ADA4091-4ARUZ-RL [ADI]

Precision Micropower, OVP, RRIO Operational Amplifier; 精密微功耗, OVP , RRIO运算放大器
ADA4091-4ARUZ-RL
型号: ADA4091-4ARUZ-RL
厂家: ADI    ADI
描述:

Precision Micropower, OVP, RRIO Operational Amplifier
精密微功耗, OVP , RRIO运算放大器

运算放大器
文件: 总20页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Micropower, OVP, RRIO  
Operational Amplifier  
ADA4091-2/ADA4091-4  
FEATURES  
PIN CONFIGURATIONS  
Single-supply operation: 2.7 V to 36 V  
Wide input voltage range  
Rail-to-rail output swing  
Low supply current: 200 µA/amplifier  
Wide bandwidth: 1.2 MHz  
OUTA  
–INA  
+INA  
–V  
1
2
3
4
8
7
6
5
+V  
OUTB  
–INB  
+INB  
ADA4091-2  
TOP VIEW  
(Not to Scale)  
Figure 1. 8-Lead, Narrow-Body SOIC (R-8)  
Slew rate: 0.46 V/µs  
OUTA  
–INA  
+INA  
–V  
1
2
3
4
8
7
6
5
+V  
Low offset voltage: 250 µV maximum  
No phase reversal  
Overvoltage protection (OVP)  
25 V above/below supply rails at 5 V  
12 V above/below supply rails at 15 V  
OUTB  
–INB  
+INB  
ADA4091-2  
TOP VIEW  
(Not to Scale)  
NOTES  
1. IT IS RECOMMENDED TO CONNECT THE  
EXPOSED PAD TO V–.  
APPLICATIONS  
Figure 2. 8-Lead LFCSP (CP-8-9)  
Industrial process control  
Battery-powered instrumentation  
Power supply control and protection  
Telecommunications  
Remote sensors  
Low voltage strain gage amplifiers  
DAC output amplifiers  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OUTA  
–INA  
+INA  
+V  
OUTD  
–IND  
+IND  
–V  
ADA4091-4  
TOP VIEW  
(Not to Scale)  
+INB  
–INB  
OUTB  
+INC  
–INC  
OUTC  
8
Figure 3. 14-Lead TSSOP (RU-14)  
GENERAL DESCRIPTION  
The ADA4091-2 dual and ADA4091-4 quad are micropower,  
single-supply, 1.2 MHz bandwidth amplifiers featuring rail-to-  
rail inputs and outputs. They are guaranteed to operate from a  
+2.7 V to +30 V single supply as well as from 1.35 V to 15 V  
dual supplies.  
–INA  
+INA  
V+  
1
2
3
4
12 –IND  
11 +IND  
10 V–  
ADA4091-4  
TOP  
VIEW  
9
+INC  
+INB  
The ADA4091 family features a unique input stage that allows  
the input voltage to exceed either supply safely without any phase  
reversal or latch-up; this is called overvoltage protection, or OVP.  
Applications for these amplifiers include portable telecom-  
munications equipment, power supply control and protection,  
and interface for transducers with wide output ranges. Sensors  
requiring a rail-to-rail input amplifier include Hall effect, piezo-  
electric, and resistive transducers.  
NOTES  
1. NC = NO CONNECT.  
2. IT IS RECOMMENDED TO CONNECT THE  
EXPOSED PAD TO V–.  
Figure 4. 16-Lead LFCSP (CP-16-17)  
The ADA4091-2 is available in 8-lead, plastic SOIC and 8-lead  
LFCSP packages. The ADA4091-4 is available in 14–lead TSSOP  
and 16-lead LFCSP surface-mount packages.  
The ability to swing rail-to-rail at both the input and output enables  
designers, for example, to build multistage filters in single-supply  
systems and to maintain high signal-to-noise ratios (SNR).  
Table 1. Low Power, 36 V Operational Amplifiers  
The ADA4091 family is specified over the extended industrial  
temperature range of −40°C to +125°C. The ADA4091 family is  
part of the growing selection of 36 V, low power op amps from  
Analog Devices, Inc., (see Table 1).  
Family  
Single  
Dual  
Rail-to-Rail I/O  
PJFET  
Low Noise  
OP1177  
OP2177  
OP4177  
ADA4091-2  
ADA4091-4  
AD8682  
AD8684  
Quad  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2008–2010 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
ADA4091-2/ADA4091-4  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................6  
Typical Performance Characteristics ..............................................7  
Theory of Operation ...................................................................... 14  
Input Stage................................................................................... 14  
Output Stage................................................................................ 14  
Input Overvoltage Protection................................................... 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Pin Configurations ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
REVISION HISTORY  
5/10—Rev. D. to Rev. E  
7/09—Rev. 0 to Rev. A  
Changes to Data Sheet Title ............................................................ 1  
Changes to Table 2, Input Characteristics, Offset Voltage.......... 3  
Changes to Table 3, Input Characteristics, Offset Voltage.......... 4  
Changes to Table 4, Input Characteristics, Offset Voltage.......... 5  
Changes to Data Sheet Title .............................................................1  
Changes to Features ..........................................................................1  
Changes to Table 2.............................................................................3  
Changes to Table 3.............................................................................4  
Changes to Table 4.............................................................................5  
Added Input Current Parameter, Table 5.......................................6  
Added New Figure 12 and Figure 13, Renumbered  
Sequentially ........................................................................................8  
Added New Figure 24 and Figure 25 ........................................... 10  
Added New Figure 36 and Figure 37 ........................................... 12  
Added New Figure 43 .................................................................... 13  
Changes to Input Overvoltage Protection Section..................... 15  
Changes to Ordering Guide.......................................................... 16  
4/10—Rev. C to Rev. D  
Changes to Table 2, Added LFCSP to Input Characteristics ...... 3  
Changes to Table 3, Added LFCSP to Input Characteristics ...... 4  
Changes to Table 4, Added LFCSP to Input Characteristics ...... 5  
10/09—Rev. B to Rev. C  
Added 8-Lead LFCSP and 16-Lead LFCSP.....................Universal  
Change to Features Section ............................................................. 1  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 18  
10/08—Revision 0: Initial Version  
7/09—Rev. A to Rev. B  
Added New Part ADA4091-4 ...........................................Universal  
Changes to Features Section, General Description Section, and  
Figure 4 .............................................................................................. 1  
Added Figure 2, Renumbered Sequentially .................................. 1  
Changes to Table 1............................................................................ 1  
Changes to Table 2............................................................................ 3  
Changes to Table 3............................................................................ 4  
Changes to Table 4............................................................................ 5  
Changes to Table 5............................................................................ 6  
Changes to Table 6............................................................................ 6  
Updated Outline Dimensions....................................................... 16  
Changes to Ordering Guide .......................................................... 16  
Rev. E | Page 2 of 20  
 
