ADA4092-4ARUZ [ADI]

Micropower, OVP, Rail-to-Rail Input/Output Operational Amplifier; 微功耗, OVP ,轨到轨输入/输出运算放大器
ADA4092-4ARUZ
型号: ADA4092-4ARUZ
厂家: ADI    ADI
描述:

Micropower, OVP, Rail-to-Rail Input/Output Operational Amplifier
微功耗, OVP ,轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管 PC
文件: 总20页 (文件大小:611K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micropower RRIO Operational Amplifier  
ADA4092-4  
PIN CONFIGURATION  
FEATURES  
Single-supply operation: 2.7 V to 36 V  
Wide input voltage range  
Rail-to-rail output swing  
Low supply current: 200 µA/amplifier  
Wide bandwidth: 1.4 MHz  
High phase margin: 69°  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUTA  
–INA  
+INA  
+V  
OUTD  
–IND  
+IND  
–V  
ADA4092-4  
TOP VIEW  
(Not to Scale)  
+INB  
–INB  
OUTB  
+INC  
–INC  
OUTC  
Slew rate: 0.4 V/µs  
8
Low offset voltage: 1.50 mV maximum  
No phase reversal  
Figure 1. 14-Lead TSSOP (RU-14)  
Overvoltage protection (OVP)  
25 V above/below supply rails at 5 V  
12 V above/below supply rails at 15 V  
APPLICATIONS  
Industrial process control  
Battery-powered instrumentation  
Power supply control and protection  
Telecommunications  
Remote sensors  
Low voltage strain gage amplifiers  
DAC output amplifiers  
GENERAL DESCRIPTION  
The ADA4092-4 quad is a micropower, single-supply, 1.4 MHz  
bandwidth amplifier featuring rail-to-rail inputs and outputs. It  
is guaranteed to operate from a +2.7 V to +30 V single supply as  
well as from 1.35 V to 15 V dual supplies.  
The ADA4092-4 is specified over the extended industrial  
temperature range of −40°C to +125°C. The ADA4092-4 is  
part of the growing selection of 36 V, low power op amps from  
Analog Devices, Inc., see Table 1.  
The ADA4092-4 features a unique input stage that allows the  
input voltage to exceed either supply safely without any phase  
reversal or latch-up; this is called overvoltage protection (OVP).  
The ADA4092-4 is available in the 14–lead TSSOP surface-mount  
package.  
Table 1. Low Power, 36 V Operational Amplifiers  
Applications for these amplifiers include portable telecom-  
munications equipment, power supply control and protection,  
and interface for transducers with wide output ranges. Sensors  
requiring a rail-to-rail input amplifier include Hall effect, piezo-  
electric, and resistive transducers.  
RRIO  
Low  
Family Rail-to-Rail I/O  
Precision  
PJFET  
Noise  
OP1177  
AD8682 OP2177  
AD8684 OP4177  
Single  
Dual  
Quad  
ADA4091-2  
ADA4091-4  
ADA4092-4  
The ability to swing rail-to-rail at both the input and output enables  
designers, for example, to build multistage filters in single-supply  
systems and to maintain high signal-to-noise ratios (SNR).  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADA4092-4  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 15  
Input Stage................................................................................... 15  
Output Stage................................................................................ 15  
Input Overvoltage Protection................................................... 16  
Comparator Operation.............................................................. 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 17  
Applications....................................................................................... 1  
Pin Configuration............................................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
REVISION HISTORY  
5/10—Rev. 0 to Rev. A  
Changes to Data Sheet Title, General Description,  
and Table 1......................................................................................... 1  
4/10—Revision 0: Initial Version  
Rev. A | Page 2 of 20  
 
