ADP2360ACPZ-3.3-R7 [ADI]

High Efficiency Buck Regulator;
ADP2360ACPZ-3.3-R7
型号: ADP2360ACPZ-3.3-R7
厂家: ADI    ADI
描述:

High Efficiency Buck Regulator

文件: 总16页 (文件大小:970K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
50 mA, 60 V,  
High Efficiency Buck Regulator  
ADP2360  
Data Sheet  
FEATURES  
TYPICAL APPLICATION CIRCUIT  
Input voltage supply range: 4.5 V to 60 V  
Adjustable output voltage range: 0.8 V to VIN  
Factory-programmable fixed output voltage options of  
3.3 V and 5.0 V  
Continuous output current up to 50 mA  
Adjustable peak inductor current limit up to 140 mA  
Pulse frequency modulation (PFM) control  
Very high efficiency  
90% at VIN = 9 V, VOUT = 3.3 V, IOUT = 10 mA  
87% at VIN = 9 V, VOUT = 3.3 V, IOUT = 1 mA  
Low shutdown current: <4 µA  
Low quiescent current: 12 µA typical in sleep mode  
100% duty cycle operation  
ADP2360  
L1  
V
8
VIN  
IN  
7
4
V
OUT  
SW  
FB  
C
IN  
R
PG  
C
OUT  
PG  
PG  
2
1
5
ON  
EN  
SS  
3
OFF  
ITH  
R
ITH  
AGND  
(EPAD)  
9
C
SS  
PGND  
6
Figure 1.  
Undervoltage lockout (UVLO)  
No external compensation required  
Enable input with precision thresholds  
Programmable soft start  
Power-good output  
Thermal shutdown (TSD) protection  
8-lead LFCSP package  
APPLICATIONS  
4 mA to 20 mA loop powered systems  
HART modems  
Building automation  
Distributed power systems  
Industrial control supplies  
Other high VIN, low IOUT systems  
GENERAL DESCRIPTION  
The ADP2360 is a high efficiency, high input voltage, discontinu-  
ous conduction mode (DCM) synchronous, step-down, dc-to-dc  
switching regulator. The ADP2360 operates with a wide input  
voltage supply range from 4.5 V to 60 V and can source up to  
50 mA continuous output current, making it ideal for regulating  
power from a variety of voltage sources in space-constrained  
applications. The ADP2360 is available with an adjustable output  
(0.8 V to VIN) or in 3.3 V and 5.0 V factory-programmable fixed  
output voltage models.  
the ADP2360 to optimize the efficiency for the application operat-  
ing conditions and minimize the compatible inductor size.  
The ADP2360 further offers a power-good (PG) pin to indicate  
when the output voltage is good. Other key features include 100%  
duty cycle operation, precision enable control, external soft start  
control, UVLO, and TSD protection.  
The ADP2360 requires no external compensation and the solution  
for the fixed output voltage options requires a minimum of three  
external components. The ADP2360 is available in a 3 mm × 3 mm,  
8-lead LFCSP package with an operating junction temperature  
range from −40°C to +125°C.  
The ADP2360 uses a single-pulse PFM architecture with an  
adjustable peak current level (IPEAK) control to minimize the  
input and output ripple. The adjustable IPEAK current limit allows  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADP2360* Product Page Quick Links  
Last Content Update: 11/01/2016  
Comparable Parts  
Design Resources  
View a parametric search of comparable parts  
• ADP2360 Material Declaration  
• PCN-PDN Information  
• Quality And Reliability  
• Symbols and Footprints  
Evaluation Kits  
• ADP2360 Evaluation Board  
Documentation  
Data Sheet  
Discussions  
View all ADP2360 EngineerZone Discussions  
• ADP2360: 50 mA, 60 V, High Efficiency Buck Regulator  
Data Sheet  
Sample and Buy  
Visit the product page to see pricing options  
User Guides  
• UG-930: Evaluating the ADP2360 DC-to-DC Switching  
Regulator  
Technical Support  
Submit a technical question or find your regional support  
number  
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to  
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be  
frequently modified.  
ADP2360  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Features........................................................................................ 11  
Applications Information .............................................................. 12  
Setting the Output Voltage........................................................ 12  
Input Capacitor Selection.......................................................... 12  
Estimating the Switching Frequency ....................................... 12  
Setting the Peak Inductor Current........................................... 12  
Inductor Selection...................................................................... 13  
Output Capacitor Selection....................................................... 13  
Design Optimization ................................................................. 13  
Recommended Components .................................................... 13  
PCB Layout Considerations.......................................................... 14  
Outline Dimensions....................................................................... 15  
Ordering Guide............................................................................... 15  
Applications....................................................................................... 1  
Typical Application Circuit ............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 7  
Theory of Operation ...................................................................... 10  
Overview...................................................................................... 10  
Control Scheme .......................................................................... 10  
REVISION HISTORY  
5/2016—Revision 0: Initial Version  
Rev. 0 | Page 2 of 15  
 