ADA4091-2/ADA4091-4  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VSY  
= 1.5 V, V CM = 0.0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
−250  
−400  
−600  
−40  
−40  
+250  
+400  
+600  
µV  
µV  
µV  
µV/°C  
nA  
nA  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
dB  
dB  
ADA4091-4 LFCSP package  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
2.5  
−44  
−55  
−55  
−275  
−3  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
+55  
+275  
+3  
+5  
+75  
+1.5  
Input Offset Current  
IOS  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
−5  
−75  
−1.5  
84  
Input Voltage Range  
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = −1.35 V to +1.35 V  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = −1.2 V to +1.2 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = −1.2 V to +1.2 V  
−40°C ≤ TA ≤ +125°C  
100  
113  
94  
78  
Large Signal Voltage Gain  
106  
101  
92  
85  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C to +125°C  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
Source/sink  
1.490  
1.490  
1.475  
1.455  
1.495  
V
V
V
V
V
V
V
V
1.485  
Output Voltage Low  
VOL  
−1.499  
−1.495  
−1.495  
−1.495  
−1.490  
−1.490  
Short-Circuit Limit  
Open-Loop Impedance  
POWER SUPPLY  
ISC  
ZOUT  
31  
102  
mA  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 36 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
108  
100  
126  
165  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
200  
300  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 100 kΩ, CL = 30 pF  
To 0.01%  
0.46  
22  
V/µs  
µs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
1.22  
69  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.8  
24  
µV p-p  
nV/√Hz  
Rev. E | Page 3 of 20  
 
 
 
