ADA4851-4YRUZ-RL [ADI]

Low Cost, High Speed, Rail-to-Rail Output Op Amps; 低成本,高速,轨到轨输出运算放大器
ADA4851-4YRUZ-RL
型号: ADA4851-4YRUZ-RL
厂家: ADI    ADI
描述:

Low Cost, High Speed, Rail-to-Rail Output Op Amps
低成本,高速,轨到轨输出运算放大器

运算放大器 光电二极管
文件: 总20页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Cost, High Speed,  
Rail-to-Rail Output Op Amps  
ADA4851-1/ADA4851-2/ADA4851-4  
FEATURES  
PIN CONFIGURATIONS  
High speed  
130 MHz, −3 dB bandwidth  
375 V/μs slew rate  
55 ns settling time to 0.1%  
Excellent video specifications  
0.1 dB flatness: 11 MHz  
ADA4851-1  
V
1
2
3
6
5
4
+V  
S
OUT  
–V  
POWER DOWN  
–IN  
S
+IN  
TOP VIEW (Not to Scale)  
Figure 1. ADA4851-1, 6-Lead SOT-23 (RJ-6)  
Differential gain: 0.08%  
ADA4851-2  
Differential phase: 0.09°  
OUT1  
–IN1  
+IN1  
1
2
3
4
8
7
6
5
+V  
S
Fully specified at +3 V, +5 V, and 5 V supplies  
Rail-to-rail output  
OUT  
–IN2  
+IN2  
Output swings to within 60 mV of either rail  
Low voltage offset: 0.6 mV  
Wide supply range: 3 V to 10 V  
Low power: 2.5 mA/amplifier  
Power-down mode  
–V  
S
TOP VIEW  
(Not to Scale)  
Figure 2. ADA4851-2, 8-Lead MSOP (RM-8)  
1
2
3
4
5
6
7
14  
13  
12  
11  
V
1
V
4
Available in space-saving packages  
SOT-23-6, TSSOP-14, and MSOP-8  
OUT  
OUT  
–IN 4  
+IN 4  
–IN 1  
+IN 1  
APPLICATIONS  
ADA4851-4  
TOP VIEW  
(Not to Scale)  
–V  
S
+V  
S
Consumer video  
Professional video  
Video switchers  
Active filters  
10 +IN 3  
+IN 2  
–IN 2  
9
8
–IN 3  
V
3
V
2
OUT  
OUT  
Figure 3. ADA4851-4, 14-Lead TSSOP (RU-14)  
GENERAL DESCRIPTION  
The ADA4851-1 (single)/ADA4851-2 (dual)/ADA4851-4  
(quad) are low cost, high speed, voltage feedback rail-to-rail  
output op amps. Despite their low price, these parts provide  
excellent overall performance and versatility. The 130 MHz,  
−3 dB bandwidth and high slew rate make these amplifiers well-  
suited for many general-purpose, high speed applications.  
The ADA4851 family is designed to work over the extended  
temperature range (−40°C to +125°C).  
4
G = +1  
V
R
C
= 5V  
= 1kΩ  
= 5pF  
3
2
S
L
L
1
0
The ADA4851 family is designed to operate at supply voltages  
as low as +3 V and up to 5 V. These parts provide true single-  
supply capability, allowing input signals to extend 200 mV  
below the negative rail and to within 2.2 V of the positive rail.  
On the output, the amplifiers can swing within 60 mV of either  
supply rail.  
–1  
–2  
–3  
–4  
–5  
–6  
With their combination of low price, excellent differential gain  
(0.08%), differential phase (0.09º), and 0.1 dB flatness out to  
11 MHz, these amplifiers are ideal for consumer video  
applications.  
1
10  
100  
1k  
FREQUENCY (MHz)  
Figure 4. Small Signal Frequency Response  
Rev. C  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2005 Analog Devices, Inc. All rights reserved.  
