ADG3241BKSZ [ADI]

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6;
ADG3241BKSZ
型号: ADG3241BKSZ
厂家: ADI    ADI
描述:

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6

驱动 光电二极管 输出元件 逻辑集成电路
文件: 总16页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, 1-Bit, 2-Port  
Level Translator Bus Switch in SOT-66  
ADG3241  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
225 ps propagation delay through the switch  
4.5 Ω switch connection between ports  
Data rate 1.5 Gbps  
A
B
2.5 V/3.3 V supply operation  
Selectable level shifting/translation  
Level translation  
BE  
Figure 1.  
3.3 V to 2.5 V  
3.3 V to 1.8 V  
2.5 V to 1.8 V  
Small signal bandwidth 770 MHz  
Tiny 6-lead SC70 package and 6-lead SOT-66 package  
APPLICATIONS  
3.3 V to 1.8 V voltage translation  
3.3 V to 2.5 V voltage translation  
2.5 V to 1.8 V voltage translation  
Bus switching  
Bus isolation  
Hot swap  
Hot plug  
Analog switch applications  
GENERAL DESCRIPTION  
SEL  
SEL  
is low, VCC is  
translating select pin (  
) is included. When  
The ADG3241 is a 2.5 V or 3.3 V single digital switch. It is  
designed on a low voltage CMOS process that provides low  
power dissipation yet gives high switching speed and very low  
on resistance. This allows the input to be connected to the  
output without additional propagation delay or generating  
additional ground bounce noise.  
reduced internally, allowing for level translation between 3.3 V  
inputs and 1.8 V outputs. This makes the device suited to  
applications requiring level translation between different  
supplies, such as converter to DSP/microcontroller interfacing.  
PRODUCT HIGHLIGHTS  
BE  
The switch is enabled by means of the bus enable ( ) input  
1. 3.3 V or 2.5 V supply operation.  
signal. This digital switch allows a bidirectional signal to be  
switched when on. In the off condition, signal levels up to the  
supplies are blocked.  
2. Extremely low propagation delay through switch.  
3. 4.5 Ω switches connect inputs to outputs.  
4. Level and voltage translation.  
This device is ideal for applications requiring level translation.  
When operated from a 3.3 V supply, level translation from 3.3 V  
inputs to 2.5 V outputs is allowed. Similarly, if the device is  
operated from a 2.5 V supply and 2.5 V inputs are applied, the  
device translates the outputs to 1.8 V. In addition to this, a level  
5. Tiny, SC70 package and SOT-66 package.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADG3241  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Timing Measurement Information.............................................. 11  
Bus Switch Applications ................................................................ 12  
Mixed Voltage Operation, Level Translation.......................... 12  
3.3 V to 2.5 V Translation ......................................................... 12  
2.5 V to 1.8 V Translation ......................................................... 12  
3.3 V to 1.8 V Translation ......................................................... 12  
Bus Isolation................................................................................ 13  
Hot Plug and Hot Swap Isolation............................................. 13  
Analog Switching ....................................................................... 13  
High Impedance During Power-Up/Power-Down................ 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 14  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Typical Performance Characteristics ............................................. 6  
Terminology .................................................................................... 10  
REVISION HISTORY  
Changes to Absolute Maximum Ratings........................................3  
Changes to Pin Configurations .......................................................4  
Changes to Ordering Guide.............................................................4  
Updated Outline Dimensions....................................................... 11  
5/06 — Rev. A to Rev. B  
Updated Format..................................................................Universal  
Changes to Table 4............................................................................ 5  
Changes to Ordering Guide ......................................................... 14  
7/03—Revision 0: Initial Version  
10/04 — Rev. 0 to Rev. A.  
Changes to Features.......................................................................... 1  
Changes to Specifications................................................................ 2  
Rev. B | Page 2 of 16  
 