ADA4091-2/ADA4091-4  
VSY  
= 5.0 V, VCM = 0.0 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
−250  
−400  
−600  
−45  
−40  
+250  
+400  
+600  
µV  
µV  
µV  
µV/°C  
nA  
nA  
nA  
nA  
nA  
nA  
V
ADA4091-4 LFCSP package  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
2.5  
−50  
−60  
−80  
−350  
−3  
−7  
−100  
−5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
+80  
+350  
+3  
+7  
+100  
+5  
Input Offset Current  
IOS  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = −4.85 V to +4.85 V  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 4.7 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 4.7 V  
−40°C ≤ TA ≤ +125°C  
95  
88  
113  
106  
98  
113  
117  
100  
dB  
dB  
dB  
dB  
dB  
dB  
Large Signal Voltage Gain  
90  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
Source/sink  
4.980  
4.980  
4.950  
4.900  
4.990  
V
V
V
V
V
V
V
V
4.960  
Output Voltage Low  
VOL  
−4.998  
−4.990  
−4.990  
−4.980  
−4.980  
−4.975  
Short-Circuit Limit  
Open-Loop Impedance  
POWER SUPPLY  
ISC  
ZOUT  
20  
77  
mA  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 36 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
108  
100  
126  
180  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
225  
300  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 100 kΩ, CL = 30 pF  
To 0.01%  
0.46  
22  
V/µs  
µs  
Gain Bandwidth Product  
Phase Margin  
GBP  
ΦM  
1.22  
70  
MHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.8  
24  
µV p-p  
nV/√Hz  
Rev. E | Page 4 of 20  
 
ADA4091-2/ADA4091-4  
VSY  
= 15.0 V, VCM = 0.0 V, VO = 0.0 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
−250  
−400  
−600  
−35  
−40  
+250  
+400  
+600  
µV  
µV  
µV  
µV/°C  
nA  
nA  
nA  
nA  
nA  
nA  
V
dB  
dB  
dB  
dB  
dB  
dB  
ADA4091-4 LFCSP package  
−40°C ≤ TA ≤ +125°C  
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
3.0  
−50  
−60  
−80  
−510  
−3  
−10  
−140  
−15  
104  
95  
116  
108  
102  
93  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
+80  
+510  
+3  
+10  
+140  
+15  
Input Offset Current  
IOS  
0.5  
−40°C ≤ TA ≤ +85°C  
−40°C ≤ TA ≤ +125°C  
Input Voltage Range  
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = −14.85 V to +14.85 V  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ, VO = 14.7 V  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ, VO = 14.7 V  
−40°C ≤ TA ≤ +125°C  
121  
119  
104  
Large Signal Voltage Gain  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 100 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
RL = 10 kΩ to GND  
−40°C ≤ TA ≤ +125°C  
Source/sink  
14.975  
14.950  
14.900  
14.800  
14.980  
14.920  
V
V
V
V
V
V
V
V
Output Voltage Low  
VOL  
−14.996 −14.990  
−14.985  
−14.975 −14.950  
−14.940  
Short-Circuit Limit  
Open-Loop Impedance  
POWER SUPPLY  
ISC  
ZOUT  
20  
71  
mA  
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
PSRR  
ISY  
VSY = 2.7 V to 36 V  
−40°C ≤ TA ≤ +125°C  
IO = 0 mA  
108  
100  
126  
dB  
dB  
µA  
µA  
Supply Current per Amplifier  
200  
250  
350  
−40°C ≤ TA ≤ +125°C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
SR  
tS  
RL = 100 kΩ, CL = 30 pF  
To 0.01%  
0.46  
22  
V/µs  
µs  
Gain Bandwidth Product  
Phase Margin  
Channel Separation  
NOISE PERFORMANCE  
Voltage Noise  
GBP  
ΦM  
CS  
1.27  
72  
100  
MHz  
Degrees  
dB  
f = 1 kHz  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
0.8  
25  
µV p-p  
nV/√Hz  
Voltage Noise Density  
Rev. E | Page 5 of 20  
 
ADA4091-2/ADA4091-4  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
THERMAL RESISTANCE  
θJA is specified for the device soldered on a 4-layer JEDEC standard  
PCB with zero airflow. The exposed pad is soldered to the  
application board.  
Parameter  
Supply Voltage  
Input Voltage  
Rating  
36 V  
Refer to the Input  
Overvoltage Protection  
section  
VSY  
5 mA  
Indefinite  
−65°C to +150°C  
−40°C to +125°C  
−65°C to +150°C  
300°C  
Table 6. Thermal Resistance  
Package Type  
θJA  
155  
112  
75  
θJC  
45  
35  
12  
14  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Differential Input Voltage1  
Input Current  
8-Lead SOIC (R-8)  
14-Lead TSSOP (RU-14)  
8-Lead LFCSP (CP-8-9)  
16-Lead LFCSP (CP-16-17)  
Output Short-Circuit Duration to GND  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering, 60 sec)  
1 Input current should be limited to 5 mA.  
55  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. E | Page 6 of 20  
 