ADA4092-4  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VSY  
= 1.5 V, V CM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
−1.5  
−2.5  
+0.2  
+1.5  
+2.5  
mV  
mV  
µV/°C  
nA  
nA  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
3
−45  
−60  
−60  
−275  
−4  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
+60  
+275  
+4  
+5  
+75  
+1.5  
Input Offset Current  
IOS  
+1  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−5  
−75  
−1.5  
70  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
VCM = −1.5 V to +1.5 V  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = −1.2 V to +1.2 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = −1.2 V to +1.2 V  
−40°C ≤ TA ≤ +125°C  
85  
68  
Large Signal Voltage Gain  
AVO  
106  
101  
92  
113  
94  
85  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C to +125°C  
1.485  
1.480  
1.470  
1.455  
1.495  
V
V
V
V
1.480  
Output Voltage Low  
VOL  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
Source/sink  
−1.497  
−1.495  
−1.490  
−1.480  
−1.485  
−1.475  
V
V
V
V
mA  
Short-Circuit Limit  
Closed-Loop Impedance  
POWER SUPPLY  
ISC  
ZOUT  
30  
130  
f = 1 MHz, AV = +1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 36 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
98  
90  
112  
165  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
200  
300  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 100 kΩ, CL = 30 pF  
To 0.01%  
0.4  
25  
V/µs  
µs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
1.2  
66  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.8  
30  
µV p-p  
nV/√Hz  
Rev. A | Page 3 of 20  
 
 
 
ADA4092-4  
VSY  
= 5.0 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
−1.5  
−2.5  
+0.2  
+1.5  
+2.5  
mV  
mV  
µV/°C  
nA  
nA  
nA  
nA  
nA  
nA  
V
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
3
−53  
−60  
−80  
−350  
−4  
−7  
−100  
−5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
+80  
+350  
+4  
+7  
+100  
+5  
Input Offset Current  
IOS  
+1  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
IVR  
Common-Mode Rejection Ratio  
CMRR  
VCM = −5.0 V to +5.0 V  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 4.7 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 4.7 V  
−40°C ≤ TA ≤ +125°C  
82  
78  
113  
106  
98  
95  
dB  
dB  
dB  
dB  
dB  
dB  
Large Signal Voltage Gain  
AVO  
117  
100  
90  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
Source/sink  
4.980  
4.975  
4.945  
4.900  
4.990  
V
V
V
V
V
V
V
V
4.960  
Output Voltage Low  
VOL  
−4.997  
−4.990  
−4.990  
−4.980  
−4.980  
−4.975  
Short-Circuit Limit  
Closed-Loop Impedance  
POWER SUPPLY  
ISC  
ZOUT  
20  
90  
mA  
f = 1 MHz, AV = +1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 36 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
98  
90  
112  
180  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
225  
300  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 100 kΩ, CL = 30 pF  
To 0.01%  
0.4  
25  
V/µs  
µs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
1.3  
67  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.8  
30  
µV p-p  
nV/√Hz  
Rev. A | Page 4 of 20  
 
ADA4092-4  
VSY  
= 15.0 V, VCM = 0 V, V O = 0 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
−1.5  
−2.5  
+0.2  
+1.5  
+2.5  
mV  
mV  
µV/°C  
nA  
nA  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
dB  
dB  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
ΔVOS/ΔT  
IB  
3
−50  
−60  
−80  
−500  
−4  
−10  
−140  
−15  
90  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
+80  
+500  
+4  
+10  
+140  
+15  
Input Offset Current  
IOS  
+1  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
IVR  
CMRR  
VCM = −15.0 V to +15.0 V  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 14.7 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 14.7 V  
−40°C ≤ TA ≤ +125°C  
103  
118  
104  
87  
Large Signal Voltage Gain  
AVO  
116  
108  
102  
93  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
Source/sink  
14.970  
14.950  
14.900  
14.800  
14.980  
V
V
V
V
V
V
V
V
mA  
14.915  
Output Voltage Low  
VOL  
−14.985  
−14.970  
−14.980  
−14.965  
−14.950  
−14.940  
Short-Circuit Limit  
Closed-Loop Impedance  
POWER SUPPLY  
ISC  
ZOUT  
20  
68  
f = 1 MHz, AV = +1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 36 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
98  
90  
112  
200  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
250  
350  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 100 kΩ, CL = 30 pF  
To 0.01%  
0.4  
25  
V/µs  
µs  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
GBP  
ΦM  
CS  
1.4  
69  
100  
MHz  
Degrees  
dB  
f = 1 kHz  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.8  
30  
µV p-p  
nV/√Hz  
Voltage Noise Density  
Rev. A | Page 5 of 20  
 
ADA4092-4  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
θJA is specified for the device soldered on a 4-layer JEDEC standard  
printed circuit board (PCB) with zero airflow.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
36 V  
Refer to the Input  
Overvoltage Protection  
section  
Table 6. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
14-Lead TSSOP (RU-14)  
112  
35  
°C/W  
Differential Input Voltage  
VSY  
Input Current  
5 mA  
ESD CAUTION  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 6 of 20  
 
