
 
 
ADP2370/ADP2371  
Data Sheet  
FEATURES DESCRIPTIONS  
PRECISION ENABLE  
UNDERVOLTAGE LOCKOUT  
The enable circuit of the ADP2370/ADP2371 minimizes the  
input current during shutdown and simultaneously provides  
an accurate enable threshold. When the enable input voltage  
is below 400 mV, the regulators are in shutdown mode and the  
supply current is typically 1.2 μA. As the enable input voltage  
rises above the standby enable threshold of 1.0 V, the internal  
bias currents and voltages are activated, turning on the precision  
enable circuitry. This allows the precision enable circuitry to  
detect accurately when the EN pin voltage exceeds the precision  
enable rising threshold of 1.2 V.  
To protect against battery discharge, an undervoltage lockout  
(UVLO) circuit is incorporated into the ADP2370/ADP2371.  
When the input voltage drops below the UVLO threshold, the  
ADP2370/ADP2371 shuts down, and both the power switch  
and synchronous rectifier turn off. Once the input voltage rises  
above the UVLO threshold, the soft start period is initiated and  
the device is enabled.  
THERMAL PROTECTION  
In the event that the junction temperature on either the ADP2370  
or ADP2371 rises above 150°C, the thermal shutdown protec-  
tion circuit turns off the regulator. Extreme junction temperature  
can be the result of high current operation, poor circuit board  
design, and/or high ambient temperature. A 20°C hysteresis is  
included in the protection circuit so that when a thermal shut-  
down occurs, the device does not return to operation until the  
on-chip temperature drops below 130°C. When exiting a  
thermal shutdown, soft start is initiated.  
FORCED PWM OR PWM/PSM SELECTION  
Connecting the SYNC pin to a voltage greater than 1.2 V forces  
the device to operate permanently in the PWM mode. This means  
that the ADP2370/ADP2371 continue to operate at a fixed fre-  
quency even when the output current is less than the PWM/PSM  
threshold. In PWM mode, the efficiency is lower compared to the  
PSM mode during light loads. The low-side NMOS remains on  
when the output current drops to less than zero thereby preventing  
the device from entering discontinuous conduction (DCC) mode.  
SOFT START  
The ADP2370/ADP2371 have an internal soft start function  
that ramps the output voltage in a controlled manner upon  
startup, thereby limiting the inrush current. This prevents  
possible input voltage drops when a battery or a high imped-  
ance power source is connected to the input of the converter.  
Typical soft start time is 350 μs. The ADP2370/ADP2371 are  
also capable of starting up into a precharged output capacitor.  
If soft start is invoked when the output capacitor charge is greater  
than zero, the device delays the start of switching until the internal  
soft start ramp reaches the corresponding FB voltage. This fea-  
ture prevents discharging the output capacitor at the beginning  
of soft start.  
It is possible to switch from FPWM mode to the power-save  
mode during operation by pulling the SYNC pin low. The  
flexible configuration of the SYNC pin during operation of  
the device allows for efficient power management.  
Connecting the SYNC pin to a voltage less than 0.4 V allows  
the part to operate in either PWM or PSM modes, depending on  
the output current. Whenever the average output current goes  
below the PWM/PSM threshold, the ADP2370/ADP2371 enter  
PSM mode operation. During PSM mode the part operates with  
reduced switching frequency and with a minimal quiescent cur-  
rent to maintain high efficiency. The low-side NMOS turns off  
when the output current reaches zero, causing the part to operate  
in DCC mode.  
CURRENT LIMIT  
The ADP2370/ADP2371 have protection circuitry that limits  
the direction and amount of current to 1200 mA that flows  
through the power switch and synchronous rectifier, cycle by  
cycle. The positive current limit on the power switch limits the  
amount of current that can flow from the input to the output.  
The negative current limit on the synchronous rectifier prevents  
the inductor current from reversing direction and flowing out  
of the load.  
QUICK OUTPUT DISCHARGE (QOD) FUNCTION  
The ADP2371 includes an output discharge resistor that forces the  
output voltage to zero when the buck is disabled. This ensures  
that the output of the buck is always in a well-defined state, whether  
or not it is enabled. The ADP2370 does not include this output  
discharge function.  
SHORT-CIRCUIT PROTECTION  
A negative current limit is provided by the ADP2370/ADP2371  
to prevent an excessive reverse inductor current when the switching  
section sinks current from the load in forced continuous con-  
duction mode. Under negative current-limit conditions, both  
the high-side and low-side switches are disabled.  
The ADP2370/ADP2371 include frequency foldback to prevent  
output current runaway on a hard short. When the voltage at  
the feedback pin falls below 0.3 V, indicating the possibility of  
a hard short at the output, the switching frequency is reduced  
to 1/4 of the internal oscillator frequency. The reduction in the  
switching frequency gives more time for the inductor to dis-  
charge, preventing a runaway of output current.  
Rev. A | Page 22 of 32  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADP2370/ADP2371  
If the device is synchronized to an external clock, the PSM  
mode is disabled and the device stays in forced PWM mode.  
Connect FSEL to ground when synchronizing to a frequency  
range from 400 kHz to 800 kHz, and connect FSEL to the input  
voltage when the external frequency is in the range of 800 kHz  
to 1600 kHz. FSEL has an internal pull-down resistor and  
defaults to the 600 kHz mode when FSEL is unconnected.  
100% DUTY CYCLE  
The ADP2370/ADP2371 enter and exit 100% duty cycle smoothly.  
The control loop seeks the next clock cycle while the high-side  
switch is engaged. When this occurs, the clock signal is masked  
and the PMOS remains on. When the input voltage increases, the  
internal VCOMP node decreases its signal to the control loop; thus,  
the device stops skipping clock cycles and exits 100% duty cycle.  
INTERNAL 1.2MHZ  
1
2
3
4
V
IN  
INTERNAL 600kHZ  
SYNC  
1
2
V
OUT  
PWM CLOCK (IF FSEL = 1)  
PWM CLOCK (IF FSEL = 0)  
INDUCTOR CURRENT  
B
3
PWM CLOCK FOLLOWS SYNC UNTIL IT MISSES  
4 × 1.2MHZ INTERNAL CLOCK CYCLES  
B
CH1 1.00V  
CH3 50.0mA Ω  
CH2 1.00V  
M2.00ms  
32.20%  
A CH1 4.90V  
W
W
B
W
T
Figure 76. Typical SYNC Timing  
Figure 74. Transition into and out of Dropout in PSM Mode,  
OUT = 5 V, 100 mA Load  
V
SW  
1
V
IN  
V
OUT  
V
OUT  
2
3
INDUCTOR CURRENT  
SYNC  
INDUCTOR CURRENT  
4
1
3
B
B
CH1 5.00V  
CH3 200mA Ω  
CH2 100mV  
CH4 5.00V  
M20.0µs A CH4 2.00V  
20.0%  
W
W
W
B
B
W
T
B
B
W
CH1 1.00V  
CH3 50.0mA Ω  
CH2 1.00V  
M2.00ms  
32.20%  
A CH1 4.90V  
W
Figure 77. Typical SYNC Transient, 1.2 MHz to 800 kHz to 1.2 MHz  
B
W
T
Figure 75. Transition into and out of Dropout in PWM Mode,  
OUT = 5 V, 100 mA Load  
SW  
V
1
SYNCHRONIZING  
V
OUT  
It is possible to synchronize the ADP2370/ADP2371 to an external  
clock within a frequency range from 400 kHz to 1.6 MHz. The  
device automatically detects the rising edge of the first clock  
and synchronizes to the external clock. When the clock signal  
stops, the device automatically switches back to the internal  
clock and continues operating.  
2
INDUCTOR CURRENT  
3
4
SYNC  
The switchover is initiated when no rising edge on the SYNC  
pin can be detected on the internal clock for a duration of four  
clock cycles. Therefore, the maximum delay time can be 6.7 µs if  
the internal clock is running at its minimum frequency of 600 kHz.  
During this time, there is no clock signal available. The output  
stops switching until the ADP2370 circuitry switches to the  
internal clock signal.  
B
B
W
CH1 5.00V  
CH2 50.0mV  
CH4 5.00V  
M20.0µs A CH4 2.00V  
W
B
B
CH3 200mA Ω  
W
W
T
20.0%  
Figure 78. SYNC Transient 1.2 MHz to 800 kHz  
Rev. A | Page 23 of 32  
 