 
 
ADA4091-2/ADA4091-4  
TYPICAL PERFORMANCE CHARACTERISTICS  
200  
10,000  
1000  
100  
10  
ADA4091-2  
T
= 25°C  
180  
160  
140  
120  
100  
80  
A
V
= ±1.5V  
SY  
V
– V  
OH  
DD  
60  
V
– V  
SS  
OL  
40  
1
20  
ADA4091-2  
= ±1.5V  
V
SY  
0
0.1  
0.001  
–250 –200 –150 –100 –50  
0
50 100 150 200 250  
0.01  
0.1  
1
10  
100  
V
(µV)  
LOAD CURRENT (mA)  
OS  
Figure 5. Input Offset Voltage Distribution  
Figure 8. Dropout Voltage vs. Load Current  
300  
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
ADA4091-2  
PHASE  
–40°C ≤ T ≤ +125°C  
A
V
= ±1.5V  
SY  
GAIN  
ADA4091-2  
V
= ±1.5V  
SY  
R
C
= 1MΩ  
= 35pF  
L
L
0
–20  
1k  
–20  
10M  
–1  
0
1
2
3
4
5
6
7
8
10k  
100k  
1M  
TCV (µV/°C)  
OS  
FREQUENCY (Hz)  
Figure 6. TCVOS Distribution  
Figure 9. Open-Loop Gain and Phase vs. Frequency  
350  
300  
250  
200  
150  
100  
50  
50  
ADA4091-2  
= ±1.5V  
V
SY  
A
= 100  
= 10  
= 1  
V
40  
30  
20  
10  
0
+125°C  
A
V
+85°C  
A
V
0
–50  
–100  
–150  
ADA4091-2  
–10  
–20  
V
= ±1.5V  
= 1MΩ  
SY  
+25°C  
0
R
C
L
L
–40°C  
–1.0  
= 35pF  
–1.5  
–0.5  
0.5  
1.0  
1.5  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
(V)  
FREQUENCY (Hz)  
CM  
Figure 7. Input Bias Current vs. Common-Mode Voltage  
Figure 10. Closed-Loop Gain vs. Frequency  
Rev. E | Page 7 of 20  
 
 
ADA4091-2/ADA4091-4  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1k  
100  
A
= 100  
V
10  
1
A
= 10  
V
A
= 1  
V
ADA4091-2  
ADA4091-2  
V
V
= ±1.5V  
= 2.8V p-p  
= 100kΩ  
SY  
IN  
L
T
= 25°C  
A
R
V
= ±1.5V  
SY  
0.1  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. Output Impedance vs. Frequency  
Figure 14. Output Swing vs. Frequency  
2.0  
1.5  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.5  
0
ADA4091-2  
V
= ±1.5V  
SY  
–0.5  
–1.0  
–1.5  
–2.0  
T
= 25°C  
= 100kΩ  
= 100pF  
= +1  
A
R
C
A
L
L
V
ADA4091-2  
= 25°C  
T
A
V
= ±1.5V  
SY  
–0.2  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
TIME (µs)  
TIME (µs)  
Figure 12. Large Signal Transient Response  
Figure 15. Positive Overload Recovery  
0.06  
0.04  
0.02  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
ADA4091-2  
V
= ±1.5V  
SY  
T
= 25°C  
= 100kΩ  
= 100pF  
= +1  
A
–0.02  
–0.04  
–0.06  
–0.08  
R
C
A
L
L
V
–1.0  
–1.2  
–1.4  
–1.6  
ADA4091-2  
= 25°C  
T
A
V
= ±1.5V  
SY  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
TIME (µs)  
TIME (µs)  
Figure 16. Negative Overload Recovery  
Figure 13. Small Signal Transient Response  
Rev. E | Page 8 of 20  
ADA4091-2/ADA4091-4  
225  
200  
175  
150  
125  
100  
75  
0.06  
0.04  
0.02  
0
ADA4091-2  
T
= 25°C  
= ±5V  
A
V
SY  
ADA4091-2  
V
= ±5V  
SY  
T
= 25°C  
= 100kΩ  
= 100pF  
= +1  
A
R
C
A
L
L
V
–0.02  
–0.04  
–0.06  
–0.08  
50  
25  
0
–250 –200 –150 –100 –50  
0
50 100 150 200 250  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
V
(µV)  
TIME (µs)  
OS  
Figure 17. Input Offset Voltage Distribution  
Figure 20. Small Signal Transient Response  
400  
350  
300  
250  
200  
150  
100  
50  
500  
400  
300  
200  
100  
0
ADA4091-2  
= ±5V  
ADA4091-2  
V
–40°C ≤ T ≤ +125°C  
SY  
A
V
= ±5V  
SY  
+125°C  
+85°C  
+25°C  
–100  
–200  
–40°C  
0
–1  
0
1
2
3
4
5
6
7
8
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
TCV (µV/°C)  
OS  
V
(V)  
CM  
Figure 18. TCVOS Distribution  
Figure 21. Input Bias Current vs. Common-Mode Voltage  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
6
4
PHASE  
2
GAIN  
0
ADA4091-2  
V
= ±5V  
SY  
T
= 25°C  
= 100kΩ  
= 100pF  
= +1  
A
R
C
A
L
L
V
–2  
–4  
–6  
ADA4091-2  
V
= ±5V  
= 1MΩ  
= 35pF  
SY  
R
C
L
L
–20  
1k  
–20  
10M  
10k  
100k  
1M  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
TIME (µs)  
FREQUENCY (Hz)  
Figure 19. Large Signal Transient Response  
Figure 22. Open-Loop Gain and Phase vs. Frequency  
Rev. E | Page 9 of 20  
 