 
 
ADA4092-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
180  
40  
35  
30  
25  
20  
15  
10  
5
ADA4092-4  
= ±1.5V  
ADA4092-4  
= ±1.5V  
160  
140  
120  
100  
80  
V
SY  
= 25°C  
V
SY  
= 25°C  
T
A
T
A
60  
40  
20  
0
0
–2  
–2  
–2  
–1  
0
1
2
3
4
5
6
6
6
7
7
7
8
8
8
TCV (μV/°C)  
OS  
OFFSET VOLTAGE (µV)  
Figure 2. Input Offset Voltage Distribution, 3 V  
Figure 5. TCVOS Distribution, 3 V  
180  
160  
140  
120  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
ADA4092-4  
= ±5V  
ADA4092-4  
V
SY  
= 25°C  
V
= ±5V  
SY  
= 25°C  
T
A
T
A
60  
40  
20  
0
–1  
0
1
2
3
4
5
TCV (μV/°C)  
OS  
OFFSET VOLTAGE (µV)  
Figure 3. Input Offset Voltage Distribution, 10 V  
Figure 6. TCVOS Distribution, 10 V  
180  
160  
140  
120  
100  
80  
70  
60  
50  
40  
30  
20  
10  
0
ADA4092-4  
= ±15V  
ADA4092-4  
V
SY  
= 25°C  
V
= ±15V  
SY  
= 25°C  
T
A
T
A
60  
40  
20  
–1  
0
1
2
3
4
5
TCV (μV/°C)  
OS  
OFFSET VOLTAGE (µV)  
Figure 7. TCVOS Distribution, 30 V  
Figure 4. Input Offset Voltage Distribution, 30 V  
Rev. A | Page 7 of 20  
 
ADA4092-4  
60  
40  
600  
500  
400  
300  
200  
100  
0
ADA4092-4  
= ±1.5V  
V
20  
SY  
T = 25°C  
ADA4092-4  
= ±1.5V  
I
OS  
I
V
B–  
SY  
= 25°C  
T
A
0
–20  
I
B+  
–40  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
V
(V)  
V
(V)  
CM  
CM  
Figure 8. Input Offset Voltage vs. Common-Mode Voltage, 3 V  
Figure 11. Input Bias Current vs. Common-Mode Voltage, 3 V  
600  
500  
400  
60  
ADA4092-4  
40  
V
= ±5V  
SY  
T = 25°C  
20  
0
I
300  
OS  
ADA4092-4  
V
= ±5V  
200  
100  
0
SY  
= 25°C  
T
A
I
B–  
–20  
I
B+  
–40  
–5  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
–4  
–3  
–2  
–1  
0
1
2
3
4
5
V
(V)  
CM  
V
(V)  
CM  
Figure 12. Input Bias Current vs. Common-Mode Voltage, 10 V  
Figure 9. Input Offset Voltage vs. Common-Mode Voltage, 10 V  
60  
600  
500  
40  
ADA4092-4  
400  
I
OS  
V
= ±15V  
SY  
T = 25°C  
20  
0
ADA4092-4  
V
= ±15V  
300  
200  
100  
0
SY  
= 25°C  
T
A
I
B–  
I
B+  
–20  
–40  
–15  
–10  
–05  
0
5
10  
15  
–15  
–10  
–5  
0
5
10  
15  
V
(V)  
V
(V)  
CM  
CM  
Figure 10. Input Offset Voltage vs. Common-Mode Voltage, 30 V  
Figure 13. Input Bias Current vs. Common-Mode Voltage, 30 V  
Rev. A | Page 8 of 20  
 