 
ADP2370/ADP2371  
Data Sheet  
SW  
1
V
OUT  
2
INDUCTOR CURRENT  
V
OUT  
ENABLE  
3
4
SYNC  
PG  
3
2
1
B
B
W
CH1 5.00V  
CH3 200mA Ω  
CH2 50.0mV  
M2.00µs A CH2 –57.0mV  
B
B
W
W
CH1 500mV  
CH2 1.00V  
M40.0µs  
10.00%  
A CH3 3.40V  
W
B
B
CH4 5.00V  
B
W
W
CH3 5.00V  
W
T
20.0%  
T
Figure 79. SYNC Transient 800 kHz to 1.2 MHz  
Figure 80. Typical PG Timing at Startup  
POWER GOOD  
V
OUT  
The ADP2370/ADP2371 power-good (PG) output indicates the  
state of the monitored output voltage. The PG function is an active  
high, open-drain output, requiring an external pull-up resistor that  
is typically supplied from the I/O supply rail, as shown in Figure 1.  
PG  
When the sensed output voltage is below 87% of its nominal value,  
the PG pin is held low. When the sensed output voltage rises above  
LOAD CURRENT  
2
92% of the nominal level, the PG line is pulled high after tRESET  
The PG pin remains high when the sensed output voltage is  
above 92% of the nominal output voltage level.  
.
The typical PG delay when the buck is in PWM mode is 20 μs.  
Figure 80 shows the typical PG operation during startup. Figure 81  
shows the PG operation when there is a large load transient that  
causes the output voltage to fall just below the PG threshold.  
3
1
B
B
W
CH1 500mV  
CH2 1.00V  
M1.00µs A CH3 740mA  
10.00%  
W
W
B
CH3 500mAΩ  
T
Figure 81. Typical PG Timing with 200 mA to 1100 mA Load Transient  
When not using the PG function, remove the pull-up resistor  
and leave the PG pin either open or shorted to ground.  
Rev. A | Page 24 of 32  
 