ADA4091-2/ADA4091-4  
50  
40  
1k  
A
= 100  
= 10  
= 1  
V
100  
30  
A
V
20  
A
= 100  
= 10  
V
10  
1
10  
A
V
A
A
V
0
ADA4091-2  
–10  
–20  
ADA4091-2  
= 25°C  
V
R
C
= ±5V  
= 1MΩ  
= 35pF  
SY  
= 1  
V
T
L
L
A
V
= ±5V  
SY  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 26. Closed-Loop Gain vs. Frequency  
Figure 23. Output Impedance vs. Frequency  
6
5
10  
9
8
7
6
5
4
3
2
1
0
4
3
2
ADA4091-2  
1
0
ADA4091-2  
= 25°C  
V
= ±5V  
SY  
IN  
L
T
V
R
= 9.8V p-p  
A
= 100kΩ  
V
= ±5V  
SY  
100  
1k  
10k  
100k  
1M  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
TIME (µs)  
FREQUENCY (Hz)  
Figure 24. Output Voltage Swing vs. Frequency  
Figure 27. Positive Overload Recovery  
10,000  
1000  
100  
10  
1
0
–1  
–2  
V
– V  
OH  
DD  
V
– V  
SS  
OL  
–3  
–4  
–5  
1
ADA4091-2  
= 25°C  
T
A
ADA4091-2  
= ±5V  
V
= ±5V  
SY  
V
SY  
–6  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (µs)  
LOAD CURRENT (mA)  
Figure 28. Negative Overload Recovery  
Figure 25. Dropout Voltage vs. Load Current  
Rev. E | Page 10 of 20  
ADA4091-2/ADA4091-4  
250  
200  
150  
100  
50  
100  
80  
60  
40  
20  
0
100  
ADA4091-2  
= 25°C  
SY  
PHASE  
T
A
V
= ±15V  
80  
60  
40  
20  
0
GAIN  
ADA4091-2  
V
= ±15V  
= 1MΩ  
= 35pF  
SY  
R
C
L
L
0
–20  
1k  
–20  
10M  
–250 –200 –150 –100 –50  
0
50 100 150 200 250  
10k  
100k  
FREQUENCY (Hz)  
1M  
V
(µV)  
OS  
Figure 29. Input Offset Voltage Distribution  
Figure 32. Open-Loop Gain and Phase vs. Frequency  
350  
300  
250  
200  
150  
100  
50  
20  
15  
ADA4091-2  
–40°C ≤ T ≤ +125°C  
A
V
= ±15V  
SY  
10  
5
ADA4091-2  
0
V
= ±15V  
SY  
T
= 25°C  
= 100kΩ  
= 100pF  
= +1  
A
R
C
A
–5  
L
L
V
–10  
–15  
–20  
0
–25  
0
25  
50  
75  
100  
125  
150  
175  
200  
–1  
0
1
2
3
4
5
6
7
8
TIME (µs)  
TCV (µV/°C)  
OS  
Figure 30. TCVOS Distribution  
Figure 33. Large Signal Transient Response  
700  
600  
500  
400  
300  
200  
100  
0
0.06  
0.04  
0.02  
0
ADA4091-2  
= ±15V  
V
SY  
+125°C  
ADA4091-2  
V
= ±15V  
SY  
T
= 25°C  
= 100kΩ  
= 100pF  
= +1  
A
R
C
A
L
L
V
–0.02  
–0.04  
–0.06  
–0.08  
+85°C  
+25°C  
–100  
–200  
–300  
–40°C  
–15  
–10  
–5  
0
5
10  
15  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20  
V
(V)  
TIME (µs)  
CM  
Figure 31. Input Bias Current vs. Common-Mode Voltage  
Figure 34. Small Signal Transient Response  
Rev. E | Page 11 of 20  
 
ADA4091-2/ADA4091-4  
35  
30  
25  
20  
15  
50  
40  
A
= 100  
= 10  
= 1  
V
30  
A
V
20  
10  
A
V
0
10  
–10  
–20  
–30  
ADA4091-2  
ADA4091-2  
5
V
V
= ±15V  
V
= ±15V  
= 1MΩ  
= 35pF  
SY  
IN  
SY  
L
L
= 29.8V p-p  
= 100kΩ  
R
C
R
L
0
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35. Output Voltage Swing vs. Frequency  
Figure 38. Closed-Loop Gain vs. Frequency  
10,000  
1000  
100  
10  
16  
14  
12  
10  
8
V
– V  
OH  
DD  
V
– V  
SS  
OL  
6
4
2
1
ADA4091-2  
0
T
= 25°C  
= ±15V  
ADA4091-2  
= ±15V  
A
V
V
SY  
SY  
0.1  
0.001  
–2  
0.01  
0.1  
1
10  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
LOAD CURRENT (mA)  
TIME (µs)  
Figure 36. Dropout Voltage vs. Load Current  
Figure 39. Positive Overload Recovery  
1k  
2
0
–2  
100  
10  
1
–4  
–6  
A
= 100  
= 10  
V
–8  
–10  
–12  
–14  
–16  
A
V
ADA4091-2  
ADA4091-2  
= 25°C  
A
= 1  
V
T
V
= 25°C  
= ±15V  
T
A
A
V
= ±15V  
SY  
SY  
0.1  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
10  
20  
30  
40  
50  
60  
70  
80  
TIME (µs)  
FREQUENCY (Hz)  
Figure 40. Negative Overload Recovery  
Figure 37. Output Impedance vs. Frequency  
Rev. E | Page 12 of 20  
ADA4091-2/ADA4091-4  
100  
80  
60  
40  
20  
0
0.5  
0.4  
ADA4091-2  
V
= ±1.5V, ±5V, ±15V  
SY  
0.3  
0.2  
0.1  
PSRR+  
PSRR–  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
ADA4091-2  
= ±15V  
V
SY  
–20  
100  
1k  
10k  
100k  
1M  
10M  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (Seconds)  
Figure 44. PSRR vs. Frequency  
Figure 41.Peak-to-Peak Voltage Noise  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
–60  
–70  
ADA4091-2  
= 25°C  
ADA4091-2  
= ±15V  
T
V
A
SY  
–80  
–90  
–100  
–110  
–120  
–130  
0
0
5
10  
15  
20  
25  
30  
35  
10  
100  
1k  
10k  
100k  
V
(V)  
FREQUENCY (Hz)  
SY  
Figure 42. Channel Separation vs. Frequency  
Figure 45. Supply Current vs. Supply Voltage  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1k  
ADA4091-2  
V
= ±5V, ±15V  
SY  
V
= ±1.5V  
SY  
100  
ADA4091-2  
= 25°C  
T
A
V
= ±5V  
SY  
10  
0.01  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
1
10  
100  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43. CMRR vs. Frequency  
Figure 46. Voltage Noise Density  
Rev. E | Page 13 of 20  
ADA4091-2/ADA4091-4  
THEORY OF OPERATION  
Q1 and Q2 are high enough to turn on Q3, which diverts the  
tail current away from the PNP input stage, turning it off. The  
tail current of the PNP pair is diverted to the Q4/Q7 current  
mirror to activate the NPN input stage.  
The ADA4091 family is a single-supply, micropower amplifier  
featuring rail-to-rail inputs and outputs. To achieve wide input  
and output ranges, these amplifiers employ unique input and  
output stages.  
A common practice in bipolar amplifiers to protect the input  
transistors from large differential voltages is to include series  
resistors and differential diodes. See Figure 48 for the full input  
protection circuitry. These diodes turn on whenever the diffe-  
rential voltage exceeds approximately 0.6 V. In this condition,  
current flows between the input pins, limited only by the two  
5 kΩ resistors. Evaluate each application carefully to make sure  
that the increase in current does not affect performance.  
INPUT STAGE  
In Figure 47, the input stage comprises two differential pairs, a  
PNP pair (PNP input stage) and an NPN pair (NPN input  
stage). These input stages do not work in parallel. Instead, only  
one stage is on for any given input common-mode signal level.  
The PNP stage (Transistor Q1 and Transistor Q2) is required to  
ensure that the amplifier remains in the linear region when the  
input voltage approaches and reaches the negative rail. Alter-  
natively, the NPN stage (Transistor Q5 and Transistor Q6) is  
needed for input voltages up to, and including, the positive rail.  
OUTPUT STAGE  
The output stage in the ADA4091-x device uses a PNP and  
an NPN transistor, as do most output stages. However, Q32  
and Q33, the output transistors, connect with their collectors  
to the output pin to achieve the rail-to-rail output swing.  
For the majority of the input common-mode range, the PNP  
stage is active, as shown in Figure 7, Figure 21, and Figure 31.  
Notice that the bias current switches direction at approximately  
1.5 V below the positive rail. At voltages below this level, the  
bias current flows out of the ADA4091-x input, from the PNP  
input stage. Above this voltage, however, the bias current enters  
the device, due to the NPN stage. The actual mechanism within  
the amplifier for switching between the input stages comprises  
Transistor Q3, Transistor Q4, and Transistor Q7. As the input  
common-mode voltage increases, the emitters of Q1 and Q2  
follow that voltage plus a diode drop. Eventually, the emitters of  
As the output voltage approaches either the positive or negative  
rail, these transistors begin to saturate. Thus, the final limit  
on output voltage is the saturation voltage of these transistors,  
which is about 50 mV. The output stage has inherent gain arising  
from the transistor output impedance, as well as any external load  
impedance; consequently, the open-loop gain of the op amp is  
dependent on the load resistance and decreases when the output  
voltage is close to either rail.  
–IN  
Q32  
Q3  
Q16  
Q17  
Q5 Q6  
+IN  
Q1 Q2  
Q8  
Q10  
Q11  
Q12  
Q14  
Q15  
OUT  
Q9  
Q13  
Q18  
Q19  
Q33  
Q4  
Q7  
Figure 47. Simplified Schematic Without Input Protection (see Figure 48)  
Rev. E | Page 14 of 20  
 