ADA4851-1/ADA4851-2/ADA4851-4  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
Typical Performance Characteristics ..............................................7  
Circuit Description......................................................................... 13  
Headroom Considerations........................................................ 13  
Overload Behavior and Recovery ............................................ 14  
Single-Supply Video Amplifier................................................. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 17  
Specifications with +3 V Supply................................................. 3  
Specifications with +5 V Supply................................................. 4  
Specifications with 5 V Supply................................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
REVISION HISTORY  
5/05—Rev. B to Rev. C  
1/05—Rev. 0 to Rev. A  
Changes to General Description .................................................... 1  
Changes to Input Section............................................................... 14  
Added ADA4851-4.............................................................Universal  
Added 14-Lead TSSOP......................................................Universal  
Changes to Features ..........................................................................1  
Changes to General Description .....................................................1  
Changes to Figure 3...........................................................................1  
Changes to Specifications.................................................................3  
Changes to Figure 4...........................................................................6  
Changes to Figure 8...........................................................................7  
Changes to Figure 11.........................................................................8  
Changes to Figure 22.........................................................................9  
Changes to Figure 23, Figure 24, and Figure 25......................... 10  
Changes to Figure 27 and Figure 28............................................. 10  
Changes to Figure 29, Figure 30, and Figure 31......................... 11  
Changes to Figure 34...................................................................... 11  
Added Figure 37 ............................................................................. 12  
Changes to Ordering Guide.......................................................... 15  
Updated Outline Dimensions....................................................... 15  
4/05—Rev. A to Rev. B  
Added ADA4851-2.............................................................Universal  
Added 8-Lead MSOP .........................................................Universal  
Changes to Features.......................................................................... 1  
Changes to General Description .................................................... 1  
Changes to Table 1............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 3............................................................................ 5  
Changes to Table 4 and Figure 5..................................................... 6  
Changes to Figure 12, Figure 15, and Figure 17 ........................... 8  
Changes to Figure 18........................................................................ 9  
Changes to Figure 28 Caption....................................................... 10  
Changes to Figure 33...................................................................... 11  
Changes to Figure 36 and Figure 38............................................. 12  
Added Figure 39.............................................................................. 12  
Changes to Circuit Description Section...................................... 13  
Changes to Headroom Considerations Section ......................... 13  
Changes to Overload Behavior and Recovery Section.............. 14  
Added Single-Supply Video Amplifier Section .......................... 15  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 17  
10/04—Revision 0: Initial Version  
Rev. C | Page 2 of 20  
ADA4851-1/ADA4851-2/ADA4851-4  
SPECIFICATIONS  
SPECIFICATIONS WITH +3 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 0.5 V p-p  
G = +2, VO = 1.0 V p-p, RL = 150 Ω  
G = +2, VO = 1 V p-p, RL = 150 Ω  
G = +2, VO = 1 V step  
104  
80  
130  
105  
40  
15  
100  
50  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
G = +2, VO = 1 V step, RL = 150 Ω  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
Input Voltage Noise  
fC = 1 MHz, VO = 1 V p-p, G = −1  
f = 100 kHz  
−73/−79  
10  
dBc  
nV/√Hz  
Input Current Noise  
Differential Gain  
Differential Phase  
Crosstalk (RTI)—ADA4851-2/ADA4851-4  
DC PERFORMANCE  
f = 100 kHz  
2.5  
0.44  
0.41  
−70/−60  
pA/√Hz  
%
Degrees  
dB  
G = +3, NTSC, RL = 150 Ω, VO = 2 V p-p  
G = +3, NTSC, RL = 150 Ω, VO = 2 V p-p  
f = 5 MHz, G = +2, VO = 1.0 V p-p  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.6  
4
2.3  
6
20  
105  
3.3  
4.0  
mV  
μV/°C  
μA  
nA/°C  
nA  
dB  
VO = 0.25 V to 0.75 V  
80  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
POWER-DOWN  
Differential/common-mode  
0.5/5.0  
1.2  
−0.2 to +0.8  
60/60  
MΩ  
pF  
V
ns  
dB  
VIN = +3.5 V, −0.5 V, G = +1  
VCM = 0 V to 0.5 V  
−81  
−103  