 
 
Data Sheet  
ADP2370/ADP2371  
APPLICATIONS INFORMATION  
ADIsimPower DESIGN TOOL  
OUTPUT CAPACITOR  
Output capacitance is required to minimize the voltage overshoot,  
voltage undershoot, and the ripple voltage present on the output.  
Capacitors with low equivalent series resistance (ESR) values  
produce the lowest output ripple; therefore, use capacitors such as  
the X5R dielectric. Do not use Y5V and Z5U capacitors. Y5V  
and Z5U capacitors are unsuitable choices because of their large  
capacitance variation over temperature and their dc bias voltage  
changes. Because ESR is important, select the capacitor using  
the following equation:  
ADP2370/ADP2371 are supported by the ADIsimPower™ design  
tool set. ADIsimPower is a collection of tools that produce  
complete power designs optimized for a specific design goal.  
The tools enable the user to generate a full schematic, bill of  
materials, and calculate performance in minutes. ADIsimPower  
can optimize designs for cost, area, efficiency, and parts count  
taking into consideration the operating conditions and limita-  
tions of the IC and all real external components. For more  
information about, and to obtain ADIsimPower design tools,  
visit www.analog.com/ADIsimPower. Users can also request  
an unpopulated board through the ADIsimPower tool.  
VRIPPLE  
ESRCOUT  
ΔIL  
EXTERNAL COMPONENT SELECTION  
where:  
ESRCOUT is the ESR of the chosen capacitor.  
RIPPLE is the peak-to-peak output voltage ripple.  
Table 6 and Table 7 list external component selections for the  
ADP2370/ADP2371 application circuit shown in Figure 82. The  
selection of components is dependent on the input voltage, output  
voltage, and load current requirements. Additionally, trade-offs  
among performance parameters, such as efficiency and transient  
response, are made by varying the choice of external components.  
V
Use the following equations to determine the output  
capacitance:  
VIN  
COUT  
(2π × fSW )×2× L ×VRIPPLE  
SELECTING THE INDUCTOR  
IL  
The high frequency switching of the ADP2370/ADP2371 allows  
for the use of small surface-mount power inductors. The inductor  
value affects the transition from PWM to PSM, efficiency, output  
ripple, and current-limit values. Use the following equation to cal-  
culate the ideal inductance, which is derived from the inductor  
current slope compensation, for a given output voltage and  
switching frequency:  
COUT  
8× fSW ×VRIPPLE  
Increasing the output capacitor value has no effect on stability  
and may reduce output ripple and enhance load transient response.  
When choosing the output capacitor value, it is important to  
account for the loss of capacitance due to output voltage dc bias.  
INPUT CAPACITOR  
1.2×VOUT  
L =  
An input capacitor is required to reduce input voltage ripple, input  
ripple current, and source impedance. Place the input capacitor  
as close as possible to the VIN pin. A low ESR X7R- or X5R-type  
capacitor is highly recommended to minimize the input voltage  
ripple. Use the following equation to determine the rms input  
current:  
0.478× fSW  
The ripple current is calculated as follows:  
VOUT  
VOUT  
VIN  
IL =  
× 1−  
f
SW ×L  
where:  
SW is the switching frequency in MHz (1.2 MHz typical).  
L is the inductor value in μH.  
VOUT (VIN VOUT  
)
ICIN ILOAD(MAX)  
f
VIN  
VOUT (VIN VOUT  
)
The dc resistance (DCR) value of the selected inductor affects  
efficiency; however, a decrease in this value typically means an  
increase in root mean square (rms) losses in the core and skin.  
A minimum requirement of the dc current rating of the inductor  
is for it to be equal to the maximum load current plus half of  
the inductor current ripple, as shown by the following equation:  
I rmsILOAD(MAX)  
VIN  
ADJUSTABLE OUTPUT VOLTAGE PROGRAMMING  
The ADP2370/ADP2371 feature an adjustable output voltage range  
from 0.8 V to 12 V. The output voltage is set by the ratio of two  
external resistors, R2 and R3, as shown in Figure 83. The device  
servos the output to maintain the voltage at the FB pin at 0.8 V,  
referenced to ground; the current in R2 is then equal to 0.8 V/R3  
plus the FB pin bias current. The bias current of the FB pin,  
10 nA at 25°C, flows through R2 into the FB pin.  
IL  
IPK = ILOAD(MAX) +(  
)
2
The output voltage is calculated using the equation  
VOUT = 0.8 V(1 + R2/R3) + (FBI-BIAS)(R2)  
Rev. A | Page 25 of 32  
 
