ADG1219 [ADI]

Low Capacitance, Low Charge Injection, 【15 V/12 V iCMOS⑩ SPDT in SOT-23; 低电容,低电荷注入, 【 15 V / 12 V iCMOS⑩ SPDT采用SOT -23
ADG1219
型号: ADG1219
厂家: ADI    ADI
描述:

Low Capacitance, Low Charge Injection, 【15 V/12 V iCMOS⑩ SPDT in SOT-23
低电容,低电荷注入, 【 15 V / 12 V iCMOS⑩ SPDT采用SOT -23

光电二极管
文件: 总17页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Capacitance, Low Charge Injection,  
± ±1 ꢀV±ꢁ ꢀ iCMOS™ SPDT in SOT-ꢁ3  
Preliminary Technical Data  
ADG±ꢁ±9  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
<0.5 pC charge injection over full signal range  
2.5 pF off capacitance  
ADG1219  
SA  
D
Low leakage; 0.6 nA maximum @ 85°C  
120 Ω on resistance  
SB  
DECODER  
Fully specified at +12 V, 15 V  
No VL supply required  
3 V logic-compatible inputs  
Rail-to-rail operation  
IN  
EN  
SWITCHES SHOWN FOR A LOGIC “0” INPUT  
8-lead SOT-23 package  
Figure 1.  
APPLICATIONS  
Automatic test equipment  
Data acquisition systems  
Battery-powered systems  
Sample-and-hold systems  
Audio/video signal routing  
Communication systems  
GENERAL DESCRIPTION  
minimum charge injection over the entire signal range of the  
device. iCMOS construction also ensures ultralow power  
dissipation, making the parts ideally suited for portable and  
battery-powered instruments.  
The ADG1219 is a monolithic iCMOS device containing an  
SPDT switch. An EN input is used to enable or disable the  
device. When disabled, all channels are switched off. When on,  
each channel conducts equally well in both directions and has  
an input signal range that extends to the supplies. Each switch  
exhibits break-before-make switching action.  
0.5  
T
= 25ºC  
A
0.4  
0.3  
V
V
= +15V  
= –15V  
DD  
SS  
The iCMOS (industrial CMOS) modular manufacturing  
process combines high voltage CMOS (complementary metal-  
oxide semiconductor) and bipolar technologies. It enables the  
development of a wide range of high performance analog ICs  
capable of 33 V operation in a footprint that no other generation  
of high voltage parts has been able to achieve. Unlike analog ICs  
using conventional CMOS processes, iCMOS components can  
tolerate high supply voltages while providing increased perfor-  
mance, dramatically lower power consumption, and reduced  
package size.  
0.2  
0.1  
0
V
V
= 12V  
= 0V  
DD  
SS  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
V
= +5V  
= –5V  
DD  
SS  
–15  
–10  
–5  
0
5
10  
15  
The ultralow capacitance and exceptionally low charge injection  
of these multiplexers make them ideal solutions for data  
acquisition and sample-and-hold applications, where low glitch  
and fast settling are required. Figure 2 shows that there is  
INPUT VOLTAGE (V)  
Figure 2. Charge Injection vs. Input Voltage  
Rev. PrB  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
ADG±ꢁ±9  
Preliminary Technical Data  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................6  
ESD Caution...................................................................................6  
Pin Configuration and Function Descriptions..............................7  
Terminology.................................................................................... 14  
Typical Performance Characteristics ..............................................8  
Test Circuits..................................................................................... 12  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Dual Supply................................................................................... 3  
Single Supply................................................................................. 4  