Power-Down Input Voltage  
Power-down  
Enabled  
<1.1  
>1.6  
0.7  
V
V
μs  
ns  
Turn-Off Time  
Turn-On Time  
60  
Power-Down Bias Current  
Enabled  
Power-Down  
Power-down = 3 V  
Power-down = 0 V  
4
−14  
6
−20  
μA  
μA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
Short-Circuit Current  
VIN = +0.7 V, −0.1 V, G = +5  
Sinking/sourcing  
70/100  
0.03 to 2.94  
90/70  
ns  
V
mA  
0.05 to 2.91  
2.7  
POWER SUPPLY  
Operating Range  
12  
V
Quiescent Current per Amplifier  
Quiescent Current (Power-Down)  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
2.4  
0.2  
−100  
−100  
2.7  
0.3  
mA  
mA  
dB  
dB  
Power-down = low  
+VS = +2.5 V to +3.5 V, −VS = −0.5 V  
+VS = +2.5 V, −VS = −0.5 V to –1.5 V  
−81  
−80  
Rev. C | Page 3 of 20  
 
ADA4851-1/ADA4851-2/ADA4851-4  
SPECIFICATIONS WITH +5 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 2.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 0.5 V p-p  
G = +2, VO = 1.4 V p-p, RL = 150 Ω  
G = +2, VO = 1.4 V p-p, RL = 150 Ω  
G = +2, VO = 2 V step  
96  
72  
125  
96  
35  
11  
200  
55  
MHz  
MHz  
MHz  
MHz  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
Settling Time to 0.1%  
G = +2, VO = 2 V step, RL = 150 Ω  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
Input Voltage Noise  
fC = 1 MHz, VO = 2 V p-p, G = +1  
f = 100 kHz  
−80/−100  
10  
dBc  
nV/√Hz  
Input Current Noise  
Differential Gain  
Differential Phase  
Crosstalk (RTI)—ADA4851-2/ADA4851-4  
DC PERFORMANCE  
f = 100 kHz  
2.5  
0.08  
0.11  
−70/−60  
pA/√Hz  
%
Degrees  
dB  
G = +2, NTSC, RL = 150 Ω, VO = 2 V p-p  
G = +2, NTSC, RL = 150 Ω, VO = 2 V p-p  
f = 5 MHz, G = +2, VO = 2.0 V p-p  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.6  
4
2.2  
6
20  
107  
3.4  
3.9  
mV  
μV/°C  
μA  
nA/°C  
nA  
dB  
VO = 1 V to 4 V  
97  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
POWER-DOWN  
Differential/common-mode  
0.5/5.0  
1.2  
−0.2 to +2.8  
50/45  
MΩ  
pF  
V
ns  
dB  
VIN = +5.5 V, −0.5 V, G = +1  
VCM = 0 V to 2 V  
−86  
−105  
Power-Down Input Voltage  
Power-down  
Enabled  
<1.1  
>1.6  
0.7  
V
V
μs  
ns  
Turn-Off Time  
Turn-On Time  
50  
Power-Down Bias Current  
Enabled  
Power-Down  
Power-down = 5 V  
Power-down = 0 V  
33  
−22  
40  
−30  
μA  
μA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall)  
Output Voltage Swing  
Short-Circuit Current  
VIN = +1.1 V, −0.1 V, G = +5  
Sinking/sourcing  
60/70  
0.06 to 4.94  
110/90  
ns  
V
mA  
0.09 to 4.91  
2.7  
POWER SUPPLY  
Operating Range  
12  
V
Quiescent Current per Amplifier  
Quiescent Current (Power-Down)  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
2.5  
0.2  
−101  
−101  
2.8  
0.3  
mA  
mA  
dB  
dB  
Power-down = low  
+VS = +5 V to +6 V, −VS = 0 V  
+VS = +5 V, −VS = −0 V to −1 V  
−82  
−81  
Rev. C | Page 4 of 20  
 
ADA4851-1/ADA4851-2/ADA4851-4  
SPECIFICATIONS WITH 5 V SUPPLY  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
Table 3.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
G = +1, VO = 0.1 V p-p  
G = +1, VO = 1 V p-p  
G = +2, VO = 2 V p-p, RL = 150 Ω  
G = +2, VO = 2 V p-p, RL = 150 Ω  
G = +2, VO = 7 V step  
83  
52  
105  
74  
40  
MHz  
MHz  
MHz  
MHz  
V/μs  
V/μs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
11  
375  
190  
55  
G = +2, VO = 2 V step  
G = +2, VO = 2 V step, RL = 150 Ω  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Harmonic Distortion (dBc) HD2/HD3  
Input Voltage Noise  
fC = 1 MHz, VO = 2 V p-p, G = +1  
f = 100 kHz  
−83/−107  
10  
dBc  
nV/√Hz  
Input Current Noise  
Differential Gain  
Differential Phase  
Crosstalk(RTI)—ADA4851-2/ADA4851-4  
DC PERFORMANCE  
f = 100 kHz  
2.5  
0.08  
0.09  
−70/−60  
pA/√Hz  
%
Degrees  
dB  
G = +2, NTSC, RL = 150 Ω, VO = 2 V p-p  
G = +2, NTSC, RL = 150 Ω, VO = 2 V p-p  
f = 5 MHz, G = +2, VO = 2.0 V p-p  
Input Offset Voltage  
Input Offset Voltage Drift  
Input Bias Current  
Input Bias Current Drift  
Input Bias Offset Current  
Open-Loop Gain  
0.6  
4
2.2  
6
20  
106  
3.5  
4.0  
mV  
μV/°C  
μA  
nA/°C  
nA  
dB  
99  
VO = ±2.5 V  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Input Overdrive Recovery Time (Rise/Fall)  
Common-Mode Rejection Ratio  
POWER-DOWN  
Differential/common-mode  
0.5/5.0  
1.2  
−5.2 to +2.8  
50/25  
MΩ  
pF  
V
ns  
dB  
VIN = 6 V, G = +1  
VCM = 0 V to 4 V  
−90  
−105  
Power-Down Input Voltage  
Power-down  
Enabled  
< −3.9  
> −3.4  
0.7  
V
V
μs  
ns  
Turn-Off Time  
Turn-On Time  
30  
Power-Down Bias Current  
Enabled  
Power-Down  
Power-down = +5 V  
Power-down = −5 V  
100  
−50  
130  
−60  
μA  
μA  
OUTPUT CHARACTERISTICS  
Output Overdrive Recovery Time (Rise/Fall) VIN = 1.2 V, G = +5  
Output Voltage Swing  
80/50  
ns  
V
mA  
−4.87 to +4.88 −4.92 to +4.92  
125/110  
Short-Circuit Current  
Sinking/sourcing  
POWER SUPPLY  
Operating Range  
2.7  
2.9  
0.2  
12  
3.2  
0.3  
V
Quiescent Current per Amplifier  
Quiescent Current (Power-Down)  
Positive Power Supply Rejection  
Negative Power Supply Rejection  
mA  
mA  
dB  
dB  
Power-down = low  
+VS = +5 V to +6 V, −VS = −5 V  
+VS = +5 V, −VS = −5 V to −6 V  
−82  
−81  
−101  
−102  
Rev. C | Page 5 of 20  
 
ADA4851-1/ADA4851-2/ADA4851-4  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Parameter  
due to the amplifiers’ drive at the output. The quiescent power  
is the voltage between the supply pins (VS) times the quiescent  
current (IS).  