Data Sheet  
ADP2360  
SPECIFICATIONS  
VIN = VEN = 24 V, VOUT = 3.3 V, typical values are at TA = 25°C, and minimum/maximum limits are guaranteed for TJ = −40°C to +125°C,  
unless otherwise noted. All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
Table 1.  
Parameters  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT VOLTAGE SUPPLY RANGE  
QUIESCENT CURRENT  
Sleep Mode  
VIN  
4.5  
60  
V
IQ_SLEEP  
Between switching cycles,  
FB > VFB_RISING  
12  
23  
µA  
Active  
Shutdown Current  
IQ_ACTIVE  
IQ_SHUTDOWN  
During switching cycle, FB < VFB_FALLING  
VEN = 0 V, TJ = −40°C to +85°C  
140  
0.8  
165  
4
µA  
µA  
UNDERVOLTAGE LOCKOUT (UVLO)  
VIN UVLO Rising Threshold  
VIN UVLO Falling Threshold  
SOFT START (SS)  
VUVLO_RISING  
VUVLO_FALLING  
4.3  
4.1  
4.4  
4.2  
4.5  
4.3  
V
V
SS Pin Current  
ISS  
VSS = 0 V  
0.75  
1
1.25  
µA  
PRECISION ENABLE LOGIC/SHUTDOWN  
EN Pin Voltage Range  
EN Threshold Rising  
EN Hysteresis  
EN Pin Leakage Current  
Shutdown Threshold  
FEEDBACK  
VEN  
0
0.95  
60  
1.05  
V
V
mV  
µA  
V
VEN_RISING  
VEN_HYS  
IEN_LEAKAGE  
VEN_SHUTDOWN  
1
50  
0.1  
0.57  
VIN = VEN = 60 V  
0.5  
0.7  
0.35  
0.8  
Adjustable Output Voltage Range  
FB Falling Threshold  
VOUT  
VFB_FALLING  
VIN  
V
V
V
V
V
V
V
µA  
µA  
Adjustable output voltage model  
Fixed 3.3 V output voltage model  
Fixed 5.0 V output voltage model  
Adjustable output voltage model  
Fixed 3.3 V output voltage model  
Fixed 5.0 V output voltage model  
Adjustable output voltage models  
Fixed output voltage models  
0.792 0.800 0.808  
3.267 3.300 3.333  
4.950 5.000 5.050  
0.794 0.803 0.812  
3.284 3.317 3.349  
4.975 5.025 5.075  
0.005 0.1  
FB Rising Threshold  
FB Pin Current  
VFB_RISING  
IFB  
1.15  
1.5  
SWITCH (SW) PARAMETERS  
On Resistance  
Positive Metal Oxide Semiconductor (PMOS)  
Negative Metal Oxide Semiconductor (NMOS)  
Leakage Current  
RDSON_P  
RDSON_N  
ISW = 50 mA  
ISW = 50 mA  
4
2
8
4
Ω
Ω
PMOS  
NMOS  
Discharge Resistor  
VSW = 0 V  
VSW = 24 V  
EN = 0 V  
1
1
µA  
µA  
kΩ  
100  
INDUCTOR CURRENT LIMIT  
ITH Threshold Voltage  
Peak Current Limit  
VITH  
IPEAK  
0.967  
126  
45  
1
1.018  
154  
55  
V
RITH = 0 Ω, at power-up  
RITH = open, at power-up  
ISW = 20 mA, RITH = open  
140  
50  
35  
mA  
mA  
ns  
Minimum PMOS on Time  
POWER GOOD (PG)  
tPMOS (MIN)  
PG Pin Voltage Range  
PG Pin Pull-Down Resistance  
Rising Threshold  
VPG  
RPG  
VPG_RISING  
0
60  
1.5  
V
kΩ  
V
V
V
1.0  
Adjustable output voltage model  
Fixed 3.3 V output voltage model  
Fixed 5.0 V output voltage model  
0.740 0.760  
3.053 3.135  
4.625 4.750  
Rev. 0 | Page 3 of 15  
 
 
ADP2360  
Data Sheet  
Parameters  
Symbol  
Test Conditions/Comments  
Adjustable output voltage model  
Fixed 3.3 V output voltage model  
Fixed 5.0 V output voltage model  
VPG = 24 V  
Min  
Typ  
40  
165  
250  
0.06  
Max  
Unit  
mV  
mV  
mV  
µA  
Hysteresis  
VPG_HYS  
Leakage Current  
THERMAL SHUTDOWN  
Rising Threshold  
Hysteresis  
IPG_LEAKAGE  
0.5  
TSHDN  
THYS  
150  
15  
°C  
°C  
Rev. 0 | Page 4 of 15  
Data Sheet  
ADP2360  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
θJA is specified for the worst case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
VIN, EN, PG, to AGND, PGND  
FB to AGND, PGND  
SW to AGND, PGND  
ITH, SS to AGND, PGND  
Operating Junction Temperature Range  
Storage Temperature Range  
Soldering Conditions  
−0.3 V to +61 V  
−0.3 V to +5.5 V  
−0.3 V to VIN + 0.3 V  
−0.3 V to +4 V  
−40°C to +125°C  
–65°C to +150°C  
JEDEC J-STD-020  
For additional information on thermal resistance, refer to  
Application Note AN-000, Thermal Characteristics of IC  
Assembly.  
Table 3. Thermal Resistance  
Package Type  
θJA  
ΨJB  
Unit  
8-Lead LFCSP  
62.7  
33.60  
°C/W  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
θJA and ΨJB and are modeled using a standard 4-layer JEDEC printed  
circuit board (PCB) (2S2P) with the exposed pad soldered to  
the board with a 2 × 2 array of thermal vias and still air.  
ESD CAUTION  
Rev. 0 | Page 5 of 15  
 
 
 
ADP2360  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
EN  
PG  
ITH  
FB  
1
2
3
4
8
7
6
5
VIN  
SW  
ADP2360  
TOP VIEW  
9
PGND  
SS  
AGND  
NOTES  
1. ANALOG GROUND. THE EXPOSED  
PAD MUST BE CONNECTED AND  
SOLDERED TO AN EXTERNAL  
GROUND PLANE.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
EN  
PG  
ITH  
FB  
SS  
PGND  
SW  
VIN  
AGND (EPAD)  
Enable Input. This pin enables control for the ADP2360 with precision thresholds.  
Power-Good Output. This pin is an open-drain, power-good indicator.  
IPEAK Threshold Programming Pin. Connect a resistor to ground to adjust the IPEAK level in the application.  
Output Voltage Feedback Input. Use this pin to set the output voltage.  
Soft Start. Connect a capacitor from SS to AGND to adjust the soft start time of the device.  
Power Ground. NMOS power device and driver ground connection.  
Switch Node. This pin is the drain of the power NMOS and power PMOS devices.  
Input Voltage. An input capacitor must be placed between this pin and PGND.  
Analog Ground. The exposed pad must be connected and soldered to an external ground plane.  
Rev. 0 | Page 6 of 15  
 
Data Sheet  
ADP2360  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
V
V
V
V
= 9V  
+125°C  
+85°C  
+25°C  
–40°C  
IN  
IN  
IN  
IN  
= 12V  
= 24V  
= 48V  
10  
0
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
LOAD (A)  
LOAD (A)  
Figure 3. Efficiency vs. Load, VOUT = 3.3 V Fixed, RITH = 0 Ω, TA = 25°C  
Figure 6. Efficiency vs. Load over Temperature, VIN = 9 V,  
VOUT = 3.3 V Fixed, RITH = 0 Ω  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 9V  
IN  
IN  
IN  
IN  
47µH  
100µH  
150µH  
220µH  
330µH  
470µH  
= 12V  
= 24V  
= 48V  
10  
0
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
LOAD (A)  
LOAD (A)  
Figure 4. Efficiency vs. Load, VOUT = 5 V Fixed, RITH = 0 Ω, TA = 25°C  
Figure 7. Efficiency vs. Load over Inductor Size, VIN = 9 V, VOUT = 3.3 V Fixed,  
ITH = 0 Ω, TA = 25°C  
R
100  
90  
80  
70  
60  
50  
40  
30  
20  
T
V
FB  
3
V
SW  
4
I
SW  
1
2
V
V
V
V
V
= 9V  
OUT  
IN  
IN  
IN  
IN  
= 12V  
= 24V  
= 48V  
10  
0
B
B
B
W
CH1 100mA Ω  
CH2 50.0mV  
CH4 5.0V  
M 200µs 25.0MS/s  
W
W
0
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040  
LOAD (A)  
B
W
CH3 50mV  
A
CH1  
40.0mA  
40.0ns/pt  
Figure 5. Efficiency vs. Load, VOUT = 3.3 V Fixed, RITH = Open, TA = 25°C  
Figure 8. Switching Waveforms, VIN = 9 V, VOUT = 3.3 V Fixed,  
RITH = 0 Ω, Load = 1 mA  
Rev. 0 | Page 7 of 15  
 
ADP2360  
Data Sheet  
T
T
V
FB  
3
4
1
V
SW  
V
SW  
4
I
SW  
I
(1mV = 1mA)  
OUT  
I
SW  
1
2
2
3
V
OUT  
V
OUT  
B
B
B
B
B
B
CH2 10.0mV Ω  
W
CH1 100mA Ω  
CH3 50mV  
CH2 50.0mV  
CH4 5.0V  
M 20.0µs 250MS/s  
CH1 100mA Ω  
CH3 50mV  
M 100µs 50.0MS/s  
W
W
W
W
W
B
B
W
A
CH1  
40.0mA  
4.0ns/pt  
CH4 5.0V  
A
CH2  
13.2mV  
W
20.0ns/pt  
Figure 9. Switching Waveforms, VIN = 9 V, VOUT = 3.3 V Fixed,  
RITH = 0 Ω, Load = 10 mA  
Figure 12. Load Transient, VIN = 9 V, VOUT = 3.3 V Fixed, RITH = 0 Ω,  
Load Step 15 mA to 10 mA  
T
T
V
FB  
V
3
SW  
4
V
SW  
I
SW  
4
1
I
SW  
I
(1mV = 1mA)  
OUT  
1
2
2
3
V
OUT  
V
OUT  
B
B
B
B
B
B
CH2 50.0mV Ω  
W
CH1 100mA Ω  
CH3 50mV  
CH2 50.0mV  
CH4 5.0V  
M 4.0µs 1.25GS/s  
CH1 100mA Ω  
CH3 50mV  
M 400µs 12.5MS/s  
W
W
W
W
W
B
B
W
A
CH1  
40.0mA  
CH4 5.0V  
A
CH2  
30.0mV  
W
800ps/pt  
80.0ns/pt  
Figure 10. Switching Waveforms, VIN = 9 V, VOUT = 3.3 V Fixed,  
RITH = 0 Ω, Load = 50 mA  
Figure 13. Load Transient, VIN = 9 V, VOUT = 3.3 V Fixed, RITH = 0 Ω,  
Load Step 1 mA to 50 mA  
T
T
V
SW  
4
1
4
1
V
SW  
I
SW  
I
SW  
I
(1mV = 1mA)  
I
(1mV = 1mA)  
OUT  
OUT  
2
3
2
3
V
OUT  
V
OUT  
B
B
B
B
B
B
CH2 50.0mV Ω  
W
CH1 100mA Ω  
CH3 50mV  
CH2 10.0mV Ω  
CH4 5.0V  
M 100µs 50.0MS/s  
CH1 100mA Ω  
CH3 50mV  
M 400µs 12.5MS/s  
W
W
W
W
W
B
B
W
A
CH2  
13.2mV  
CH4 5.0V  
A
CH2  
30.0mV  
W
20.0ns/pt  
80.0ns/pt  
Figure 11. Load Transient, VIN = 9 V, VOUT = 3.3 V Fixed, RITH = 0 Ω,  
Load Step 10 mA to 15 mA  
Figure 14. Load Transient, VIN = 9 V, VOUT = 3.3 V Fixed, RITH = 0 Ω,  
Load Step 50 mA to 1 mA  
Rev. 0 | Page 8 of 15  
Data Sheet  
ADP2360  
T
T
V
SW  
4
V
SW  
4
1
1
I
SW  
I
SW  
V
IN  
V
IN  
V
OUT  
V
3
2
OUT  
3
2
B
B
B
B
CH1 100mA Ω  
CH2 50.0mV Ω  
M 1.0ms 1MS/s  
CH3 10.5V  
1000ns/pt  
CH1 100mA  
CH3 20.0V  
W
CH2 50.0mV  
M 4.0ms 2.5MS/s  
W
W
W
W
B
B
B
B
CH4 50.0V  
CH3 5.0V  
CH4 10.0V  
A
A
CH3  
20.0V  
W
W
W
400ns/pt  
Figure 15. Line Transient, VOUT = 3.3 V Fixed, RITH = 0 Ω, Load = 10 mA  
Line Step 9 V to 12 V  
Figure 18. Line Transient, VOUT = 3.3 V Fixed, RITH = 0 Ω, Load = 10 mA  
Line Step 60 V to 12 V  
1.0  
0.8  
T
4
V
SW  
0.6  
0.4  
0.2  
1
I
SW  
0
V
IN  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
V
OUT  
3
2
B
B
CH1 100mA Ω  
CH2 50.0mV  
CH4 10.0V  
M 10.0ms 1.0MS/s  
CH3 10.5V  
1000ns/pt  
W
W
B
B
0
10  
20  
30  
(V)  
40  
50  
60  
CH3 5.0V  
A
W
W
V
IN  
Figure 16. Line Transient, VOUT = 3.3 V Fixed, RITH = 0 Ω, Load = 10 mA  
Line Step 12 V to 9 V  
Figure 19. Line Regulation, VOUT = 3.3 V Fixed, RITH = 0 Ω, Load = 10 mA  
4.0  
3.5  
3.0  
2.5  
2.0  
T
V
SW  
4
1
I
SW  
V
IN  
1.5  
1.0  
0.5  
0
OPEN  
1.5MΩ  
825kΩ  
576kΩ  
435kΩ  
365kΩ  
287kΩ  
SHORT  
V
3
2
OUT  
B
B
CH1 100mA Ω  
CH2 50.0mV  
M 4.0ms 2.5MS/s  
A
W
W
0
0.01  
0.02  
0.03  
0.04  
0.05  
0.06  
0.07  
B
B
CH3 20.0V  
CH4 50.0V  
CH3  
56.6V  
W
W
400ns/pt  
LOAD (A)  
Figure 17. Line Transient, VOUT = 3.3 V Fixed, RITH = 0 Ω, Load = 10 mA  
Line Step 12 V to 60 V  
Figure 20. Load Current Capability, VOUT vs. Load for Various RITH Values, VIN =  
9 V (VOUT Drops to 0 V when Current Limit Reached)  
Rev. 0 | Page 9 of 15  
ADP2360  
Data Sheet  
THEORY OF OPERATION  
V
IN  
C
IN  
VIN  
8
V
REG  
BG  
UVLO  
VREG  
UVLO  
VREG  
TSD  
TSD  
BAND GAP  
0µA TO  
5µA  
0.8V  
ITH  
3
g
M
R
ITH  
V
ITH  
I
PEAK  
V
REG  
COMPARATOR  
ADJUSTABLE OUTPUT  
VOLTAGE  
ADP2360  
1µA  
I
PEAK  
V
OUT  
SS  
CONTROL  
5
LEVEL  
SHIFT  
C
R1  
R2  
SS  
FB  
4
L1  
SW  
V
7
OUT  
C
OUT  
CONTROL  
LOGIC  
FEEDBACK  
COMPARATOR  
0.8V  
FIXED OUTPUT  
VOLTAGE  
ZERO CROSSING  
DETECTOR  
COMPARATOR  
PGND  
6
FB  
4
UVLO  
TSD  
V
OUT  
R1  
R2  
V
IN  
R
PG  
PG  
V
PG_RISING  
2
EN  
1
POWER GOOD  
COMPARATOR  
ENABLE  
V
EN_RISING  
9
AGND  
NOTES  
1. THE PORTIONS IN THE DASHED BOXES DISPLAY THE DIFFERENCE OF THE FUNCTIONALITY OF PIN 4  
FOR THE ADJUSTABLE AND FIXED OUTPUT VOLTAGES.  
Figure 21. Block Diagram  
When the PMOS turns off, the NMOS turns on, reducing the  
energy stored in the inductor until the inductor current reaches  
zero. At this point, the NMOS also turns off.  
OVERVIEW  
The ADP2360 is a high efficiency, high input voltage, DCM  
synchronous, step-down, dc-to-dc switching regulator.  
When both the NMOS and PMOS are off, the ADP2360 enters  
into sleep mode. During this phase of operation, the stored energy  
in COUT delivers the load current, and thus VOUT and VFB decrease.  
When VFB drops below the VFB_FALLING threshold, another  
switching cycle begins.  
The ADP2360 uses a single-pulse PFM architecture with adjustable  
IPEAK control to adjust the frequency variation within the application  
and to minimize the input and output ripple.  
The ADP2360 further offers a power-good (PG) pin with an  
open-drain output signal to indicate when the output voltage is  
stable. Other key features include 100% duty cycle operation,  
precision enable control, external soft start control, undervoltage  
lockout, and thermal shutdown.  
I
PEAK  
tSLEEP  
I
L
CONTROL SCHEME  
PMOS  
The ADP2360 uses a single-pulse, peak current PFM control  
scheme. A switching cycle is started when the FB pin voltage,  
VFB, is less than the VFB_FALLING threshold, and the PMOS is turned  
NMOS  
on. While the PMOS is on, the current through the inductor  
increases to charge the output capacitor (COUT) and store energy  
in the inductor. The current through the inductor continues to  
increase until it reaches the IPEAK programmed via the ITH pin.  
FB  
V
FB_FALLING  
V
OUT  
When IPEAK is reached, or if the VFB voltage rises above VFB_RISING  
the PMOS turns off.  
,
Figure 22. Control Scheme Typical Waveforms  
Rev. 0 | Page 10 of 15  
 