REVISION HISTORY  
7/07—Revision 0: Initial Version  
Rev. PrB | Page 2 of 17  
Preliminary Technical Data  
ADG±ꢁ±9  
SPECIFICATIONS  
DUAL SUPPLY  
VDD = 15 V 10%, VSS = −15 V 10%, GND = 0 V, unless otherwise noted.  
Table 1.  
B Version1  
Parameters  
25°C  
−40°C to +85°C  
−40°C to +125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance (RON)  
VDD to VSS  
V
120  
190  
3.5  
Ω typ  
Ω max  
Ω typ  
VS = 10 V, IS = −1 mA; see Figure 23  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −1 mA  
230  
260  
On Resistance Match Between  
Channels (∆RON)  
6
20  
60  
10  
72  
12  
79  
Ω max  
Ω typ  
Ω max  
On Resistance Flatness (RFLAT(ON)  
)
VS = −5 V, 0 V, +5 V; IS = −1 mA  
LEAKAGE CURRENTS  
VDD = +16.5 V, VSS = −16.5 V  
Source Off Leakage, IS (Off)  
0.01  
nA typ  
VS = 10 V, VS = ±10 V; see Figure 24  
0.1  
0.01  
0.6  
1
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 10 V, VS = ±10 V; see Figure 24  
0.1  
0.02  
0.2  
0.6  
0.6  
1
1
nA max  
nA typ  
nA max  
Channel On Leakage, ID, IS (On)  
VS = VD = 10 V; see Figure 25  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.005  
2
VIN = VINL or VINH  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS2  
Transition Time, tTRANSITION  
140  
170  
85  
105  
105  
125  
40  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 26  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 26  
RL = 300 Ω, CL = 35 pF  
VS = 10 V; see Figure 26  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V; Figure 27  
VS = 0 V, RS = 0 Ω, CL = 1 nF;  
see Figure 28  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 29  
200  
130  
150  
230  
140  
170  
10  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tBBM  
Charge Injection  
0.1  
77  
80  
Off Isolation  
dB typ  
dB typ  
Channel-to-Channel Crosstalk  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 30  
Total Harmonic Distortion + Noise  
−3 dB Bandwidth  
CS (Off)  
0.15  
520  
2.5  
3.3  
4.3  
5.1  
7.5  
10  
% typ  
RL = 10 kΩ, 5 V rms, f = 20 Hz to 20 kHz  
RL = 50 Ω, CL = 5 pF; see Figure 31  
f = 1 MHz; VS = 0 V  
f = 1 MHz; VS = 0 V  
f = 1 MHz; VS = 0 V  
f = 1 MHz; VS = 0 V  
f = 1 MHz; VS = 0 V  
f = 1 MHz; VS = 0 V  
MHz typ  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
CD (Off)  
CD, CS (On)  
Rev. PrB | Page 3 of 17  
ADG±ꢁ±9  
Preliminary Technical Data  
B Version1  
−40°C to +85°C −40°C to +125°C  
Parameters  
25°C  
0.001  
140  
Unit  
Test Conditions/Comments  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = −16.5 V  
Digital inputs = 0 V or VDD  
μA typ  
μA max  
μA typ  
μA max  
μA typ  
μA max  
1.0  
170  
1.0  
IDD  
Digital inputs = 5 V  
ISS  
0.001  
Digital inputs = 0 V, 5 V or VDD  
VDD/VSS  
5/ 16.5  
V min/max |VDD | = |VSS|  
1 Temperature range for B version is −40°C to +125°C.  
2 Guaranteed by design; not subject to production test.  
SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 2.  
B Version1  
Parameters  
25°C  
−40°C to +85°C −40°C to +125°C  
Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance (RON)  
0 V to VDD  
V
300  
475  
4.5  
Ω typ  
Ω max  
Ω typ  
VS = 0 V to 10 V, IS = −1 mA; see Figure 23  
VDD = 10.8 V, VSS = 0 V  
VS = 0 V to 10 V, IS = −1 mA  
567  
26  
625  
27  
On Resistance Match Between  
Channels (∆RON)  
16  
60  
Ω max  
Ω typ  
On Resistance Flatness (RFLAT(ON)  
LEAKAGE CURRENTS  
)
VS = 3 V, 6 V, 9 V, IS = −1 mA  
VDD = 13.2 V  
Source Off Leakage, IS (Off)  
0.01  
0.1  
0.01  
0.1  
0.02  
0.2  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 1 V/10 V, VD = 10 V/1 V; see Figure 24  
0.6  
0.6  
0.6  
1
1
1