 
 
 
 
 
 
ADP2370/ADP2371  
Data Sheet  
To minimize errors in the output voltage caused by the bias  
current of the FB pin, maintain a value of R2 that is less than  
250 kΩ. For example, when R2 and R3 each equal 250 kΩ, the  
output voltage is 1.6 V. The output voltage error introduced by  
the FB pin bias current is 2.5 mV, or 0.156%, assuming a typical  
FB pin bias current of 10 nA at 25°C.  
frequency. Each time a power device gate is turned on and turned  
off, the driver transfers a charge from the input supply to the  
gate, and then from the gate to ground.  
Estimate switching losses using the following equation:  
P
SW = (CGATE_P + CGATE_N) × VIN2 × fSW  
where:  
Note that in shutdown mode, the output is turned off and the  
divider current is zero.  
C
C
GATE_P is the gate capacitance of the internal high-side switch.  
GATE_N is the gate capacitance of the internal low-side switch.  
Select the output inductor and capacitor as described in the  
Selecting the Inductor, Output Capacitor, and Input Capacitor  
sections, as well as Table 6 for more information.  
fSW is the switching frequency.  
The typical value for gate capacitances, CGATE_P and CGATE_N  
is 150 pF.  
,
EFFICIENCY  
Transition Losses  
Efficiency is defined as the ratio of output power to input power.  
The high efficiency of the ADP2370/ADP2371 has two distinct  
advantages. First, only a small amount of power is lost in the  
dc-to-dc converter package, which in turn, reduces thermal  
constraints. Second, high efficiency delivers the maximum  
output power for the given input power, thereby extending  
battery life in portable applications.  
Transition losses occur because the P-channel switch cannot  
turn on or turn off instantaneously. In the middle of an SW  
node transition, the power switch provides all of the inductor  
current. The source-to-drain voltage of the power switch is half  
the input voltage, resulting in power loss. Transition losses  
increase with both load current and input voltage and occur  
twice for each switching cycle.  
Power Switch Conduction Losses  
Use the following equation to estimate transition losses:  
Power switch dc conduction losses are caused by the flow of  
output current through the P-channel power switch and the  
N-channel synchronous rectifier, which have internal resis-  
tances (RDS(ON)) associated with them. The amount of power  
loss is approximated by  
P
TRAN = VIN/2 × IOUT × (tR + tF) × fSW  
where:  
tR is the rise time of the SW node.  
tF is the fall time of the SW node.  
2
The typical value for the rise and fall times, tR and tF, is 2 ns.  
PSW _COND = (RDS(ON)_ P ×D + RDS(ON)_ N ×(1D))×IOUT  
RECOMMENDED BUCK EXTERNAL COMPONENTS  
where:  
The recommended external components for use with the  
ADP2370/ADP2371 are listed in Table 6 (inductors) and Table 7  
(capacitors).  
VOUT  
D =  
VIN  
The internal resistance of the power switches increases with tem-  
perature and increases when the input voltage is less than 5.5 V.  
V
= 6V  
IN  
C
IN  
10µF  
Inductor Losses  
POWER GOOD  
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an internal resistance (DCR)  
associated with it. Larger size inductors have smaller DCR,  
which can decrease inductor conduction losses. Inductor core  
losses relate to the magnetic permeability of the core material.  
Because the ADP2370/ADP2371 are high switching frequency  
dc-to-dc regulators, shielded ferrite core material is recommended  
because of its low core losses and low EMI.  
ADP2370/  
ADP2371  
PGND  
VIN  
1
2
3
4
8
7
6
5
6.8µH  
V
= 3.3V  
OUT  
SW  
PG  
FSEL  
EN  
C
OUT  
10µF  
ON  
OFF  
AGND  
(EXPOSED PAD)  
FB  
SYNC  
To estimate the total amount of power lost in the inductor, use  
the following equation:  
PL = DCR × IOUT2 + Core Losses  
Figure 82. Typical Application, 1.2 MHz, Fixed Output  
Switching Losses  
Switching losses are associated with the current drawn by the  
driver to turn-on and turn-off the power devices at the switching  
Rev. A | Page 26 of 32  
 
