ADG5436FBRUZ-RL7 [ADI]

Fault Protection and Detection, 10 ohm RON, Dual SPDT Switch;
ADG5436FBRUZ-RL7
型号: ADG5436FBRUZ-RL7
厂家: ADI    ADI
描述:

Fault Protection and Detection, 10 ohm RON, Dual SPDT Switch

输入元件 光电二极管 输出元件
文件: 总30页 (文件大小:1421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Fault Protection and Detection,  
10 Ω RON, Dual SPDT Switch  
ADG5436F  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Overvoltage protection up to −55 V and +55 V  
Power-off protection up to −55 V and +55 V  
Overvoltage detection on source pins  
Interrupt flags indicate fault status  
ADG5436F  
S1A  
D1  
S2A  
D2  
S1B  
S2B  
Low on resistance: 10 Ω (typical)  
On-resistance flatness of 0.5 Ω (maximum)  
6 kV human body model (HBM) ESD rating  
Latch-up immune under any circumstance  
Known state without digital inputs present  
FAULT  
DETECTION  
+
SF  
FF  
SWITCH DRIVER  
V
SS to VDD analog signal range  
IN1  
IN2 EN  
DR  
5 V to 22 V dual supply operation  
8 V to 44 V single-supply operation  
Fully specified at 15 V, 20 V, +12 V, and +36 V  
NOTES  
1. SWITCHES SHOWN FOR A LOGIC 1 INPUT.  
Figure 1.  
APPLICATIONS  
Analog input/output modules  
Process control/distributed control systems  
Data acquisition  
Instrumentation  
Avionics  
Automatic test equipment  
Communication systems  
Relay replacement  
GENERAL DESCRIPTION  
The ADG5436F is an analog multiplexer, containing two  
independently selectable single-pole, double-throw (SPDT)  
switches. An EN input is used to disable all the switches. For use  
in multiplexer applications, both switches exhibit break-before-  
make switching action.  
resistance of the ADG5436F, combined with the on-resistance  
flatness over a significant portion of the signal range, makes it  
an ideal solution for data acquisition and gain switching  
applications where excellent linearity and low distortion are  
critical.  
Each channel conducts equally well in both directions when on,  
and each switch has an input signal range that extends to the  
supplies. The digital inputs are compatible with 3 V logic inputs  
over the full operating supply range.  
Note that, throughout this data sheet, the dual function pin names  
are referenced only by the relevant function where applicable. See  
the Pin Configurations and Function Descriptions section for  
full pin names and function descriptions.  
When no power supplies are present, the switch remains in the off  
condition, and the channel inputs are high impedance. Under  
normal operating conditions, if the analog input signal level on  
any Sxx pin exceeds VDD or VSS by a threshold voltage, VT, the  
channel turns off and that Sxx pin becomes high impedance. If  
the channel is on, the drain pin reacts according to the drain  
response (DR) input pin. If the DR pin is left floating or pulled  
high, the drain remains high impedance and floats. If the DR pin  
is pulled low, the drain pulls to the exceeded rail. Input signal  
levels of up to +55 V or −55 V relative to ground are blocked, in  
both the powered and unpowered conditions. The low on  
PRODUCT HIGHLIGHTS  
1. Source pins are protected against voltages greater than the  
supply rails, up to −55 V and +55 V.  
2. Source pins are protected against voltages between −55 V  
and +55 V in an unpowered state.  
3. Overvoltage detection with digital output indicates the  
operating state of the switches.  
4. Trench isolation guards against latch-up.  
5. Optimized for low on resistance and on-resistance flatness.  
6. The ADG5436F operates from a dual supply of 5 V up to  
22 V, or a single power supply of 8 V up to 44 V.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2015–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
ADG5436F  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 20  
Terminology.................................................................................... 24  
Theory of Operation ...................................................................... 26  
Switch Architecture.................................................................... 26  
Fault Protection .......................................................................... 27  
Applications Information .............................................................. 28  
Power Supply Rails ..................................................................... 28  
Power Supply Sequencing Protection...................................... 28  
Signal Range................................................................................ 28  
Low Impedance Channel Protection....................................... 28  
Power Supply Recommendations............................................. 28  
High Voltage Surge Suppression .............................................. 28  
Intelligent Fault Detection ........................................................ 29  
Large Voltage, High Frequency Signals................................... 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
15 V Dual Supply ....................................................................... 3  
20 V Dual Supply ....................................................................... 5  
12 V Single Supply........................................................................ 7  
36 V Single Supply........................................................................ 9  
Continuous Current per Channel, Sxx or Dx......................... 11  
Absolute Maximum Ratings.......................................................... 12  
ESD Caution................................................................................ 12  
Pin Configurations and Function Descriptions ......................... 13  
Truth Tables for Switches .......................................................... 14  
Typical Performance Characteristics ........................................... 15  
REVISION HISTORY  
1/16—Rev. A to Rev. B  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Changes to Table 3............................................................................ 7  
Changes to Table 4............................................................................ 9  
Changes to ESD Performance Section......................................... 26  
5/15—Rev. 0 to Rev. A  
Added 16-Lead LFCSP Package........................................Universal  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 5  
Changes to Table 3............................................................................ 7  
Changes to Table 4............................................................................ 9  
Changes to Table 5.......................................................................... 11  
Changes to Table 6.......................................................................... 12  
Added Figure 3; Renumbered Sequentially ................................ 13  
Changes to Table 7.......................................................................... 13  
Added Figure 53.............................................................................. 30  
Updated Outline Dimensions....................................................... 30  
Changes to Ordering Guide .......................................................... 30  
1/15—Revision 0: Initial Version  
Rev. B | Page 2 of 30  
 
Data Sheet  
ADG5436F  
SPECIFICATIONS  
15 V DUAL SUPPLY  
VDD = 15 V 10%, VSS = −15 V 10%, GND = 0 V, CDECOUPLING = 0.1 µF, unless otherwise noted.  
Table 1.  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = 13.5 V, VSS = −13.5 V, see Figure 30  
VDD to VSS  
16.5  
V
10  
11.2  
9.5  
10.7  
0.15  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Voltage on the Sxx pins (VS) = 10 V, IS = −10 mA  
VS = 9 V, IS = −10 mA  
14  
13.5  
16  
On-Resistance Match  
VS = 10 V, IS = −10 mA  
Between Channels, ∆RON  
0.65  
0.15  
0.6  
0.8  
0.7  
0.95  
0.8  
Ω max  
Ω typ  
Ω max  
Ω typ  
VS = 9 V, IS = −10 mA  
VS = 10 V, IS = −10 mA  
On-Resistance Flatness,  
RFLAT(ON)  
0.6  
0.9  
0.1  
0.4  
0.7  
1.1  
0.5  
1.1  
0.5  
Ω max  
Ω typ  
Ω max  
V typ  
VS = 9 V, IS = −10 mA  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
See Figure 26  
VDD = 16.5 V, VSS = −16.5 V  
Source Off Leakage, IS (Off)  
0.1  
1.5  
0.1  
1.5  
0.5  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
VS = 10 V, voltage on the Dx pin (VD) = 10 V, see Figure 31  
5.0  
7.0  
21  
25  
Drain Off Leakage, ID (Off)  
VS = 10 V, VD = 10 V, see Figure 31  
Channel On Leakage, ID (On),  
IS (On)  
VS = VD = 10 V, see Figure 32  
1.5  
5.0  
21  
nA max  
FAULT  
Source Leakage Current, IS  
With Overvoltage  
72  
49  
µA typ  
µA typ  
VDD = 16.5 V, VSS = −16.5 V, GND = 0 V, VS = 55 V,  
see Figure 35  
VDD = 0 V or floating, VSS = 0 V or floating, GND = 0 V, EN = 0 V  
or floating, INx = 0 V or floating, VS = 55 V, see Figure 36  
Power Supplies  
Grounded or Floating  
Drain Leakage Current, ID  
With Overvoltage  
DR = floating or >2 V  
VDD = 16.5 V, VSS = −16.5 V, GND = 0 V, VS = 55 V, see  
Figure 35  
2.0  
nA typ  
8.0  
10  
15  
49  
nA max  
nA typ  
Power Supplies  
Grounded  
VDD = 0 V, VSS = 0 V, GND = 0 V, INx = 0 V or floating,  
VS = 55 V, EN = 0 V, see Figure 36  
30  
10  
50  
10  
100  
10  
nA max  
µA typ  
Power Supplies Floating  
VDD = floating, VSS = floating, GND = 0 V, VS = 55 V,  
EN = 0 V, see Figure 36  
DIGITAL INPUTS/OUTPUTS  
Input Voltage High, VINH  
Input Voltage Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V min  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage High, VOH  
Output Voltage Low, VOL  
6.0  
2.0  
0.8  
V max  
Rev. B | Page 3 of 30  
 