ADG3241  
SPECIFICATIONS  
VCC = 2.3 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX, unless otherwise noted.1  
Table 1.  
B Version  
Typ2  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
VINH  
VINH  
VINL  
VINL  
II  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
V
V
μA  
μA  
μA  
V
Input Low Voltage  
0.8  
0.7  
1
1
1
2.7  
2.1  
2.1  
Input Leakage Current  
Off State Leakage Current  
On State Leakage Current  
Maximum Pass Voltage  
0.01  
0.01  
0.01  
2.5  
IOZ  
0 ≤ A, B ≤ VCC  
0 ≤ A, B ≤ VCC  
VA/VB = VCC = SEL = 3.3 V, IO = −5 μA  
VA/VB = VCC = SEL = 2.5 V, IO = −5 μA  
VA/VB = VCC = 3.3 V, SEL = 0 V, IO = −5 μA  
VP  
2.2  
1.5  
1.5  
1.8  
V
1.8  
V
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
CA OFF  
CB OFF  
CA, CB ON  
CIN  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
3.5  
3.5  
7
pF  
pF  
pF  
pF  
A, B Port On Capacitance  
Control Input Capacitance  
SWITCHING CHARACTERISTICS3  
Propagation Delay A to B or B to A, tPD  
Bus Enable Time BE to A or B5  
Bus Disable Time BE to A or B5  
Bus Enable Time BE to A or B5  
Bus Disable Time BE to A or B5  
Bus Enable Time BE to A or B5  
Bus Disable Time BE to A or B5  
Maximum Data Rate  
4
4
tPHL, tPLH  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
CL = 50 pF, VCC = SEL = 3 V  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = SEL = 3.3 V; VA/VB = 2 V  
VCC = SEL = 3.3 V; VA/VB = 2 V  
0.225 ns  
1
1
1
1
1
1
3.2  
3
4.6  
4
ns  
ns  
3
4
ns  
2.5  
3
3.8  
4
ns  
ns  
2.5  
1.5  
45  
3.4  
ns  
Gbps  
ps p-p  
Channel Jitter  
DIGITAL SWITCH  
On Resistance  
RON  
VCC = 3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = VCC, VA = 1.7 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 1 V, IBA = 8 mA  
VCC = 3 V, SEL = 0 V, VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = 0 V, VA = 1 V, IBA = 8 mA  
4.5  
12  
5
8
Ω
Ω
Ω
Ω
Ω
Ω
28  
9
9
18  
8
5
12  
POWER REQUIREMENTS  
VCC  
Quiescent Power Supply Current  
2.3  
3.6  
1
V
ICC  
Digital Inputs = 0 V or VCC; SEL = VCC  
Digital Inputs = 0 V or VCC; SEL = 0 V  
VCC = 3.6 V, BE = 3.0 V; SEL = VCC  
0.01  
0.1  
μA  
mA  
μA  
0.2  
8
Increase in ICC per Input6  
∆ICC  
0.15  
1 Temperature range is as follows: B Version: −40°C to +85°C.  
2 Typical values are at 25°C, unless otherwise stated.  
3 Guaranteed by design, not subject to production test.  
4 The digital switch contributes no propagation delay other than the RC delay of the typical RON of the switch and the load capacitance when driven by an ideal voltage  
source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay  
of the digital switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.  
5 See Timing Measurement Information section.  
6
BE  
This current applies to the Control Pin only. The A and B ports contribute no significant ac or dc currents as they transition.  
Rev. B | Page 3 of 16  
 
 
 
 
ADG3241  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 2.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
VCC to GND  
Digital Inputs to GND  
DC Input Voltage  
DC Output Current  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
SC70 Package  
−0.5 V to +4.6 V  
−0.5 V to +4.6 V  
−0.5 V to +4.6 V  
25 mA per channel  
Only one absolute maximum rating can be applied at any one  
time.  
−40°C to +85°C  
−65°C to +150°C  
150°C  
θJA Thermal Impedance  
SOT-66 Package  
332°C/W  
θJA Thermal Impedance  
191°C/W (4-layer board)  
Lead Temperature, Soldering (10 sec) 300°C  
IR Reflow, Peak Temperature  
(<20 sec)  
235°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. B | Page 4 of 16  
 
 
ADG3241  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BE  
GND  
A
1
2
3
6
5
4
SEL  
V
1
2
3
6
5
4
CC  
BE  
B
ADG3241  
V
ADG3241  
TOP VIEW  
(Not to Scale)  
TOP VIEW  
CC  
SEL  
A
(Not to Scale)  
GND  
B
Figure 3. 6-Lead SOT-66  
Figure 2. 6-Lead SC70  
Table 3. Pin Function Descriptions  
Pin No.  
SC70  
SOT-66  
Mnemonic  
Description  
BE  
1
2
3
4
5
6
6
4
3
5
1
2
Bus Enable (Active Low)  
Ground Reference  
Port A, Input or Output  
Port B, Input or Output  
Positive Power Supply Voltage  
Level Translation Select  
GND  
A
B
VCC  
SEL  
Table 4. Truth Table  
BE  
SEL1  
Function  
L
L
H
L
H
X
A = B, 3.3 V to 1.8 V level shifting  
A = B, 3.3 V to 2.5 V/2.5 V to 1.8 V level shifting  
Disconnect  
1 SEL  
= 0 V only when VDD = 3.3 V 10ꢀ.  
Rev. B | Page 5 of 16  
 