Rating  
Supply Voltage  
Power Dissipation  
12.6 V  
See Figure 5  
−VS − 0.5 V to +VS + 0.5 V  
+VS to −VS  
−65°C to +125°C  
−40°C to +125°C  
JEDEC J-STD-20  
150°C  
PD = Quiescent Power + (Total Drive Power Load Power)  
Common-Mode Input Voltage  
Differential Input Voltage  
Storage Temperature  
Operating Temperature Range  
Lead Temperature Range  
Junction Temperature  
2
V
2
VOUT  
RL  
VOUT  
RL  
S
PD =  
(VS ×IS  
)
+
×
RMS output voltages should be considered. If RL is referenced  
to −VS, as in single-supply operation, the total drive power is  
VS × IOUT. If the rms signal levels are indeterminate, consider the  
worst case, when VOUT = VS/4 for RL to midsupply.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
2
(
VS/4  
)
PD = VS ×IS +  
( )  
RL  
In single-supply operation with RL referenced to −VS, worst case  
is VOUT = VS/2.  
THERMAL RESISTANCE  
Airflow increases heat dissipation, effectively reducing θJA.  
Also, more metal directly in contact with the package leads and  
through holes under the device reduces θJA.  
θJA is specified for the worst-case conditions, that is, θJA is  
specified for device soldered in circuit board for surface-mount  
packages.  
Figure 5 shows the maximum safe power dissipation in the  
package vs. the ambient temperature for the 6-lead SOT-23  
(170°C/W), the 8-lead MSOP (150°C/W), and the 14-lead  
TSSOP (120°C/W) on a JEDEC standard 4-layer board. θJA  
values are approximations.  
Table 5. Thermal Resistance  
Package Type  
6-lead SOT-23  
14-lead TSSOP  
8-lead MSOP  
θJA  
Unit  
°C/W  
°C/W  
°C/W  
170  
120  
150  
2.0  
Maximum Power Dissipation  
TSSOP  
The maximum safe power dissipation for the ADA4851-1/  
ADA4851-2/ADA4851-4 is limited by the associated rise in  
junction temperature (TJ) on the die. At approximately 150°C,  
which is the glass transition temperature, the plastic changes its  
properties. Even temporarily exceeding this temperature limit  
may change the stresses that the package exerts on the die,  
permanently shifting the parametric performance of the  
amplifiers. Exceeding a junction temperature of 150°C for an  
extended period of time can result in changes in silicon devices,  
potentially causing degradation or loss of functionality.  
1.5  
MSOP  
1.0  
SOT-23-6  
0.5  
0
–55 –45 –35 –25 –15 –5  
5
15 25 35 45 55 65 75 85 95 105 115 125  
The power dissipated in the package (PD) is the sum of the  
quiescent power dissipation and the power dissipated in the die  
AMBIENT TEMPERATURE (°C)  
Figure 5. Maximum Power Dissipation vs. Temperature for a 4-Layer Board  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate  
on the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. C | Page 6 of 20  
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, RF = 0 Ω for G = +1, RF = 1 kΩ for G > +1, RL = 1 kΩ, unless otherwise noted.  