 
 
Data Sheet  
ADP2360  
100% Duty Cycle  
1V  
0.8V  
Because the PMOS turns off only if the peak current is reached or  
if the feedback voltage exceeds VFB_RISING, the ADP2360 seamlessly  
operates up to 100% duty cycle. This situation arises when the  
input and output voltage are nearly equal. If the input voltage drops  
below the output voltage, the output is maintained with a small  
voltage drop across the PMOS device. When operating in 100%  
V
SS  
tSS  
Figure 23. Soft Start Voltage Time Period  
Calculate the soft start time using the following equation:  
C
SS 0.8 V  
duty cycle, the output current limit is approximately equal to IPEAK  
Steps must be taken to ensure that the load does not exceed 50% of  
PEAK to avoid the current limit when the input voltage rises above  
.
tSS  
(1)  
ISS  
I
When the ADP2360 is disabled via the EN pin, a UVLO event,  
or a TSD event, the SS pin is reset. When the device is enabled  
or the condition causing the UVLO or TSD event is removed,  
the full soft start sequence occurs.  
the output voltage.  
Adjustable Peak Current Threshold (ITH)  
The control method of the ADP2360 means that the maximum  
output current is slightly less than half of IPEAK. This peak current  
Thermal Shutdown (TSD)  
value is resistor programmable with RITH  
.
The ADP2360 includes an internal TSD protection circuit. If the  
junction temperature exceeds TSHDN, the TSD disables switching  
and reduces the power dissipation in the device. While in thermal  
shutdown, the power PMOS and NMOS devices are turned off  
and the soft start capacitor, CSS, is discharged to AGND. When  
the junction temperature decreases to TSHDN – THYS, the ADP2360  
initiates a soft start and resumes switching to regulate the  
output voltage.  
The IPEAK value set by RITH on the ITH pin is determined at  
startup and is reset only if the device is disabled and reenabled  
using the EN pin or a VIN power cycle.  
DEVICE FEATURES  
Fixed and Adjustable Output Models  
Both fixed and adjustable output models are available. The fixed  
output models provide the feedback resistors internally.  
Undervoltage Lockout (UVLO)  
Shutdown/Precision Enable  
The ADP2360 has an internal UVLO on the VIN pin. If the input  
voltage is falls below the VUVLO_FALLING threshold, the ADP2360  
is disabled. The ADP2360 does not resume operation until the  
input voltage rises above the VUVLO_RISING threshold.  
The EN pin of the ADP2360 tolerates the full supply voltage range  
and provides three states of operation for the device: shutdown,  
sleep, and active. When the EN pin voltage (VEN) is less than  
V
EN_SHUTDOWN, the ADP2360 is in shutdown mode and the VIN  
Power Good  
supply current is at the lowest value (IQ_SHUTDOWN).  
The ADP2360 has an active high, internal, open-drain, 60 V,  
NMOS device connected to the power-good pin (PG) that is  
used as a flag to indicate the status of the output voltage. To  
configure the PG output, connect a pull-up resistor from PG  
to an external voltage rail. An internal current limit prevents  
damage to this pin.  
When VEN rises above VEN_SHUTDOWN but is below VEN_RISING, some  
internal circuitry is enabled and the device is in standby mode.  
This circuitry enables the references that provide the precision  
enable threshold.  
The precision enable turns on the regulator when the EN pin  
voltage rises above VEN_RISING and returns to standby mode when  
When the feedback pin voltage (VFB) is less than VPG_RISING, the  
open-drain NMOS is on, and PG is pulled to ground. When the  
internal feedback voltage exceeds VPG_RISING, the open-drain  
NMOS turns off.  
the voltage falls below VEN_RISING − VEN_HYS  
.
Soft Start  
When the ADP2360 is enabled, an internal current source supplies  
current (ISS) to the soft start capacitor (CSS) until it reaches  
approximately 1 V at startup. During this time, VSS replaces the  
internal feedback reference for the feedback comparator. This  
reference rises at the same rate as VSS to the 0.8 V regulation level.  
After VSS reaches 0.8 V, the feedback voltage reference is switched to  
an 0.8 V internal reference. When VSS reaches approximately 1 V,  
the SS pin is connected to an internal pull-down resistor and  
discharged to 0 V. See Figure 23 for a diagram showing the soft  
start time period and the behavior of the SS pin.  
The PG pin has hysteresis to prevent glitching. The NMOS  
remains off until the internal feedback voltage falls below the  
VPG_FALLING threshold.  
If EN is low or a TSD or UVLO event occurs, an internal discharge  
resistor is internally connected from the SW node to PGND. This  
resistor pulls the output voltage to ground when the regulator is  
disabled, even when there is no load on the output.  
Rev. 0 | Page 11 of 15  
 