 
ADG3241  
TYPICAL PERFORMANCE CHARACTERISTICS  
40  
20  
15  
10  
V
= 3.3V  
CC  
T
= 25°C  
A
35  
30  
25  
20  
SEL = V  
CC  
SEL = V  
CC  
V
= 3V  
CC  
V
= 3.3V  
CC  
V
= 3.6V  
+85°C  
CC  
15  
10  
5
+25°C  
5
0
–40°C  
0
1.0  
/V (V)  
2.0  
0
0.5  
1.0  
1.5  
V
2.0  
/V (V)  
2.5  
3.0  
3.5  
0
0.5  
1.5  
V
A
B
A
B
Figure 4. On Resistance vs. Input Voltage  
Figure 7. On Resistance vs. Input Voltage for Different Temperatures  
40  
35  
30  
25  
20  
15  
15  
T
= 25°C  
A
V
= 2.5V  
CC  
SEL = V  
CC  
SEL = V  
CC  
10  
+85°C  
V
= 2.3V  
= 2.5V  
CC  
–40°C  
5
V
CC  
10  
+25°C  
V
= 2.7V  
CC  
5
0
0
1.0  
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
3.0  
0
0.5  
1.2  
V
V
/V (V)  
B
A
B
A
Figure 5. On Resistance vs. Input Voltage  
Figure 8. On Resistance vs. Input Voltage for Different Temperatures  
40  
35  
30  
25  
20  
15  
10  
5
3.0  
V
= 3.6V  
CC  
T
= 25°C  
T = 25°C  
A
A
SEL = 0V  
SEL = V  
CC  
2.5  
2.0  
1.5  
I
= –5µA  
O
V
= 3V  
CC  
V
= 3.3V  
CC  
V
= 3V  
V
= 3.3V  
CC  
CC  
V
= 3.6V  
CC  
1.0  
0.5  
0
0
0
0.5  
1.0  
1.5  
V
2.0  
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
V
2.0  
/V (V)  
2.5  
3.0  
3.5  
/V (V)  
A
B
A
B
Figure 6. On Resistance vs. Input Voltage  
Figure 9. Pass Voltage vs. VCC  
Rev. B | Page 6 of 16  
 
 
ADG3241  
3.0  
2.5  
2.0  
1.5  
2.5  
2.0  
1.5  
T
= 25°C  
T
= 25°C  
V = 0V  
A
A
A
V
= 2.7V  
SEL = V  
CC  
CC  
I
= –5µA  
BE = 0  
O
V
= 3.3V; SEL = 0V  
CC  
V
= 2.5V  
CC  
V
= 2.3V  
CC  
V
= SEL = 3.3V  
CC  
1.0  
0.5  
0
1.0  
0.5  
0
V
= SEL = 2.5V  
0.08 0.10  
CC  
0
0.02  
0.04  
I
0.06  
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
3.0  
(A)  
V
O
A
B
Figure 10. Pass Voltage vs. VCC  
Figure 13. Output Low Characteristic  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
T
= 25°C  
A
T
V
= 25°C  
= V  
CC  
A
V
= 3.6V  
SEL = 0V  
= –5µA  
CC  
A
I
O
BE = 0  
2.0  
1.5  
V
= SEL = 3.3V  
CC  
V
= 3.3V  
CC  
V
= 3V  
CC  
1.0  
0.5  
0
V
= SEL = 2.5V  
CC  
0.5  
0
V
= 3.3V; SEL = 0V  
–0.08  
CC  
–0.10  
–0.06  
–0.04  
–0.02  
0
0
0.5  
1.0  
1.5  
2.0  
/V (V)  
2.5  
3.0  
3.5  
I
(A)  
O
V
A
B
Figure 14. Output High Characteristic  
Figure 11. Pass Voltage vs. VCC  
0
500  
450  
400  
350  
300  
250  
T
= 25°C  
T = 25°C  
A
A
SEL = V  
CC  
V
= 2.5V  
CC  
–0.2  
ONOFF  
= 1nF  
C
L
–0.4  
–0.6  
–0.8  
V
= SEL = 3.3V  
CC  
V
= 3.3V; SEL = 0V  
V
= 3.3V  
CC  
CC  
200  
150  
100  
50  
–1.0  
–1.2  
V
= SEL = 2.5V  
CC  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
V
/V (V)  
B
A
ENABLE FREQUENCY (MHz)  
Figure 15. Charge Injection vs. Source Voltage  
Figure 12. ICC vs. Enable Frequency  
Rev. B | Page 7 of 16  
ADG3241  
4.0  
3.5  
2
1
0
–1  
–2  
–3  
ENABLE  
DISABLE  
3.0  
2.5  
V
= SEL = 2.5V  
CC  
2.0  
1.5  
1.0  
0.5  
0
T
V
= 25°C  
A
–4  
= 3.3V/2.5V  
CC  
–5  
–6  
SEL = V  
V
CC  
= 0dBm  
IN  
N/W ANALYZER:  
= R = 50  
R
L
S
–7  
–8  
–40  
–20  
0
20  
40  
60  
80  
0.03  
0.1  
1
10  
100  
1000  
1000  
80  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
Figure 19. Enable/Disable Time vs. Temperature  
Figure 16. Bandwidth vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
= 25°C  
A
V
V
= SEL = 3.3V  
= 1.5V p-p  
CC  
= 3.3V/2.5V  
CC  
IN  
SEL = V  
V
20dB ATTENUATION  
CC  
= 0dBm  
IN  
N/W ANALYZER:  
= R = 50  
R
L
S
30  
20  
10  
0
0.1  
1
10  
100  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
FREQUENCY (MHz)  
DATA RATE (Gbps)  
Figure 17. Off Isolation vs. Frequency  
Figure 20. Jitter vs. Data Rate; PRBS 31  
100  
95  
4.0  
ENABLE  
V
= SEL = 3.3V  
CC  
DISABLE  
3.5  
3.0  
2.5  
V
V
= SEL = 3.3V  
= 1.5V p-p  
CC  
90  
IN  
20dB ATTENUATION  
85  
80  
ENABLE  
DISABLE  
75  
70  
65  
2.0  
1.5  
V
= 3.3V, SEL = 0V  
CC  
1.0  
0.5  
0
60  
55  
50  
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) × 100%  
–40  
–20  
0
20  
40  
60  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
TEMPERATURE (°C)  
DATA RATE (Gbps)  
Figure 18. Enable/Disable Time vs. Temperature  
Figure 21. Eye Width vs. Data Rate; PRBS 31  
Rev. B | Page 8 of 16  
ADG3241  
V
= 3.3V  
20dB  
ATTENUATION  
V
= 2.5V  
20dB  
ATTENUATION  
= 25°C  
CC  
SEL = 3.3V  
= 1.5V p-p  
CC  
SEL = 2.5V  
= 1.5V p-p  
50mV/DIV  
200ps/DIV  
20mV/DIV  
200ps/DIV  
T
= 25°C  
T
V
A
V
A
IN  
IN  
Figure 22. Eye Pattern; 1.5 Gbps, VCC = 3.3 V, PRBS 31  
Figure 23. Eye Pattern; 1.244 Gbps, VCC = 2.5 V, PRBS 31  
Rev. B | Page 9 of 16  
ADG3241  
TERMINOLOGY  
VCC  
CIN  
Positive power supply voltage.  
BE  
SEL  
and .  
Control input capacitance. This consists of  
GND  
ICC  
Ground (0 V) reference.  
Quiescent power supply current. This current represents the  
leakage current between the VCC and ground pins. It is  
measured when all control inputs are at a logic high or low level  
and the switches are off.  
VINH  
Minimum input voltage for Logic 1.  
VINL  
ΔICC  
Maximum input voltage for Logic 0.  
BE  
Extra power supply current component for the  
when the input is not driven at the supplies.  
control input  
II  
Input leakage current at the control inputs.  
tPLH, tPHL  
Data propagation delay through the switch in the on state.  
Propagation delay is related to the RC time constant RON × CL,  
where CL is the load capacitance.  
IOZ  
Off state leakage current. It is the maximum leakage current at  
the switch pin in the off state.  
tPZH, tPZL  
IOL  
Bus enable times. These are the times taken to cross the VT  
voltage at the switch output when the switch turns on in  
On state leakage current. It is the maximum leakage current at  
the switch pin in the on state.  
BE  
response to the control signal,  
.
VP  
tPHZ, tPLZ  
Maximum pass voltage. The maximum pass voltage relates to  
the clamped output voltage of an NMOS device when the  
switch input voltage is equal to the supply voltage.  
Bus disable times. These are the times taken to place the switch  
in the high impedance off state in response to the control signal.  
It is measured as the time taken for the output voltage to change  
by VΔ from the original quiescent level, with reference to the  
logic level transition at the control input. Refer to Figure 26 for  
enable and disable times.  
RON  
Ohmic resistance offered by a switch in the on state. It is  
measured at a given voltage by forcing a specified amount of  
current through the switch.  
Max Data Rate  
CX OFF  
Off switch capacitance.  
Maximum rate at which data can be passed through the switch.  
Channel Jitter  
CX ON  
On switch capacitance.  
Peak-to-peak value of the sum of the deterministic and random  
jitter of the switch channel.  
Rev. B | Page 10 of 16  
 
ADG3241  
TIMING MEASUREMENT INFORMATION  
DISABLE  
ENABLE  
For the following load circuit and waveforms, the notation that  
is used is VIN and VOUT where  
V
V
INH  
T
CONTROL INPUT BE  
0V  
V
IN = VA and VOUT = VB or VIN = VB and VOUT = VA  
tPZL  
tPLZ  
V
CC  
V
V
2 × V  
CC  
CC  
V
V
V
CC  
SW1  
V
OUT  
SW1 @ 2V  
V
= 0V  
IN  
T
+ V  
L
L
Δ
CC  
GND  
tPHZ  
R
R
L
L
tPZH  
V
V
IN  
OUT  
C
V
V
PULSE  
H
H
DUT  
V
OUT  
SW1 @ GND  
GENERATOR  
V
= V  
CC  
V
– V  
IN  
T
Δ
0V  
0V  
R
T
L
Figure 26. Enable and Disable Times  
NOTES  
1. PULSE GENERATOR FOR ALL PULSES: tR  
FREQUENCY 10MHz.  
2. C INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.  
2.5ns, tF 2.5ns,  
Table 5. Switch Position  
Test  
L
S1  
3. R ISTHETERMINATION RESISTOR, SHOULD BE EQUALTO Z  
T
OUT  
OFTHE PULSE GENERATOR.  
tPLZ, tPZL  
tPHZ, tPZH  
2 × VCC  
GND  
Figure 24. Load Circuit  
V
V
IH  
T
CONTROL  
INPUT BE  
0V  
tPLH  
tPLH  
V
V
V
H
T
L
V
OUT  
Figure 25. Propagation Delay  
Table 6. Test Conditions  
Symbol  
VCC = 3.3 V 0.3 V (SEL = VCC  
)
VCC = 2.5 V 0.2 V (SEL = VCC  
)
VCC = 3.3 V 0.3 V (SEL = 0 V)  
Unit  
RL  
VΔ  
CL  
VT  
500  
300  
50  
500  
150  
30  
500  
150  
30  
Ω
mV  
pF  
V
1.5  
0.9  
0.9  
Rev. B | Page 11 of 16  
 
 
ADG3241  
BUS SWITCH APPLICATIONS  
MIXED VOLTAGE OPERATION, LEVEL  
TRANSLATION  
2.5 V TO 1.8 V TRANSLATION  
When VCC is 2.5 V (  
= 2.5 V) and the input signal range is  
SEL  
Bus switches can provide an ideal solution for interfacing  
between mixed voltage systems. The ADG3241 is suitable for  
applications where voltage translation from 3.3 V technology to  
a lower voltage technology is needed. This device can translate  
from 3.3 V to 1.8 V, from 2.5 V to 1.8 V, or bidirectionally from  
3.3 V directly to 2.5 V.  
0 V to VCC, the maximum output signal is, as before, clamped to  
within a voltage threshold below the VCC supply. In this case, the  
output is limited to approximately 1.8 V, as shown in Figure 31.  
2.5V  
Figure 27 shows a block diagram of a typical application in  
which a user needs to interface between a 3.3 V ADC and a  
2.5 V microprocessor. The microprocessor may not have 3.3 V  
tolerant inputs, therefore placing the ADG3241 between the  
two devices allows the devices to communicate easily. The bus  
switch directly connects the two blocks, thus introducing  
minimal propagation delay, timing skew, or noise.  
ADG3241  
2.5V  
1.8V  
SEL  
Figure 30. 2.5 V to 1.8 V Voltage Translation,  
= 2.5 VCC  
V
OUT  
2.5V SUPPLY  
SEL = 2.5V  
3.3V  
3.3V  
2.5V  
1.8V  
2.5V  
3.3V ADC  
MICROPROCESSOR  
V
IN  
SWITCH  
INPUT  
Figure 27. Level Translation Between a 3.3 V ADC and a 2.5 V Microprocessor  
0V  
2.5V  
SEL  
Figure 31. 2.5 V to 1.8 V Voltage Translation,  
= VCC  
3.3 V TO 2.5 V TRANSLATION  
SEL  
When VCC is 3.3 V (  
= 3.3 V) and the input signal range is  
3.3 V TO 1.8 V TRANSLATION  
0 V to VCC, the maximum output signal will be clamped to  
within a voltage threshold below the VCC supply.  
The ADG3241 offers the option of interfacing between a 3.3 V  
device and a 1.8 V device. This is possible through the use of  
3.3V  
SEL  
SEL  
SEL  
the  
pin. The  
pin is an active low control pin.  
activates internal circuitry in the ADG3241 that allows voltage  
translation between 3.3 V devices and 1.8 V devices.  
3.3V  
2.5V  
2.5V  
2.5V  
3.3V  
ADG3241  
SEL  
Figure 28. 3.3 V to 2.5 V Voltage Translation,  
= VCC  
3.3V  
ADG3241  
1.8V  
In this case, the output is limited to 2.5 V, as shown in Figure 29.  
This device can be used for translation from 2.5 V to 3.3 V  
devices and also between two 3.3 V devices.  
SEL  
Figure 32. 3.3 V to 1.8 V Voltage Translation,  
= 0 V  
V
OUT  
When VCC is 3.3 V and the input signal range is 0 V to VCC,  
the maximum output signal is clamped to 1.8 V, as shown in  
3.3V SUPPLY  
SEL = 3.3V  
2.5V  
SEL  
Figure 32. To do this, the  
pin must be tied to Logic 0. If  
SEL  
is unused, it should be tied directly to VCC.  
V
IN  
SWITCH  
INPUT  
0V  
3.3V  
SEL  
Figure 29. 3.3 V to 2.5 V Voltage Translation,  
= VCC  
Rev. B | Page 12 of 16  
 
 
 
 
 
 
 
 
ADG3241  
V
OUT  
3.3V SUPPLY  
SEL = 0V  
PLUG-IN  
CARD (1)  
CARD I/O  
1.8V  
CPU  
RAM  
PLUG-IN  
CARD (2)  
CARD I/O  
V
IN  
SWITCH  
INPUT  
0V  
3.3V  
SEL  
Figure 33. 3.3 V to 1.8 V Voltage Translation,  
= 0 V  
BUS  
Figure 35. ADG3241 in a Hot Plug Application  
BUS ISOLATION  
A common requirement of bus architectures is low capacitance  
loading of the bus. Such systems require bus bridge devices that  
extend the number of loads on the bus without exceeding the  
specifications. Because the ADG3241 is designed specifically for  
applications that do not need drive yet require simple logic  
functions, it solves this requirement. The device isolates access  
to the bus, thus minimizing capacitance loading.  
There are many systems, such as docking stations, PCI boards  
for servers, and line cards for telecommunications switches, that  
require the ability to handle hot swapping. If the bus can be  
isolated prior to insertion or removal, there is more control over  
the hot swap event. This isolation can be achieved using bus  
switches. The bus switches are positioned on the hot swap card  
between the connector and the devices. During hot swap, the  
ground pin of the hot swap card must connect to the ground  
pin of the backplane before any other signal or power pins.  
LOAD A  
LOAD C  
BUS/  
BACKPLANE  
ANALOG SWITCHING  
Bus switches can be used in many analog switching  
applications, such as video graphics. Bus switches can have  
lower on resistance, smaller on and off channel capacitance, and  
thus improved frequency performance over their analog  
counterparts.  
LOAD B  
LOAD D  
BUS SWITCH  
LOCATION  
Figure 34. Location of Bus Switched in a Bus Isolation Application  
HOT PLUG AND HOT SWAP ISOLATION  
The ADG3241 is suitable for hot swap and hot plug  
applications. The output signal of the ADG3241 is limited to a  
voltage that is below the VCC supply, as shown in Figure 29,  
Figure 31, and Figure 33. Therefore the switch acts like a buffer  
to take the impact from hot insertion, protecting vital and  
expensive chipsets from damage.  
The bus switch channel itself, consisting solely of an NMOS  
switch, limits the operating voltage (see Figure 4 for a typical  
plot), but in many cases this does not present an issue.  
HIGH IMPEDANCE DURING POWER-UP/POWER-  
DOWN  
To ensure the high impedance state during power-up or power-  
In hot plug applications, the system cannot be shut down when  
new hardware is being added. To overcome this, a bus switch  
can be positioned on the backplane between the bus devices  
and the hot plug connectors. The bus switch is turned off  
during hot plug. Figure 35 shows a typical example of this type  
of application.  
BE  
down,  
should be tied to VCC through a pull-up resistor; the  
minimum value of the resistor is determined by the current-  
sinking capability of the driver.  
Rev. B | Page 13 of 16  
 