1
4
V
R
= ±5V  
= 150Ω  
= 0.1V p-p  
S
10pF  
G = +1  
= 5V  
L
V
3
S
0
V
OUT  
R
V
= 1kΩ  
L
= 0.1V p-p  
2
OUT  
G = –1  
–1  
–2  
–3  
–4  
–5  
1
0
5pF  
0pF  
–1  
–2  
–3  
–4  
–5  
–6  
G = +10  
G = +2  
–6  
–7  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 6. Small Signal Frequency Response for Various Gains  
Figure 9. Small Signal Frequency Response for Various Capacitor Loads  
1
1
+125°C  
R
= 150Ω  
L
0
0
–1  
–2  
–3  
–4  
–5  
–6  
+85°C  
V
= ±5V  
S
–40°C  
+25°C  
V
= ±5V  
S
–1  
–2  
–3  
–4  
–5  
–6  
G = +1  
= 0.1V p-p  
R
= 1kΩ  
L
G = +1  
V
V
OUT  
= 0.1V p-p  
OUT  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
300  
Figure 10. Small Signal Frequency Response for Various Temperatures  
Figure 7. Small Signal Frequency Response for Various Loads  
2
1
V
R
V
= ±5V  
= 150Ω  
G = +1  
S
V
= +5V  
S
R
V
= 150Ω  
L
L
1
0
0
–1  
–2  
–3  
–4  
–5  
= 1V p-p  
= 0.1V p-p  
OUT  
OUT  
–1  
–2  
–3  
–4  
–5  
–6  
V
= ±5V  
S
G = +2  
G = +10  
G = –1  
–6  
–7  
1
10  
FREQUENCY (MHz)  
100  
300  
1
10  
FREQUENCY (MHz)  
100  
Figure 8. Small Signal Frequency Response for Various Supplies  
Figure 11. Large Signal Frequency Response for Various Gains  
Rev. C | Page 7 of 20  
 
ADA4851-1/ADA4851-2/ADA4851-4  
6.2  
–40  
–50  
V
= ±5V  
S
G = –1  
G = +2  
R
R
V
= 3V  
S
6.1  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
= 150Ω  
= 1kΩ  
L
F
R
= 150Ω  
L
V
= 2V  
OUT  
HD2  
–60  
V
= 100mV p-p  
OUT  
–70  
V
= 1V p-p  
OUT  
–80  
V
= 2V p-p  
OUT  
HD3  
–90  
–100  
–110  
0.1  
1
10  
0.1  
1
10  
FREQUENCY (MHz)  
100  
FREQUENCY (MHz)  
Figure 15. Harmonic Distortion vs. Frequency  
Figure 12. 0.1 dB Flatness Response  
–50  
1
0
G = +2  
= ±5V  
V
= ±5V  
S
V
G = +1  
= 1V p-p  
S
–60  
–70  
V
R
= 1kΩ  
OUT  
L
f = 2MHz  
HD2  
–1  
–2  
–3  
–4  
–5  
–6  
R
= 1kΩ  
L
–80  
HD3  
R
= 150Ω  
L
–90  
–100  
–110  
–120  
0
1
2
3
4
5
6
7
8
9
10  
1
10  
FREQUENCY (MHz)  
100  
300  
OUTPUT AMPLITUDE (V p-p)  
Figure 16. Harmonic Distortion vs. Output Voltage  
Figure 13. Large Frequency Response for Various Loads  
–40  
–50  
140  
120  
100  
80  
0
–30  
G = +1  
V
= ±5V  
S
V
= 2V p-p  
OUT  
V
= ±5V  
S
–60  
–60  
PHASE  
R = 1kΩ HD2  
L
–90  
–70  
60  
–120  
–150  
–180  
–210  
–240  
R
= 150Ω HD2  
–80  
L
40  
GAIN  
R
= 150Ω HD3  
L
–90  
20  
R
= 1kΩ HD3  
L
–100  
–110  
0
–20  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
FREQUENCY (MHz)  
10  
FREQUENCY (Hz)  
Figure 14. Open-Loop Gain and Phase vs. Frequency  
Figure 17. Harmonic Distortion vs. Frequency for Various Loads  
Rev. C | Page 8 of 20  
 
ADA4851-1/ADA4851-2/ADA4851-4  
–40  
–50  
0.075  
0.050  
0.025  
0
2.575  
G = +1 OR +2  
L
G = +1  
R
= 1kΩ  
V
V
= 2V p-p  
= 5V  
OUT  
2.550  
2.525  
2.500  
2.475  
2.450  
2.425  
S
–60  
R
= 1kΩ HD2  
L
–70  
–80  
R
= 150Ω HD2  
L
R
= 150Ω HD3  
–0.025  
–0.050  
–0.075  
L
V
= ±5V  
S
–90  
V
= +5V  
S
–100  
–110  
R
= 1kΩ HD3  
L
0
50  
100  
150  
200  
0.1  
1
10  
TIME (ns)  
FREQUENCY (MHz)  
Figure 21. Small Signal Transient Response for Various Supplies  
Figure 18. Harmonic Distortion vs. Frequency for Various Loads  
2.575  
6
10pF  
0pF  
G = +5  
G = +1  
= 5V  
OUTPUT  
5
4
V
R
= ±5V  
= 150Ω  
V
S
S
R
= 150Ω  
L
L
2.550  
2.525  
2.500  
2.475  
2.450  
2.425  
f = 1MHz  
5 × INPUT  
3
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ns)  
0
100 200 300 400 500 600 700 800 900  
TIME (ns)  
1k  
Figure 19. Output Overdrive Recovery  
Figure 22. Small Signal Transient Response for Capacitive Load  
6
5
1.5  
3.0  
G = +1  
G = +2  
L
V
R
= ±5V  
= 150Ω  
INPUT  
S
R
= 150Ω  
L
4
1.0  
0.5  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f = 1MHz  
3
V
= ±5V  
V
= +5V  
S
S
OUTPUT  
2
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–0.5  
–1.0  
–1.5  
0
100 200 300 400 500 600 700 800 900  
TIME (ns)  
1k  
0
50  
100  
150  
200  
TIME (ns)  
Figure 20. Input Overdrive Recovery  