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V; see Figure 24  
VS = VD = 1 V or 10 V, see Figure 25  
Channel On Leakage, ID, IS (On)  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.001  
3
VIN = VINL or VINH  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS2  
Transition Time, tTRANSITION  
195  
250  
120  
150  
145  
185  
70  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
dB typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 26  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 26  
RL = 300 Ω, CL = 35 pF  
VS = 8 V; see Figure 26  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 8 V; see Figure 27  
VS = 6 V, RS = 0 Ω, CL = 1 nF; see Figure 28  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 29;  
300  
190  
220  
340  
210  
235  
10  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tBBM  
Charge Injection  
Off Isolation  
−0.8  
80  
Channel-to-Channel Crosstalk  
−3 dB Bandwidth  
80  
dB typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz;  
see Figure 30  
RL = 50 Ω, CL = 5 pF; see Figure 31  
400  
MHz typ  
Rev. PrB | Page 4 of 17  
Preliminary Technical Data  
ADG±ꢁ±9  
B Version1  
Parameters  
25°C  
2.9  
3.7  
5
5.8  
8.5  
11  
−40°C to +85°C −40°C to +125°C  
Unit  
Test Conditions/Comments  
CS (Off)  
pF typ  
pF max  
pF typ  
pF max  
pF typ  
pF max  
f = 1 MHz; VS = 6 V  
f = 1 MHz; VS = 6 V  
f = 1 MHz; VS = 6 V  
f = 1 MHz; VS = 6 V  
f = 1 MHz; VS = 6 V  
f = 1 MHz; VS = 6 V  
VDD = 13.2 V  
CD (Off)  
CD, CS (On)  
POWER REQUIREMENTS  
IDD  
0.001  
140  
μA typ  
μA max  
μA typ  
μA max  
V min/max  
Digital inputs = 0 V or VDD  
1.0  
IDD  
Digital inputs = 5 V  
VSS = 0 V, GND = 0 V  
170  
VDD  
5/16.5  
1 Temperature range for B version is −40°C to +125°C.  
2 Guaranteed by design; not subject to production test.  
Rev. PrB | Page 5 of 17  
ADG±ꢁ±9  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
Rating  
VDD to VSS  
35 V  
VDD to GND  
VSS to GND  
Analog Inputs1  
−0.3 V to +25 V  
+0.3 V to −25 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
GND − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
Digital Inputs1  
ESD CAUTION  
Peak Current, S or D  
100 mA (pulsed at 1 ms,  
10% duty cycle maximum)  
Continuous Current per  
Channel, S or D  
30 mA  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
−40°C to +125°C  
−65°C to +150°C  
150°C  
8-Lead SOT-23, θJA Thermal  
Impedance  
211.5°C/W  
Reflow Soldering Peak  
Temperature, Pb Free  
260°C  
1 Overvoltages at IN, S, or D are clamped by internal diodes. Current should be  
limited to the maximum ratings given.  
Rev. PrB | Page 6 of 17  
Preliminary Technical Data  
ADG±ꢁ±9  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
EN  
1
2
3
4
8
7
6
5
IN  
ADG1219  
V
SA  
D
DD  
TOP VIEW  
GND  
(Not to Scale)  
V
SB  
SS  
NC = NO CONNECT  
Figure 3. SOT-23 Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
EN  
Active High Digital Input. When this pin is low, the device is disabled and all switches are turned off.  
When this pin is high, the IN logic input determines which switch is turned on.  
1
2
3
4
5
6
7
8
VDD  
GND  
VSS  
SB  
D
SA  
IN  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
Most Negative Power Supply Potential.  
Source Terminal. Can be an input or output.  
Drain Terminal. Can be an input or output.  
Source Terminal. Can be an input or output.  
Logic Control Input.  
Table 5. Truth Table  
EN  
IN  
X
Switch A  
Off  
Switch B  
Off  
0
1
0
On  
Off  
1
1
Off  
On  
Rev. PrB | Page 7 of 17  
ADG±ꢁ±9  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
200  
250  
V
V
= 15V  
= –15V  
DD  
SS  
T
= 25°C  
A
V
V
= 15V  
DD  