 
ADA4092-4  
10k  
1k  
100  
10  
1
120  
100  
80  
ADA4092-4  
= ±1.5V  
V
SY  
= 25°C  
PHASE  
T
A
60  
40  
GAIN  
20  
0
V
– V  
OH  
DD  
–20  
–40  
–60  
–80  
V
– V  
SS  
OL  
ADA4092-4  
V
T
= ±1.5V  
SY  
= 25°C  
A
0.001  
0.01  
0.1  
1
10  
100  
100  
100  
1k  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 14. Dropout Voltage vs. Load Current, 3 V  
Figure 17. Open-Loop Gain and Phase vs. Frequency, 3 V  
120  
100  
80  
10k  
1k  
100  
10  
1
ADA4092-4  
V
= ±5V  
SY  
= 25°C  
PHASE  
T
A
60  
40  
GAIN  
20  
0
V
– V  
OH  
DD  
–20  
–40  
–60  
–80  
–100  
V
– V  
SS  
OL  
ADA4092-4  
V
= ±5V  
SY  
= 25°C  
T
A
0.001  
0.01  
0.1  
1
10  
1k  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 15. Dropout Voltage vs. Load Current, 10 V  
Figure 18. Open-Loop Gain and Phase vs. Frequency, 10 V  
10k  
1k  
100  
10  
1
140  
ADA4092-4  
120  
100  
80  
V
= ±15V  
SY  
= 25°C  
T
A
PHASE  
60  
40  
GAIN  
20  
0
V
– V  
OH  
DD  
–20  
–40  
–60  
–80  
V
1
– V  
SS  
OL  
ADA4092-4  
= ±15V  
V
SY  
= 25°C  
T
A
0.001  
0.01  
0.1  
10  
1k  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
Figure 16. Dropout Voltage vs. Load Current, 30 V  
Figure 19. Open-Loop Gain and Phase vs. Frequency, 30 V  
Rev. A | Page 9 of 20  
ADA4092-4  
50  
1k  
100  
10  
ADA4092-4  
ADA4092-4  
GAIN = +100  
V
T
= ±1.5V  
V
T
= ±1.5V  
SY  
= 25°C  
40  
30  
SY  
= 25°C  
A
A
GAIN = +10  
GAIN = +1  
20  
A
A
= +100  
= +10  
V
10  
V
0
1
A
= +1  
V
–10  
–20  
0.1  
10  
100  
1k  
10k  
100k  
z)  
1M  
10M  
10  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
FREQUENCY (H  
FREQUENCY (Hz)  
Figure 20. Closed-Loop Gain vs. Frequency, 3 V  
Figure 23. Closed-Loop Output Impedance vs. Frequency, 3 V  
50  
40  
1k  
ADA4092-4  
ADA4092-4  
GAIN = +100  
V
T
= ±5V  
V
T
= ±5V  
SY  
= 25°C  
SY  
= 25°C  
A
A
100  
10  
1
30  
GAIN = +10  
GAIN = +1  
20  
A = +100  
V
10  
A
= +10  
V
0
A
= +1  
V
–10  
–20  
0.1  
10  
100  
1k  
10k  
100k  
z)  
1M  
10M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (H  
FREQUENCY (Hz)  
Figure 21. Closed-Loop Gain vs. Frequency, 10 V  
Figure 24. Closed-Loop Output Impedance vs. Frequency, 10 V  
50  
40  
1k  
ADA4092-4  
GAIN = +100  
ADA4092-4  
V
= ±15V  
SY  
= 25°C  
V
= ±15V  
SY  
= 25°C  
T
A
T
A
100  
10  
30  
GAIN = +10  
GAIN = +1  
20  
A
= +100  
V
10  
A
= +10  
V
0
1
A
= +1  
–10  
–20  
V
0.1  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
z)  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (H  
Figure 22. Closed-Loop Gain vs. Frequency, 30 V  
Figure 25. Output Impedance vs. Frequency, 30 V  
Rev. A | Page 10 of 20  
ADA4092-4  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
PSRR+  
60  
ADA4092-4  
40  
PSRR–  
V
T
= ±1.5V  
SY  
= 25°C  
A
20  
ADA4092-4  
V
T
= ±1.5V  
SY  
0
= 25°C  
A
–20  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
10M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. PSRR vs. Frequency, 3 V  
Figure 26. CMRR vs. Frequency, 3 V  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PSRR+  
60  
ADA4092-4  
= ±5V  
40  
PSRR–  
V
SY  
= 25°C  
T
A
20  
ADA4092-4  
= ±5V  
V
SY  
0
T
= 25°C  
A
–20  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 30. PSRR vs. Frequency, 10 V  
Figure 27. CMRR vs. Frequency, 10 V  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PSRR+  
60  
ADA4092-4  
= ±15V  
PSRR–  
40  
V
SY  
= 25°C  
T
A
20  
ADA4092-4  
= ±15V  
V
SY  
= 25°C  
0
T
A
–20  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. PSRR vs. Frequency, 30 V  
Figure 28. CMRR vs. Frequency, 30 V  
Rev. A | Page 11 of 20  
ADA4092-4  
2.0  
0.06  
0.04  
0.02  
0
1.5  
1.0  
0.5  
0
ADA4092-4  
–0.5  
–1.0  
V
T
= ±1.5V  
= 25°C  
ADA4092-4  
SY  
–0.02  
V
T
= ±1.5V  
= 25°C  
A
SY  
R
C
= 100kΩ  
= 100pF  
L
L
A
R
C
= 100kΩ  
= 100pF  
L
L
–0.04  
–0.06  
–1.5  
–2.0  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
18  
18  
TIME (µs)  
TIME (µs)  
Figure 32. Large Signal Transient Response, 3 V  
Figure 35. Small Signal Transient Response, 3 V  
6
4
0.06  
0.04  
0.02  
0
2
0
ADA4092-4  
= ±5V  
= 25°C  
= 100kΩ  
= 100pF  
V
T
R
SY  
ADA4092-4  
–2  
–4  
–6  
A
–0.02  
V
= ±5V  
L
L
SY  
C
T
= 25°C  
A
R
C
= 100kΩ  
= 100pF  
L
L
–0.04  
–0.06  
20  
40  
60  
80  
100  
120  
140  
160  
2
4
6
8
10  
12  
14  
16  
TIME (µs)  
TIME (µs)  
Figure 33. Large Signal Transient Response, 10 V  
Figure 36. Small Signal Transient Response, 10 V  
2.0  
0.06  
0.04  
0.02  
0
1.5  
1.0  
0.5  
0
ADA4092-4  
= ±15V  
= 25°C  
= 100kΩ  
= 100pF  
V
T
–0.5  
–1.0  
SY  
ADA4092-4  
–0.02  
A
V
= ±15V  
SY  
R
C
L
L
T
= 25°C  
A
R
C
= 100kΩ  
= 100pF  
L
L
–0.04  
–0.06  
–1.5  
–2.0  
40  
80  
120  
160  
200  
2
4
6
8
10  
12  
14  
16  
TIME (µs)  
TIME (µs)  
Figure 34. Large Signal Transient Response, 30 V  
Figure 37. Small Signal Transient Response, 30 V  
Rev. A | Page 12 of 20  
ADA4092-4  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
–1.6  
ADA4092-4  
ADA4092-4  
V
T
= ±1.5V  
V
T
= ±1.5V  
SY  
= 25°C  
SY  
= 25°C  
A
A
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
TIME (µs)  
60  
70  
80  
90  
100  
TIME (µs)  
Figure 38. Positive Overload Recovery, 3 V  
Figure 41. Negative Overload Recovery, 3 V  
6
5
4
3
2
1
0
0
–1  
–2  
–3  
–4  
–5  
–6  
ADA4092-4  
ADA4092-4  
V
T
= ±5V  
V
T
= ±5V  
SY  
= 25°C  
SY  
= 25°C  
A
A
–1  
0
10  
20  
30  
40  
TIME (µs)  
50  
60  
70  
90  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
TIME (µs)  
Figure 39. Positive Overload Recovery, 10 V  
Figure 42. Negative Overload Recovery, 10 V  
0
–2  
16  
14  
12  
10  
8
–4  
–6  
–8  
ADA4092-4  
ADA4092-4  
6
V
T
= ±15V  
V
T
= ±15V  
SY  
= 25°C  
SY  
= 25°C  
A
–10  
–12  
–14  
–16  
A
4
2
0
–2  
0
10  
20  
30  
40  
TIME (µs)  
50  
60  
70  
80  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
TIME (µs)  
Figure 40. Positive Overload Recovery, 30 V  
Figure 43. Negative Overload Recovery, 30 V  
Rev. A | Page 13 of 20  
ADA4092-4  
0.5  
1000  
100  
10  
ADA4092-4  
= ±15V  
ADA4092-4  
= ±15V  
V
0.4  
SY  
V
SY  
T = 25°C  
T
= 25°C  
A
0.3  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
1
2
3
4
5
6
7
8
9
10  
0.01  
0.10  
1
10  
100  
1000  
TIME (µs)  
FREQUENCY (Hz)  
Figure 44. Peak-to-Peak Voltage Noise  
Figure 46. Voltage Noise Density  
200  
180  
160  
140  
120  
100  
80  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
ADA4092-4  
60  
T
= 25°C  
A
ADA4092-4  
40  
V
T
= ±1.5V, ±5V, ±15V  
= 25°C  
SY  
A
20  
0
0
4
8
12  
16  
20  
(V)  
24  
28  
32  
36  
20  
100  
1k  
10k  
50k  
V
FREQUENCY (Hz)  
SUPPLY  
Figure 47. Channel Separation vs. Frequency  
Figure 45. Supply Current vs. Supply Voltage  
Rev. A | Page 14 of 20  
ADA4092-4  
THEORY OF OPERATION  
A common practice in bipolar amplifiers to protect the input  
transistors from large differential voltages is to include series  
resistors and differential diodes. See Figure 49 for the full input  
protection circuitry. These diodes turn on whenever the differential  
voltage exceeds approximately 0.6 V. In this condition, current  
flows between the input pins, limited only by the two 5 kΩ  
resistors. Evaluate each application carefully to make sure that  
the increase in current does not affect performance.  
The ADA4092-4 is a single-supply, micropower amplifier  
featuring rail-to-rail inputs and outputs. To achieve wide input  
and output ranges, these amplifiers employ unique input and  
output stages.  
INPUT STAGE  
In Figure 48, the input stage comprises two differential pairs, a  
PNP pair (PNP input stage) and an NPN pair (NPN input stage).  
These input stages do not work in parallel. Instead, only one  
stage is on for any given input common-mode signal level. The  
PNP stage (Transistor Q1 and Transistor Q2) is required to ensure  
that the amplifier remains in the linear region when the input  
voltage approaches and reaches the negative rail. Alternatively,  
the NPN stage (Transistor Q5 and Transistor Q6) is needed for  
input voltages up to, and including, the positive rail.  
OUTPUT STAGE  
The output stage in the ADA4092-4 device uses a PNP and an  
NPN transistor, as do most output stages. However, Q32 and  
Q33, the output transistors, connect with their collectors to an  
output pin to achieve the rail-to-rail output swing.  
As the output voltage approaches either the positive or the  
negative rail, these transistors begin to saturate. Thus, the final  
limit on output voltage is the saturation voltage of these transistors,  
which is about 50 mV. The output stage has inherent gain arising  
from the transistor output impedance, as well as any external load  
impedance; consequently, the open-loop gain of the op amp is  
dependent on the load resistance and decreases when the output  
voltage is close to either rail.  
For the majority of the input common-mode range, the PNP  
stage is active, as shown in Figure 8 through Figure 13. Notice  
that the VOS shifts and that the bias current switches direction at  
approximately 1.5 V below the positive rail. At voltages below this  
level, the bias current flows out of the ADA4092-4 input, from  
the PNP input stage. However, above this voltage, the bias  
current enters the device due to the NPN stage. The actual  
mechanism within the amplifier for switching between the input  
stages comprises Q3, Q4, and Q7. As the input common-mode  
voltage increases, the emitters of Q1 and Q2 follow that voltage  
plus a diode drop. Eventually, the emitters of Q1 and Q2 are  
high enough to turn on Q3, which diverts the tail current away  
from the PNP input stage, turning it off. The tail current of the  
PNP pair is diverted to the Q4/Q7 current mirror to activate the  
NPN input stage, as shown in Figure 48.  
–IN  
Q32  
Q3  
Q16  
Q17  
Q5 Q6  
+IN  
Q1 Q2  
Q8  
Q10  
Q11  
Q12  
Q14  
Q15  
OUT  
Q9  
Q13  
Q18  
Q19  
Q33  
Q4  
Q7  
Figure 48. Simplified Schematic Without Input Protection (See Figure 49)  
Rev. A | Page 15 of 20  
 
 
 
 
ADA4092-4  
INPUT OVERVOLTAGE PROTECTION  
The ADA4092-4 has two different ESD circuits for enhanced  
protection, as shown in Figure 49.  
Therefore, consider two conditions to determine which case is  
the limiting factor.  
1. Consider, for example, that when operating on 15 V, the  
inputs can go +42 V above the negative supply rail. With  
the −V pin equal to −15 V, +42 V above this supply (the  
negative supply) is +27 V.  
2. There is a restriction on the input current of 5 mA through  
a 5 kΩ resistor to the ESD structure to the positive rail. In  
the first condition, +27 V through the 5 kΩ resistor to +15 V  
gives a current of 2.4 mA. Thus, the DIAC is the limiting  
factor. If the ADA4092-4 supply voltages are changed to 5 V,  
then −5 V + 42 V = +37 V. However, +5 V + (5 kΩ × 5 mA) =  
30 V. Thus, the normal resistor diode structure is the  
limitation when running on lower supply voltages.  
+V  
D3  
D1  
D2  
R1  
D4  
D7  
D5  
D6  
R2  
D8  
–V  
Additional resistance can be added externally in series with  
each input to protect against higher peak voltages; however, the  
additional thermal noise of the resistors must be considered.  
The flatband voltage noise of the ADA4092-4 is approximately  
25 nV/√Hz, and a 5 kΩ resistor has a noise of 9 nV/√Hz. Adding  
an additional 5 kΩ resistor increases the total noise by less than  
15% root sum square (rss). Therefore, maintain resistor values  
below this value (5 kΩ) when overall noise performance is critical.  
Figure 49. Complete Input Protection Network  
One circuit is a series resistor of 5 kΩ to the internal inputs and  
diodes (D1 and D2 or D5 and D6) from the internal inputs to the  
supply rails. The other protection circuit is a circuit with two  
DIACs (D3 and D4 or D7 and D8) to the supply rails. A DIAC  
can be considered a bidirectional Zener diode with a transfer  
characteristic, as shown in Figure 50.  
Note that this represents input protection under abnormal  
conditions only. The correct amplifier operation input voltage  
range (IVR) is specified in Table 2, Table 3, and Table 4.  
COMPARATOR OPERATION  
Although op amps are quite different from comparators,  
occasionally an unused section of a dual or a quad op amp  
can be pressed into service as a comparator; however, this is not  
recommended. For rail-to-rail output op amps, the output stage  
is generally a ratioed current mirror with bipolar or MOSFET  
transistors. With the part operating open loop, the second stage  
increases the current drive to the ratioed mirror to close the loop,  
but it cannot, which results in an increase in supply current. With  
three of the op amps operating normally and the fourth one in  
comparator mode, the supply current increases by about 200 µA  
(see Figure 51).  
5
4
3
2
1
0
–1  
–2  
–3  
1000  
ONE COMPARATOR, V  
OUT  
HIGH  
900  
800  
700  
600  
500  
400  
300  
200  
100  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
VOLTAGE (V)  
ONE COMPARATOR, V  
NORMAL OPERATION  
LOW  
OUT  
Figure 50. DIAC Transfer Characteristic  
For a worst-case design analysis, consider two cases. The  
ADA4092-4 has a normal ESD structure from the internal op  
amp inputs to the supply rails. In addition, it has 42 V DIACs  
from the external inputs to the rails, as shown in Figure 48.  
0
0
4
8
12  
16  
V
20  
(V)  
24  
28  
32  
36  
SY  
Figure 51. Comparator Supply Current  
Rev. A | Page 16 of 20  
 
 
 
 
 
ADA4092-4  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
0.20  
0.09  
MAX  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 52. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RU-14  
RU-14  
ADA4092-4ARUZ  
ADA4092-4ARUZ-RL  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
1 Z = RoHS Compliant Part.  
Rev. A | Page 17 of 20  
 
 
ADA4092-4  
NOTES  
Rev. A | Page 18 of 20  
 
ADA4092-4  
NOTES  
Rev. A | Page 19 of 20  
ADA4092-4  
NOTES  
©2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08803-0-5/10(A)  
Rev. A | Page 20 of 20  

相关型号:

ADA4092-4ARUZ-RL

Micropower, OVP, Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4096-2

36V, Micropower, Overvoltage Protection, Rail-to-Rail I/O Amplifiers
ADI

ADA4096-2ACPZ

DUAL OP-AMP, 500uV OFFSET-MAX, 0.595MHz BAND WIDTH, PDSO8
ADI

ADA4096-2ACPZ-R7

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2ACPZ-RL

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2ARMZ

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2ARMZ-R7

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2ARMZ-RL

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2WARMZ-R7

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2WARMZ-RL

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2_1107

30 V, Micropower, Overvoltage Protection, Rail-to-Rail Input/Output Amplifier
ADI

ADA4096-2_12

30 V, Micropower, Overvoltage Protection
ADI