Figure 23. Large Signal Transient Response for Various Supplies  
Rev. C | Page 9 of 20  
ADA4851-1/ADA4851-2/ADA4851-4  
6
5
1.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
G = +2  
G = +1  
L
V
= 5V  
S
R
= 150Ω  
f
= 400kHz  
IN  
1.0  
0.5  
V
= ±5V  
V
= +5V  
S
S
V
4
DISABLE  
3
0
2
–0.5  
–1.0  
–1.5  
1
0
V
OUT  
–1  
0
15  
30  
45  
0
50  
100  
TIME (ns)  
150  
200  
TIME (μs)  
Figure 24. Large Signal Transient Response for Various Supplies  
Figure 27. Enable/Disable Time  
0.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+V – V  
S
OUT  
0.4  
0.3  
0.2  
0.1  
0
V
= ±5V  
S
V
= ±5V  
V = +5V  
S
V
= +3V  
S
S
V
= +3V  
S
–V – V  
S
OUT  
0
5
10  
15  
20  
25  
30  
35  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
LOAD CURRENT (mA)  
DISABLE VOLTAGE (V)  
Figure 25. Output Saturation Voltage vs. Load Current  
Figure 28. ADA4851-1, Supply Current vs.  
Pin Voltage  
POWER DOWN  
600  
500  
400  
300  
200  
100  
0
300  
200  
G = +2  
V
R
= ±5V  
= 1kΩ  
S
L
25% TO 75% OF V  
O
V
= +3V  
S
100  
NEGATIVE SLEW RATE  
V
= ±5V  
S
0
–100  
–200  
–300  
–400  
V
= +5V  
S
POSITIVE SLEW RATE  
0
1
2
3
4
5
6
7
8
9
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
OUTPUT VOLTAGE STEP (V p-p)  
TEMPERATURE (°C)  
Figure 26. Slew Rate vs. Output Voltage  
Figure 29. Input Offset Voltage vs. Temperature for Various Supplies  
Rev. C | Page 10 of 20  
ADA4851-1/ADA4851-2/ADA4851-4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1000  
100  
10  
G = +1  
I
+, V = ±5V  
S
B
I
–, V = ±5V  
S
B
I
+, V = +5V  
S
B
I
–, V = +5V  
S
B
1
10  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 30. Input Bias Current vs. Temperature for Various Supplies  
Figure 33. Voltage Noise vs. Frequency  
0.09  
100  
10  
1
G = +2  
V
= ±5V  
S
0.08  
0.07  
0.06  
0.05  
0.04  
+V – V  
OUT  
S
V
= +5V  
S
+V – V  
S
OUT  
–V – V  
OUT  
S
–V – V  
OUT  
S
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
10  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 34. Current Noise vs. Frequency  
Figure 31. Output Saturation vs. Temperature for Various Supplies  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.2  
V
= ±5V  
S
V
= ±5V  
S
N = 420  
x = –260μV  
σ = 780μV  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
= +5V  
S
V
= +3V  
S
–4  
–3  
–2  
–1  
0
1
2
3
4
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
V
(mV)  
TEMPERATURE (°C)  
OFFSET  
Figure 32. Supply Current vs. Temperature for Various Supplies  
Figure 35. Input Offset Voltage Distribution  
Rev. C | Page 11 of 20  
ADA4851-1/ADA4851-2/ADA4851-4  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–30  
G = +2  
V
= ±5V  
S
V
= 5V  
–40  
–50  
S
L
R
V
= 1kΩ  
= 1V p-p  
IN  
DRIVE AMPS 1, 2, AND 4  
LISTEN AMP 3  
–60  
–70  
–80  
–90  
DRIVE AMP 1  
LISTEN AMP 2  
–100  
–110  
–120  
0.1  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Figure 38. ADA4851-4, RTI Crosstalk vs. Frequency  
Figure 36. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
0
0
G = +2  
V
= ±5V  
S
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
V
= 5V  
S
R
V
= 1kΩ  
= 1V p-p  
L
IN  
+PSR  
–PSR  
DRIVE AMP 1  
LISTEN AMP 2  
DRIVE AMP 2  
LISTEN AMP 1  
100  
1k  
10k  
100k  
1M  
10M  
100M  
1G  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 37. Power Supply Rejection (PSR) vs. Frequency  
Figure 39. ADA4851-2, RTI Crosstalk vs. Frequency  
Rev. C | Page 12 of 20  
ADA4851-1/ADA4851-2/ADA4851-4  
CIRCUIT DESCRIPTION  
440  
460  
480  
500  
520  
540  
560  
580  
600  
The ADA4851-1, ADA4851-2, and ADA4851-4 feature a high  
slew rate input stage that is a true single-supply topology,  
capable of sensing signals at or below the minus supply rail. The  
rail-to-rail output stage can pull within 60 mV of either supply  
rail when driving light loads and within 0.17 V when driving  
150 Ω. High speed performance is maintained at supply  
voltages as low as 2.7 V.  