 
 
 
ADA4091-2/ADA4091-4  
INPUT OVERVOLTAGE PROTECTION  
The ADA4091-x has two different ESD circuits for enhanced  
protection, as shown in Figure 48.  
For a worst-case design analysis, consider two cases. The  
ADA4091-x has a normal ESD structure from the internal op  
amp inputs to the supply rails. In addition, it has 42 V DIACs  
from the external inputs to the rails, as shown in Figure 47.  
Therefore, two conditions need to be considered to determine  
which case is the limiting factor.  
Condition 1. Consider, for example, that when operating  
on 15 V, the inputs can go +42 V above the negative  
supply rail. With the −V pin equal to −15 V, +42 V above  
this supply (the negative supply) is +27 V.  
+V  
D3  
D1  
D2  
R1  
D4  
D7  
D5  
D6  
R2  
D8  
Condition 2. There is a restriction on the input current of  
5 mA through a 5 kΩ resistor to the ESD structure to the  
positive rail. In Condition 1, +27 V through the 5 kΩ  
resistor to +15 V gives a current of 2.4 mA. Thus, the  
DIAC is the limiting factor. If the ADA4091-x supply  
voltages are changed to 5 V, th e n −5 V + 42 V = +37 V.  
However, +5 V + (5 kΩ × 5 mA) = 30 V. Thus, the normal  
resistor diode structure is the limitation when running on  
lower supply voltages.  
–V  
Additional resistance can be added externally in series with  
each input to protect against higher peak voltages; however, the  
additional thermal noise of the resistors must be considered.  
Figure 48. Complete Input Protection Network  
One circuit is a series resistor of 5 kΩ to the internal inputs and  
diodes (D1 and D2 or D5 and D6) from the internal inputs to  
the supply rails. The other protection circuit is a circuit with  
two DIACs (D3 and D4 or D7 and D8) to the supply rails. A  
DIAC can be considered a bidirectional Zener diode with a  
transfer characteristic, as shown in Figure 49.  
The flatband voltage noise of the ADA4091-x is approximately  
24 nV/√Hz, and a 5 kΩ resistor has a noise of 9 nV/√Hz. Adding  
an additional 5 kΩ resistor increases the total noise by less than  
15% root sum square (rss). Therefore, maintain resistor values  
below this value (5 kΩ) when overall noise performance is critical.  
5
Note that this represents input protection under abnormal con-  
ditions only. The correct amplifier operation input voltage range  
(IVR) is specified in Table 2, Table 3, and Table 4.  
4
3
2
1
0
–1  
–2  
–3  
–50 –40 –30 –20 –10  
0
10  
20  
30  
40  
50  
VOLTAGE (V)  
Figure 49. DIAC Transfer Characteristic  
Rev. E | Page 15 of 20  
 