 
ADG5436F  
Data Sheet  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
DYNAMIC CHARACTERISTICS1  
Unit  
Test Conditions/Comments  
Transition Time, tTRANSITION  
400  
540  
435  
515  
165  
210  
320  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 46  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 45  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 45  
RL = 300 Ω, CL = 35 pF  
555  
530  
215  
570  
550  
220  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time  
Delay, tD  
190  
750  
ns min  
ns typ  
VS = 10 V, see Figure 44  
RL = 1 kΩ, CL = 2 pF, see Figure 39  
Overvoltage Response  
Time, tRESPONSE  
510  
680  
725  
ns max  
ns typ  
Overvoltage Recovery Time, 820  
tRECOVERY  
RL = 1 kΩ, CL = 2 pF, see Figure 40  
1100  
85  
1150  
1200  
115  
ns max  
ns typ  
Interrupt Flag Response  
Time, tDIGRESP  
Interrupt Flag Recovery  
Time, tDIGREC  
CL = 12 pF, see Figure 41  
CL = 12 pF, see Figure 42  
60  
85  
µs typ  
600  
−724  
−71  
ns typ  
pC typ  
dB typ  
dB typ  
% typ  
CL = 12 pF, RPULLUP = 1 kΩ, see Figure 43  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see Figure 47  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 33  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 34  
RL = 10 kΩ, VS = 15 V p-p, f = 20 Hz to 20 kHz, see Figure 38  
Charge Injection, QINJ  
Off Isolation  
Channel-to-Channel Crosstalk −73  
Total Harmonic Distortion  
Plus Noise, THD + N  
0.001  
−3 dB Bandwidth  
Insertion Loss  
Source Capacitance (CS), Off 12  
Drain Capacitance (CD), Off  
CD (On), CS (On)  
169  
−0.8  
MHz typ RL = 50 Ω, CL = 5 pF, see Figure 37  
dB typ  
pF typ  
pF typ  
pF typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 37  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
24  
37  
VS = 0 V, f = 1 MHz  
POWER REQUIREMENTS  
VDD = 16.5 V, VSS = −16.5 V, GND = 0 V, digital inputs = 0 V,  
5 V, or VDD  
Normal Mode  
IDD  
0.9  
1.2  
0.4  
0.55  
0.5  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
1.3  
0.6  
0.7  
IGND  
ISS  
0.65  
Fault Mode  
IDD  
VS = 55 V  
1.2  
1.6  
0.8  
1.0  
0.5  
1.0  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
1.8  
1.1  
IGND  
ISS  
Digital inputs = 5 V  
mA max VS = 55 V, VD = 0 V  
1.8  
5
22  
VDD/VSS  
V min  
V max  
GND = 0 V  
GND = 0 V  
1 Guaranteed by design. Not subject to production test.  
Rev. B | Page 4 of 30  
Data Sheet  
ADG5436F  
20 V DUAL SUPPLY  
VDD = 20 V 10%, VSS = −20 V 10%, GND = 0 V, CDECOUPLING = 0.1 µF, unless otherwise noted.  
Table 2.  
−40°C to  
+85°C  
−40°C to  
+125°C  
Parameter  
+25°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = 18 V, VSS = −18 V, see Figure 30  
VDD to VSS  
16.5  
16.5  
0.95  
0.8  
V
10  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
VS = 15 V, IS = −10 mA  
11.5  
9.5  
11  
14.5  
14  
VS = 13.5 V, IS = −10 mA  
VS = 15 V, IS = −10 mA  
On-Resistance Match Between Channels, ∆RON  
On-Resistance Flatness, RFLAT(ON)  
0.15  
0.65  
0.15  
0.6  
1.0  
1.4  
0.1  
0.4  
0.7  
0.8  
0.7  
1.5  
0.5  
VS = 13.5 V, IS = −10 mA  
VS = 15 V, IS = −10 mA  
1.5  
VS = 13.5 V, IS = −10 mA  
0.5  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
Source Off Leakage, IS (Off)  
See Figure 26  
VDD = 22 V, VSS = −22 V  
VS = 15 V, VD = 15 V, see Figure 31  
0.1  
1.5  
0.1  
1.5  
0.5  
1.5  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
5.0  
7.0  
5.0  
21  
25  
21  
Drain Off Leakage, ID (Off)  
VS = 15 V, VD = 15 V, see Figure 31  
VS = VD = 15 V, see Figure 32  
Channel On Leakage, ID (On), IS (On)  
FAULT  
Source Leakage Current, IS  
With Overvoltage  
84  
49  
µA typ  
µA typ  
VDD = +22 V, VSS = −22 V, GND = 0 V,  
VS = 55 V, see Figure 35  
VDD = 0 V or floating, VSS = 0 V or floating,  
GND = 0 V, EN = 0 V or floating, INx = 0 V  
or floating, VS = 55 V, see Figure 36  
Power Supplies Grounded or Floating  
Drain Leakage Current, ID  
With Overvoltage  
DR = floating or >2 V  
5.0  
nA typ  
VDD = +22 V, VSS = −22 V, GND = 0 V,  
INx = 0 V or floating, VS = 55 V, see  
Figure 35  
1.0  
10  
1.0  
1.0  
µA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V, VS =  
55 V, EN = 0 V, see Figure 36  
30  
10  
50  
10  
100  
10  
nA max  
µA typ  
VDD = floating, VSS = floating, GND =  
0 V, VS = 55 V, EN = 0 V, see Figure 36  
DIGITAL INPUTS  
Input Voltage High, VINH  
Input Voltage Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V min  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage High, VOH  
Output Voltage Low, VOL  
6.0  
2.0  
0.8  
V max  
Rev. B | Page 5 of 30  
 
ADG5436F  
Data Sheet  
−40°C to  
+85°C  
−40°C to  
+125°C  
Parameter  
DYNAMIC CHARACTERISTICS1  
+25°C  
Unit  
Test Conditions/Comments  
Transition Time, tTRANSITION  
405  
540  
430  
535  
170  
205  
330  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
µs typ  
ns typ  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 46  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 45  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 45  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 44  
RL = 1 kΩ, CL = 2 pF, see Figure 39  
555  
560  
210  
570  
585  
215  
205  
630  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Overvoltage Response Time, tRESPONSE  
Overvoltage Recovery Time, tRECOVERY  
430  
560  
930  
1300  
85  
60  
600  
−737  
605  
RL = 1 kΩ, CL = 2 pF, see Figure 40  
1500  
1700  
115  
85  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
CL = 12 pF, see Figure 41  
CL = 12 pF, see Figure 42  
CL = 12 pF, RPULLUP = 1 kΩ, see Figure 43  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see  
Figure 47  
Charge Injection, QINJ  
Off Isolation  
−72  
dB typ  
dB typ  
% typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 33  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 34  
RL = 10 kΩ, VS = 20 V p-p, f = 20 Hz to  
20 kHz, see Figure 38  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N  
−73  
0.001  
−3 dB Bandwidth  
Insertion Loss  
171  
−0.8  
MHz typ RL = 50 Ω, CL = 5 pF, see Figure 37  
dB typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 37  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
11  
23  
36  
pF typ  
pF typ  
pF typ  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VDD = 22 V, VSS = −22 V, digital inputs =  
0 V, 5 V, or VDD  
Normal Mode  
IDD  
0.9  
1.2  
0.4  
0.55  
0.5  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
1.3  
0.6  
0.7  
IGND  
ISS  
0.65  
Fault Mode  
IDD  
VS = 55 V  
1.2  
1.6  
0.8  
1.0  
0.5  
1.0  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
V min  
1.8  
1.1  
IGND  
ISS  
Digital inputs = 5 V  
VS = 55 V, VD = 0 V  
GND = 0 V  
1.8  
5
VDD/VSS  
22  
V max  
GND = 0 V  
1 Guaranteed by design. Not subject to production test.  
Rev. B | Page 6 of 30  
Data Sheet  
ADG5436F  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, CDECOUPLING = 0.1 µF, unless otherwise noted.  
Table 3.  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = 10.8 V, VSS = 0 V, see Figure 30  
VS = 0 V to 10 V, IS = −10 mA  
VS = 3.5 V to 8.5 V, IS = −10 mA  
VS = 0 V to 10 V, IS = −10 mA  
VS = 3.5 V to 8.5 V, IS = −10 mA  
VS = 0 V to 10 V, IS = −10 mA  
VS = 3.5 V to 8.5 V, IS = −10 mA  
0 V to VDD  
37  
V
22  
24.5  
10  
11.2  
0.2  
0.65  
0.2  
0.65  
12.5  
14.5  
0.6  
0.9  
0.7  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
31  
14  
16.5  
0.95  
0.95  
23  
On-Resistance Match Between Channels, ∆RON  
On-Resistance Flatness, RFLAT(ON)  
0.8  
0.8  
19  
1.1  
1.3  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
See Figure 26  
VDD = 13.2 V, VSS = 0 V  
Source Off Leakage, IS (Off)  
0.1  
1.5  
0.1  
1.5  
0.5  
1.5  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 31  
5.0  
21  
25  
21  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 31  
VS = VD = 1 V/10 V, see Figure 32  
7.0  
5.0  
Channel On Leakage, ID (On), IS (On)  
FAULT  
Source Leakage Current, IS  
With Overvoltage  
65  
49  
µA typ  
µA typ  
VDD = 13.2 V, VSS = 0 V, GND = 0 V,  
VS = 55 V, see Figure 35  
VDD = 0 V or floating, VSS = 0 V or floating,  
GND = 0 V, EN = 0 V or floating, VS =  
55 V, see Figure 36  
Power Supplies Grounded or Floating  
Drain Leakage Current, ID  
With Overvoltage  
DR = floating or >2 V  
2.0  
nA typ  
VDD = 13.2 V, VSS = 0 V, GND = 0 V,  
INx = 0 V or floating, VS = 55 V,  
see Figure 35  
8.0  
10  
15  
49  
nA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V, VS = 55 V,  
EN = 0 V, see Figure 36  
30  
10  
50  
10  
100  
10  
nA max  
µA typ  
VDD = floating, VSS = floating, GND = 0 V,  
VS = 55 V, EN = 0 V, see Figure 36  
DIGITAL INPUTS  
Input Voltage High, VINH  
Input Voltage Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V min  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage High, VOH  
Output Voltage Low, VOL  
6.0  
2.0  
0.8  
V max  
Rev. B | Page 7 of 30  
 