 
 
 
 
 
ADG3241  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
PIN 1  
1.30 BSC  
0.65 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.30  
0.15  
0.22  
0.08  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 36. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
1.70  
1.66  
1.50  
0.20 MIN  
0.26  
0.19  
0.11  
6
1
4
3
5
1.70  
1.65  
1.50  
1.30  
1.20  
1.10  
BOTTOM  
VIEW  
TOP VIEW  
2
0.10 NOM  
0.05 MIN  
0.30  
0.23  
0.10  
PIN 1  
12° MAX  
0.50  
BSC  
0.60  
0.57  
0.53  
0.25 MAX  
0.17 MIN  
0.18  
0.17  
0.13  
SEATING  
PLANE  
0.34 MAX  
0.27 NOM  
Figure 37. 6-Lead Small Outline Transistor Package [SOT-66]  
(RY-6-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model  
Package Description  
Branding  
SKA  
SKA  
S19  
S19  
ADG3241BKS-REEL7  
ADG3241BKS-500RL7  
−40°C to +85°C  
−40°C to +85°C  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
6-Lead Small Outline Transistor Package (SOT-66)  
KS-6  
KS-6  
KS-6  
KS-6  
KS-6  
RY-6-1  
ADG3241BKSZ-500RL71 −40°C to +85°C  
ADG3241BKSZ-REEL71  
ADG3241BKSZ-REEL1  
ADG3241BRYZ-REEL71  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
S19  
00  
1 Z = Pb-free part.  
Rev. B | Page 14 of 16  
 
 
 
 
ADG3241  
NOTES  
Rev. B | Page 15 of 16  
ADG3241  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C04221-0-4/06(B)  
Rev. B | Page 16 of 16  

相关型号:

ADG3241BKSZ-500RL7

2.5 V/3.3 V, 1 - Bit, 2 - Port Level Translator Bus Switch
ADI

ADG3241BKSZ-500RL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, MO-203AB, SC-70, TSSOP-6
ROCHESTER

ADG3241BKSZ-REEL

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, MO-203AB, SC-70, TSSOP-6
ADI

ADG3241BKSZ-REEL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, MO-203AB, SC-70, TSSOP-6
ROCHESTER

ADG3241BRY-REEL7

2.5 V/3.3 V, 1-Bit, 2-Port Level Translator Bus Switch in SOT-66
ADI

ADG3241BRYZ-REEL7

3241 SERIES, 1-BIT DRIVER, TRUE OUTPUT, PDSO6, LEAD FREE, SOT-66, 6 PIN
ROCHESTER

ADG3242

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
ADI

ADG3242BCZ-SF3

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch
ADI

ADG3242BRJ-R2

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
ADI

ADG3242BRJ-REEL

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
ADI

ADG3242BRJ-REEL7

2.5 V/3.3 V, 2-Bit, Common Control Level Translator Bus Switch
ADI

ADG3242BRJZ-REEL7

2.5 V/3.3 V, 2-Bit Common Control Level Translator Bus Switch
ADI