SS  
180  
160  
140  
120  
100  
80  
= –15V  
V
V
= 13.5V  
= –13.5V  
DD  
SS  
200  
150  
T
T
= +125°C  
= +85°C  
A
A
T
= +25°C  
= –40°C  
A
A
V
V
= 16.5V  
= –16.5V  
DD  
SS  
100  
T
60  
40  
50  
0
20  
0
–18 –15 –12 –9 –6 –3  
0
3
6
9
12 15 18  
–15  
–10  
–5  
0
5
10  
15  
SOURCE OR DRAIN VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 4. On Resistance as a Function of VD (VS) for Dual Supply  
Figure 7. On Resistance as a Function of VD (VS) for Different Temperatures,  
Dual Supply  
600  
600  
V
V
= 12V  
= 0V  
DD  
SS  
T
= 25°C  
V
V
= 4.5V  
= –4.5V  
A
DD  
SS  
T
= +125°C  
A
500  
500  
400  
300  
200  
V
V
= 5V  
= –5V  
DD  
SS  
T
= +85°C  
A
400  
300  
T
= +25°C  
A
V
V
= 5.5V  
= –5.5V  
DD  
SS  
T
= –40°C  
A
200  
100  
0
100  
0
–6  
–4  
–2  
0
2
4
6
0
2
4
6
8
10  
12  
SOURCE OR DRAIN VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 5. On Resistance as a Function of VD (VS) for Dual Supply  
Figure 8. On Resistance as a Function of VD (VS) for Different Temperatures,  
Single Supply  
200  
450  
V
V
V
= +15V  
= –15V  
T
= 25°C  
V
V
= 10.8V  
= 0V  
DD  
SS  
A
DD  
SS  
400  
350  
300  
250  
200  
150  
100  
100  
0
= +10V/–10V  
BIAS  
V
V
= 12V  
= 0V  
DD  
SS  
–100  
–200  
–300  
–400  
–500  
V
V
= 13.2V  
= 0V  
DD  
SS  
I (OFF)+–  
S
I
(OFF)+–  
D
I (OFF)–+  
S
I
I
I
(OFF)–+  
D
(ON)++  
(ON)–  
D,S  
D,S  
50  
0
0
2
4
6
8
10  
12  
14  
0
20  
40  
60  
80  
100  
120  
SOURCE OR DRAIN VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 6. On Resistance as a Function of VD (VS) for Single Supply  
Figure 9. Leakage Currents as a Function of Temperature, 15 V Dual Supply  
Rev. PrB | Page 8 of 17  
Preliminary Technical Data  
ADG±ꢁ±9  
350  
0.5  
0.4  
I
I
I
I
I
I
(OFF)+–  
T
= 25ºC  
S
A
300  
250  
200  
150  
100  
50  
(OFF)+–  
(OFF)–+  
D
V
V
= +15V  
= –15V  
DD  
SS  
S
0.3  
(OFF)–+  
D
0.2  
(ON)++  
(ON)–  
D,S  
D,S  
0.1  
V
V
V
= 12V  
= 0V  
DD  
SS  
0
= 1V/10V  
BIAS  
V
V
= 12V  
= 0V  
DD  
SS  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0
V
V
= +5V  
= –5V  
DD  
SS  
–50  
–100  
0
20  
40  
60  
80  
100  
120  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Figure 10.Leakage Currents as a Function of Temperature, 12 V Single Supply  
Figure 13. Charge Injection vs. Input Voltage  
100  
300  
250  
200  
150  
100  
50  
V
V
V
= 5V  
= –5V  
DD  
SS  
12V SS  
50  
0
= +4.5V/–4.5V  
BIAS  
–50  
15V DS  
I
I
I
I
I
I
(OFF)+–  
S
–100  
–150  
–200  
(OFF)+–  
(OFF)–+  
D
S
(OFF)–+  
D
(ON)++  
(ON)–  
D,S  
D,S  
0
–40  
0
20  
40  
60  
80  
100  
120  
–20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (ºC)  
Figure 11. Leakage Currents as a Function of Temperature, 5 V Dual Supply  
Figure 14. tTRANSITION Time vs. Temperature  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
200  
V
V
= 15V  
= –15V  
= 25ºC  
DD  
SS  
I
T
PER CHANNEL  
= 25°C  
DD  
180  
160  
140  
120  
100  
80  
A
T
A
V
V
= +15V  
= –15V  
DD  
SS  
60  
40  
V
= +12V  
= 0V  
DD  
20  
0
V
SS  
10k  
100k  
1M  
10M  
100M  
1G  
0
2
4
6
8
10  
12  
14  
16  
LOGIC, IN (V)  
FREQUENCY (Hz)  
X
Figure 15. Off Isolation vs. Frequency  
Figure 12. IDD vs. Logic Level  
Rev. PrB | Page 9 of 17  
ADG±ꢁ±9  
Preliminary Technical Data  
0
8
7
6
5
4
3
2
1
0
V
V
T
= 15V  
= –15V  
= 25ºC  
DD  
SS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
A
SOURCE/DRAIN ON  
DRAIN OFF  
SOURCE OFF  
V
V
= 15V  
= –15V  
DD  
SS  
T
= 25ºC  
A
10k  
100k  
1M  
10M  
100M  
1G  
–15  
–10  
–5  
0
5
10  
15  
12  
5
FREQUENCY (Hz)  
SOURCE VOLTAGE (V)  
Figure 16. Crosstalk vs. Frequency  