 
 
Data Sheet  
ADP2370/ADP2371  
V
= 6V  
IN  
C
10µF  
IN  
R1  
10kΩ  
POWER GOOD  
ADP2370/  
ADP2371  
PGND  
VIN  
1
2
3
4
8
7
6
5
6.8µH  
V
= 1.8V  
FSEL  
OUT  
SW  
PG  
C
10µF  
OUT  
ON  
EN  
OFF  
R2  
AGND  
(EXPOSED PAD)  
249kΩ  
FB  
SYNC  
R3  
200kΩ  
Figure 83. Typical Application, 600 kHz, Adjustable Output  
Table 6. Inductors  
Output  
Frequency Voltage  
Ideal Value  
(μH)  
Standard Value  
(μH)  
Dimensions  
(mm)  
ISAT  
(A)  
DCR  
(mΩ)  
Vendor Model  
Coilcraft XFL4020-222ME  
Coilcraft XFL4020-332ME  
Coilcraft XFL4020-332ME  
Coilcraft XFL4020-472ME  
Coilcraft XAL4030-682ME  
Coilcraft XAL4030-682ME  
Coilcraft XAL4040-103ME  
Coilcraft LPS6235-183ML  
Coilcraft XFL4020-472ME  
Coilcraft XAL4030-682ME  
Coilcraft XAL4030-682ME  
Coilcraft XAL4040-103ME  
Coilcraft XAL4040-103ME  
Coilcraft XAL4040-153ME  
Coilcraft LPS6235-223ML  
Coilcraft LPS6235-333ML  
1.2 MHz  
1.2 MHz  
1.2 MHz  
1.2 MHz  
1.2 MHz  
1.2 MHz  
1.2 MHz  
1.2 MHz  
600 kHz  
600 kHz  
600 kHz  
600 kHz  
600 kHz  
600 kHz  
600 kHz  
600 kHz  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
5
2.5  
3.1  
3.8  
5.2  
6.3  
6.9  
10.5  
18.8  
5.0  
2.2  
3.3  
3.3  
4.7  
6.8  
6.8  
10  
4 × 4 × 2  
4 × 4 × 2  
4 × 4 × 2  
4 × 4 × 2  
4 × 4 × 3  
4 × 4 × 3  
4 × 4 × 4  
6 × 6 × 3.5  
4 × 4 × 2  
4 × 4 × 3  
4 × 4 × 3  
4 × 4 × 4  
4 × 4 × 4  
4 × 4 × 4  
6 × 6 × 3.5  
6 × 6 × 3.5  
4.1  
3.1  
3.1  
2.0  
1.9  
1.9  
1.5  
1.7  
2.0  
1.9  
1.9  
1.5  
1.5  
1.3  
1.6  
1.3  
24  
38  
38  
57  
74  
74  
92  
14  
57  
74  
74  
92  
92  
120  
145  
130  
9
18  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
5
4.7  
6.8  
6.8  
10  
10  
15  
6.3  
7.5  
10.5  
12.6  
13.8  
20.9  
37.7  
22  
33  
9
Table 7. 10 μF Capacitors  
Output  
Vendor Model  
Case Size  
Voltage Rating  
Location  
Input Voltage  
<15 V  
<12 V  
Voltage  
Murata GRM32ER7YA106KA12  
Murata GRM32DR61E106KA12  
Murata GRM31CR61C106KA88  
Murata GRM32ER7YA106KA12  
Murata GRM32DR61E106KA12  
Murata GRM31CR61C106KA88  
Murata GRM21BR61C106KE15  
1210  
1210  
1206  
1210  
1210  
1206  
0805  
35  
25  
16  
35  
25  
16  
16  
Input or Output  
Input or Output  
Input or Output  
Input or Output  
Input or Output  
Input or Output  
Output  
<8 V  
<12 V  
<9 V  
<7 V  
<2.5 V  
Rev. A | Page 27 of 32  
 