ADG5436F  
Data Sheet  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
DYNAMIC CHARACTERISTICS1  
Unit  
Test Conditions/Comments  
Transition Time, tTRANSITION  
400  
545  
435  
515  
185  
230  
300  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
µs typ  
ns typ  
pC typ  
dB typ  
dB typ  
% typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 46  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 45  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 45  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 44  
RL = 1 kΩ, CL = 2 pF, see Figure 39  
560  
530  
240  
570  
550  
250  
180  
870  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Overvoltage Response Time, tRESPONSE  
Overvoltage Recovery Time, tRECOVERY  
590  
770  
680  
850  
85  
830  
910  
RL = 1 kΩ, CL = 2 pF, see Figure 40  
1000  
115  
85  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
CL = 12 pF, see Figure 41  
CL = 12 pF, see Figure 42  
60  
600  
−341  
−68  
−70  
0.007  
CL = 12 pF, RPULLUP = 1 kΩ, see Figure 43  
VS = 6 V, RS = 0 Ω, CL = 1 nF, see Figure 47  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 33  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 34  
RL = 10 kΩ, VS = 6 V p-p, f = 20 Hz to  
20 kHz, see Figure 38  
Charge Injection, QINJ  
Off Isolation  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N  
−3 dB Bandwidth  
Insertion Loss  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
152  
−0.8  
14  
30  
41  
MHz typ RL = 50 Ω, CL = 5 pF, see Figure 37  
dB typ  
pF typ  
pF typ  
pF typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 37  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
VDD = 13.2 V, VSS = 0 V, digital inputs = 0 V,  
5 V, or VDD  
Normal Mode  
IDD  
0.9  
1.2  
0.4  
0.55  
0.5  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
1.3  
0.6  
0.7  
IGND  
ISS  
0.65  
Fault Mode  
IDD  
VS = 55 V  
1.2  
1.6  
0.8  
1.0  
0.5  
1.0  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
1.8  
1.1  
IGND  
ISS  
Digital inputs = 5 V  
mA max VS = 55 V, VD = 0 V  
1.8  
8
44  
VDD  
V min  
V max  
GND = 0 V  
GND = 0 V  
1 Guaranteed by design. Not subject to production test.  
Rev. B | Page 8 of 30  
Data Sheet  
ADG5436F  
36 V SINGLE SUPPLY  
VDD = 36 V 10%, VSS = 0 V, GND = 0 V, CDECOUPLING = 0.1 µF, unless otherwise noted.  
Table 4.  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD = 32.4 V, VSS = 0 V, see Figure 30  
VS = 0 V to 30 V, IS = −10 mA  
VS = 4.5 V to 28 V, IS = −10 mA  
VS = 0 V to 30 V, IS = −10 mA  
VS = 4.5 V to 28 V, IS = −10 mA  
VS = 0 V to 30 V, IS = −10 mA  
VS = 4.5 V to 28 V, IS = −10 mA  
0 V to VDD  
37  
V
22  
24.5  
10  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
Ω typ  
Ω max  
V typ  
31  
11  
14  
16.5  
0.95  
0.8  
On-Resistance Match Between Channels, ∆RON 0.15  
0.65  
0.15  
0.6  
12.5  
14.5  
0.1  
0.8  
0.7  
19  
On-Resistance Flatness, RFLAT(ON)  
23  
0.4  
0.7  
0.5  
0.5  
Threshold Voltage, VT  
LEAKAGE CURRENTS  
See Figure 26  
VDD =39.6 V, VSS = 0 V  
Source Off Leakage, IS (Off)  
0.1  
1.5  
0.1  
1.5  
0.5  
1.5  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 1 V/30 V, VD = 30 V/1 V, see Figure 31  
5.0  
21  
25  
21  
Drain Off Leakage, ID (Off)  
VS = 1 V/30 V, VD = 30 V/1 V, see Figure 31  
VS = VD = 1 V/30 V, see Figure 32  
7.0  
5.0  
Channel On Leakage, ID (On), IS (On)  
FAULT  
Source Leakage Current, IS  
With Overvoltage  
60  
49  
µA typ  
µA typ  
VDD = 39.6 V, VSS = 0 V, GND = 0 V,  
INx = 0 V or floating, VS = +55 V, −40 V,  
see Figure 35  
VDD = 0 V or floating, VSS = 0 V or  
floating, GND = 0 V, INx = 0 V or  
floating, VS = +55 V, −40 V, see Figure 36  
Power Supplies Grounded or Floating  
Drain Leakage Current, ID  
With Overvoltage  
DR = floating or >2 V  
VDD = 39.6 V, VSS = 0 V, GND = 0 V,  
VS = +55 V, −40 V, see Figure 35  
2.0  
nA typ  
8.0  
10  
15  
49  
nA max  
nA typ  
Power Supplies Grounded  
Power Supplies Floating  
VDD = 0 V, VSS = 0 V, GND = 0 V, VS =  
+55 V, −40 V, EN = 0 V, see Figure 36  
30  
10  
50  
10  
100  
10  
nA max  
µA typ  
VDD = floating, VSS = floating, GND = 0 V,  
VS = +55 V, −40 V, EN = 0 V, see Figure 36  
DIGITAL INPUTS  
Input Voltage High, VINH  
Input Voltage Low, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
µA typ  
µA max  
pF typ  
V min  
0.7  
VIN = VGND or VDD  
1.2  
Digital Input Capacitance, CIN  
Output Voltage High, VOH  
Output Voltage Low, VOL  
6.0  
2.0  
0.8  
V max  
Rev. B | Page 9 of 30  
 
ADG5436F  
Data Sheet  
−40°C to  
+25°C +85°C  
−40°C to  
+125°C  
Parameter  
DYNAMIC CHARACTERISTICS1  
Unit  
Test Conditions/Comments  
Transition Time, tTRANSITION  
400  
540  
440  
520  
160  
190  
330  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
µs typ  
ns typ  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 46  
RL = 300 Ω, CL = 35 pF  
VS = 18 V, see Figure 45  
RL = 300 Ω, CL = 35 pF  
VS = 18 V, see Figure 45  
RL = 300 Ω, CL = 35 pF  
VS = 18 V, see Figure 44  
RL = 1 kΩ, CL = 2 pF, see Figure 39  
555  
540  
195  
570  
560  
200  
210  
385  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Overvoltage Response Time, tRESPONSE  
Overvoltage Recovery Time, tRECOVERY  
260  
340  
1500  
2100  
85  
60  
600  
−627  
360  
RL = 1 kΩ, CL = 2 pF, see Figure 40  
2400  
2700  
115  
85  
Interrupt Flag Response Time, tDIGRESP  
Interrupt Flag Recovery Time, tDIGREC  
CL = 12 pF, see Figure 41  
CL = 12 pF, see Figure 42  
CL = 12 pF, RPULLUP = 1 kΩ, see Figure 43  
VS = 18 V, RS = 0 Ω, CL = 1 nF, see  
Figure 47  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 33  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 34  
RL = 10 kΩ, VS = 18 V p-p, f = 20 Hz to  
20 kHz, see Figure 38  
Charge Injection, QINJ  
Off Isolation  
−71  
−73  
dB typ  
dB typ  
% typ  
Channel-to-Channel Crosstalk  
Total Harmonic Distortion Plus Noise, THD + N 0.001  
−3 dB Bandwidth  
Insertion Loss  
173  
−0.8  
MHz typ  
dB typ  
RL = 50 Ω, CL = 5 pF, see Figure 37  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see  
Figure 37  
CS (Off)  
CD (Off)  
CD (On), CS (On)  
POWER REQUIREMENTS  
11  
23  
36  
pF typ  
pF typ  
pF typ  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
VDD = 39.6 V, VSS = 0 V, digital inputs =  
0 V, 5 V, or VDD  
Normal Mode  
IDD  
0.9  
1.2  
0.4  
0.55  
0.5  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
1.3  
0.6  
0.7  
IGND  
ISS  
0.65  
Fault Mode  
IDD  
VS = +55 V, −40 V  
1.2  
1.6  
0.8  
1.0  
0.5  
1.0  
mA typ  
mA max  
mA typ  
mA max  
mA typ  
mA max  
V min  
1.8  
1.1  
IGND  
ISS  
Digital inputs = 5 V  
VS = 55 V, VD = 0 V  
GND = 0 V  
1.8  
8
VDD  
44  
V max  
GND = 0 V  
1 Guaranteed by design. Not subject to production test.  
Rev. B | Page 10 of 30  
Data Sheet  
ADG5436F  
CONTINUOUS CURRENT PER CHANNEL, Sxx OR Dx  
Table 5.  
Parameter  
25°C  
85°C  
125°C  
Unit  
Test Conditions/Comments  
16-Lead TSSOP  
θJA = 112.6°C/W  
113  
88  
77  
61  
50  
42  
mA max  
mA max  
VS = VSS + 4.5 V to VDD − 4.5 V  
VS = VSS to VDD  
16-Lead LFCSP  
θJA = 30.4°C/W  
207  
161  
125  
103  
68  
61  
mA max  
mA max  
VS = VSS + 4.5 V to VDD − 4.5 V  
VS = VSS to VDD  
Rev. B | Page 11 of 30  
 
 
ADG5436F  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 6.  
Parameter  
Rating  
VDD to VSS  
48 V  
VDD to GND  
VSS to GND  
Sxx to GND  
Sxx to VDD or VSS  
VS to VD  
−0.3 V to +48 V  
−48 V to +0.3 V  
−55 V to +55 V  
80 V  
Only one absolute maximum rating can be applied at any  
one time.  
80 V  
Dx Pin1 to GND  
VSS − 0.7 V to VDD + 0.7 V or  
30 mA, whichever occurs first  
ESD CAUTION  
Digital Inputs to GND  
GND − 0.7 V to 48 V or  
30 mA, whichever occurs first  
Peak Current, Sxx or Dx Pins  
288 mA (pulsed at 1 ms,  
10% duty cycle maximum)  
Continuous Current, Sxx or Dx  
Digital Output  
Data2 + 15%  
GND − 0.7 V to 6 V or 30 mA,  
whichever occurs first  
Dx Pin, Overvoltage State,  
DR = GND, Load Current  
1 mA  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Thermal Impedance, θJA  
16-Lead TSSOP (4-Layer Board)  
16-Lead LFCSP (4-Layer Board)  
112.6°C/W  
30.4°C/W  
Reflow Soldering Peak  
Temperature, Pb-Free  
As per JEDEC J-STD-020  
ESD Rating, HBM: ESDA/JEDEC  
JS-001-2011  
Input/Output (I/O) Port to  
Supplies  
6 kV  
I/O Port to I/O Port  
All Other Pins  
6 kV  
6 kV  
1 Overvoltages at the Dx pin are clamped by internal diodes. Limit current to  
the maximum ratings given.  
2 See Table 5.  
Rev. B | Page 12 of 30  
 
 
Data Sheet  
ADG5436F  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
D1  
1
2
3
4
12 EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1/F1  
S1A  
D1  
SF  
FF  
EN  
S1B  
11  
10  
9
V
DD  
ADG5436F  
TOP VIEW  
(Not to Scale)  
V
S2B  
D2  
SS  
ADG5436F  
TOP VIEW  
(Not to Scale)  
GND  
S1B  
V
DD  
V
S2B  
D2  
SS  
GND  
NIC  
DR  
S2A  
IN2/F2  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
2. THE EXPOSED PAD IS INTERNALLY CONNECTED. FOR  
INCREASED RELIABILITY OF THE SOLDER JOINTS AND  
MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED  
THAT THE PAD BE CONNECTED TO THE LOWEST  
NOTES  
1. NIC = NO INTERNAL CONNECTION.  
SUPPLY VOLTAGE, V  
.
SS  
Figure 2. TSSOP Pin Configuration  
Figure 3. LFCSP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
TSSOP LFCSP  
Mnemonic  
Description  
1
15  
IN1/F1  
Logic Control Input 1 (IN1). See Table 8.  
Decoder Pin (F1). This pin is used together with the specific fault pin (SF) to indicate which input is in  
a fault condition. See Table 9.  
2
3
4
5
6
7
8
16  
1
2
3
4
S1A  
D1  
S1B  
VSS  
GND  
NIC  
DR  
Overvoltage Protected Source Terminal 1A. This pin can be an input or output.  
Drain Terminal 1. This pin can be an input or output.  
Overvoltage Protected Source Terminal 1B. This pin can be an input or output.  
Most Negative Power Supply Potential.  
Ground (0 V) Reference.  
No Internal Connection.  
Drain Response Digital Input. Tying this pin to GND enables the drain to pull to VDD or VSS during an  
overvoltage fault condition. The default condition of the drain is open-circuit when the pin is left  
floating or if it is tied to VDD.  
7
5
9
6
IN2/F2  
Logic Control Input 2 (IN2). See Table 8.  
Decoder Pin (F2). This pin is used together with the specific fault pin (SF) to indicate which input is in  
a fault condition. See Table 9.  
10  
11  
12  
13  
14  
8
9
10  
11  
12  
S2A  
D2  
S2B  
VDD  
EN  
Overvoltage Protected Source Terminal 2A. This pin can be an input or output.  
Drain Terminal 2. This pin can be an input or output.  
Overvoltage Protected Source Terminal 2B. This pin can be an input or output.  
Most Positive Power Supply Potential.  
Active High Digital Input. When this pin is low, the device is disabled and all switches are off. When  
this pin is high, the INx logic inputs determine the on switches.  
15  
13  
FF  
Fault Flag Digital Output. This pin has a high output when the device is in normal operation or a low  
output when a fault condition occurs on any of the Sxx inputs. The FF pin has a weak internal pull-up  
that allows the signals to be combined into a single interrupt for larger modules that contain  
multiple devices.  
16  
14  
EP  
SF  
Specific Fault Digital Output. This pin has a high output when the device is in normal operation, or a  
low output when a fault condition is detected on a specific pin, depending on the state of F1 and F2  
per Table 9.  
The exposed pad is connected internally. For increased reliability of the solder joints and maximum  
thermal capability, it is recommended that the pad be soldered to the lowest supply voltage, VSS.  
Exposed Pad  
Rev. B | Page 13 of 30  
 
ADG5436F  
Data Sheet  
TRUTH TABLES FOR SWITCHES  
Table 8. Truth Table  
INx  
SxA  
Off  
SxB  
On  
0
1
On  
Off  
Table 9. Fault Diagnostic Output Truth Table  
State of Specific Fault Pin (SF) with Decoder Pins (F2, F1)  
Switch in Fault1  
F2 = 0, F1 = 0  
F2 = 0, F1 = 1  
F2 = 1, F1 = 0  
F2 = 1, F1 = 1  
State of Fault Flag (FF)  
None  
S1A  
S1B  
S2A  
1
0
1
1
1
0
0
0
1
1
1
0
0
0
1
0
1
1
0
1
1
0
1
1
0
0
1
0
0
1
0
0
1
1
1
1
0
1
1
0
1
0
0
1
0
0
0
0
1
1
1
0
1
1
0
1
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S2B  
S1A, S1B  
S1A, S2A  
S1A, S2B  
S1B, S2A  
S1B, S2B  
S2A, S2B  
S1A, S1B, S2A  
S1A, S1B, S2B  
S1A, S2A, S2B  
S1B, S2A, S2B  
S1A, S1B, S2A, S2B  
1 Note that more than one pin can be in fault at any one time. See the Applications Information section for more details.  
Rev. B | Page 14 of 30  
 
 
 