Figure 19. Capacitance vs. Source Voltage for Dual Supply  
0
–2  
9
8
V
V
= 15V  
= –15V  
= 25ºC  
DD  
SS  
T
A
SOURCE/DRAIN ON  
7
–4  
6
–6  
DRAIN OFF  
5
4
–8  
SOURCE OFF  
3
2
1
0
–10  
–12  
–14  
V
V
= 12V  
= 0V  
= 25ºC  
DD  
SS  
T
A
10k  
100k  
1M  
10M  
100M  
1G  
0
2
4
6
8
10  
FREQUENCY (Hz)  
SOURCE VOLTAGE (V)  
Figure 17. On Response vs. Frequency  
Figure 20. Capacitance vs. Source Voltage for Single Supply  
10  
9
10.00  
1.00  
LOAD = 10k  
= 25°C  
T
A
8
SOURCE/DRAIN ON  
7
6
V
= 5V, V = –5V, V = 3.5Vrms  
SS  
DD  
S
DRAIN OFF  
5
V
= 15V, V = –15V, V = 5Vrms  
SS  
DD  
S
4
SOURCE OFF  
0.10  
0.01  
3
2
V
V
= 5V  
= –5V  
= 25ºC  
DD  
SS  
1
0
T
A
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
–5  
–3  
–1  
1
3
SOURCE VOLTAGE (V)  
Figure 18. THD + N vs. Frequency  
Figure 21. Capacitance vs. Source Voltage for Dual Supply  
Rev. PrB | Page 10 of 17  
Preliminary Technical Data  
ADG±ꢁ±9  
0
V
V
= +15V  
= –15V  
DD  
SS  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
NO DECOUPLING CAPS ON  
Vp-p = 0.63V  
= 25ºC  
T
A
DECOUPLING CAPS ON  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
Figure 22. ACPSRR vs Frequency  
Rev. PrB | Page 11 of 17  
ADG±ꢁ±9  
Preliminary Technical Data  
TEST CIRCUITS  
V
S
D
I
DS  
V
S
Figure 23. On Resistance  
I
(OFF)  
A
I (OFF)  
D
S
S
D
A
V
V
S
D
Figure 24. Off Leakage  
I
(ON)  
D
S
D
NC  
A
V
D
NC = NO CONNECT  
Figure 25. On Leakage  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
V
IN  
50%  
50%  
50%  
V
V
SS  
DD  
SB  
V
IN  
S
50%  
90%  
D
V
OUT  
SA  
R
300Ω  
C
35pF  
L
L
90%  
IN  
V
OUT  
V
IN  
GND  
tON  
tOFF  
Figure 26. Switching Times  
V
V
DD  
DD  
SS  
0.1µF  
0.1µF  
V
IN  
V
V
SS  
SB  
V
S
D
V
OUT  
SA  
80%  
V
R
C
OUT  
L
L
35pF  
300  
IN  
tBBM  
tBBM  
V
IN  
GND  
Figure 27. Break-Before-Make Time Delay  
V
V
V
SS  
DD  
0.1µF  
0.1µF  
V
(NORMALLY  
IN  
CLOSED SWITCH)  
V
DD  
SS  
SB  
ON  
OFF  
NC  
V
D
V
S
V
(NORMALLY  
IN  
OPEN SWITCH)  
OUT  
SA  
C
1nF  
L
IN  
V
ΔV  
OUT  
OUT  
V
IN  
Q
= C × ΔV  
L
OUT  
GND  
INJ  
Figure 28. Charge Injection  
Rev. PrB | Page 12 of 17  
Preliminary Technical Data  
ADG±ꢁ±9  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
V
DD  
SS  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
DD  
SS  
NETWORK  
ANALYZER  
V
V
SA  
DD  
SS  
V
OUT  
NC  
R
L
50  
50Ω  
SA  
SB  
50Ω  
SB  
D
R
50Ω  
IN  
V
S
D
IN  
V
V
OUT  
S
V
IN  
R
L
GND  
V
50Ω  
GND  
V
OUT  
OUT  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
OFF ISOLATION = 20 log  
V
S
V
S
Figure 29. Off Isolation  
Figure 31. Bandwidth  
V
V
DD  
SS  
0.1µF  
0.1µF  
V
V
DD  
SS  
NETWORK  
ANALYZER  
0.1µF  
0.1µF  
V
V
DD  
SS  
NC  
50  
AUDIO PRECISION  
V
V
DD  
SS  
SA  
SB  
50Ω  
R
S
IN  
V
S
S
D
IN  
V
V
S
V p-p  
OUT  
V
IN  
R
L
50Ω  
D
GND  
V
OUT  
V
IN  
R
L
10k  
GND  
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 32. THD + Noise  
Figure 30. Channel-to-Channel Crosstalk  
Rev. PrB | Page 13 of 17  
ADG±ꢁ±9  
Preliminary Technical Data  
TERMINOLOGY  
IDD  
t
ON (EN)  
The positive supply current.  
Delay time between the 50% and 90% points of the digital input  
and switch on condition.  
ISS  
The negative supply current.  
tOFF (EN)  
Delay time between the 50% and 90% points of the digital input  
and switch off condition.  
VD (VS)  
The analog voltage on Terminal D and Terminal S.  
tTRANSITION  
RON  
Delay time between the 50% and 90% points of the digital  
inputs and the switch on condition when switching from one  
address state to another.  
The ohmic resistance between D and S.  
RFLAT(ON)  
Flatness is defined as the difference between the maximum and  
minimum value of on resistance as measured over the specified  
analog signal range.  
TBBM  
Off time measured between the 80% point of both switches  
when switching from one address state to another.  
IS (Off)  
Charge Injection  
A measure of the glitch impulse transferred from the digital  
input to the analog output during switching.  
The source leakage current with the switch off.  
ID (Off)  
The drain leakage current with the switch off.  
Off Isolation  
ID, IS (On)  
A measure of unwanted signal coupling through an off switch.  
The channel leakage current with the switch on.  
Crosstalk  
VINL  
A measure of unwanted signal that is coupled through from one  
channel to another as a result of parasitic capacitance.  
The maximum input voltage for Logic 0.  
VINH  
Bandwidth  
The minimum input voltage for Logic 1.  
The frequency at which the output is attenuated by 3 dB.  
I
INL (IINH)  
On Response  
The frequency response of the on switch.  
The input current of the digital input.  
CS (Off)  
Insertion Loss  
The loss due to the on resistance of the switch.  
The off switch source capacitance, measured with reference to  
ground.  
THD + N  
CD (Off)  
The ratio of the harmonic amplitude plus noise of the signal to  
the fundamental.  
The off switch drain capacitance, measured with reference to  
ground.  
ACPSRR (AC Power Supply Rejection Ratio)  
CD, CS (On)  
Measures the ability of a part to avoid coupling noise and  
spurious signals that appear on the supply voltage pin to the  
output of the switch. The dc voltage on the device is modulated  
by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on  
the output to the amplitude of the modulation is the ACPSRR.  
The on switch capacitance, measured with reference to ground.  
CIN  
The digital input capacitance.  
Rev. PrB | Page 14 of 17  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
ADG±ꢁ±9  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
2.80 BSC  
PIN 1  
INDICATOR  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8°  
4°  
0°  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-BA  
Figure 33. 8-Lead Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option Branding  
ADG1219BRJZ-R21  
ADG1219BRJZ-REEL71  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Lead Small Outline Transistor Package [SOT-23]  
8-Lead Lead Small Outline Transistor Package [SOT-23]  
RJ-8  
RJ-8  
S24  
S24  
1 Z = RoHS Compliant Part.  
Rev. PrB | Page 15 of 17  
ADG±ꢁ±9  
NOTES  
Preliminary Technical Data  
Rev. PrB | Page 16 of 17  
Preliminary Technical Data  
NOTES  
ADG±ꢁ±9  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06575-0-3/08(PrB)  
Rev. PrB | Page 17 of 17  

相关型号:

ADG1219BRJZ-R2

Low Capacitance, Low Charge Injection, 【15 V/12 V iCMOS⑩ SPDT in SOT-23
ADI

ADG1219BRJZ-REEL7

Low Capacitance, Low Charge Injection, 【15 V/12 V iCMOS⑩ SPDT in SOT-23
ADI

ADG1221

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1221BRMZ

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches
ADI

ADG1221BRMZ-REEL7

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches
ADI

ADG1221BRMZ-REEL71

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1221BRMZ1

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1222

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1222BRMZ

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches
ADI

ADG1222BRMZ-REEL7

Low Capacitance, Low Charge Injection, ±15 V/12 V iCMOS® Dual SPST Switches
ADI

ADG1222BRMZ-REEL71

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI

ADG1222BRMZ1

Low Capacitance, Low Charge Injection, 15 V/12 V iCMOS Dual SPST Switches
ADI