HEADROOM CONSIDERATIONS  
These amplifiers are designed for use in low voltage systems.  
To obtain optimum performance, it is useful to understand the  
behavior of the amplifiers as input and output signals approach  
the amplifiers’ headroom limits. The amplifiers’ input common-  
mode voltage range extends from the negative supply voltage  
(actually 200 mV below this), or from ground for single-supply  
operation, to within 2.2 V of the positive supply voltage.  
Therefore, at a gain of 3, the amplifiers can provide full rail-to-  
rail output swing for supply voltages as low as 3.3 V and down  
to 3 V for a gain of 4.  
–6  
–5  
–4  
–3  
–2  
–1  
(V)  
0
1
2
3
4
V
CM  
Figure 40. VOS vs. Common-Mode Voltage, VS = 5 V  
2
G = +1  
R
V
= 1kΩ  
= 5V  
L
S
1
0
V
V
= 3.0V  
= 3.1V  
CM  
CM  
Exceeding the headroom limit is not a concern for any inverting  
gain on any supply voltage, as long as the reference voltage at  
the amplifiers positive input lies within the amplifiers input  
common-mode range.  
–1  
–2  
–3  
–4  
–5  
–6  
V
= 3.2V  
= 3.3V  
CM  
V
CM  
The input stage is the headroom limit for signals approaching  
the positive rail. Figure 40 shows a typical offset voltage vs. the  
input common-mode voltage for the ADA4851-1/ADA4851-2/  
ADA4851-4 amplifiers on a ±5 V supply. Accurate dc  
performance is maintained from approximately 200 mV below  
the minus supply to within 2.2 V of the positive supply. For high  
speed signals, however, there are other considerations. Figure 41  
shows −3 dB bandwidth vs. dc input voltage for a unity-gain  
follower. As the common-mode voltage gets within 2 V of  
positive supply, the amplifier responds well but the bandwidth  
begins to drop as the common-mode voltage approaches the  
positive supply. This can manifest itself in increased distortion  
or settling time. Higher frequency signals require more  
headroom than the lower frequencies to maintain distortion  
performance.  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
Figure 41. Unity-Gain Follower Bandwidth vs. Input Common-Mode  
Rev. C | Page 13 of 20  
 
 
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
Figure 42 illustrates how the rising edge settling time for the  
amplifier is configured as a unity-gain follower, stretching out  
as the top of a 1 V step input that approaches and exceeds the  
specified input common-mode voltage limit.  
The amplifiers do not exhibit phase reversal, even for input  
voltages beyond the voltage supply rails. Going more than 0.6 V  
beyond the power supplies turns on protection diodes at the  
input stage, which greatly increases the current draw of the  
devices.  
For signals approaching the minus supply and inverting gain  
and high positive gain configurations, the headroom limit is the  
output stage. The ADA4851-1/ADA4851-2/ADA4851-4  
amplifiers use a common emitter output stage. This output stage  
maximizes the available output range, limited by the saturation  
voltage of the output transistors. The saturation voltage  
increases with the drive current that the output transistor is  
required to supply due to the output transistor’s collector  
resistance.  
3.50  
G = +1  
R
V
= 1kΩ  
= 5V  
L
3.25  
3.00  
2.75  
2.50  
2.25  
2.00  
S
V
= 2.25V TO 3.25V  
STEP  
V
= 2.25V TO  
STEP  
3.5V, 4V, AND 5V  
3.6  
G = +1  
R
V
= 1kΩ  
= 5V  
3.4  
3.2  
3.0  
2.8  
2.6  
L
S
0
100 200 300 400 500 600 700 800 900  
TIME (ns)  
1k  
V
= 2V TO 3V  
STEP  
Figure 43. Pulse Response of G = 1 Follower,  
Input Step Overloading the Input Stage  
V
= 2.1V TO 3.1V  
STEP  
V
V
V
= 2.2V TO 3.2V  
= 2.3V TO 3.3V  
= 2.4V TO 3.4V  
STEP  
STEP  
STEP  
2.4  
2.2  
2.0  
1.8  
Output  
Output overload recovery is typically within 35 ns after the  
amplifiers input is brought to a nonoverloading value. Figure 44  
shows output recovery transients for the amplifier configured in  
an inverting gain of 1 recovering from a saturated output from  
the top and bottom supplies to a point at midsupply.  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
Figure 42. Output Rising Edge for 1 V Step at Input Headroom Limits  
7
G = –1  
R
V
= 1kΩ  
= 5V  
6
5
4
3
2
V
= 5V TO 2.5V  
L
S
As the saturation point of the output stage is approached, the  
output signal shows increasing amounts of compression and  
clipping. As in the input headroom case, higher frequency  
signals require a bit more headroom than the lower frequency  
signals. Figure 16 illustrates this point by plotting the typical  
distortion vs. the output amplitude.  