Data Sheet  
ADG5436F  
TYPICAL PERFORMANCE CHARACTERISTICS  
25  
40  
35  
30  
25  
20  
15  
10  
5
V
V
= +22V  
= –22V  
V
V
= +15V  
= –15V  
DD  
SS  
T
= 25°C  
DD  
A
SS  
V
V
= +20V  
= –20V  
DD  
SS  
20  
15  
10  
5
V
V
= +16.5V  
= –16.5V  
DD  
SS  
V
V
= +18V  
= –18V  
DD  
SS  
V
V
= +13.5V  
= –13.5V  
DD  
SS  
+125°C  
+85°C  
V
V
= +15V  
= –15V  
DD  
+25°C  
–40°C  
SS  
0
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
0
–15 –12  
–9  
–6  
–3  
0
3
6
9
12  
15  
V , V (V)  
S
D
V , V (V)  
S
D
Figure 4. RON as a Function of VS and VD, Various Dual Supplies  
Figure 7. RON as a Function of VS and VD for Different Temperatures,  
15 V Dual Supply  
25  
40  
T
= 25°C  
V
V
= +20V  
= –20V  
A
DD  
SS  
35  
30  
25  
20  
15  
10  
5
20  
15  
10  
5
V
V
= 12V  
= 0V  
DD  
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
+125°C  
+85°C  
V
V
= 13.2V  
= 0V  
DD  
SS  
+25°C  
–40°C  
0
0
2
4
6
8
10  
12  
14  
0
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
V
, V (V)  
D
S
V , V (V)  
S
D
Figure 5. RON as a Function of VS and VD, 12 V Single Supply  
Figure 8. RON as a Function of VS and VD for Different Temperatures,  
20 V Dual Supply  
25  
20  
15  
10  
5
40  
V
V
= 12V  
DD  
T
= 25°C  
A
= 0V  
SS  
35  
30  
25  
20  
15  
10  
5
V
V
= 36V  
= 0V  
DD  
SS  
V
V
= 32.4V  
= 0V  
DD  
SS  
+125°C  
+85°C  
V
V
= 39.6V  
= 0V  
DD  
SS  
+25°C  
–40°C  
0
0
5
10  
15  
20  
V , V (V)  
25  
30  
35  
40  
0
0
2
4
6
8
10  
12  
S
D
V , V (V)  
S
D
Figure 6. RON as a Function of VS and VD, 36 V Single Supply  
Figure 9. RON as a Function of VS and VD for Different Temperatures,  
12 V Single Supply  
Rev. B | Page 15 of 30  
 
ADG5436F  
Data Sheet  
2
0
40  
35  
30  
25  
20  
15  
10  
5
V
V
= 36V  
DD  
= 0V  
SS  
V
V
V
= +12V  
= 0V  
DD  
SS  
= V = +1V, –10V  
S
D
–2  
–4  
–6  
I
I
(OFF) +-  
(OFF) –+  
I
I
(OFF) +–  
(OFF) –+  
S
S
D
D
+125°C  
+85°C  
I , I (ON)++  
I , I (ON) –  
S D  
S
D
+25°C  
–40°C  
0
0
20  
40  
60  
80  
100  
120  
0
4
8
12  
16  
20  
24  
28  
32  
36  
TEMPERATURE (°C)  
V , V (V)  
S
D
Figure 13. Leakage Current vs. Temperature, 12 V Single Supply  
Figure 10. RON as a Function of VS and VD for Different Temperatures,  
36 V Single Supply  
1
0
5
V
V
= +15V  
= –15V  
DD  
SS  
0
–5  
–1  
V
V
V
= +15V  
= –15V  
DD  
SS  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
= V = +10V, –10V  
S
D
I
I
(OFF) +-  
(OFF) –+  
I
I
(OFF) +–  
(OFF) –+  
–10  
–15  
–20  
S
S
D
D
I , I (ON)++  
I , I (ON) –  
S D  
S
D
V
V
V
V
= –30V  
= –55V  
= +30V  
= +55V  
S
S
S
S
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 14. Overvoltage Leakage Current vs. Temperature, 15 V Dual Supply  
Figure 11. Leakage Current vs. Temperature, 15 V Dual Supply  
5
2
0
V
V
= +20V  
= –20V  
DD  
SS  
0
–5  
V
V
V
= +20V  
= –20V  
DD  
SS  
–2  
–4  
= V = +15V, –15V  
S
D
–10  
–15  
–20  
–25  
I
I
(OFF) +-  
(OFF) –+  
I
I
(OFF) +–  
(OFF) –+  
S
S
D
D
–6  
I , I (ON)++  
I , I (ON) –  
S D  
S
D
V
V
V
V
= –30V  
= –55V  
= +30V  
= +55V  
S
S
S
S
–8  
–10  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Leakage Current vs. Temperature, 20 V Dual Supply  
Figure 15. Overvoltage Leakage Current vs. Temperature, 20 V Dual Supply  
Rev. B | Page 16 of 30  
Data Sheet  
ADG5436F  
0
–20  
2
V
V
= 12V  
= 0V  
DD  
SS  
T
V
V
= 25°C  
A
0
= +15V  
= –15V  
DD  
SS  
–2  
–40  
–4  
–6  
–60  
–8  
–80  
–10  
–12  
V
V
V
V
= –30V  
= –55V  
= +30V  
= +55V  
S
S
S
S
–100  
–14  
–16  
–120  
0
20  
40  
60  
80  
100  
120  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 16. Overvoltage Leakage Current vs. Temperature, 12 V Single Supply  
Figure 19. Channel-to-Channel Crosstalk vs. Frequency  
800  
2
V
V
= 36V  
= 0V  
T
= 25°C  
DD  
SS  
A
700  
600  
500  
400  
300  
200  
100  
0
0
–2  
–4  
–6  
–8  
–10  
–12  
–14  
V
V
= 12V,  
= 36V,  
V
V
= 0V  
= 0V  
DD  
DD  
SS  
SS  
V
V
V
V
= –38V  
= –40V  
= +38V  
= +55V  
S
S
S
S
–100  
–200  
0
20  
40  
60  
80  
100  
120  
0
5
10  
15  
20  
(V)  
25  
30  
35  
40  
TEMPERATURE (°C)  
V
S
Figure 17. Overvoltage Leakage Current vs. Temperature, 36 V Single Supply  
Figure 20. Charge Injection vs. Source Pin Voltage (VS), Single Supply  
0
900  
T
V
= 25°C  
= 15V  
A
T
= 25°C  
A
800  
700  
600  
500  
400  
300  
200  
100  
0
DD  
–20  
–40  
–60  
–80  
V
V
= +15V,  
= +20V,  
V
V
= –15V  
= –20V  
DD  
DD  
SS  
SS  
–100  
–120  
–100  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
–200  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
FREQUENCY (Hz)  
V
(V)  
S
Figure 18. Off Isolation vs. Frequency  
Figure 21. Charge Injection vs. Source Pin Voltage (VS), Dual Supply  
Rev. B | Page 17 of 30  
ADG5436F  
Data Sheet  
0
490  
480  
470  
460  
450  
440  
430  
420  
T
V
V
= 25°C  
A
V
V
V
V
= +12V,  
= +36V,  
= +15V,  
= +20V,  
V
V
V
V
= 0V  
= 0V  
= –15V  
= –20V  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
–100  
–200  
–300  
–400  
–500  
–600  
–700  
–800  
–900  
–100  
= +15V  
= –15V  
DD  
SS  
WITH DECOUPLING CAPACITORS  
10k  
100k  
1M  
10M  
100M  
1G  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 22. ACPSRR vs. Frequency  
Figure 25. tTRANSITION vs. Temperature  
0.020  
0.9  
0.8  
0.7  
0.6  
0.5  
V
V
V
V
= +12V,  
= +36V,  
= +15V,  
= +20V,  
V
V
V
V
= 0V,  
= 0V,  
= –15V,  
V
V
= 6V p-p  
= 18V p-p  
DD  
DD  
DD  
DD  
SS  
SS  
SS  
SS  
S
S
LOAD = 10kΩ  
= 25°C  
T
A
V
V
= 15V p-p  
= 20V p-p  
S
S
= –20V,  
0.015  
0.010  
0.005  
0
0
5
10  
15  
20  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
Figure 23. THD + N vs. Frequency  
Figure 26. Threshold Voltage (VT) vs. Temperature  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
T
T
V
V
= 25°C  
= +15V  
A
SOURCE  
DD  
= –15V  
SS  
V
DD  
2
DRAIN  
10k  
100k  
1M  
10M  
100M  
CH1 5.00V CH2 5.00V  
CH3 5.00V  
M400ns  
–10.00ns  
A
CH2  
10.1V  
T
FREQUENCY (Hz)  
Figure 27. Drain Output Response to Positive Overvoltage  
(DR Pin = Floating or High)  
Figure 24. Bandwidth vs. Frequency  
Rev. B | Page 18 of 30  
 
Data Sheet  
ADG5436F  
24  
20  
16  
12  
8
T
V
V
= 25°C  
A
= +10V  
= –10V  
DD  
SS  
DRAIN  
1
DISTORTIONLESS  
OPERATING  
REGION  
V
SS  
4
SOURCE  
0
1
10  
FREQUENCY (MHz)  
100  
CH1 5.00V CH2 5.00V  
CH3 5.00V  
M400ns  
–10.00ns  
A
CH2  
–14.7V  
T
Figure 28. Drain Output Response to Negative Overvoltage  
(DR Pin = Floating or High)  
Figure 29. Large Signal Voltage Tracking vs. Frequency  
Rev. B | Page 19 of 30  
 
ADG5436F  
Data Sheet  
TEST CIRCUITS  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
OUT  
SxA  
R
L
50Ω  
Dx  
R
L
50Ω  
SxB  
V
V
S
GND  
Sxx  
Dx  
V
I
OUT  
DS  
V
S
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
R
= V/I  
DS  
S
ON  
Figure 30. On Resistance  
Figure 34. Channel-to-Channel Crosstalk  
I
(OFF)  
S
SxA  
SxB  
I
(OFF)  
A
D
A
Dx  
I
I
D
S
A
Sxx  
Dx  
A
A
R
10kΩ  
L
V
V
D
S
|V | > |V | OR |V  
DD  
|
SS  
S
Figure 35. Switch Overvoltage Leakage  
Figure 31. Off Leakage  
SxA  
I
(ON)  
A
D
NC  
V
= V = GND = 0V  
SS  
DD  
Dx  
I
I
D
S
SxB  
A
Sxx  
Dx  
A
A
I
(OFF)  
S
R
10kΩ  
V
D
L
V
S
V
S
Figure 32. Channel On Leakage  
Figure 36. Switch Unpowered Leakage  
V
V
DD  
SS  
V
V
SS  
DD  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
V
DD  
SS  
Sxx  
50Ω  
Sxx  
INx  
IN  
50Ω  
V
S
INx  
IN  
V
S
Dx  
V
Dx  
OUT  
V
R
V
OUT  
L
50Ω  
V
R
L
50Ω  
GND  
GND  
V
OUT  
V
WITH SWITCH  
OFF ISOLATION = 20 log  
OUT  
V
S
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 37. Bandwidth  
Figure 33. Off Isolation  
Rev. B | Page 20 of 30  
 
 
 
 
 
 
 
 
 
Data Sheet  
ADG5436F  
V
V
SS  
DD  
0.1µF  
0.1µF  
AUDIO  
PRECISION  
V
V
DD  
SS  
R
S
Sxx  
V
INx  
S
V p-p  
Dx  
V
OUT  
V
IN  
R
L
10kΩ  
GND  
Figure 38. THD + N  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
DD  
SS  
SOURCE  
SxA  
SxB  
VOLTAGE  
Dx  
(V )  
S
V
D
V
S
R
C *  
L
0V  
L
1kΩ  
2pF  
tRESPONSE  
INx  
2.4V  
V
× 0.9V  
DD  
OUTPUT  
GND  
(V  
)
D
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 39. Overvoltage Response Time, tRESPONSE  
V
V
V
DD  
SS  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
SOURCE  
V
DD  
VOLTAGE  
(V  
)
S
SxA  
SxB  
0V  
Dx  
V
D
V
S
R
1kΩ  
C *  
L
2pF  
L
tRECOVERY  
INx  
2.4V  
OUTPUT  
(V  
)
D
V
× 1  
0V  
DD  
GND  
*INCLUDES TRACK CAPACITANCE  
Figure 40. Overvoltage Recovery Time, tRECOVERY  
Rev. B | Page 21 of 30  
 
 
 
ADG5436F  
Data Sheet  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
DD  
SS  
SOURCE  
S1A  
VOLTAGE  
(V  
)
S
V
S
0V  
ADG5436F  
tDIGRESP  
S1B  
FF  
C *  
L
12pF  
D1  
OUTPUT  
(V  
)
GND  
FF  
0.1V  
OUT  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 41. Interrupt Flag Response Time, tDIGRESP  
V
V
DD  
SS  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
V
V
DD  
DD  
S1A  
SOURCE  
VOLTAGE  
V
S
(V )  
S
ADG5436F  
0V  
S1B  
FF  
tDIGREC  
C *  
L
12pF  
D1  
0.9V  
OUT  
OUTPUT  
GND  
(V  
)
FF  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 42. Interrupt Flag Recovery Time, tDIGREC  
V
V
V
V
DD  
DD  
SS  
SS  
0.1µF  
0.1µF  
V
+ 0.5V  
DD  
SOURCE  
S1A  
VOLTAGE  
(V )  
S
V
S
5V  
0V  
ADG5436F  
R
PULLUP  
1kΩ  
tDIGREC  
S1B  
OUTPUT  
FF  
5V  
C *  
L
12pF  
D1  
3V  
OUTPUT  
GND  
(V  
)
FF  
0V  
*INCLUDES TRACK CAPACITANCE  
Figure 43. Interrupt Flag Recovery Time, tDIGREC, with a 1 kΩ Pull-Up Resistor  
Rev. B | Page 22 of 30  
 
 
 
Data Sheet  
ADG5436F  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
V
IN  
V
DD  
SS  
SxB  
SxA  
V
S
Dx  
V
OUT  
80%  
V
R
C
OUT  
L
L
35pF  
300Ω  
INx  
tD  
tD  
GND  
V
IN  
Figure 44. Break-Before-Make Time Delay, tD  
V
V
V
V
DD  
SS  
0.1µF  
0.1µF  
3V  
DD  
SS  
V
IN  
50%  
50%  
INx  
SxB  
V
S
SxA  
0V  
tON (EN)  
tOFF (EN)  
0.9V  
Dx  
V
EN  
OUT  
OUT  
V
V
OUT  
35pF  
IN  
50Ω  
300Ω  
GND  
0.1V  
OUT  
Figure 45. Enable Delay, tON (EN), tOFF (EN)  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
V
DD  
SS  
SxB  
SxA  
V
V
Dx  
IN  
S
50%  
50%  
V
OUT  
R
300Ω  
C
35pF  
L
L
90%  
INx  
V
OUT  
10%  
GND  
V
IN  
tON  
tOFF  
Figure 46. Address to Output Switching Times, tTRANSITION  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
V
SS  
DD  
SxB  
NC  
V
Dx  
V
S
V
V
IN  
OUT  
SxA  
C
1nF  
INx  
L
ΔV  
OUT  
OUT  
V
IN  
GND  
Q
= C × ΔV  
L
OUT  
INJ  
Figure 47. Charge Injection, QINJ  
Rev. B | Page 23 of 30  
 
 
 
 
ADG5436F  
Data Sheet  
TERMINOLOGY  
IDD  
tOFF  
OFF represents the delay between applying the digital control  
I
DD represents the positive supply current.  
t
input and the output switching off (see Figure 45).  
ISS  
I
SS represents the negative supply current.  
tD  
tD represents the off time measured between the 90% point of  
both switches when switching from one address state to  
another.  
VD, VS  
VD and VS represent the analog voltage on the Dx pins and the  
Sxx pins, respectively.  
tDIGRESP  
RON  
tDIGRESP is the time required for the FF pin to go low (0.3 V),  
measured with respect to the voltage on the source pin  
exceeding the supply voltage by 0.5 V.  
R
ON represents the ohmic resistance between the Dx pins and  
the Sxx pins.  
∆RON  
tDIGREC  
∆RON represents the difference between the RON of any two  
channels.  
tDIGREC is the time required for the FF pin to return high,  
measured with respect to the voltage on the Sxx pin falling  
below the supply voltage plus 0.5 V.  
RFLAT(ON)  
RFLAT(ON) is the flatness defined as the difference between the  
maximum and minimum value of on resistance measured over  
the specified analog signal range.  
tRESPONSE  
tRESPONSE represents the delay between the source voltage  
exceeding the supply voltage by 0.5 V and the drain voltage  
falling to 90% of the supply voltage.  
IS (Off)  
IS (Off) is the source leakage current with the switch off.  
tRECOVERY  
ID (Off)  
tRECOVERY represents the delay between an overvoltage on the  
ID (Off) is the drain leakage current with the switch off.  
Sxx pin falling below the supply voltage plus 0.5 V and the drain  
voltage rising from 0 V to 10% of the supply voltage.  
ID (On), IS (On)  
ID (On) and IS (On) represent the channel leakage currents with  
the switch on.  
Off Isolation  
Off isolation is a measure of unwanted signal coupling through  
an off switch.  
VINL  
V
INL is the maximum input voltage for Logic 0.  
VINH  
INH is the minimum input voltage for Logic 1.  
INL, IINH  
INL and IINH represent the low and high input currents of the  
Charge Injection  
Charge injection is a measure of the glitch impulse transferred  
from the digital input to the analog output during switching.  
V
I
I
Channel-to-Channel Crosstalk  
Channel-to-channel crosstalk is a measure of unwanted signal  
that is coupled through from one channel to another as a result  
of parasitic capacitance.  
digital inputs.  
CD (Off)  
CD (Off) represents the off switch drain capacitance, which is  
measured with reference to ground.  
−3 dB Bandwidth  
−3 dB bandwidth is the frequency at which the output is  
attenuated by 3 dB.  
CS (Off)  
CS (Off) represents the off switch source capacitance, which is  
measured with reference to ground.  
On Response  
On response is the frequency response of the on switch.  
CD (On), CS (On)  
Insertion Loss  
CD (On) and CS (On) represent on switch capacitances, which  
are measured with reference to ground.  
Insertion loss is the loss due to the on resistance of the switch.  
Total Harmonic Distortion Plus Noise (THD + N)  
THD + N is the ratio of the harmonic amplitude plus noise of  
the signal to the fundamental.  
CIN  
C
IN is the digital input capacitance.  
tON  
tON represents the delay between applying the digital control  
input and the output switching on (see Figure 45).  
Rev. B | Page 24 of 30  
 
Data Sheet  
ADG5436F  
AC Power Supply Rejection Ratio (ACPSRR)  
VT  
ACPSRR is the ratio of the amplitude of the signal on the output  
to the amplitude of the modulation. ACPSRR is a measure of  
the ability of the device to avoid coupling noise and spurious  
signals that appear on the supply voltage pin to the output of the  
switch. The dc voltage on the device is modulated by a sine wave  
of 0.62 V p-p.  
VT is the voltage threshold at which the overvoltage protection  
circuitry engages (see Figure 26).  
Rev. B | Page 25 of 30  
ADG5436F  
Data Sheet  
THEORY OF OPERATION  
During overvoltage conditions, the leakage current into and out  
of the source pins (Sxx) is limited to tens of microamperes. If the  
DR pin is allowed to float or is driven high, only nanoamperes of  
leakage are seen on the drain pin (Dx). If the DR pin is driven  
low, the drain pin (Dx) is pulled to the rail. The device that pulls  
the drain pin to the rail has an impedance of approximately 40 kΩ;  
therefore, the Dx pin current is limited to about 1 mA during a  
shorted load condition. This internal impedance also determines  
the minimum external load resistance required to ensure that the  
drain pin is pulled to the desired voltage level during a fault.  
SWITCH ARCHITECTURE  
Each channel of the ADG5436F consists of a parallel pair of  
NDMOS and PDMOS transistors. This construction provides  
excellent performance across the signal range. The ADG5436F  
channels operate as standard switches when input signals with a  
voltage between VSS and VDD are applied. For example, the on  
resistance is 10 Ω typically and the appropriate control pin, INx,  
controls the opening or closing of the switch.  
Additional internal circuitry enables the switch to detect  
overvoltage inputs by comparing the voltage on the source pin  
with VDD and VSS. A signal is considered overvoltage if it  
exceeds the supply voltages by the voltage threshold, VT. The  
threshold voltage is typically 0.7 V, but can range from 0.8 V at  
−40°C down to 0.6 V at +125°C. See Figure 26 to see the change  
in VT with operating temperature.  
When an overvoltage event occurs, the channels undisturbed by  
the overvoltage input continue to operate normally without  
additional crosstalk.  
ESD Performance  
The ADG5436F has an ESD (HBM) rating of 6 kV.  
The drain pins (Dx) have ESD protection diodes to the supply  
rails, and the voltage at these pins must not exceed the supply  
voltage.  
The maximum voltage that can be applied to any source input is  
−55 V or +55 V. When the device is powered using a single  
supply of greater than 25 V, the maximum undervoltage signal  
level reduces down from −55 V. For example, the undervoltage  
signal reduces to −40 V at VDD = 40 V to remain within the 80 V  
maximum rating. The construction of the process allows the  
channel to withstand 80 V across the switch when it is opened.  
These overvoltage limits apply whether the power supplies are  
present or not.  
The source pins (Sxx) have specialized ESD protection that allows  
the signal voltage to reach 55 V with a 22 V dual supply, and  
from −40 V to +55 V with a +40 V single supply. See Figure 48  
for the switch channel overview. Exceeding 55 V on any source  
input may damage the ESD protection circuitry on the device.  
Trench Isolation  
V
DD  
ESD  
PROTECTION  
In the ADG5436F, an insulating oxide layer (trench) is placed  
between the NDMOS and the PDMOS transistors of each switch.  
Parasitic junctions, which occur between the transistors in  
junction isolated switches, are eliminated, and the result is a  
switch that is latch-up immune under all circumstances. This  
device passes a JESD78D latch-up test of 500 mA for 1 sec, the  
strictest test in the specification.  
ESD  
DIODE  
Sxx  
Dx  
ESD  
DIODE  
FAULT  
DETECTOR  
SWITCH  
DRIVER  
V
SS  
LOGIC  
BLOCK  
DR  
Figure 48. Switch Channel and Control Function  
NDMOS  
PDMOS  
When an overvoltage condition is detected on a source pin  
(Sxx), the switch automatically opens and the source pin (Sxx)  
becomes high impedance and ensures that no current flows  
through the switch. If the DR pin is driven low, the drain pin,  
Dx, is pulled to the supply that was exceeded. For example, if  
the source voltage exceeds VDD, the drain output pulls to VDD  
.
The same is true for VSS. If the DR pin is allowed to float or is  
driven high, the Dx pin also becomes open circuit. The voltage  
on the Dx pin follows the voltage on the source pin, Sxx, until the  
switch turns off completely and the drain voltage discharges  
through the load. The maximum voltage on the drain is limited  
by the internal ESD diodes and the rate at which the output  
voltage discharges is dependent on the load at the pin.  
P-WELL  
N-WELL  
TRENCH  
BURIED OXIDE LAYER  
HANDLE WAFER  
Figure 49. Trench Isolation  
Rev. B | Page 26 of 30  
 
 
 
Data Sheet  
ADG5436F  
+22V  
V
0V  
–22V  
FAULT PROTECTION  
When the voltages at the source inputs exceed VDD or VSS by VT,  
the switch turns off, or, if the device is unpowered, the switch  
remains off. The switch input remains high impedance regardless  
of the digital input state or the load resistance, and the output  
acts as a virtual open circuit. Signal levels up to +55 V and −55 V  
are blocked in both the powered and unpowered conditions as long  
as the 80 V limitation between the source and supply pins is met.  
GND  
V
SS  
DD  
ADG5436F  
+22V S1A  
D1  
S2A +22V  
D2  
–55V S1B  
S2B +55V  
Power-On Protection  
FAULT  
DETECTION  
+
SF  
3V  
The following three conditions must be satisfied for the switch  
to be in the on condition:  
FF  
0V  
SWITCH DRIVER  
VDD to VSS ≥ 8 V.  
The input signal is between VSS − VT and VDD + VT.  
The digital logic control input, INx, is turned on.  
F1  
F2  
EN DR  
5V  
Figure 50. ADG5436F Under Example Overvoltage Conditions  
Power-Off Protection  
When the switch is turned on, the signal levels up to the supply  
rails are passed.  
When no power supplies are present, the switch remains in the off  
condition, and the switch inputs are high impedance. This state  
ensures that no current flows and prevents damage to the switch or  
downstream circuitry. The switch output is a virtual open circuit.  
The switch responds to an analog input that exceeds VDD or VSS by a  
threshold voltage, VT, by turning off. The absolute input voltage  
limits are −55 V and +55 V, while maintaining an 80 V limit  
between the source pin and the supply rails. The switch remains off  
until the voltage at the source pin returns to between VDD and VSS.  
The switch remains off regardless of whether the VDD and VSS  
supplies are 0 V or floating. A GND reference must always be  
present to ensure proper operation. Signal levels of up to 55 V  
are blocked in the unpowered condition.  
The fault response time (tRESPONSE) when powered by a 15 V  
dual supply is typically 510 ns, and the fault recovery time  
(tRECOVERY) is 820 ns. These vary with supply voltages and output  
load conditions.  
Digital Input Protection  
The ADG5436F can tolerate unpowered digital input signals  
present on the device. When the device is unpowered, the switch  
is guaranteed to be in the off state, regardless of the state of the  
digital logic signals.  
Exceeding 55 V on any source input may damage the ESD  
protection circuitry on the device.  
The maximum stress across the switch channel is 80 V.  
Therefore, the user must pay close attention to this limit when  
using the device with a 40 V single supply. In this case, the  
maximum undervoltage condition is −40 V to maintain the  
80 V across the switch channel.  
The digital inputs are protected against positive faults up to  
44 V. The digital inputs do not offer protection against negative  
overvoltages. ESD protection diodes connected to GND are  
present on the digital inputs.  
Overvoltage Interrupt Flag  
For undervoltage and overvoltage conditions, consider the case  
where the device is set up as shown in Figure 50.  
The voltages on the source inputs of the ADG5436F are  
continuously monitored, and the state of the switches is  
indicated by an active low digital output pin, FF.  
V
DD/VSS = 22 V.  
S1A and S2A = 22 V, and are both on. Therefore, D1 and  
D2 = 22 V.  
The voltage on the FF pin indicates if any of the source input  
pins are experiencing a fault condition. The output of the FF pin  
is a nominal 3 V when all source pins are within normal  
operating range. If any source pin voltage exceeds the supply  
voltage by VT, the FF output reduces to below 0.8 V.  
S1B has a −55 V fault and S2B has a +55 V fault.  
The voltage between S1B and D1 = 22 V − (−55 V) = +77 V.  
The voltage between S2B and D2= 22 V− 55 V = -33 V.  
These calculations are all within device specifications: a 55 V  
maximum fault on source inputs and a maximum of 80 V  
across the off switch channel.  
Use the specific fault digital output pin, SF, to decode which  
inputs are experiencing a fault condition. The SF pin reduces to  
below 0.8 V when a fault condition is detected on a specific pin,  
depending on the state of F1 and F2 (see Table 9). The specific  
fault feature also works with the switches disabled (EN pin low),  
which allows the user to cycle through and check the fault  
conditions without connecting the fault to the drain output.  
FF is low due to the fault conditions. The specific switches in  
fault can be deduced by cycling through F2 and F1 and noting  
the state of SF. In this example, SF is low (asserted) when F2 = 0  
and F1 = 1; it is also low when F2 = 1 and F1 = 0. This signifies  
a fault on S1B and S2B. See Table 9 for details on how to decode  
SF by F2 and F1.  
Rev. B | Page 27 of 30  
 
 
ADG5436F  
Data Sheet  
APPLICATIONS INFORMATION  
The overvoltage protected family of switches and multiplexers  
provide a robust solution for instrumentation, industrial,  
aerospace, and other harsh environments where overvoltage  
signals can be present and the system must remain operational  
both during and after the overvoltage has occurred.  
LOW IMPEDANCE CHANNEL PROTECTION  
The ADG5436F can be used as a protective element in signal  
chains that are sensitive to both channel impedance and  
overvoltage signals. Traditionally, series resistors limit the  
current during an overvoltage condition to protect susceptible  
components.  
POWER SUPPLY RAILS  
To guarantee correct operation of the device, 0.1 µF decoupling  
capacitors are required.  
These series resistors affect the performance of the signal chain  
and reduce the signal chain precision. A compromise must be  
reached on the value of the series resistance that is high enough  
to sufficiently protect sensitive components, but low enough  
that the precision performance of the signal chain is not  
sacrificed.  
The ADG5436F can operate with bipolar supplies between 5 V  
and 22 V. The supplies on VDD and VSS do not need to be  
symmetrical, but the VDD to VSS range must not exceed 44 V.  
The ADG5436F can also operate with single supplies between  
8 V and 44 V, with VSS connected to GND.  
The ADG5436F enables the designer to remove these resistors  
and retain precision performance without compromising the  
protection of the circuit.  
The ADG5436F is fully specified at the 15 V, 20 V, 12 V, and  
+36 V supply ranges.  
POWER SUPPLY RECOMMENDATIONS  
POWER SUPPLY SEQUENCING PROTECTION  
Analog Devices, Inc., has a wide range of power management  
products to meet the requirements of most high performance  
signal chains.  
The switch channel remains open when the device is  
unpowered and signals from −55 V to +55 V can be applied  
without damaging the device. The switch channel closes only  
when the supplies are connected, a suitable digital control signal  
is placed on the INx pins, and the signal is within the normal  
operating range. Placing the ADG5436F between external  
connectors and sensitive components offers protection in systems  
where a signal is presented to the source pins before the supply  
voltages are available.  
An example of a bipolar power solution is shown in Figure 51.  
The ADP7118 and ADP7182 can be used to generate clean positive  
and negative rails from the dual switching regulator output. These  
rails can be used to power the ADG5436F, amplifier, and/or  
precision converter in a typical signal chain.  
+16V  
ADP7118  
LDO  
+15V  
DUAL  
SWITCHING  
REGULATOR  
SIGNAL RANGE  
12V  
INPUT  
–16  
V
The ADG5436F has overvoltage detection circuitry on the  
inputs that compares the voltage levels at the source terminals  
with VDD and VSS. To protect downstream circuitry from  
overvoltage conditions, supply the ADG5436F with voltages  
that match the intended signal range. The low on-resistance  
switch allows signals to the supply rails to be passed with very  
little distortion. A signal that exceeds the supply rail by the  
threshold voltage is then blocked. This signal block offers  
protection to both the device and any downstream circuitry.  
ADP7182  
LDO  
–15V  
Figure 51. Bipolar Power Solution  
Table 10. Recommended Power Management Devices  
Product Description  
ADP7118 20 V, 200 mA, low noise, CMOS LDO  
ADP7142 40 V, 200 mA, low noise, CMOS LDO  
ADP7182 −28 V, −200 mA, low noise, linear regulator  
HIGH VOLTAGE SURGE SUPPRESSION  
The ADG5436F is not intended for use in very high voltage  
applications. The maximum operating voltage of the transistor  
is 80 V. In applications where the inputs are likely to be subject  
to overvoltage conditions exceeding the breakdown voltage, use  
transient voltage suppressors (TVSs) or similar devices.  
Rev. B | Page 28 of 30  
 
 
 
 
 
 
 
 
Data Sheet  
ADG5436F  
The recovery time, tDIGREC, can be decreased from a typical 60 µs  
to 600 ns by using a 1 kΩ pull-up resistor.  
INTELLIGENT FAULT DETECTION  
The ADG5436F digital output pin, FF, can interface with a  
microprocessor or control system and can be used as an  
interrupt flag. This feature provides real-time diagnostic  
information on the state of the device and the system to  
which it connects.  
The specific fault digital output, SF decodes which inputs are  
experiencing a fault condition. The SF pin reduces to below  
0.8 V when a fault condition is detected on a specific pin,  
depending on the state of F1 and F2 (see Table 9). The specific  
fault feature also works with the switches disabled (EN pin low),  
which allows the user to cycle through and check the fault  
conditions without connecting the fault to the drain output.  
The control system can use the digital interrupt, FF, to start a  
variety of actions, as follows:  
Initiating an investigation into the source of an overvoltage  
fault.  
Shutting down critical systems in response to the overvoltage  
condition.  
Using data recorders to mark data during these events as  
unreliable or out of specification.  
LARGE VOLTAGE, HIGH FREQUENCY SIGNALS  
Figure 29 shows the voltage range and frequencies that the  
ADG5436F can reliably convey. For signals extending across the  
full signal range from VSS to VDD, keep the frequency below 3 MHz.  
If the required frequency is greater than 3 MHz, decrease the signal  
range appropriately to ensure signal integrity.  
For systems sensitive during a start-up sequence, the active low  
operation of the flag allows the system to ensure that the  
ADG5436F is powered on and that all input voltages are within  
the normal operating range before initiating operation.  
The FF pin is a weak pull-up, which allows the signals to  
combine into a single interrupt for larger modules that contain  
multiple devices.  
Rev. B | Page 29 of 30  
 
 
ADG5436F  
Data Sheet  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 52. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.65  
BSC  
12  
1
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 53. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RU-16  
RU-16  
ADG5436FBRUZ  
ADG5436FBRUZ-RL7  
ADG5436FBCPZ-RL7  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
CP-16-17  
1 Z = RoHS Compliant Part.  
©2015–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12882-0-1/16(B)  
Rev. B | Page 30 of 30  
 
 

相关型号:

ADG5436_11

High Voltage Latch-Up Proof, Dual SPDT Switches
ADI

ADG5462F

User Defined Fault Protection and Detection,10 Ω RON, Quad Channel Protector
ADI

ADG5462FBCPZ-RL7

User Defined Fault Protection and Detection,10 Ω RON, Quad Channel Protector
ADI

ADG5462FBRUZ

User Defined Fault Protection and Detection,10 Ω RON, Quad Channel Protector
ADI

ADG5462FBRUZ-RL7

User Defined Fault Protection and Detection,10 Ω RON, Quad Channel Protector
ADI

ADG601

2 ohm CMOS +-5 V/5 V, SPST SWITCHES
ADI

ADG601BRM

2 ohm CMOS +-5 V/5 V, SPST SWITCHES
ADI

ADG601BRM-REEL

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRM-REEL7

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRMZ

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRMZ-REEL

Low on resistance, 2.5 OHM maximum
ADI

ADG601BRMZ-REEL7

Low on resistance, 2.5 OHM maximum
ADI