 
 
ADA4091-2/ADA4091-4  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 50. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
3.25  
3.00 SQ  
2.75  
0.60 MAX  
0.50  
BSC  
0.60 MAX  
5
8
2.95  
2.75 SQ  
2.55  
EXPOSED  
PAD  
1.60  
1.50  
1.40  
PIN 1  
INDICATOR  
4
1
PIN 1  
INDICATOR  
0.50  
0.40  
0.30  
TOP VIEW  
BOTTOM VIEW  
2.23  
2.13  
2.03  
12° MAX  
0.70 MAX  
0.65TYP  
0.90 MAX  
0.85 NOM  
0.05 MAX  
0.01 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.30  
0.23  
0.18  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.20 REF  
Figure 51. 8-Lead Lead Frame Chip Scale Package [LFCSP_VD]  
3 mm × 3 mm Body, Very Thin, Dual Lead  
(CP-8-9)  
Dimensions shown in millimeters  
Rev. E | Page 16 of 20  
 
ADA4091-2/ADA4091-4  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 52. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
1
0.65  
BSC  
12  
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
5
9
8
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 53. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions are millimeters  
Rev. E | Page 17 of 20  
ADA4091-2/ADA4091-4  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
R-8  
R-8  
Branding  
ADA4091-2ARZ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Standard Small Outline Package (SOIC_N)  
8-Lead Frame Chip Scale Package (LFCSP_VD)  
8-Lead Frame Chip Scale Package (LFCSP_VD)  
8-Lead Frame Chip Scale Package (LFCSP_VD)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
14-Lead Thin Shrink Small Outline Package (TSSOP)  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
16-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
ADA4091-2ARZ-R7  
ADA4091-2ARZ-RL  
ADA4091-2ACPZ-R2  
ADA4091-2ACPZ-R7  
ADA4091-2ACPZ-RL  
ADA4091-4ARUZ  
ADA4091-4ARUZ-RL  
ADA4091-4ACPZ-R2  
ADA4091-4ACPZ-R7  
ADA4091-4ACPZ-RL  
R-8  
CP-8-9  
CP-8-9  
CP-8-9  
RU-14  
A1Z  
A1Z  
A1Z  
RU-14  
CP-16-17  
CP-16-17  
CP-16-17  
1 Z = RoHS Compliant Part.  
Rev. E | Page 18 of 20  
 
 
 
ADA4091-2/ADA4091-4  
NOTES  
Rev. E | Page 19 of 20  
ADA4091-2/ADA4091-4  
NOTES  
©2008–2010 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07671-0-5/10(E)  
Rev. E | Page 20 of 20  

相关型号:

ADA4092-2

Operational Amplifiers Selection Guide
ADI

ADA4092-4

Micropower, OVP, Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4092-4ARUZ

Micropower, OVP, Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4092-4ARUZ-RL

Micropower, OVP, Rail-to-Rail Input/Output Operational Amplifier
ADI

ADA4096-2

36V, Micropower, Overvoltage Protection, Rail-to-Rail I/O Amplifiers
ADI

ADA4096-2ACPZ

DUAL OP-AMP, 500uV OFFSET-MAX, 0.595MHz BAND WIDTH, PDSO8
ADI

ADA4096-2ACPZ-R7

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2ACPZ-RL

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2ARMZ

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2ARMZ-R7

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2ARMZ-RL

30 V, Micropower, Overvoltage Protection
ADI

ADA4096-2WARMZ-R7

30 V, Micropower, Overvoltage Protection
ADI