 
 
ADP2370/ADP2371  
Data Sheet  
Figure 85 depicts the capacitance vs. voltage bias characteristic  
of a several 10 µF capacitors in different case sizes and voltage  
ratings. The voltage stability of a capacitor is strongly influenced  
by the capacitor size and voltage rating. In general, a capacitor in a  
larger package or higher voltage rating exhibits better stability.  
The temperature variation of the X5R dielectric is about 15%  
over the −40°C to +85°C temperature range and is not a  
function of package or voltage rating.  
CAPACITOR SELECTION  
Output Capacitor  
The ADP2370/ADP2371 are designed for operation with small,  
space-saving ceramic capacitors, but function with most commonly  
used capacitors provided that the effective series resistance (ESR)  
value is carefully considered. The ESR of the output capacitor  
affects stability of the control loop. A minimum output capaci-  
tance of 7 µF with an ESR of 10 mΩ or less is recommended to  
ensure stability of the ADP2370/ADP2371.  
12  
11  
10µF/25V/1210  
10µF/35V/1210  
10µF/16V/0805  
10µF/16V/1206  
Transient response to changes in load current is also affected by  
output capacitance. Using a larger value of output capacitance  
improves the transient response of the ADP2370/ADP2371 to  
large changes in load current. Figure 84 shows the transient  
response for an output capacitance value of 10 µF.  
10  
9
8
7
6
5
4
3
2
1
0
LOAD CURRENT  
1
V
OUT  
0
5
10  
15  
20  
25  
30  
35  
2
DC BIAS VOLTAGE (V)  
Figure 85. Capacitance vs. Voltage Characteristic Different Case Sizes  
INDUCTOR CURRENT  
Use Equation 1 to determine the worst-case capacitance,  
accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
3
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
(1)  
B
B
W
CH1 500mA Ω  
CH2 50.0mV  
M20.0µs A CH1 560mA  
W
W
B
CH3 500mA Ω  
T
10.40%  
where:  
Figure 84. Output Transient Response, VOUT2 = 1.8 V, COUT = 10 µF,  
300 mA to 800 mA, Load Current Rise Time = 200 ns  
C
BIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
Input Bypass Capacitor  
In this example, the worst-case TEMPCO over −40°C to +85°C  
is assumed to be 15% for an X5R dielectric. The tolerance of the  
capacitor (TOL) is assumed to be 10%, and CBIAS is 8.53 μF at 12 V  
for the 10 μF, 35 V capacitor in a 1210 package (see Figure 85).  
Connecting a 10 µF capacitor from VIN to GND reduces the  
circuit sensitivity to the PCB layout, especially when long input  
traces or high source impedance are encountered. If greater than  
10 µF of output capacitance is required, increase the input  
capacitor to match it to improve the transient response.  
Substituting these values in Equation 1 yields  
Input and Output Capacitor Properties  
CEFF = 8.53 μF × (1 − 0.15) × (1 − 0.1) = 6.53 μF  
Use any good quality ceramic capacitors with the ADP2370/  
ADP2371; however they must meet the minimum capacitance  
and maximum ESR requirements. Ceramic capacitors are manu-  
factured with a variety of dielectrics, each with different behavior  
over temperature and applied voltage. Capacitors must have a  
dielectric adequate to ensure the minimum capacitance over the  
necessary temperature range and dc bias conditions. X5R or X7R  
dielectric capacitors with a voltage rating of 6.3 V to 25 V are  
recommended for best performance. Y5V and Z5U dielectrics  
are not recommended because of their poor temperature and dc  
bias characteristics.  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the ADP2370/ADP2371  
over temperature and tolerance at the chosen output voltage.  
To guarantee the performance of the ADP2370/ADP2371, it is  
imperative that the effects of dc bias, temperature, and  
tolerances of the capacitors are evaluated for each application.  
Rev. A | Page 28 of 32  
 
 
 
 
Data Sheet  
ADP2370/ADP2371  
THERMAL CONSIDERATIONS  
In most applications, the ADP2370/ADP2371 do not dissipate  
much heat due to their high efficiency. However, in applications  
with high ambient temperature and high supply voltage-to-output  
voltage differential, the heat dissipated in the package may be  
large enough to cause the junction temperature of the die to  
exceed the 125°C maximum.  
For a given ambient temperature and total power dissipation,  
there exists a minimum copper size requirement for the PCB to  
ensure the junction temperature does not rise above 125°C. The  
following figures (Figure 86 to Figure 89) show junction  
temperature calculations for different ambient temperatures,  
total power dissipation, and areas of PCB copper.  
145  
135  
125  
115  
105  
95  
If the junction temperature of the ADP2370/ADP2371 exceeds  
150°C, the regulator enters thermal shutdown. The regulator  
recovers only after the junction temperature has fallen below  
130°C, this helps to prevent any permanent damage to the IC.  
Thermal analysis for the chosen application is clearly very  
important to guarantee reliable operation under all conditions.  
The junction temperature of the die is the sum of the ambient  
temperature of the environment and the temperature rise of the  
package due to the power dissipation, as shown in Equation 2.  
85  
75  
2
65  
55  
45  
35  
25  
6400mm  
2
500mm  
100mm  
2
To guarantee reliable operation, the junction temperature of the  
ADP2370/ADP2371 must not exceed 125°C. To ensure the junc-  
tion temperature stays below this maximum value, the user must  
be aware of the parameters that contribute to junction temperature  
changes. These parameters include ambient temperature, power  
dissipation in the power device, and the thermal resistance between  
the junction and ambient air (θJA). The θJA number is dependent  
on the package assembly compounds that are used and the amount  
of PCB copper soldered to the package GND and EPAD. Table 8  
shows typical θJA values of the 8-lead, 3 mm × 3 mm LFCSP for  
various PCB copper sizes.  
T
MAX  
J
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50  
TOTAL POWER DISSIPATION (W)  
Figure 86. Junction Temperature vs. Power Dissipation, TA = 25°C  
140  
130  
120  
110  
100  
Table 8. Typical θJA Values  
Copper Size (mm2)  
θJA (°C/W)  
162.2  
124.1  
68.7  
90  
251  
2
80  
70  
60  
50  
6400mm  
2
500mm  
100mm  
100  
500  
2
T
MAX  
J
1000  
6400  
56.5  
42.4  
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
1 The device is soldered to minimum size pin traces.  
TOTAL POWER DISSIPATION (W)  
The junction temperature of the ADP2370/ADP2371 is  
calculated from the following equation:  
Figure 87. Junction Temperature vs. Power Dissipation, TA = 50°C  
145  
TJ = TA + (PD × θJA)  
(2)  
(3)  
135  
125  
115  
105  
95  
where:  
TA is the ambient temperature.  
PD is the total power dissipation in the die, given by  
PD = PBUCK = PSW + PTRAN + PSW_COND  
where:  
P
SW, PTRAN, and PSW_COND are defined in the Efficiency section.  
2
6400mm  
85  
75  
65  
2
500mm  
100mm  
2
T
MAX  
J
0
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
TOTAL POWER DISSIPATION (W)  
Figure 88. Junction Temperature vs. Power Dissipation, TA = 65°C  
Rev. A | Page 29 of 32  
 
 
 
 
 
ADP2370/ADP2371  
Data Sheet  
135  
PCB LAYOUT CONSIDERATIONS  
Improve heat dissipation from the package by increasing  
the amount of copper attached to the pins of the ADP2370/  
ADP2371. However, as listed in Table 8, a point of diminishing  
returns is eventually reached, beyond which an increase in the  
copper size does not yield significant heat dissipation benefits.  
125  
115  
105  
95  
Poor layout can affect the ADP2370/ADP2371 buck performance  
causing electromagnetic interference (EMI), poor electromagnetic  
compatibility (EMC) performance, ground bounce, and voltage  
losses; thus, regulation and stability can be affected. Implement  
a good PCB layout to ensure optimum performance by applying  
the following rules:  
2
6400mm  
2
500mm  
100mm  
2
T
MAX  
J
85  
0
0.2  
0.4  
0.6  
0.8  
1.0  
TOTAL POWER DISSIPATION (W)  
Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies and long, large tracks act like  
antennas.  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
Use a ground plane with several vias connected to the  
component-side ground to reduce noise interference on  
sensitive circuit nodes.  
Figure 89. Junction Temperature vs. Power Dissipation, TA = 85°C  
In cases where the board temperature is known, use the thermal  
characterization parameter, ΨJB, to estimate the junction temper-  
ature rise. Maximum junction temperature (TJ) is calculated  
from the board temperature (TB) and power dissipation (PD)  
using the formula:  
TJ = TB + (PD × ΨJB)  
(5)  
The typical ΨJB value for the 8-lead, 3 mm × 3 mm LFCSP is  
Use of 0402-size or 0603-size capacitors achieves the smallest  
possible footprint solution on boards where area is limited.  
22.2°C /W.  
140  
120  
100  
25°C  
50°C  
65°C  
80  
85°C  
MAX  
60  
T
J
40  
20  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TOTAL POWER DISSIPATION (W)  
Figure 90. Junction Temperature vs. Power Dissipation,  
Different Board Temperatures  
Rev. A | Page 30 of 32  
 
 
Data Sheet  
ADP2370/ADP2371  
Figure 91. PCB Layout, Top  
Figure 92. PCB Layout, Bottom  
Rev. A | Page 31 of 32  
ADP2370/ADP2371  
Data Sheet  
PACKAGING AND ORDERING INFORMATION  
OUTLINE DIMENSIONS  
2.48  
2.38  
2.23  
3.00  
BSC SQ  
5
8
EXPOSED  
PAD  
1.74  
1.64  
1.49  
0.50  
0.40  
0.30  
4
1
INDEX  
AREA  
PIN 1  
INDICATOR  
(R 0.2)  
TOP VIEW  
BOTTOM VIEW  
0.80 MAX  
0.55 NOM  
0.80  
0.75  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
0.70  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.18  
0.20 REF  
0.50 BSC  
COMPLIANT TO JEDEC STANDARDS MO-229-WEED-4  
Figure 93. 8-Lead Lead Frame Chip Scale Package [LFCSP]  
(CP-8-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Buck Output Voltage (V)  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
8-Lead LFCSP  
REDYKIT  
Package Option  
Branding  
LL4  
LL5  
LL6  
LL7  
LL8  
LL9  
LLB  
LGZ  
LLJ  
ADP2370ACPZ-1.2-R7  
ADP2370ACPZ-1.5-R7  
ADP2370ACPZ-1.8-R7  
ADP2370ACPZ-2.5-R7  
ADP2370ACPZ-3.0-R7  
ADP2370ACPZ-3.3-R7  
ADP2370ACPZ-5.0-R7  
ADP2370ACPZ-R7  
1.2  
1.5  
1.8  
2.5  
3.0  
3.3  
5.0  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
CP-8-5  
Adjustable  
1.2 with QOD  
1.8 with QOD  
3.3 with QOD  
Adjustable with QOD  
ADP2371ACPZ-1.2-R7  
ADP2371ACPZ-1.8-R7  
ADP2371ACPZ-3.3-R7  
ADP2371ACPZ-R7  
LLK  
LLL  
LLM  
ADP2370CPZ-REDYKIT  
1 Z = RoHS Compliant Part.  
©2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09531-0-5/12(A)  
Rev. A | Page 32 of 32  
 
 
 

相关型号:

ADP2370ACPZ-1.8-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-2.5-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-3.0-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-3.3-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-5.0-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2371

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2371ACPZ-1.2-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2371ACPZ-1.8-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2371ACPZ-3.3-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2371ACPZ-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2380

20 V, 4 A Synchronous Step-Down Regulator with Low-Side Driver
ADI