 
ADP2360  
Data Sheet  
APPLICATIONS INFORMATION  
ESTIMATING THE SWITCHING FREQUENCY  
Compatible components for the step-down application circuits  
in Figure 24 and Figure 25 are identified using the guidelines in  
this section.  
The ADP2360 switching frequency (fSW) can be estimated with  
the following equation:  
2   
VIN VOUT  
D IOUT  
ADP2360  
fSW  
(3)  
L1  
2
V
8
VIN  
IN  
L IPEAK  
7
4
V
OUT  
SW  
FB  
C
IN  
R
where the duty cycle, D, is approximated by  
PG  
C
OUT  
PG  
PG  
2
1
5
VOUT  
VIN  
D   
(4)  
ON  
EN  
SS  
3
OFF  
C
ITH  
R
ITH  
Note that the switching frequency changes in direct proportion  
to the output current. The maximum frequency can be controlled  
by the inductor value and the peak current control resistor RITH  
AGND  
SS  
PGND  
6
(EPAD)  
9
.
SETTING THE PEAK INDUCTOR CURRENT  
Figure 24. Typical Application Circuit Fixed Output Voltage  
The control method of the ADP2360 means that the maximum  
output current is slightly less than half of IPEAK. The peak current  
limit must be programmed to at least twice the desired  
maximum output current.  
ADP2360  
L1  
V
8
VIN  
IN  
7
4
V
OUT  
SW  
FB  
C
IN  
C
R
R
FF  
FB1  
FB2  
R
PG  
C
OUT  
PG  
The value of the selected IPEAK current in the ADP2360 application  
affects the efficiency, switching frequency, and output voltage  
ripple. Larger IPEAK values tend to give improved efficiency. Using a  
smaller IPEAK value gives a higher switching frequency and reduced  
output voltage ripple.  
PG  
2
1
5
ON  
EN  
SS  
3
OFF  
ITH  
R
ITH  
AGND  
C
SS  
PGND  
6
(EPAD)  
9
The desired peak current limit (IPEAK) is programmed to a discrete  
value between 50 mA and 140 mA with an external resistor from  
ITH to AGND. This external resistor, RITH, is chosen using the  
values in Table 5.  
Figure 25. Typical Application Circuit Adjustable Output Voltage  
SETTING THE OUTPUT VOLTAGE  
Table 5. Peak Inductor Current Settings  
The ADP2360 is available with 3.3 V and 5.0 V fixed output voltage  
options. For the fixed options, an internal resistive feedback divider  
sets the output voltage and no external resistors are necessary,  
as shown in Figure 24.  
RITH (kΩ)  
Open  
1500  
825  
IPEAK (mA)  
50  
60  
70  
The ADP2360 is also available with an adjustable output voltage  
and can be configured for output voltages between 0.8 V and  
VIN. Use the following equation to determine RFB1 and RFB2 for  
576  
80  
453  
90  
365  
287  
0
100  
120  
140  
the desired VOUT  
:
FB1   
R
RFB2  
VOUT 1  
VFB_ FALLING  
(2)  
The values given in Table 5 correspond to standard 1% E96  
resistor values. A 1% tolerance resistor of the specified value  
must be used to ensure the correct IPEAK value is selected. The  
IPEAK value set by RITH on the ITH pin is determined upon startup  
and is reset only if the device is disabled and reenabled using the  
EN pin or a VIN power cycle.  
When using an external resistor divider, the optional feedforward  
capacitor CFF may be placed across RFB1  
.
INPUT CAPACITOR SELECTION  
An input capacitor must be placed between the VIN pin and  
PGND. Ceramic capacitors greater than or equal to 4.7 μF are  
recommended. The input capacitor reduces the input voltage  
ripple caused by the switching current. Place the input capacitor  
as close as possible to the VIN pin to reduce input voltage spikes.  
The voltage rating of the input capacitor must be greater than  
the maximum input voltage.  
Rev. 0 | Page 12 of 15  
 
 
 
 
 
 
 
 
Data Sheet  
ADP2360  
INDUCTOR SELECTION  
DESIGN OPTIMIZATION  
The value of the selected inductor in the ADP2360 application  
affects the efficiency, switching frequency, and output voltage  
ripple. Larger value inductors tend to give improved efficiency  
although for a given package size, the increased DCR and core  
losses eventually dominate. Using a smaller value inductor gives a  
higher switching frequency and reduced output voltage ripple, but  
may decrease the overall efficiency due to increased switching losses.  
For designs where the highest efficiency is desired, set the IPEAK  
level to the maximum and use a high value low dc resistance  
inductor (330 µH to 470µH are recommended). These choices  
lead to a larger output voltage ripple that may be reduced with a  
larger value, low ESR output capacitor.  
For designs where the highest switching frequency is desired,  
set IPEAK to just above double the required maximum output  
current. Use a 100 µH inductor with low dc resistance.  
The ADP2360 is designed with an adjustable IPEAK current limit  
that allows the designer to optimize the efficiency for the applica-  
tion operating conditions and reduce the required inductor size.  
Inductors in the 100 µH to 600 µH range are recommended.  
For designs where the lowest ripple is desired, set IPEAK to just  
above double the required maximum output current. Use a  
100 µH inductor with low dc resistance and a large value, low  
ESR output capacitor.  
Take care to select a compatible inductor with a sufficient  
current rating, saturation current, and low dc resistance. The  
current rating of the inductor must be greater than the maximum  
RECOMMENDED COMPONENTS  
The components specified in Table 6 are recommended for opera-  
tion across the full input voltage range. All typical performance  
characteristic data was measured using these components and  
the adjustable voltage option of the ADP2360 with appropriately  
chosen feedback resistors to select the required output voltage.  
I
PEAK current limit set by the ITH pin, as specified in Table 1.  
OUTPUT CAPACITOR SELECTION  
The output capacitor selection affects the output voltage ripple  
according to the following equation:  
IOUT  
VOUT  
=
(5)  
COUT × fSW  
The ADP2360 is designed for operation with ceramic capacitors,  
because these have a small footprint and low equivalent series  
resistance (ESR) values, giving the lowest output voltage ripple.  
An output capacitance of 10 µF is suggested for most applications.  
This value can be increased to reduce output voltage ripple.  
Table 6. Recommended Components  
Component  
COUT  
L1  
CIN  
CFF  
Value  
Part Number  
Manufacturer  
10 μF, 50 V  
100 μH  
10 μF, 100 V  
10 pF, 50 V  
GRM32ER71H106KA12L  
744043101  
C5750X7S2A106M230KB  
GRM1885C1H100JA01D  
Murata  
Würth  
TDK  
Murata  
Rev. 0 | Page 13 of 15  
 
 
 
 
 
ADP2360  
Data Sheet  
PCB LAYOUT CONSIDERATIONS  
For high efficiency, good regulation, and stability with the  
ADP2360, a well designed PCB is required. Poor layout can  
affect the ADP2360 buck performance, causing electromagnetic  
interference (EMI), poor electromagnetic compatibility (EMC),  
ground bounce, and voltage losses.  
Use the following guidelines when designing PCBs:  
Keep the low ESR input and output capacitors, CIN and COUT,  
and the inductor, L1, as close as possible to the ADP2360.  
Avoid long trace lengths from the device to the capacitors  
that add series inductance and may cause EMI issues or  
increased ripple.  
Keep RFB1, RFB2, and CFF as close as possible to the FB pin.  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
Keep high current traces as short and as wide as possible.  
Avoid routing high impedance traces near any node  
connected to SW or near the inductor to prevent radiated  
noise injection.  
Figure 26. PCB Layout, Top  
Use a ground plane with several vias connected to the  
component side ground to reduce noise interference on  
sensitive circuit nodes.  
Be aware that traces may carry up to 60 V and leave  
adequate separation between traces where necessary.  
Because up to 60 V may be present between the EPAD and  
device pins, the EPAD must be solder mask defined and  
reduced slightly in size to prevent the risk of bridging if the  
device is misaligned. To help ensure alignment during  
reflow processes, traces must exit the pads perpendicular to  
the device edge as shown in Figure 26. See the AN-772  
Application Note, A Design and Manufacturing Guide for  
the Lead Frame Chip Scale Package (LFCSP), for further  
guidance on layout, footprint, and manufacturing.  
Figure 27. PCB Layout, Bottom  
Rev. 0 | Page 14 of 15  
 
 
Data Sheet  
ADP2360  
OUTLINE DIMENSIONS  
2.54  
2.44  
2.34  
3.10  
3.00 SQ  
2.90  
0.65 BSC  
5
8
PIN 1 INDEX  
EXPOSED  
PAD  
1.70  
1.60  
1.50  
AREA  
0.45  
0.40  
0.35  
0.20 MIN  
4
1
TOP VIEW  
N 1  
PI  
BOTTOM VIEW  
INDICATOR  
(R 0.20)  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.35  
0.30  
0.20  
SEATING  
PLANE  
0.203 REF  
Figure 28. 8-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.75 mm Package Height  
(CP-8-19)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADP2360ACPZ-R7  
ADP2360ACPZ-3.3-R7 3.3 V fixed  
ADP2360ACPZ-5.0-R7 5.0 V fixed  
ADP2360CP-EVALZ  
Output Voltage  
Temperature Range Package Description  
Package Option  
CP-8-19  
CP-8-19  
0.8 V to VIN adjustable −40°C to +125°C  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
8-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
−40°C to +125°C  
−40°C to +125°C  
CP-8-19  
0.8 V to VIN adjustable  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13944-0-5/16(0)  
Rev. 0 | Page 15 of 15  
 
 

相关型号:

ADP2360ACPZ-5.0-R7

High Efficiency Buck Regulator
ADI

ADP2360ACPZ-R7

High Efficiency Buck Regulator
ADI

ADP2360CP-EVALZ

High Efficiency Buck Regulator
ADI

ADP2370

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-1.2-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-1.5-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-1.8-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-2.5-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-3.0-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-3.3-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-5.0-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI

ADP2370ACPZ-R7

High Voltage, 1.2 MHz/600 kHz, 800 mA
ADI