OUT  
V
= 0V TO 2.5V  
OUT  
INPUT  
VOLTAGE  
EDGES  
1
0
OVERLOAD BEHAVIOR AND RECOVERY  
Input  
–1  
–2  
The specified input common-mode voltage of the ADA4851-1/  
ADA4851-2/ADA4851-4 is 200 mV below the negative supply  
to within 2.2 V of the positive supply. Exceeding the top limit  
results in lower bandwidth and increased rise time, as seen in  
Figure 41 and Figure 42. Pushing the input voltage of a unity-  
gain follower to less than 2 V from the positive supply leads to  
the behavior shown in Figure 43—an increasing amount of  
output error as well as a much increased settling time. The  
recovery time from input voltages 2.2 V or closer to the positive  
supply is approximately 55 ns, which is limited by the settling  
artifacts caused by transistors in the input stage coming out of  
saturation.  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME (ns)  
Figure 44. Overload Recovery  
Rev. C | Page 14 of 20  
 
 
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
Table 6. Recommended Values  
SINGLE-SUPPLY VIDEO AMPLIFIER  
Supply  
Voltage  
(V)  
Input  
Range  
(V)  
The ADA4851 family of amplifiers is well-suited for portable  
video applications. When operating in low voltage single-supply  
applications, the input signal is limited by the input stage  
headroom. For additional information, see the Headroom  
Considerations section. Table 6 illustrates the effects of supply  
voltage, input signal, various gains, and output signal swing for  
the typical video amplifier shown in Figure 45.  
RG  
(kΩ)  
RF  
(kΩ)  
Gain  
(V/V)  
V’  
(V)  
VOUT  
(V)  
3
3
5
0 to 0.8  
0 to 0.8  
0 to 2.8  
1
1
1
1
2
3
2
1.6  
2.4  
4.9  
0.8  
1.2  
2.45  
0.499  
1
R
F
C1  
2.2μF  
+V  
S
+
P
D
C2  
0.01μF  
R
G
75Ω CABLE  
V
75Ω  
OUT  
U1  
V′  
V
75Ω  
IN  
Figure 45. Video Amplifier  
Rev. C | Page 15 of 20  
 
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
OUTLINE DIMENSIONS  
2.90 BSC  
6
1
5
2
4
3
2.80 BSC  
1.60 BSC  
PIN 1  
INDICATOR  
0.95 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
10°  
4°  
0°  
0.60  
0.45  
0.30  
0.50  
0.30  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178-AB  
Figure 46. 6-Lead Small Outline Transistor Package [SOT-23]  
(RJ-6)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.20  
0.09  
1.20  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 47. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
Rev. C | Page 16 of 20  
 
ADA4851-1/ADA4851-2/ADA4851-4  
3.00  
BSC  
8
1
5
4
4.90  
BSC  
3.00  
BSC  
PIN 1  
0.65 BSC  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 48. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Outline  
RJ-6  
RJ-6  
RJ-6  
RM-8  
RM-8  
RM-8  
RU-14  
RU-14  
RU-14  
Branding  
HHB  
HHB  
HHB  
HSB  
ADA4851-1YRJZ-R21  
ADA4851-1YRJZ-RL1  
ADA4851-1YRJZ-RL71  
ADA4851-2YRMZ1  
ADA4851-2YRMZ-RL1  
ADA4851-2YRMZ-RL71 −40°C to +125°C  
ADA4851-4YRUZ1  
6-Lead Small Outline Transistor Package (SOT-23)  
6-Lead Small Outline Transistor Package (SOT-23)  
6-Lead Small Outline Transistor Package (SOT-23)  
8-Lead Mini Small Outline Package (MSOP)  
8-Lead Mini Small Outline Package (MSOP)  
8-Lead Mini Small Outline Package (MSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
HSB  
HSB  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
ADA4851-4YRUZ-RL1  
ADA4851-4YRUZ-R71  
1 Z = Pb-free part.  
Rev. C | Page 17 of 20  
 
 
ADA4851-1/ADA4851-2/ADA4851-4  
NOTES  
Rev. C | Page 18 of 20  
ADA4851-1/ADA4851-2/ADA4851-4  
NOTES  
Rev. C | Page 19 of 20  
ADA4851-1/ADA4851-2/ADA4851-4  
NOTES  
©2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05143–0−5/05(C)  
Rev. C | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY