ADN8102ACPZ-R7 [ADI]

3.75 Gbps Quad Bidirectional CX4 Equalizer; 3.75 Gbps的双向四CX4均衡器
ADN8102ACPZ-R7
型号: ADN8102ACPZ-R7
厂家: ADI    ADI
描述:

3.75 Gbps Quad Bidirectional CX4 Equalizer
3.75 Gbps的双向四CX4均衡器

文件: 总32页 (文件大小:1705K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.75 Gbps Quad Bidirectional  
CX4 Equalizer  
ADN8102  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Optimized for dc to 3.75 Gbps data  
LOS_B  
ADN8102  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
Programmable input equalization  
Up to 22 dB boost at 1.875 GHz  
Ix_B[3:0]  
LB  
PE  
EQ  
2:1  
Ox_B[3:0]  
LOS_A  
Compensates up to 30 meters of CX4 cable up to 3.75 Gbps  
Compensates up to 40 inches of FR4 up to 3.75 Gbps  
Programmable output pre-emphasis/de-emphasis  
Up to 12 dB boost at 1.875 GHz (3.75 Gbps)  
Compensates up to 15 meters of CX4 cable up to 3.75 Gbps  
Compensates up to 40 inches of FR4 up to 3.75 Gbps  
Flexible 1.8 V to 3.3 V core supply  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
Ox_A[3:0]  
PE  
EQ  
Ix_A[3:0]  
2:1  
Per lane P/N pair inversion for routing ease  
Low power: 125 mW/channel up to 3.75 Gbps  
DC- or ac-coupled differential CML inputs  
Programmable CML output levels  
EQ_A[1:0]  
PE_A[1:0]  
EQ_B[1:0]  
PE_B[1:0]  
ENA  
ADDR[1:0]  
SCL  
SDA  
RESET  
CONTROL LOGIC  
ENB  
50 Ω on-chip termination  
Loss-of-signal detection  
Figure 1.  
Temperature range operation: −40°C to +85°C  
Supports 8b10b, scrambled, or uncoded NRZ data  
I2C control interface  
GENERAL DESCRIPTION  
The ADN8102 is a quad bidirectional CX4 cable/backplane  
equalizer with eight differential PECL-/CML-compatible inputs  
with programmable equalization and eight differential CML  
outputs with programmable output levels and pre-emphasis or  
de-emphasis. The operation of this device is optimized for NRZ  
data at rates up to 3.75 Gbps.  
64-lead LFSCP (QFN) package  
APPLICATIONS  
10GBase-CX4  
HiGig™  
InfiniBand  
1×, 2× Fibre Channel  
XAUI  
Gigabit Ethernet over backplane or cable  
CPRI™  
50 Ω cables  
The receive inputs provide programmable equalization to  
compensate for up to 30 meters of CX4 cable (24 AWG) or  
40 inches of FR4, and programmable pre-emphasis to compensate  
for up to 15 meters of CX4 cable (24 AWG) or 40 inches of FR4  
at 3.75 Gbps. Each channel also provides programmable loss-of-  
signal detection and loopback capability for system testing and  
debugging.  
The ADN8102 is controlled through toggle pins, an I2C® control  
interface that provides more flexible control, or a combination of  
both. Every channel implements an asynchronous path supporting  
dc to 3.75 Gbps NRZ data, fully independent of other channels. The  
ADN8102 has low latency and very low channel-to-channel skew.  
The main application for the ADN8102 is to support switching  
in chassis-to-chassis applications over CX4 or InfiniBand® cables.  
The ADN8102 is packaged in a 9 mm × 9 mm 64-lead LFCSP  
(QFN) package and operates from −40°C to +85°C.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADN8102  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Lane Inversion ............................................................................ 18  
Loopback ..................................................................................... 19  
Transmitters ................................................................................ 20  
Selective Squelch and Disable................................................... 25  
I2C Control Interface...................................................................... 26  
Serial Interface General Functionality..................................... 26  
I2C Interface Data Transfers—Data Write .............................. 26  
I2C Interface Data Transfers—Data Read ............................... 27  
PCB Design Guidelines ................................................................. 28  
Power Supply Connections and Ground Planes .................... 28  
Transmission Lines..................................................................... 28  
Soldering Guidelines for Chip Scale Package............................. 28  
Register Map ................................................................................... 29  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 9  
Theory of Operation ...................................................................... 16  
Introduction ................................................................................ 16  
Receivers...................................................................................... 16  
Equalization Settings.................................................................. 17  
REVISION HISTORY  
8/08—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to Loss of Signal/Signal Detect Section ....................... 18  
Added Recommended LOS Settings Section.............................. 18  
Deleted Figure 39; Renumbered Sequentially ............................ 18  
Exposed Paddle Notation Added to Outline Dimensions ........ 31  
5/08—Revision 0: Initial Version  
Rev. A | Page 2 of 32  
 
ADN8102  
SPECIFICATIONS  
VCC = 1.8 V, VEE = 0 V, VTTI = VTTO = VCC, RL = 50 Ω, differential output swing = 800 mV p-p differential, 3.75 Gbps, PRBS 27 − 1,  
TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
Maximum Data Rate/Channel (NRZ)  
Deterministic Jitter  
3.75  
Gbps  
ps p-p  
ps rms  
Data rate < 3.75 Gbps; BER = 1 × 10−12  
VCC = 1.8 V  
33  
1.5  
Random Jitter  
Residual Deterministic Jitter  
With Input Equalization  
Data rate < 3.25 Gbps; 0 inches to 40 inches FR4  
Data rate < 3.25 Gbps; 0 meters to 30 meters CX4  
Data rate < 3.75 Gbps; 0 inches to 40 inches FR4  
Data rate < 3.75 Gbps; 0 meters to 30 meters CX4  
Data rate < 3.25 Gbps; 0 inches to 40 inches FR4  
Data rate < 3.25 Gbps; 0 meters to 15 meters CX4  
Data rate < 3.75 Gbps; 0 inches to 40 inches FR4  
Data rate < 3.75 Gbps; 0 meters to 15 meters CX4  
20% to 80%  
0.20  
0.19  
0.24  
0.21  
0.13  
0.37  
0.14  
0.41  
75  
UI  
UI  
UI  
UI  
UI  
UI  
UI  
UI  
ps  
ns  
ps  
With Output Pre-Emphasis  
Output Rise/Fall Time  
Propagation Delay  
Channel-to-Channel Skew  
OUTPUT PRE-EMPHASIS  
Equalization Method  
Maximum Boost  
1
50  
1-tap programmable pre-emphasis  
800 mV p-p output swing  
200 mV p-p output swing  
Minimum  
6
12  
2
dB  
dB  
mA  
mA  
Pre-Emphasis Tap Range  
Maximum  
12  
INPUT EQUALIZATION  
Minimum Boost  
Maximum Boost  
Number of Equalization Settings  
Gain Step Size  
EQBY = 1  
1.5  
22  
8
dB  
dB  
Maximum boost occurs at 1.875 GHz  
2.5  
dB  
INPUT CHARACTERISTICS  
Input Voltage Swing  
Input Voltage Range  
1
Differential, VICM = VCC − 0.6 V  
300  
45  
2000 mV p-p  
V p-p  
Single-ended absolute voltage level, VL minimum  
Single-ended absolute voltage level, VH maximum  
Single-ended  
VEE + 0.4  
VCC + 0.5  
50  
V p-p  
Input Resistance  
55  
Ω
Input Return Loss  
Measured at 2.5 GHz  
5
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
DC, differential, PE = 0, default, VCC = 1.8 V  
DC, differential, PE = 0, default, VCC = 3.3 V  
DC, differential, PE = 0, minimum output level,2 VCC = 1.8 V  
DC, differential, PE = 0, minimum output level,2 VCC = 3.3 V  
DC, differential, PE = 0, maximum output level,2 VCC = 1.8 V  
DC, differential, PE = 0, maximum output level,2 VCC = 3.3 V  
635  
740  
800  
100  
100  
1300  
1800  
870  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
mV p-p  
Rev. A | Page 3 of 32  
 
ADN8102  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Output Voltage Range  
Single-ended absolute voltage level, TxHeadroom = 0;  
VL minimum  
VCC − 1.1  
V
Single-ended absolute voltage level, TxHeadroom = 0;  
VH maximum  
Single-ended absolute voltage level, TxHeadroom = 1;  
VL minimum  
Single-ended absolute voltage level, TxHeadroom = 1;  
VH maximum  
V
CC + 0.6  
V
V
V
VCC − 1.2  
VCC + 0.6  
Output Current  
Minimum output current per channel  
Maximum output current per channel, VCC = 1.8 V  
Single-ended  
2
mA  
mA  
Ω
21  
50  
5
Output Resistance  
Output Return Loss  
LOS CHARACTERISTICS  
Assert Level  
Deassert Level  
POWER SUPPLY  
Operating Range  
VCC  
43  
57  
Measured at 2.5 GHz  
dB  
IN_A/IN_B THRESH = 0x0C  
IN_A/IN_B HYST = 0x0D  
20  
225  
mV diff  
mV diff  
VEE = 0 V  
1.7  
3.0  
1.8  
3.3  
3.6  
3.6  
3.6  
3.6  
V
V
V
V
DVCC  
VTTI  
VTTO  
VEE = 0 V, DVCC ≤ (VCC + 1.3 V)  
(VEE + 0.4 V + 0.5 × VID) < VTTI < (VCC + 0.5 V)  
(VCC − 1.1 V + 0.5 × VOD) < VTTO < (VCC + 0.5 V)  
VEE + 0.4 1.8  
VCC − 1.1 1.8  
Supply Current  
VTTO  
VCC  
All outputs enabled  
All outputs enabled  
All outputs enabled  
63  
460  
586  
69  
565  
mA  
mA  
mA  
VEE  
LOGIC CHARACTERISTICS  
Input High, VIH  
Input Low, VIL  
Output High, VOH  
Output Low, VOL  
THERMAL CHARACTERISTICS  
Operating Temperature Range  
θJA  
DVCC = 3.3 V  
2.5  
2.5  
V
V
V
V
1.0  
1.0  
−40  
22  
+85  
°C  
°C/W  
1 VICM is the input common-mode voltage.  
2 Programmable via I2C.  
Rev. A | Page 4 of 32  
 
 
ADN8102  
TIMING SPECIFICATIONS  
Table 2. I2C Timing Parameters  
Parameter  
Min  
Max  
400  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
300  
300  
N/A  
N/A  
7
Unit  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
ns  
pF  
Description  
fSCL  
0
SCL clock frequency  
tHD:STA  
tSU:STA  
tLOW  
tHIGH  
tHD:DAT  
tSU:DAT  
tR  
tF  
tSU:STO  
tBUF  
0.6  
0.6  
1.3  
0.6  
0
10  
1
1
Hold time for a start condition  
Setup time for a repeated start condition  
Low period of the SCL clock  
High period of the SCL clock  
Data hold time  
Data setup time  
Rise time for both SDA and SCL  
Fall time for both SDA and SCL  
Setup time for a stop condition  
Bus free time between a stop and a start condition  
Capacitance for each I/O pin  
0.6  
1
5
CIO  
SDA  
tSU:DAT  
tR  
tF  
tBUF  
tHD:STA  
tR  
tLOW  
tF  
SCL  
tHD:STA  
tSU:STA  
tSU:STO  
tHIGH  
tHD:DAT  
S
Sr  
P
S
Figure 2. I2C Timing Diagram  
Rev. A | Page 5 of 32  
 
ADN8102  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress rating  
only; functional operation of the device at these or any other  
conditions above those indicated in the operational section of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Parameter  
Rating  
VCC to VEE  
3.7 V  
VTTI  
VCC + 0.6 V  
VTTO  
VCC + 0.6 V  
Internal Power Dissipation  
Differential Input Voltage  
Logic Input Voltage  
Storage Temperature Range  
Lead Temperature  
4.26 W  
2.0 V  
VEE − 0.3 V < VIN < VCC + 0.6 V  
−65°C to +125°C  
300°C  
ESD CAUTION  
Rev. A | Page 6 of 32  
 
ADN8102  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
RESET  
LOS_A  
IN_A0  
IP_A0  
VCC  
IN_A1  
IP_A1  
VTTI  
IN_A2  
IP_A2 10  
VEE 11  
IN_A3 12  
IP_A3 13  
DVCC 14  
EQ_A1 15  
EQ_A0 16  
1
2
3
4
5
6
7
8
9
48 SCL  
47 SDA  
46 LOS_B  
45 IP_B0  
44 IN_B0  
43 VCC  
42 IP_B1  
41 IN_B1  
40 VTTI  
39 IP_B2  
38 IN_B2  
37 VEE  
36 IP_B3  
35 IN_B3  
34 EQ_B1  
33 EQ_B0  
ADN8102  
TOP VIEW  
(Not to Scale)  
Figure 3. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
RESET  
LOS_A  
IN_A0  
IP_A0  
VCC  
IN_A1  
IP_A1  
VTTI  
IN_A2  
IP_A2  
VEE  
IN_A3  
IP_A3  
DVCC  
EQ_A1  
EQ_A0  
VEE  
Type  
Description  
1
Control  
Digital I/O  
I/O  
I/O  
Power  
I/O  
I/O  
Power  
I/O  
I/O  
Power  
I/O  
Reset Input, Active Low  
2
Port A Loss of Signal Status, Active Low  
High Speed Input Complement  
High Speed Input  
Positive Supply  
High Speed Input Complement  
High Speed Input  
Input Termination Supply  
High Speed Input Complement  
High Speed Input  
Negative Supply  
High Speed Input Complement  
High Speed Input  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
I/O  
Power  
Control  
Control  
Power  
Control  
I/O  
I/O  
Power  
I/O  
I/O  
Power  
I/O  
I/O  
Power  
Digital Power Supply  
Port A Input Equalization MSB  
Port A Input Equalization LSB  
Negative Supply  
Loopback Control  
High Speed Output Complement  
High Speed Output  
Positive Supply  
High Speed Output Complement  
High Speed Output  
Output Termination Supply  
High Speed Output Complement  
High Speed Output  
LB  
ON_B0  
OP_B0  
VCC  
ON_B1  
OP_B1  
VTTO  
ON_B2  
OP_B2  
VEE  
Negative Supply  
Rev. A | Page 7 of 32  
 
ADN8102  
Pin No.  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
EP  
Mnemonic  
ON_B3  
OP_B3  
ENB  
PE_B1  
PE_B0  
EQ_B0  
EQ_B1  
IN_B3  
IP_B3  
VEE  
IN_B2  
IP_B2  
VTTI  
IN_B1  
IP_B1  
VCC  
Type  
I/O  
I/O  
Control  
Control  
Control  
Control  
Control  
I/O  
I/O  
Power  
I/O  
I/O  
Power  
I/O  
Description  
High Speed Output Complement  
High Speed Output  
Port B Enable  
Port B Output Pre-Emphasis MSB  
Port B Output Pre-Emphasis LSB  
Port B Input Equalization LSB  
Port B Input Equalization MSB  
High Speed Input Complement  
High Speed Input  
Negative Supply  
High Speed Input Complement  
High Speed Input  
Input Termination Supply  
High Speed Input Complement  
High Speed Input  
Positive Supply  
High Speed Input Complement  
High Speed Input  
Port B Loss of Signal Status, Active Low  
I2C Control Interface Data Input/Output  
I2C Control Interface Clock Input  
I2C Control Interface Address LSB  
I2C Control Interface Address MSB  
High Speed Output Complement  
High Speed Output  
Negative Supply  
High Speed Output Complement  
High Speed Output  
Output Termination Supply  
High Speed Output Complement  
High Speed Output  
I/O  
Power  
I/O  
IN_B0  
IP_B0  
LOS_B  
SDA  
I/O  
Digital I/O  
Control  
Control  
Control  
Control  
I/O  
I/O  
Power  
I/O  
I/O  
Power  
I/O  
I/O  
Power  
I/O  
SCL  
ADDR0  
ADDR1  
ON_A3  
OP_A3  
VEE  
ON_A2  
OP_A2  
VTTO  
ON_A1  
OP_A1  
VCC  
ON_A0  
OP_A0  
ENA  
PE_A0  
PE_A1  
EPAD  
Positive Supply  
High Speed Output Complement  
High Speed Output  
I/O  
Control  
Control  
Control  
Power  
Port A Enable  
Port A Output Pre-Emphasis LSB  
Port A Output Pre-Emphasis MSB  
EPAD Must Be Connected to VEE  
Rev. A | Page 8 of 32  
ADN8102  
TYPICAL PERFORMANCE CHARACTERISTICS  
50CABLES  
50CABLES  
2
2
2
2
INPUT  
PIN  
OUTPUT  
PIN  
DATA OUT  
50Ω  
HIGH SPEED  
SAMPLING  
ADN8102  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
TP1  
TP2  
OSCILLOSCOPE  
Figure 4. Standard Test Circuit (No Channel)  
50ps/DIV  
50ps/DIV  
Figure 5. 3.25 Gbps Input Eye (TP1 from Figure 4)  
Figure 7. 3.25 Gbps Output Eye, No Channel (TP2 from Figure 4)  
50ps/DIV  
50ps/DIV  
Figure 6. 3.75 Gbps Input Eye (TP1 from Figure 4)  
Figure 8. 3.75 Gbps Output Eye, No Channel (TP2 from Figure 4)  
Rev. A | Page 9 of 32  
 
 
ADN8102  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
FR4 TEST BACKPLANE  
50Ω  
DIFFERENTIAL  
STRIPLINE TRACES  
8mils WIDE, 8mils SPACE,  
8mils DIELECTRIC HEIGHT  
ADN8102  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
HIGH SPEED  
SAMPLING  
OSCILLOSCOPE  
TP1  
TP2  
TP3  
TRACE LENGTHS = 40''  
50ps/DIV  
REFERENCE EYE DIAGRAM AT TP1  
Figure 9. Input Equalization Test Circuit, FR4  
50ps/DIV  
50ps/DIV  
Figure 10. 3.25 Gbps Input Eye, 40 Inch FR4 Input Channel (TP2 from Figure 9)  
Figure 12. 3.25 Gbps Output Eye, 40 Inch FR4 Input Channel, Best EQ Setting  
(TP3 from Figure 9)  
50ps/DIV  
50ps/DIV  
Figure 11. 3.75 Gbps Input Eye, 40 Inch FR4 Input Channel (TP2 from Figure 9)  
Figure 13. 3.75 Gbps Output Eye, 40 Inch FR4 Input Channel, Best EQ Setting  
(TP3 from Figure 9)  
Rev. A | Page 10 of 32  
 
ADN8102  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
30m CX4 CABLE  
50Ω  
ADN8102  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
HIGH SPEED  
SAMPLING  
OSCILLOSCOPE  
TP1  
TP2  
TP3  
50ps/DIV  
REFERENCE EYE DIAGRAM AT TP1  
Figure 14. Input Equalization Test Circuit, CX4  
50ps/DIV  
50ps/DIV  
Figure 15. 3.25 Gbps Input Eye, 30 Meters CX4 Cable (TP2 from Figure 14)  
Figure 17. 3.25 Gbps Output Eye, 30 Meters CX4 Cable, Best EQ Setting  
(TP3 from Figure 14)  
50ps/DIV  
50ps/DIV  
Figure 16. 3.75 Gbps Input Eye, 30 Meters CX4 Cable (TP2 from Figure 14)  
Figure 18. 3.75 Gbps Output Eye, 30 Meters CX4 Cable, Best EQ Setting  
(TP3 from Figure 14)  
Rev. A | Page 11 of 32  
 
ADN8102  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
FR4 TEST BACKPLANE  
50Ω  
DIFFERENTIAL  
STRIPLINE TRACES  
8mils WIDE, 8mils SPACE,  
8mils DIELECTRIC HEIGHT  
ADN8102  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
HIGH SPEED  
SAMPLING  
TP1  
TP2  
TP3  
OSCILLOSCOPE  
TRACE LENGTHS = 40''  
50ps/DIV  
REFERENCE EYE DIAGRAM AT TP1  
Figure 19. Output Pre-Emphasis Test Circuit, FR4  
50ps/DIV  
50ps/DIV  
Figure 20. 3.25 Gbps Output Eye, 40 Inch FR4 Output Channel,  
PE = 0 (TP3 from Figure 19)  
Figure 22. 3.25 Gbps Output Eye, 40 Inch FR4 Output Channel,  
PE = Best Setting (TP3 from Figure 19)  
50ps/DIV  
50ps/DIV  
Figure 21. 3.75 Gbps Output Eye, 40 Inch FR4 Output Channel,  
PE = 0 (TP3 from Figure 19)  
Figure 23. 3.75 Gbps Output Eye, 40 Inch FR4 Output Channel,  
PE = Best Setting (TP3 from Figure 19)  
Rev. A | Page 12 of 32  
 
ADN8102  
50CABLES  
50CABLES  
50CABLES  
2
2
2
2
2
2
INPUT OUTPUT  
PIN PIN  
DATA OUT  
15m CX4 CABLE  
50Ω  
ADN8102  
AC-COUPLED  
EVALUATION  
BOARD  
PATTERN  
GENERATOR  
HIGH SPEED  
SAMPLING  
OSCILLOSCOPE  
TP1  
TP2  
TP3  
50ps/DIV  
REFERENCE EYE DIAGRAM AT TP1  
Figure 24. Output Pre-Emphasis Test Circuit, CX4  
50ps/DIV  
50ps/DIV  
Figure 25. 3.25 Gbps Output Eye, 15 Meters CX4 Cable,  
PE = 0 (TP3 from Figure 24)  
Figure 27. 3.25 Gbps Output Eye, 15 Meters CX4 Cable,  
PE = Best Setting (TP3 from Figure 24)  
50ps/DIV  
50ps/DIV  
Figure 26. 3.75 Gbps Output Eye, 15 Meters CX4 Cable,  
PE = 0 (TP3 from Figure 24)  
Figure 28. 3.75 Gbps Output Eye, 15 Meters CX4 Cable,  
PE = Best Setting (TP3 from Figure 24)  
Rev. A | Page 13 of 32  
 
ADN8102  
80  
100  
70  
60  
50  
40  
80  
60  
40  
20  
V
= 3.3V  
CC  
30  
20  
10  
V
= 1.8V  
CC  
0
0
0
1.0  
20  
40  
60  
2.5  
100  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
DATA RATE (Hz)  
INPUT COMMON MODE (V)  
Figure 29. Deterministic Jitter vs. Data Rate  
Figure 32. Deterministic Jitter vs. Input Common Mode  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
80  
60  
40  
20  
0
0
0
1.0  
0.5  
1.0  
1.5  
2.0  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
DIFFERENTIAL INPUT SWING (V)  
V
CC  
Figure 30. Deterministic Jitter vs. Differential Input Swing  
Figure 33. Deterministic Jitter vs. Supply Voltage  
100  
100  
80  
60  
40  
20  
80  
60  
40  
20  
V
= 1.8V  
CC  
V
= 3.3V  
CC  
0
–60  
0
1.0  
–40  
–20  
0
20  
40  
60  
80  
1.5  
2.0  
2.5  
(V)  
3.0  
3.5  
4.0  
TEMPERATURE (°C)  
V
TTO  
Figure 31. Deterministic Jitter vs. Temperature  
Figure 34. Deterministic Jitter vs. Output Termination Voltage  
Rev. A | Page 14 of 32  
ADN8102  
450000  
400000  
350000  
300000  
250000  
200000  
150000  
100000  
50000  
0
100  
90  
80  
70  
60  
t
/t  
F
R
50  
–60  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–40  
–20  
0
20  
40  
60  
80  
100  
JITTER (ps)  
TEMPERATURE (°C)  
Figure 35. Random Jitter Histogram  
Figure 36. Rise Time (tR)/Fall Time (tF) vs. Temperature  
Rev. A | Page 15 of 32  
ADN8102  
THEORY OF OPERATION  
RECEIVERS  
Input Structure and Input Levels  
LOS_B  
ADN8102  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
The ADN8102 receiver inputs incorporate 50 Ω termination  
resistors, ESD protection, and a multizero transfer function  
equalizer that can be optimized for backplane or cable operation.  
Each channel also provides a programmable loss-of-signal (LOS)  
function that provides an interrupt that can be used to squelch  
or disable the associated output when the differential input voltage  
falls below the programmed threshold value. Each receive channel  
also provides a P/N inversion function that allows the user to  
swap the sign of the input signal path to eliminate the need for  
board-level crossovers in the receiver channel.  
Ix_B[3:0]  
LB  
PE  
EQ  
2:1  
Ox_B[3:0]  
LOS_A  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
Ox_A[3:0]  
PE  
Ix_A[3:0]  
EQ  
2:1  
EQ_A[1:0]  
PE_A[1:0]  
EQ_B[1:0]  
PE_B[1:0]  
ENA  
ADDR[1:0]  
SCL  
SDA  
RESET  
CONTROL LOGIC  
Table 5 illustrates some, but not all, possible combinations of  
input supply voltages.  
ENB  
Figure 37. Simplified Functional Block Diagram  
Table 5. Common Input Voltage Levels  
Configuration  
INTRODUCTION  
VCC (V)  
1.8  
1.8  
3.3  
3.3  
VTTI (V)  
1.6  
1.8  
1.8  
3.3  
The ADN8102 is a quad bidirectional cable and backplane  
equalizer that provides both input equalization and output pre-  
emphasis on both the line card and cable sides of the device.  
The device supports full loopback and through connectivity  
of the two unidirectional half-links, each consisting of four  
differential signal pairs.  
Low VTTI, AC-Coupled Input  
Single 1.8 V Supply  
3.3 V Core  
Single 3.3 V Supply  
SIMPLIFIED RECEIVER INPUT CIRCUIT  
VCC  
VTTI  
The ADN8102 offers extensively programmable output levels  
and pre-emphasis as well as the ability to disable the output  
current. The receivers integrate a programmable, multizero  
equalizer transfer function that is optimized to compensate  
either typical backplane or typical cable losses.  
RLN  
Q1  
RLP  
RP  
52  
RN  
52Ω  
R1  
750Ω  
IP  
IN  
R3  
1kΩ  
Q2  
The I/O on-chip termination resistors are terminated to user-  
settable supplies to support dc coupling in a wide range of logic  
styles. The ADN8102 supports a wide core supply range; VCC  
can be set from 1.8 V to 3.3 V. These features, together with  
programmable output levels, allow for a wide range of dc- and  
ac-coupled I/O configurations.  
R2  
750Ω  
I1  
VEE  
Figure 38. Simplified Input Structure  
Rev. A | Page 16 of 32  
 
 
ADN8102  
Setting the LUT SELECT bit = 1 (Bit 1 in the IN_Ax/IN_Bx FR4  
control registers) allows the default map selection (CX4 or FR4  
optimized) to be overwritten via the LUT FR4/CX4 bit (Bit 0)  
in the IN_Ax/IN_Bx FR4 control registers. Setting this bit high  
selects the FR4 optimized map, and setting it low selects the CX4  
optimized map. These settings are set on a per channel basis  
(see Table 7 and Table 17).  
EQUALIZATION SETTINGS  
The ADN8102 receiver incorporates a multizero transfer function  
continuous time equalizer that provides up to 22 dB of high  
frequency boost at 1.875 GHz to compensate up to 30 meters  
of CX4 cable or 40 inches of FR4 at 3.75 Gbps. The ADN8102  
allows joint control of the equalizer transfer function of the  
four equalizer channels in a single port through the I2C control  
interface. Port A and Port B equalizer transfer functions are  
controlled via Register 0x80 and Register 0xA0, respectively.  
The equalizer transfer function allows independent control of  
the boost in two different frequency ranges for optimal matching  
with the loss shape of the users channel (for example, skin-effect  
loss dominated or dielectric loss dominated). By default, the  
equalizer control is simplified to two independent maps of basic  
settings that provide nine settings, each optimized for CX4 cable  
and FR4 to ease programming for typical channels. The default  
state of the part selects the CX4 optimized equalization map for  
the IN_A[3:0] channels that interface with the cable and the FR4  
optimized equalization map for the IN_B[3:0] channels that  
interface with the board. Full control of the equalizer is available via  
the I2C control interface by writing register bit MODE[0] = 1 at  
Address 0x0F. Table 6 summarizes the high frequency boost for  
each of the basic control settings and the typical length of CX4  
cable and FR4 trace that each setting compensates. Setting the  
EQBY bit of the IN_A/IN_B configuration registers high sets  
the equalization to 1.5 dB of boost, which compensates 0 meters  
to 2 meters of CX4 or 0 inches to 10 inches of FR4.  
The user can also specify the boost in the mid frequency and high  
frequency ranges independently. This is done by writing to the  
IN_A/IN_B EQ1 control and IN_A/IN_B EQ2 control registers for  
the channel of interest. Each of these registers provides 32 settings  
of boost, with IN_A/IN_B EQ1 control setting the mid-frequency  
boost and IN_A/IN_B EQ2 control setting the high frequency  
boost. The IN_A/IN_B EQx control registers are ordered such  
that Bit 5 is a sign bit, and midlevel boost is centered on 0x00;  
setting Bit 5 low and increasing the LSBs results in decreasing  
boost, while setting Bit 5 high and increasing the LSBs results in  
increasing boost. The EQ CTL SRC bit (Bit 6) in the IN_A/IN_B  
EQ1 Control registers determines whether the equalization  
control for the channel of interest is selected from the optimized  
map or directly from the IN_A/IN_B EQx control registers (per  
port). Setting this bit high selects equalization control directly  
from the IN_A/IN_B EQx control registers, and setting it low  
selects equalization control from the selected optimized map.  
Table 6. Receive Equalizer Boost vs. Setting (CX4 and FR4 Optimized Maps)  
IN_Ax/IN_Bx  
Cable Optimized  
FR4 Optimized  
Configuration, EQ[2:0]  
01  
Boost (dB)  
Typical CX4 Cable Length (Meters)  
Boost (dB)  
3.5  
Typical FR4 Trace Length (Inches)  
10  
12  
14  
17  
19  
20  
21  
22  
4 to 6  
5 to 10  
1
8 to 10  
3.9  
10 to 15  
15 to 20  
20 to 25  
25 to 30  
30 to 35  
35 to 40  
35 to 40  
21  
3
12 to 14  
16 to 18  
20 to 22  
24 to 26  
28 to 30  
30 to 32  
4.25  
4.5  
4
51  
4.75  
5.0  
6
71  
5.3  
5.5  
1 These EQ settings are also available via the external device pins, EQ_A[1:0] and EQ_B[1:0].  
Table 7. Receive Configuration and Equalization Registers  
Name  
Address  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
IN_A/IN_B  
0x80, 0xA0  
PNSWAP  
EQBY  
EN  
EQ[2]  
EQ[1]  
EQ[0]  
0x30  
Configuration  
IN_A/IN_B  
EQ1 Control  
IN_A/IN_B  
0x83, 0xA3  
0x84, 0xA4  
EQ CTL SRC EQ1[5] EQ1[4] EQ1[3] EQ1[2] EQ1[1]  
EQ2[5] EQ2[4] EQ2[3] EQ2[2] EQ2[1]  
EQ1[0]  
EQ2[0]  
0x00  
0x00  
EQ2 Control  
IN_Ax/IN_Bx  
FR4 Control  
0x85, 0x8D, 0x95,  
0x9D, 0xA5, 0xAD,  
0xB5, 0xBD  
LUT SELECT LUT FR4/CX4 0x00  
Rev. A | Page 17 of 32  
 
 
 
 
ADN8102  
Recommended LOS Settings  
Loss of Signal/Signal Detect  
Recommended settings for LOS are as follows:  
An independent signal detect output is provided for all eight  
input ports of the device. The signal-detect function measures  
the low frequency amplitude of the signal at the receiver input  
and compares this measurement with a defined threshold level.  
If the measurement indicates that the input signal swing is  
smaller than the threshold for 250 μs, the channel indicates a  
loss-of-signal event. Assertion and deassertion of the LOS signal  
occurs within 100 μs of the event.  
Set IN_A/IN_B THRESH to 0x0C for an assert voltage of  
20 mV differential (40 mV p-p differential).  
Set IN_A/IN_B HYST to 0x0D for a deassert voltage of  
225 mV differential (450 mV p-p differential).  
LANE INVERSION  
The input P/N inversion is a feature intended to allow the user  
to implement the equivalent of a board-level crossover in a much  
smaller area and without additional via impedance discontinuities  
that degrade the high frequency integrity of the signal path. The  
P/N inversion is available on a per port basis and is controlled  
through the I2C control interface. The P/N inversion is accom-  
plished by writing to the PNSWAP bit (Bit 6) of the IN_A/IN_B  
configuration register (see Table 7) with low representing a  
noninverting configuration and high representing an inverting  
configuration. Note that using this feature to account for signal  
inversions downstream of the receiver requires additional attention  
when switching connectivity.  
The LOS-assert and LOS-deassert levels are set on a per channel  
basis through the I2C control interface, by writing to the IN_A/  
IN_B LOS threshold and IN_A/IN_B LOS hysteresis registers,  
respectively. The recommended settings are IN_A/IN_B THRESH  
= 0x0C and IN_A/IN_B HYST = 0x0D. All ports are factory  
tested with these settings to ensure that an LOS event is asserted  
for single-ended dc input swings less than 20 mV and is deasserted  
for single-ended dc input swings greater than 225 mV.  
The LOS status for each individual channel can be accessed  
through the I2C control interface. The independent channel  
LOS status can be read from the IN_A/IN_B LOS status registers  
(Address 0x1F and Address 0x3F). The four LSBs of each register  
represent the current LOS status of each channel, with high  
representing an ongoing LOS event. The four MSBs of each  
register represent the historical LOS status of each channel,  
with high representing a LOS event at any time on a specific  
channel. The MSBs are sticky and remain high once asserted  
until cleared by the user by overwriting the bits to 0.  
Table 8. LOS Threshold and Hysteresis Control Registers  
Name  
Address Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
IN_A/IN_B  
LOS Threshold  
0x81,  
0xA1  
THRESH[6] THRESH[5] THRESH[4] THRESH[3] THRESH[2] THRESH[1] THRESH[0] 0x04  
IN_A/IN_B  
0x82,  
HYST[6]  
HYST[5]  
HYST[4]  
HYST[3]  
HYST[2]  
HYST[1]  
HYST[0]  
0x12  
LOS Hysteresis 0xA2  
Table 9. LOS Status Registers  
Name  
Address  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IN_A/IN_B  
LOS Status  
0x1F,  
0x3F  
STICKY  
LOS[3]  
STICKY  
LOS[2]  
STICKY  
LOS[1]  
STICKY LOS [0]  
REAL-TIME  
LOS[3]  
REAL-TIME  
LOS[2]  
REAL-TIME  
LOS[1]  
REAL-TIME  
LOS[0]  
Rev. A | Page 18 of 32  
 
ADN8102  
Bit 1 represents loopback of the Port A inputs to the Port B  
LOOPBACK  
outputs (cable side loopback). Bit 0 represents loopback of the  
Port B inputs to the Port A outputs (board side loopback), with  
high representing loopback for both bits. Bit 0 is also controlled  
through the LB pin with I2C data overwriting the pin state. Both  
input ports can be looped back simultaneously (full loopback)  
by writing high to both Bit 0 and Bit 1, but in this case, valid  
data is disrupted on each channel. Figure 39 illustrates the three  
loopback modes.  
The ADN8102 provides loopback on both input ports (Port A:  
cable interface input, Port B: line card interface input). The external  
loopback toggle pin, LB, controls the loopback of the Port B input  
only (board side loopback). When loopback is asserted, valid  
data continues to pass through the Port B link, but the Port B  
input signals are also shunted to the Port A output to allow testing  
and debugging without disrupting valid data. This loopback, as  
well as loopback of the Port A input (cable side loopback), can  
be programmed through the I2C interface. The loopbacks are  
controlled through the I2C interface by writing to Bit 0 and  
Bit 1 of the global configuration control register (Register 0x02).  
CABLE SIDE LOOPBACK  
BOARD SIDE LOOPBACK  
FULL LOOPBACK  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
Ix_B[3:0]  
LB  
PE  
Ox_B[3:0]  
LOS_A  
Ix_B[3:0]  
LB  
PE  
Ox_B[3:0]  
LOS_A  
Ix_B[3:0]  
LB  
PE  
Ox_B[3:0]  
LOS_A  
EQ  
EQ  
EQ  
TRANSMIT  
PRE-EMPHASIS  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
RECEIVE  
EQUALIZATION  
TRANSMIT  
PRE-EMPHASIS  
RECEIVE  
EQUALIZATION  
Ox_A[3:0]  
Ix_A[3:0]  
Ox_A[3:0]  
Ix_A[3:0]  
Ox_A[3:0]  
Ix_A[3:0]  
PE  
PE  
PE  
EQ  
EQ  
EQ  
EQ_A[1:0]  
PE_A[1:0]  
EQ_B[1:0]  
PE_B[1:0]  
ENA  
EQ_A[1:0]  
PE_A[1:0]  
EQ_B[1:0]  
PE_B[1:0]  
ENA  
EQ_A[1:0]  
PE_A[1:0]  
EQ_B[1:0]  
PE_B[1:0]  
ENA  
ADDR[1:0]  
SCL  
SDA  
RESET  
ADDR[1:0]  
SCL  
SDA  
RESET  
ADDR[1:0]  
SCL  
SDA  
RESET  
CONTROL LOGIC  
CONTROL LOGIC  
CONTROL LOGIC  
ENB  
ENB  
ENB  
Figure 39. Loopback Modes of Operation  
Table 10. Global Configuration Register, Loopback Controls  
Name  
Address Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
LB[1]  
Bit 0  
Default  
Global Configuration Control  
0x02  
LB[0]  
0x00  
Rev. A | Page 19 of 32  
 
 
ADN8102  
The output equalization is optimized for less than 1.75 Gbps  
operation but can be optimized for higher speed applications at  
up to 3.75 Gbps through the I2C control interface by writing to  
the DATA RATE bit (Bit 4) of the OUT_A/OUT_B configuration  
registers, with high representing 3.75 Gbps and low representing  
1.75 Gbps. The PE CTL SRC bit (Bit 7) in the OUT_A/OUT_B  
Output Level Control 1 register determines whether the pre-  
emphasis and output current controls for the channel of interest  
are selected from the optimized map or directly from the OUT_A/  
OUT_B Output Level Control[1:0] registers (per channel). Setting  
this bit high selects pre-emphasis control directly from the  
OUT_A/OUT_B Output Level Control[1:0] registers, and setting  
it low selects pre-emphasis control from the optimized map.  
TRANSMITTERS  
Output Structure and Output Levels  
The ADN8102 transmitter outputs incorporate 50 Ω termina-  
tion resistors, ESD protection, and an output current switch. Each  
port provides control of both the absolute output level and the  
pre-emphasis output level. It should be noted that the choice of  
output level affects the output common-mode level. A 600 mV  
peak-to-peak differential output level with full pre-emphasis  
range requires an output termination voltage of 2.5 V or greater  
(VTTO, VCC ≥ 2.5 V).  
Pre-Emphasis  
The total output amplitude and pre-emphasis setting space is  
reduced to a single map of basic settings that provides seven  
settings of output equalization to ease programming for typical  
channels. The PE_A/PE_B[1:0] pins provide selections 0, 2, 4,  
and 6 of the seven pre-emphasis settings through toggle pin  
control, covering the entire range of settings at lower resolution.  
The full resolution of seven settings is available through the I2C  
interface by writing to Bits[2:0] (PE[2:0] of the OUT_A/OUT_B  
configuration registers) with I2C settings overriding the toggle  
pin control. Similar to the receiver settings, the ADN8102 allows  
joint control of all four channels in a transmit port. Table 11  
summarizes the absolute output level, pre-emphasis level, and  
high frequency boost for each of the basic control settings and  
the typical length of the CX4 cable and FR4 trace that each  
setting compensates.  
Tx SIMPLIFIED DIAGRAM  
VCC  
ON-CHIP  
ESD  
TERMINATION  
VTTO  
V3  
VC  
RP  
RN  
50  
50Ω  
V2  
VP  
OP  
ON  
V1  
VN  
Q1  
Q2  
I
TOT  
I
+ I  
PE  
DC  
VEE  
Figure 40. Simplified Output Structure  
Full control of the transmit output levels is available through the  
I2C control interface. This full control is achieved by writing to  
the OUT_A/OUT_B Output Level Control[1:0] registers for the  
channel of interest. Table 13 shows the supported output level  
settings of the OUT_A/OUT_B Output Level Control[1:0]  
registers. Register settings not listed in Table 13 are not  
supported by the ADN8102.  
Table 11. Transmit Pre-Emphasis Boost and Overshoot vs. Setting  
PE  
01  
1
Boost (dB) Overshoot DC Swing (mV p-p diff) Typical CX4 Cable Length (Meters) Typical FR4 Trace Length (Inches)  
0
0%  
800  
800  
800  
800  
800  
600  
400  
0 to 2.5  
0 to 5  
2
25%  
50%  
75%  
100%  
133%  
200%  
2.5 to 5  
0 to 5  
21  
3.5  
4.9  
6
5 to 7.5  
10 to 15  
10 to 15  
15 to 20  
20 to 25  
25 to 30  
3
7.5 to 10  
10 to 12.5  
15 to 17.5  
20 to 22.5  
41  
5
61  
7.4  
9.5  
1 These PE settings are also available via external device pins, PE_A[1:0] and PE_B[1:0].  
Table 12. Output Configuration Registers  
Name  
Address  
Bit 7  
Bit 6 Bit 5 Bit 4  
EN DATA RATE  
OUTx_OLEV1[6:0]  
OUTx_OLEV0[6:0]  
Bit 3 Bit 2 Bit 1 Bit 0 Default  
OUT_A/OUT_B Configuration  
0xC0, 0xE0  
PE[2] PE[1] PE[0] 0x20  
OUT_A/OUT_B Output Level Control 1 0xC1, 0xE1 PE CTL SRC  
OUT_A/OUT_B Output Level Control 0 0xC2, 0xE2  
0x40  
0x40  
Rev. A | Page 20 of 32  
 
 
 
ADN8102  
Table 13. Output Level Settings  
VOD (mV)  
VD Peak (mV)  
PE (dB)  
0.00  
9.54  
13.98  
16.90  
19.08  
20.83  
22.28  
0.00  
6.02  
9.54  
12.04  
13.98  
15.56  
16.90  
0.00  
4.44  
7.36  
9.54  
11.29  
12.74  
13.98  
0.00  
3.52  
6.02  
7.96  
9.54  
10.88  
12.04  
0.00  
2.92  
5.11  
6.85  
8.30  
9.54  
10.63  
0.00  
2.50  
4.44  
6.02  
7.36  
8.52  
9.54  
0.00  
2.18  
3.93  
5.38  
6.62  
7.71  
8.67  
0.00  
1.94  
3.52  
4.86  
6.02  
7.04  
7.96  
ITOT (mA)  
2
6
10  
14  
18  
22  
26  
4
OUT_A/OUT_B Output Level Control 0 OUT_A/OUT_B Output Level Control 1  
50  
50  
50  
50  
50  
50  
50  
50  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
Rev. A | Page 21 of 32  
0x81  
0x81  
0x81  
0x81  
0x81  
0x81  
0x81  
0x91  
0x91  
0x91  
0x91  
0x91  
0x91  
0x91  
0x92  
0x92  
0x92  
0x92  
0x92  
0x92  
0x92  
0xA2  
0xA2  
0xA2  
0xA2  
0xA2  
0xA2  
0xA2  
0xA3  
0xA3  
0xA3  
0xA3  
0xA3  
0xA3  
0xA3  
0xB3  
0xB3  
0xB3  
0xB3  
0xB3  
0xB3  
0xB3  
0xB4  
0xB4  
0xB4  
0xB4  
0xB4  
0xB4  
0xB4  
0xC4  
0xC4  
0xC4  
0xC4  
0xC4  
0xC4  
0xC4  
150  
250  
350  
450  
550  
650  
100  
200  
300  
400  
500  
600  
700  
150  
250  
350  
450  
550  
650  
750  
200  
300  
400  
500  
600  
700  
800  
250  
350  
450  
550  
650  
750  
850  
300  
400  
500  
600  
700  
800  
900  
350  
450  
550  
650  
750  
850  
950  
400  
500  
600  
700  
800  
900  
1000  
100  
100  
100  
100  
100  
100  
100  
150  
150  
150  
150  
150  
150  
150  
200  
200  
200  
200  
200  
200  
200  
250  
250  
250  
250  
250  
250  
250  
300  
300  
300  
300  
300  
300  
300  
350  
350  
350  
350  
350  
350  
350  
400  
400  
400  
400  
400  
400  
400  
8
12  
16  
20  
24  
28  
6
10  
14  
18  
22  
26  
30  
8
12  
16  
20  
24  
28  
32  
10  
14  
18  
22  
26  
30  
34  
12  
16  
20  
24  
28  
32  
36  
14  
18  
22  
26  
30  
34  
38  
16  
20  
24  
28  
32  
36  
40  
 
ADN8102  
VOD (mV)  
450  
450  
450  
450  
450  
450  
450  
500  
500  
500  
500  
500  
500  
500  
550  
550  
550  
550  
550  
550  
550  
600  
600  
600  
600  
600  
600  
600  
650  
650  
650  
650  
650  
650  
700  
700  
700  
700  
700  
750  
750  
750  
750  
800  
800  
800  
850  
850  
900  
VD Peak (mV)  
450  
550  
650  
750  
850  
950  
1050  
500  
600  
700  
800  
900  
1000  
1100  
550  
650  
750  
850  
950  
1050  
1150  
600  
700  
800  
900  
1000  
1100  
1200  
650  
750  
850  
PE (dB)  
0.00  
1.74  
3.19  
4.44  
5.52  
6.49  
7.36  
0.00  
1.58  
2.92  
4.08  
5.11  
6.02  
6.85  
0.00  
1.45  
2.69  
3.78  
4.75  
5.62  
6.41  
0.00  
1.34  
2.50  
3.52  
4.44  
5.26  
6.02  
0.00  
1.24  
2.33  
3.30  
4.17  
4.96  
0.00  
1.16  
2.18  
3.10  
3.93  
0.00  
1.09  
2.05  
2.92  
0.00  
1.02  
1.94  
0.00  
0.97  
0.00  
ITOT (mA)  
18  
22  
26  
30  
34  
38  
42  
20  
24  
28  
32  
36  
40  
44  
22  
26  
30  
34  
38  
42  
46  
24  
28  
32  
36  
40  
44  
48  
26  
30  
34  
38  
42  
46  
28  
32  
36  
40  
44  
30  
34  
38  
42  
32  
36  
40  
34  
38  
36  
OUT_A/OUT_B Output Level Control 0 OUT_A/OUT_B Output Level Control 1  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x00  
0x11  
0x22  
0x33  
0x44  
0x55  
0x66  
0x01  
0x12  
0x23  
0x34  
0x45  
0x56  
0x02  
0x13  
0x24  
0x35  
0x46  
0x03  
0x14  
0x25  
0x36  
0x04  
0x15  
0x26  
0x05  
0x16  
0x06  
0xC5  
0xC5  
0xC5  
0xC5  
0xC5  
0xC5  
0xC5  
0xD5  
0xD5  
0xD5  
0xD5  
0xD5  
0xD5  
0xD5  
0xD6  
0xD6  
0xD6  
0xD6  
0xD6  
0xD6  
0xD6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
0xE6  
950  
1050  
1150  
700  
800  
900  
1000  
1100  
750  
850  
950  
1050  
800  
900  
1000  
850  
950  
900  
Rev. A | Page 22 of 32  
ADN8102  
High Current Setting and Output Level Shift  
VTTO  
In low voltage applications, users must pay careful attention to  
both the differential and common-mode signal levels (see Figure 41  
and Table 14 and Table 15. Failure to understand the implications  
of signal level and choice of ac or dc coupling almost certainly leads  
to transistor saturation and poor transmitter performance.  
ΔV  
OCM  
V
H
V
OD  
V
OCM  
TxHeadroom  
V
L
The TxHeadroom register (Register 0x23) allows configuration  
of the individual transmitters for extra headroom at the output  
for high current applications. The bits in this register are active  
high (default) and are one per output (see Table 17). Setting a  
bit high puts the respective transmitter in a configuration for  
extra headroom and setting a bit low does not provide extra  
headroom. The TxHeadroom bits should only be set high when  
V
p-p = 2 × V  
OD  
OD  
VEE  
Figure 41. Simplified Output Voltage Levels Diagram  
VCC exceeds the value listed in Table 14 for a given output swing.  
Rev. A | Page 23 of 32  
 
ADN8102  
Signal Levels and Common-Mode Shift for DC- and AC-Coupled Outputs  
Table 14.  
Output Levels and Output Compliance  
AC-Coupled Transmitter  
VH VL  
Peak Peak dVOCM VH  
DC-Coupled Transmitter  
VH VL Min Max  
Peak Peak VL  
TxHeadroom = 0  
TxHeadroom = 1  
Max  
VCC − VL Min  
VD  
Min  
CC − VL VCC  
Min  
VL  
VOD ITOT Peak PE  
(mV) (mA) (mV) Boost (dB) (mV) (V) (V) (V)  
PE  
dVOCM VH  
VL  
VL  
(mV) (V) (V) (V)  
V
(V)  
(V)  
(V)  
(V)  
(V)  
(V)  
(V)  
V
CC (V)  
VTTO and VCC = 3.3 V  
200  
8
200 1.00 0.00 200  
300 1.50 3.52 300  
400 2.00 6.02 400  
500 2.50 7.96 500  
600 3.00 9.54 600  
700 3.50 10.88 700  
800 4.00 12.04 800  
300 1.00 0.00 300  
400 1.33 2.50 400  
500 1.67 4.44 500  
600 2.00 6.02 600  
700 2.33 7.36 700  
800 2.67 8.52 800  
900 3.00 9.54 900  
400 1.00 0.00 400  
500 1.25 1.94 500  
600 1.50 3.52 600  
700 1.75 4.86 700  
800 2.00 6.02 800  
900 2.25 7.04 900  
3.2  
3
3.2  
3
100  
3.3 3.1 3.3  
3.25 3.05 3.3  
3.1  
3
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
1.8  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.8  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.8  
1.8  
1.8  
1.8  
1.8  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
2
2
2
2
2
2.2  
2.2  
2
2
2
2
2
2.2  
2.2  
2
2
2
200 12  
200 16  
200 20  
200 24  
200 28  
200 32  
300 12  
300 16  
300 20  
300 24  
300 28  
300 32  
300 36  
400 16  
400 20  
400 24  
400 28  
400 32  
400 36  
400 40  
600 24  
600 28  
600 32  
600 36  
600 40  
600 44  
600 48  
3.1 2.9 3.15 2.85 150  
2.8 3.1 2.7 200  
2.9 2.7 3.05 2.55 250  
2.8 2.6 2.4 300  
2.7 2.5 2.95 2.25 350  
2.6 2.4 2.9 2.1 400  
3.15 2.85 3.15 2.85 150  
3.05 2.75 3.1 2.7 200  
2.95 2.65 3.05 2.55 250  
2.85 2.55 3 2.4 300  
2.75 2.45 2.95 2.25 350  
2.65 2.35 2.9 2.1 400  
2.55 2.25 2.85 1.95 450  
3.1 2.7 3.1 2.7 200  
2.6 3.05 2.55 250  
2.9 2.5 2.4 300  
2.8 2.4 2.95 2.25 350  
2.7 2.3 2.9 2.1 400  
2.6 2.2 2.85 1.95 450  
3
3.2  
3
3.3  
2.9  
2.8  
2.7  
2.6  
2.5  
3
3.15 2.95 3.3  
3.1 2.9 3.3  
3.05 2.85 3.3  
3
3
2.8 3.3  
3.3  
3.3  
3
3.25 2.95 3.3  
3.2 2.9 3.3  
3.15 2.85 3.3  
3.1 2.8 3.3  
3.05 2.75 3.3  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
3
2.7 3.3  
3.3 2.9 3.3  
3.25 2.85 3.3  
3.2 2.8 3.3  
3.15 2.75 3.3  
3.1 2.7 3.3  
3.05 2.65 3.3  
3
3
2
2
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
1000 2.50 7.96 1000 2.5 2.1 2.8  
1.8  
2.4  
500  
300  
3
2.6 3.3  
600 1.00 0.00 600  
700 1.17 1.34 700  
800 1.33 2.50 800  
900 1.50 3.52 900  
3
2.4  
3
3.3 2.7 3.3  
3.25 2.65 3.3  
3.2 2.6 3.3  
3.15 2.55 3.3  
3.1 2.5 3.3  
3.05 2.45 3.3  
2.1  
1.1  
2.9 2.3 2.95 2.25 350  
2.8 2.2 2.9 2.1 400  
2.7 2.1 2.85 1.95 450  
2.8 1.8 500  
1200 1.83 5.26 1100 2.5 1.9 2.75 1.65 550  
2.225 1.1  
2.225 1.1  
2.225 1.1  
2.225 1.1  
1000 1.67 4.44 1000 2.6  
2
2.1  
2.1  
1.1  
1.1  
1400 2.00 6.02 1200 2.4 1.8 2.7  
VTTO and VCC = 1.8 V1  
200  
1.5  
600  
3
2.4 3.3  
8
200 1.00 0.00 200  
300 1.50 3.52 300  
400 2.00 6.02 400  
500 2.50 7.96 500  
600 3.00 9.54 600  
300 1.00 0.00 300  
400 1.33 2.50 400  
500 1.67 4.44 500  
600 2.00 6.02 600  
700 2.33 7.36 700  
400 1.00 0.00 400  
500 1.25 1.94 500  
600 1.50 3.52 600  
700 1.75 4.86 700  
800 2.00 6.02 800  
600 1.00 0.00 600  
1.7 1.5 1.7  
1.5  
100  
1.8 1.6 1.8  
1.75 1.55 1.8  
1.7 1.5 1.8  
1.65 1.45 1.8  
1.6 1.4 1.8  
1.8 1.5 1.8  
1.75 1.45 1.8  
1.7 1.4 1.8  
1.65 1.35 1.8  
1.6 1.3 1.8  
1.8 1.4 1.8  
1.75 1.35 1.8  
1.7 1.3 1.8  
1.65 1.25 1.8  
1.6 1.2 1.8  
1.8 1.2 1.8  
1.6  
1.5  
1.4  
1.3  
1.2  
1.5  
1.4  
1.3  
1.2  
1.1  
1.4  
1.3  
1.2  
1.1  
1
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
0.725 1.1  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.8  
1.9  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
NA  
200 12  
200 16  
200 20  
200 24  
300 12  
300 16  
300 20  
300 24  
300 28  
400 16  
400 20  
400 24  
400 28  
400 32  
600 24  
1.6 1.4 1.65 1.35 150  
1.5 1.3 1.6 1.2 200  
1.4 1.2 1.55 1.05 250  
1.3 1.1 1.5 0.9 300  
1.65 1.35 1.65 1.35 150  
1.55 1.25 1.6 1.2 200  
1.45 1.15 1.55 1.05 250  
1.35 1.05 1.5 0.9 300  
1.25 0.95 1.45 0.75 350  
1.6 1.2 1.6 1.2 200  
1.5 1.1 1.55 1.05 250  
1.4 1.5 0.9 300  
1.3 0.9 1.45 0.75 350  
1
1.2 0.8 1.4  
1.5 0.9 1.5  
0.6  
0.9  
400  
300  
1.2  
0.6  
1.1  
1 TxHeadroom = 1 is not an option at VTTO and VCC = 1.8 V.  
Rev. A | Page 24 of 32  
 
 
ADN8102  
Table 15. Symbol Definitions for Output Levels vs. Setting  
Symbol  
Formula  
Definition  
VOD  
VOD p-p  
dVOCM_DC-COUPLED  
dVOCM_AC-COUPLED  
IDC  
IPE  
25 Ω × IDC  
Peak differential output voltage  
Peak-to-peak differential output voltage  
Output common-mode shift  
Output common-mode shift  
Output current that sets output level  
Output current used for PE  
25 Ω × IDC × 2 = 2 × VOD  
25 Ω × ITOT/2 = VOD p-p/4 + (IPE/2 × 25)  
50 Ω × ITOT/2 = VOD p-p/2 + (IPE/2 × 50)  
VOD/RTERM  
ITOT  
VH  
VL  
IDC + IPE  
VTTO − dVOCM + VOD/2  
VTTO − dVOCM − VOD/2  
Total transmitter output current  
Maximum single-ended output voltage  
Minimum single-ended output voltage  
SELECTIVE SQUELCH AND DISABLE  
Table 16. Squelch Programming  
Each transmitter is equipped with output disable and output  
squelch controls. Disable is a full power-down state: the trans-  
mitter current is reduced to zero and the output pins pull up  
to VTTO, but there is a delay of approximately 1 μs associated  
with re-enabling the transmitter. The output disable control is  
accessed through the EN bit (Bit 5) of the OUT_A/OUT_B  
configuration registers through the I2C control interface.  
Name  
Address  
Data  
Default  
OUT_A/ 0xC3,  
SQUELCH[3:0] DISABLE[3:0]  
0xFF  
OUT_B  
Squelch  
Control  
0xE3  
Squelch is not a full power-down state but a state in which only  
the output current is reduced to zero and the output pins pull  
up to VTTO, and there is a much smaller delay to bring back  
the output current. The output squelch and the output disable  
control can both be accessed through the OUT_A/OUT_B  
squelch control registers, with the top nibble representing the  
squelch control for one entire output port and the bottom  
nibble representing the output disable for one entire output  
port. The ports are disabled or squelched by writing 0s to the  
corresponding nibbles. The ports are enabled by writing all 1s,  
which is the default setting. For example, to squelch Port A,  
Register 0xC3 must be set to 0x0F. The entire nibble must be  
written to all 0s for this functionality.  
Rev. A | Page 25 of 32  
 
 
ADN8102  
I2C CONTROL INTERFACE  
7. Send the data (eight bits) to be written to the register whose  
address was set in Step 5. This transfer should be MSB first.  
8. Wait for the ADN8102 to acknowledge the request.  
9a. Send a stop condition (while holding the SCL line high,  
pull the SDA line high) and release control of the bus.  
9b. Send a repeated start condition (while holding the SCL line  
high, pull the SDA line low) and continue with Step 2 in  
this procedure to perform another write.  
SERIAL INTERFACE GENERAL FUNCTIONALITY  
The ADN8102 register set is controlled through a 2-wire  
I2C interface. The ADN8102 acts only as an I2C slave device.  
Therefore, the I2C bus in the system needs to include an I2C  
master to configure the ADN8102 and other I2C devices that  
may be on the bus. Data transfers are controlled using the two  
I2C wires: the SCL input clock pin and the SDA bidirectional  
data pin.  
9c. Send a repeated start condition (while holding the SCL line  
high, pull the SDA line low) and continue with Step 2 of  
the read procedure (in the I2C Interface Data Transfers—  
Data Read section) to perform a read from another address.  
9d. Send a repeated start condition (while holding the SCL line  
high, pull the SDA line low) and continue with Step 8 of  
the read procedure (in the I2C Interface Data Transfers—  
Data Read section) to perform a read from the same  
address set in Step 5.  
The ADN8102 I2C interface can be run in the standard (100 kHz)  
and fast (400 kHz) modes. The SDA line only changes value  
when the SCL pin is low with two exceptions. To indicate the  
beginning or continuation of a transfer, the SDA pin is driven  
low while the SCL pin is high, and to indicate the end of a  
transfer, the SDA line is driven high while the SCL line is high.  
Therefore, it is important to control the SCL clock to toggle  
only when the SDA line is stable, unless indicating a start,  
repeated start, or stop condition.  
Figure 42 shows the ADN8102 write process. The SCL signal is  
shown along with a general write operation and a specific example.  
In the example, Data 0x92 is written to Address 0x6D of an  
ADN8102 part with a part address of 0x4B. The part address is  
seven bits wide. The upper five bits of the ADN8102 are internally  
set to 10010b. The lower two bits are controlled by the ADDR[1:0]  
pins. In this example, the bits controlled by the ADDR[1:0] pins  
are set to 11b. In Figure 42, the corresponding step number is  
visible in the circle under the waveform. The SCL line is driven by  
the I2C master and never by the ADN8102 slave. As for the SDA  
line, the data in the shaded polygons is driven by the ADN8102,  
whereas the data in the nonshaded polygons is driven by the I2C  
master. The end phase case shown is that of Step 9a.  
I2C INTERFACE DATA TRANSFERS—DATA WRITE  
To write data to the ADN8102 register set, a microcontroller, or  
any other I2C master, needs to send the appropriate control signals  
to the ADN8102 slave device. The steps that need to be completed  
are listed as follows, where the signals are controlled by the I2C  
master, unless otherwise specified. A diagram of the procedure  
can be seen in Figure 42.  
1. Send a start condition (while holding the SCL line high,  
pull the SDA line low).  
2. Send the ADN8102 part address (seven bits) whose upper  
five bits are the static value 10010b and whose lower two  
bits are controlled by the ADDR[1:0] input pins. This transfer  
should be MSB first.  
Note that the SDA line only changes when the SCL line is low,  
except for the case of sending a start, stop, or repeated start  
condition, Step 1 and Step 9 in this case.  
3. Send the write indicator bit (0).  
4. Wait for the ADN8102 to acknowledge the request.  
5. Send the register address (eight bits) to which data is to be  
written. This transfer should be MSB first.  
6. Wait for the ADN8102 to acknowledge the request.  
SCL  
GENERAL CASE  
ADDR  
[1:0]  
START  
FIXED PART ADDR  
REGISTER ADDR  
DATA  
STOP  
SDA  
R/W ACK  
ACK  
ACK  
EXAMPLE  
SDA  
1
2
2
3
4
5
6
7
8
9a  
Figure 42. I2C Write Diagram  
Rev. A | Page 26 of 32  
 
 
 
ADN8102  
I2C INTERFACE DATA TRANSFERS—DATA READ  
13a. Send a stop condition (while holding the SCL line high,  
pull the SDA line high) and release control of the bus.  
13b. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 2  
of the write procedure (in the I2C Interface Data  
To read data from the ADN8102 register set, a microcontroller,  
or any other I2C master, needs to send the appropriate control  
signals to the ADN8102 slave device. The steps that need to be  
completed are listed as follows, where the signals are controlled  
by the I2C master, unless otherwise specified. A diagram of the  
procedure can be seen in Figure 43.  
Transfers—Data Write section) to perform a write.  
13c. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 2 of  
this procedure to perform a read from a another address.  
13d. Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low) and continue with Step 8 of  
this procedure to perform a read from the same address.  
1.  
Send a start condition (while holding the SCL line high,  
pull the SDA line low).  
2.  
Send the ADN8102 part address (seven bits) whose  
upper five bits are the static value 10010b and whose  
lower two bits are controlled by the input pins ADDR[1:0].  
This transfer should be MSB first.  
Figure 43 shows the ADN8102 read process. The SCL signal is  
shown along with a general read operation and a specific example.  
In the example, Data 0x49 is read from Address 0x6D of an  
ADN8102 part with a part address of 0x4B. The part address is  
seven bits wide. The upper five bits of the ADN8102 are internally  
set to 10010b. The lower two bits are controlled by the ADDR[1:0]  
pins. In this example, the bits controlled by the ADDR[1:0] pins  
are set to 11b. In Figure 43, the corresponding step number is  
visible in the circle under the waveform. The SCL line is driven  
by the I2C master and never by the ADN8102 slave. As for the SDA  
line, the data in the shaded polygons is driven by the ADN8102,  
whereas the data in the nonshaded polygons is driven by the I2C  
master. The end phase case shown is that of Step 13a.  
3.  
4.  
5.  
Send the write indicator bit (0).  
Wait for the ADN8102 to acknowledge the request.  
Send the register address (eight bits) from which data is  
to be read. This transfer should be MSB first. The register  
address is kept in memory in the ADN8102 until the  
part is reset or the register address is written over with  
the same procedure (Step 1 to Step 6).  
6.  
7.  
Wait for the ADN8102 to acknowledge the request.  
Send a repeated start condition (while holding the SCL  
line high, pull the SDA line low).  
8.  
Send the ADN8102 part address (seven bits) whose  
upper five bits are the static value 10010b and whose  
lower two bits are controlled by the input pins ADDR[1:0].  
This transfer should be MSB first.  
Note that the SDA line changes only when the SCL line is low,  
except for the case of sending a start, stop, or repeated start  
condition, as in Step 1, Step 7, and Step 13. In Figure 43, A is the  
same as ACK in Figure 42. Equally, Sr represents a repeated  
start where the SDA line is brought high before SCL is raised.  
SDA is then dropped while SCL is still high.  
9.  
Send the read indicator bit (1).  
10.  
11.  
Wait for the ADN8102 to acknowledge the request.  
The ADN8102 then serially transfers the data (eight bits)  
held in the register indicated by the address set in Step 5.  
Acknowledge the data.  
12.  
SCL  
GENERAL CASE  
R/  
W
R/  
W
FIXED PART  
ADDR  
FIXED PART  
ADDR  
ADDR  
[1:0]  
ADDR  
[1:0]  
START  
REGISTER ADDR  
DATA  
STOP  
SDA  
A
A
6
Sr  
A
A
EXAMPLE  
SDA  
1
2
2
3
4
5
7
8
8
9
10  
11  
12  
13a  
Figure 43. I2C Read Diagram  
Rev. A | Page 27 of 32  
 
 
 
ADN8102  
PCB DESIGN GUIDELINES  
Proper RF PCB design techniques must be used for optimal  
performance.  
TRANSMISSION LINES  
Use of 50 ꢀ transmission lines is required for all high frequency  
input and output signals to minimize reflections. It is also necessary  
for the high speed pairs of differential input traces to be matched in  
length, as well as the high speed pairs of differential output traces,  
to avoid skew between the differential traces.  
POWER SUPPLY CONNECTIONS AND GROUND  
PLANES  
Use of one low impedance ground plane is recommended.  
The VEE pins should be soldered directly to the ground plane  
to reduce series inductance. If the ground plane is an internal  
plane and connections to the ground plane are made through  
vias, multiple vias can be used in parallel to reduce the series  
inductance. The exposed pad should be connected to the VEE  
plane using plugged vias so that solder does not leak through  
the vias during reflow.  
SOLDERING GUIDELINES FOR CHIP SCALE PACKAGE  
The lands on the LFCSP are rectangular. The PCB pad for these  
should be 0.1 mm longer than the package land length and  
0.05 mm wider than the package land width. Center the land on  
the pad, which ensures that the solder joint size is maximized.  
The bottom of the chip scale package has a central exposed pad.  
The pad on the PCB should be at least as large as this exposed pad.  
The user must connect the exposed pad to VEE using plugged vias  
so that solder does not leak through the vias during reflow. This  
ensures a solid connection from the exposed pad to VEE.  
Use of a 10 μF electrolytic capacitor between VCC and VEE is  
recommended at the location where the 3.3 V supply enters the  
printed circuit board (PCB). It is recommended that 0.1 μF and  
1 nF ceramic chip capacitors be placed in parallel at each supply  
pin for high frequency power supply decoupling. When using  
0.1 μF and 1 nF ceramic chip capacitors, they should be placed  
between the IC power supply pins (VCC, VTTI, and VTTO)  
and VEE, as close as possible to the supply pins.  
By using adjacent power supply and GND planes, excellent high  
frequency decoupling can be realized by using close spacing  
between the planes. This capacitance is given by  
C
PLANE = 0.88εr × A/d (pF)  
where:  
εr is the dielectric constant of the PCB material.  
A is the area of the overlap of power and GND planes (cm2).  
d is the separation between planes (mm).  
For FR4, εr = 4.4, and 0.25 mm spacing, C ≈ 15 pF/cm2.  
Rev. A | Page 28 of 32  
 
ADN8102  
REGISTER MAP  
Table 17. I2C Register Definitions  
Name  
Address Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
Reset  
0x00  
RESET  
LB[0]  
Global  
0x02  
LB[1]  
0x00  
Configuration  
Control  
Mode  
0x0F  
MODE[1]  
TxH_A1  
EQ[1]  
MODE[0]  
TxH_A0  
EQ[0]  
0x00  
0x00  
0x30  
TxHeadroom  
0x23  
0x80  
TxH_B3  
TxH_B2  
TxH_B1  
EQBY  
TxH_B0  
EN  
TxH_A3  
TxH_A2  
EQ[2]  
IN_A  
PNSWAP  
Configuration  
IN_A LOS  
Threshold  
0x81  
0x82  
0x1F  
0x83  
0x84  
0x85  
0x8D  
0x95  
0x9D  
0xA0  
0xA1  
0xA2  
0x3F  
0xA3  
0xA4  
0xA5  
0xAD  
0xB5  
0xBD  
THRESH[6] THRESH[5] THRESH[4] THRESH[3] THRESH[2] THRESH[1] THRESH[0] 0x04  
IN_A LOS  
Hysteresis  
HYST[6]  
HYST[5]  
HYST[4]  
HYST[3]  
HYST[2]  
HYST[1]  
HYST[0]  
0x12  
IN_A LOS  
Status1  
STICKY  
LOS[3]  
STICKY  
LOS[2]  
STICKY  
LOS[1]  
STICKY  
LOS[0]  
REAL-TIME REAL-TIME REAL-TIME REAL-TIME  
LOS[3]  
EQ1[3]  
LOS[2]  
EQ1[2]  
LOS[1]  
EQ1[1]  
LOS[0]  
EQ1[0]  
IN_A EQ1  
Control  
EQ CTL  
SRC  
EQ1[5]  
EQ1[4]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x30  
IN_A EQ2  
Control  
EQ2[5]  
EQ2[4]  
EQ2[3]  
EQ2[2]  
EQ2[1]  
EQ2[0]  
IN_A0 FR4  
Control  
LUT  
SELECT  
LUT  
FR4/CX4  
IN_A1 FR4  
Control  
LUT  
SELECT  
LUT  
FR4/CX4  
IN_A2 FR4  
Control  
LUT  
SELECT  
LUT  
FR4/CX4  
IN_A3 FR4  
Control  
LUT  
SELECT  
LUT  
FR4/CX4  
IN_B  
Configuration  
PNSWAP  
EQBY  
EN  
EQ[2]  
EQ[1]  
EQ[0]  
IN_B LOS  
Threshold  
THRESH[6] THRESH[5] THRESH[4] THRESH[3] THRESH[2] THRESH[1] THRESH[0] 0x04  
IN_B LOS  
Hysteresis  
HYST[6]  
HYST[5]  
HYST[4]  
HYST[3]  
HYST[2]  
HYST[1]  
HYST[0]  
0x12  
IN_B LOS  
Status1  
STICKY  
LOS [3]  
STICKY  
LOS [2]  
STICKY  
LOS [1]  
STICKY  
LOS[0]  
REAL-TIME REAL-TIME REAL-TIME REAL-TIME  
LOS[3]  
EQ1[3]  
LOS[2]  
EQ1[2]  
LOS[1]  
EQ1[1]  
LOS[0]  
EQ1[0]  
IN_B EQ1  
Control  
EQ CTL  
SRC  
EQ1[5]  
EQ1[4]  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
IN_B EQ2  
Control  
EQ2[5]  
EQ2[4]  
EQ2[3]  
EQ2[2]  
EQ2[1]  
EQ2[0]  
IN_B3 FR4  
Control  
LUT  
SELECT  
LUT  
FR4/CX4  
IN_B2 FR4  
Control  
LUT  
SELECT  
LUT  
FR4/CX4  
IN_B1 FR4  
Control  
LUT  
SELECT  
LUT  
FR4/CX4  
IN_B0 FR4  
Control  
LUT  
LUT  
SELECT  
FR4/CX4  
Rev. A | Page 29 of 32  
 
 
ADN8102  
Name  
Address Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
OUT_A  
Configuration  
0xC0  
EN  
DATA  
RATE  
PE[2]  
PE[1]  
PE[0]  
0x20  
OUT_A  
Output Level  
Control 1  
0xC1  
0xC2  
0xC3  
PE CTL  
SRC  
OUTA_OLEV1[6:0]  
OUTA_OLEV0[6:0]  
0x40  
0x40  
0xFF  
OUT_A  
Output Level  
Control 0  
OUT_A  
Squelch  
Control  
SQUELCH[3:0]  
EN  
DISABLE[3:0]  
PE[1]  
OUT_B  
Configuration  
0xE0  
0xE1  
DATA  
RATE  
PE[2]  
PE[0]  
0x20  
0x40  
OUT_B  
Output Level  
Control 1  
PE CTL  
SRC  
OUTB_OLEV1[6:0]  
OUTB_OLEV0[6:0]  
OUT_B  
Output Level  
Control 0  
0xE2  
0xE3  
0x40  
0xFF  
OUT_B  
Squelch  
Control  
SQUELCH[3:0]  
DISABLE[3:0]  
1 Read-only register.  
Rev. A | Page 30 of 32  
 
 
ADN8102  
OUTLINE DIMENSIONS  
0.30  
0.25  
0.18  
9.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
INDICATOR  
64  
49  
48  
1
PIN 1  
INDICATOR  
*
6.15  
6.00 SQ  
5.85  
8.75  
BSC SQ  
TOP  
VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
33  
32  
16  
17  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.50 BSC  
SECTION OF THIS DATA SHEET.  
0.20 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
EXCEPT FOR EXPOSED PAD DIMENSION  
Figure 44. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADN8102ACPZ1  
ADN8102ACPZ-R71  
ADN8102-EVALZ1  
Temperature Range  
Package Description  
Package Option  
CP-64-2  
CP-64-2  
−40°C to +85°C  
−40°C to +85°C  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 31 of 32  
 
 
ADN8102  
NOTES  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C Patent  
Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07060-0-8/08(A)  
Rev. A | Page 32 of 32  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY