AD9571ACPZPEC [ADI]

Ethernet Clock Generator, 10 Clock Outputs;
AD9571ACPZPEC
型号: AD9571ACPZPEC
厂家: ADI    ADI
描述:

Ethernet Clock Generator, 10 Clock Outputs

驱动 逻辑集成电路
文件: 总21页 (文件大小:301K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ethernet Clock Generator, 10 Clock Outputs  
AD9571  
FE ATURES  
FUNCTIONAL BLOCK DIAGRAM  
REFSEL  
Fully integrated VCO/PLL core  
0.17 ps rms jitter from 1.875 MHz to 20 MHz at 156.25 MHz  
0.41 ps rms jitter from 12 kHz to 20 MHz at 125 MHz  
Input crystal or clock frequency of 25 MHz  
Preset divide ratios for 156.25 MHz, 33.33 MHz,100 MHz, and  
125 MHz  
CMOS  
XTAL  
OSC  
6 × 25MHz  
REFCLK  
PFD/CP  
Choice of LVPECL or LVDS output format  
Integrated loop filter  
3RD-ORDER  
LPF  
6 copies of reference clock output  
Rates configured via strapping pins  
Space saving 6 mm × 6 mm 40-lead LFCSP  
0.48 W power dissipation (LVDS operation)  
0.69 W power dissipation (LVPECL operation)  
3.3 V operation  
LVPECL OR  
LVDS  
VCO  
1 × 156.25MHz  
2 × 100MHz OR  
125MHz  
APPLICATIONS  
CMOS  
Ethernet line cards, switches, and routers  
SCSI, SATA, and PCI-express  
1 × 33.33MHz  
FORCE_LOW  
PCI support included  
AD9571  
Low jitter, low phase noise clock generation  
FREQSEL  
Figure 1.  
GENERAL DESCRIPTION  
feedback divider and output divider. By connecting an external  
crystal or reference clock to the REFCLK pin, frequencies up to  
156.25 MHz can be locked to the input reference.  
The AD9571 provides a multioutput clock generator function  
comprising a dedicated PLL core that is optimized for Ethernet  
line card applications. The integer-N PLL design is based on the  
Analog Devices, Inc., proven portfolio of high performance, low  
jitter frequency synthesizers to maximize network performance.  
Other applications with demanding phase noise and jitter  
requirements also benefit from this part.  
Each output divider and feedback divider ratio is prepro-  
grammed for the required output rates. No external loop filter  
components are required, thus conserving valuable design time  
and board space.  
The PLL section consists of a low noise phase frequency  
detector (PFD), a precision charge pump (CP), a low phase  
noise voltage controlled oscillator (VCO), and a preprogrammed  
The AD9571 is available in a 40-lead 6 mm × 6 mm lead frame  
chip scale package and can be operated from a single 3.3 V  
supply. The operating temperature range is −40°C to +85°C.  
OPTIONAL  
CX-4 PHY  
CPU  
ISLAND  
XAUI  
6 × 25MHz  
2 × 125MHz  
48 + 2 SWITCH/MAC  
AD9571  
1 × 156.25MHz  
1 × 33.33MHz  
2 × OCTAL 2 × OCTAL 2 × OCTAL 2 × OCTAL  
GbE PHY GbE PHY GbE PHY GbE PHY  
Figure 2. Typical Application  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibilityisassumedbyAnalog Devices for its use, norforany infringements ofpatents or other  
rightsofthirdpartiesthat mayresult fromitsuse.Specificationssubjectto changewithoutnotice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarksandregisteredtrademarksarethepropertyoftheirrespective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD9571* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD9571 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
EVALUATION KITS  
AD9571 Evaluation Board  
DOCUMENTATION  
Data Sheet  
DISCUSSIONS  
View all AD9571 EngineerZone Discussions.  
AD9571: Ethernet Clock Generator, 10 Clock Outputs  
SAMPLE AND BUY  
TOOLS AND SIMULATIONS  
Visit the product page to see pricing options.  
AD9571/AD9572 IBIS Model  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9571  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................9  
Pin Configuration and Function Descriptions............................10  
Typical Performance Characteristics ............................................12  
Terminology .....................................................................................13  
Theory of Operation .......................................................................14  
Outputs.........................................................................................14  
Phase Frequency Detector (PFD) and Charge Pump.............15  
Power Supply................................................................................15  
CMOS Clock Distribution .........................................................15  
LVPECL Clock Distribution ......................................................16  
LVDS Clock Distribution ...........................................................16  
Reference Input............................................................................16  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
PLL Characteristics ...................................................................... 3  
LVDS Clock Output Jitter............................................................ 4  
LVPECL Clock Output Jitter....................................................... 5  
CMOS Clock Output Jitter.......................................................... 5  
Reference Input............................................................................. 5  
Clock Outputs............................................................................... 6  
Timing Characteristics................................................................. 6  
Control Pins .................................................................................. 7  
Power.............................................................................................. 7  
Crystal Oscillator.......................................................................... 7  
Timing Diagrams.......................................................................... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
Power and Grounding Considerations and Power Supply  
Rejection.......................................................................................16  
Outline Dimensions ........................................................................17  
Ordering Guide............................................................................17  
REVISION HISTORY  
8/09—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
AD9571  
SPECIFICATIONS  
PLL CHARACTERISTICS  
Typical (typ) is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PHASE NOISE CHARACTERISTICS  
PLL Noise (156.25 MHz LVDS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−120  
−126  
−126  
−145  
−151  
−152  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (125 MHz LVDS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−122  
−128  
−128  
−147  
−152  
−152  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (100 MHz LVDS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−122  
−129  
−129  
−147  
−150  
−150  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (156.25 MHz LVPECL Output)  
@ 1 kHz  
−120  
−125  
−125  
−145  
−151  
−152  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
Rev. 0 | Page 3 of 20  
 
 
AD9571  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
PLL Noise (125 MHz LVPECL Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−121  
−127  
−128  
−148  
−152  
−153  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
PLL Noise (100 MHz LVPECL Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
@ 10 MHz  
@ 30 MHz  
−115  
−121  
−128  
−148  
−150  
−150  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
33.33 MHz output disabled  
Phase Noise (33.33 MHz CMOS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
−131  
−138  
−139  
−151  
−152  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
@ 5 MHz  
Phase Noise (25 MHz CMOS Output)  
@ 1 kHz  
@ 10 kHz  
@ 100 kHz  
@ 1 MHz  
−133  
−143  
−147  
−148  
−148  
−70  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
@ 5 MHz  
Spurious Content1  
PLL Figures of Merit  
Dominant amplitude with all outputs active  
−217.5  
dBc/Hz  
1 When the 33.33 MHz, 100 MHz, and 125 MHz clocks are enabled simultaneously, a worst-case −50 dBc spurious content may be presented on Pin 21 and Pin 22 only.  
LVDS CLOCK OUTPUT JITTER  
Typical (typ) is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Jitter Integration  
Bandwidth (Typ)  
125 MHz1,  
33.33 MHz = Off/On  
100 MHz  
156.25 MHz  
Unit  
Test Conditions/Comments  
12 kHz to 20 MHz  
1.875 MHz to 20 MHz  
200 kHz to 10 MHz  
0.50  
0.41/0.77  
0.41  
ps rms  
LVDS output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 1 × 33.33 MHz  
LVDS output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 1 × 33.33 MHz  
0.17  
ps rms  
ps rms  
0.30  
0.24/0.66  
LVDS output frequency combinations  
are 1 × 156.25 MHz, 1 × 100 MHz, 1 ×  
125 MHz, 1 × 33.33 MHz  
1 The typical 125 MHz rms jitter data collected from the differential pair of Pin 21 and Pin 22, unless otherwise noted.  
Rev. 0 | Page 4 of 20  
 
 
AD9571  
LVPECL CLOCK OUTPUT JITTER  
Typical (typ) is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 3.  
Jitter Integration  
Bandwidth (Typ)  
125 MHz1,  
33.33 MHz = Off/On  
100 MHz  
156.25 MHz  
Unit  
Test Conditions/Comments  
12 kHz to 20 MHz  
1.875 MHz to 20 MHz  
200 kHz to 10 MHz  
0.54  
0.42/2.0  
0.25/1.9  
0.45  
ps rms  
LVPECL output frequency combinations are  
1 × 156.25 MHz, 1 × 100 MHz, 1 × 125 MHz,  
1 × 33.33 MHz  
LVPECL output frequency combinations are  
1 × 156.25 MHz, 1 × 100 MHz, 1 × 125 MHz,  
1 × 33.33 MHz  
0.22  
ps rms  
ps rms  
0.31  
LVPECL output frequency combinations are  
1 × 156.25 MHz, 1 × 100 MHz, 1 × 125 MHz,  
1 × 33.33 MHz  
1 The typical 125 MHz rms jitter data collected from the differential pair of Pin 21 and Pin 22, unless otherwise noted.  
CMOS CLOCK OUTPUT JITTER  
Typical (typ) is given for VS = 3.3 V, TA = 25°C, unless otherwise noted.  
Table 4.  
Jitter Integration Bandwidth  
12 kHz to 5 MHz  
200 kHz to 5 MHz  
25 MHz  
0.82  
0.80  
33.33 MHz  
0.53  
0.43  
Unit  
ps rms  
ps rms  
Test Conditions/Comments  
N/A  
N/A  
REFERENCE INPUT  
Typical (typ) is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 5.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CLOCK INPUT (REFCLK)  
Input Frequency  
Input High Voltage  
Input Low Voltage  
Input Current  
25  
MHz  
V
V
µA  
pF  
2.0  
0.8  
+1.0  
−1.0  
Input Capacitance  
2
Rev. 0 | Page 5 of 20  
 
 
 
 
 
AD9571  
CLOCK OUTPUTS  
Typical (typ) is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 6.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LVPECL CLOCK OUTPUTS  
Output Frequency  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
Output Differential Voltage (VOD)  
Duty Cycle  
156.25  
VS − 0.83  
VS − 1.62  
950  
MHz  
V
V
mV  
%
VS − 1.24  
VS − 2.07  
700  
VS − 1.05  
VS − 1.87  
825  
45  
55  
LVDS CLOCK OUTPUTS  
Output Frequency  
Differential Output Voltage (VOD)  
Delta VOD  
Output Offset Voltage (VOS)  
Delta VOS  
Short-Circuit Current (ISA, ISB)  
Duty Cycle  
156.25  
475  
25  
1.375  
25  
MHz  
mV  
mV  
V
mV  
mA  
%
250  
350  
1.25  
14  
1.125  
24  
55  
Output shorted to GND  
45  
CMOS CLOCK OUTPUTS  
Output Frequency  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
Duty Cycle  
33.33  
MHz  
V
V
VS − 0.1  
42  
Sourcing 1.0 mA current  
Sinking 1.0 mA current  
0.1  
58  
%
TIMING CHARACTERISTICS  
Typical (typ) is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 7.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LVPECL  
Termination = 200 Ω to 0 V; CLOAD = 0 pF  
20% to 80%, measured differentially  
80% to 20%, measured differentially  
Termination = 100 Ω differential; CLOAD = 0 pF  
20% to 80%, measured differentially  
80% to 20%, measured differentially  
Termination = 50 Ω to 0 V; CLOAD = 5 pF  
20% to 80%  
Output Rise Time, tRP  
Output Fall Time, tFP  
LVDS  
Output Rise Time, tRL  
Output Fall Time, tFL  
CMOS  
480  
480  
625  
625  
810  
810  
ps  
ps  
160  
160  
350  
350  
540  
540  
ps  
ps  
Output Rise Time, tRC  
Output Fall Time, tFC  
0.25  
0.25  
0.50  
0.70  
2.5  
2.5  
ns  
ns  
80% to 20%  
Rev. 0 | Page 6 of 20  
 
 
AD9571  
CONTROL PINS  
Typical (typ) is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 8.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
INPUT CHARACTERISTICS  
REFSEL Pin  
REFSEL has a 30 kΩ pull-up resistor.  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
FREQSEL Pin  
2.0  
V
V
µA  
µA  
0.8  
1.0  
155  
FREQSEL has a 150 kΩ pull-up resistor and a  
100 kΩ pull-down resistor.  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
FORCE_LOW Pin  
Logic 1 Voltage  
Logic 0 Voltage  
Logic 1 Current  
Logic 0 Current  
2/3(VS) + 0.2  
V
V
µA  
µA  
1/3(VS)-0.2  
45  
30  
FORCE_LOW has a 16 kΩ pull-down resistor.  
2.0  
V
V
µA  
µA  
0.8  
240  
2.0  
POWER  
Typical (typ) is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 9.  
Parameter  
Min  
Typ  
3.3  
Max  
3.6  
Unit  
V
Test Conditions/Comments  
Power Supply  
3.0  
LVDS Power Dissipation  
LVPECL Power Dissipation  
480  
690  
600  
860  
mW  
mW  
CRYSTAL OSCILLATOR  
Typical (typ) is given for VS = 3.3 V 10%, TA = 25°C, unless otherwise noted. Minimum (min) and maximum (max) values are given  
over full VS and TA (−40°C to +85°C) variation.  
Table 10.  
Parameter  
CRYSTAL SPECIFICATION  
Frequency  
Min  
Typ  
Max  
50  
Unit  
Test Conditions/Comments  
Fundamental mode  
25  
MHz  
ESR  
Load Capacitance  
Phase Noise  
Stability  
14  
−135  
pF  
dBc/Hz  
ppm  
@1 kHz offset  
−30  
+30  
Rev. 0 | Page 7 of 20  
 
 
 
AD9571  
TIMING DIAGRAMS  
SINGLE-ENDED  
80%  
DIFFERENTIAL  
80%  
CMOS  
5pF LOAD  
LVPECL  
20%  
20%  
tRC  
tFC  
tRP  
tFP  
Figure 5. CMOS Timing, Single-Ended, 5 pF Load  
Figure 3. LVPECL Timing, Differential  
DIFFERENTIAL  
80%  
LVDS  
20%  
tRL  
tFL  
Figure 4. LVDS Timing, Differential  
Rev. 0 | Page 8 of 20  
 
AD9571  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 11.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Thermal impedance measurements were taken on a 4-layer  
board in still air in accordance with EIA/JESD51-7.  
Parameter  
Rating  
VS to GND  
−0.3 V to +3.6 V  
−0.3 V to VS + 0.3 V  
−0.3 V to VS + 0.3 V  
−0.3 V to VS + 0.3 V  
−0.3 V to VS + 0.3 V  
REFCLK to GND  
BYPASSx to GND  
XO to GND  
Table 12. Thermal Resistance  
FORCE_LOW, FREQSEL, and  
REFSEL to GND  
Package Type  
θJA  
Unit  
40-Lead LFCSP  
27.5  
°C/W  
−0.3 V to VS + 0.3 V  
25M, 33M, 100M/125M, and 156M  
to GND  
Junction Temperature1  
Storage Temperature Range  
1 See Table 12 for θJA.  
ESD CAUTION  
150°C  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 9 of 20  
 
 
 
 
 
AD9571  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
GND  
VS  
25M  
25M  
VS  
1
2
3
4
5
6
7
8
9
30 25M  
29 25M  
28 VS  
27 FREQSEL  
26 VS  
25 VS  
24 VS  
23 33M  
22 100M/125M  
21 100M/125M  
INDICATOR  
AD9571  
TOP VIEW  
XO  
XO  
REFCLK  
REFSEL  
(Not to Scale)  
LVPECL/  
LVDS  
GND 10  
NOTES  
1. * = SHORT TO PIN 36.  
2. ** = SHORT TO PIN 14.  
3. NOTE THAT THE EXPOSED PADDLE ON THIS PACKAGE IS AN ELECTRICAL  
CONNECTION AS WELL AS A THERMAL ENHANCEMENT. FOR THE DEVICE TO  
FUNCTION PROPERLY, THE PADDLE MUST BE ATTACHED TO GROUND (GND).  
Figure 6. Pin Configuration  
Table 13. Pin Function Descriptions1  
Pin No.  
Mnemonic  
Description  
2
VS  
25M  
Power Supply Connection for the 25M CMOS Buffer.  
CMOS 25 MHz Output.  
3, 4, 29, 30, 31, 32  
5
6, 7  
8
9
11  
VS  
XO  
REFCLK  
REFSEL  
Power Supply Connection for the Crystal Oscillator.  
External 25 MHz Crystal.  
25 MHz Reference Clock Input. Tie low when not in use.  
Logic Input. Used to select the reference source.  
Power Supply Connection for the GbE PLL.  
VS  
1, 10, 34  
14, 36  
15  
16  
17  
GND  
BYPASS2, BYPASS1  
VS  
VS  
156M  
156M  
100M/125M  
Ground Pins. The external paddle must be attached to GND.  
These pins are for bypassing each LDO to ground with a 220 nF capacitor.  
Power Supply Connection for the GbE VCO.  
Power Supply Connection for the 156M LVDS Output Buffer and Output Dividers.  
LVPECL/LVDS Output at 156.25 MHz.  
18  
Complementary LVPECL/LVDS Output at 156.25 MHz.  
19, 21  
20, 22  
23  
24  
25  
26  
27  
28  
LVPECL/LVDS Output at 100 MHz or 125 MHz. Selected by FREQSEL pin strapping.  
Complementary LVPECL/LVDS Output at 100 MHz or 125 MHz.  
CMOS 33.33 MHz Output.  
Power Supply Connection for the 33M CMOS Output Buffer and Output Dividers.  
Power Supply Connection for the 100M/125M LVDS Output Buffer and Output Dividers.  
Power Supply Connection for the GbE PLL Feedback Divider.  
Logic Input. Used to configure output drivers.  
/
100M 125M  
33M  
VS  
VS  
VS  
FREQSEL  
VS  
Power Supply Connection for the FC PLL Feedback Divider.  
Rev. 0 | Page 10 of 20  
 
AD9571  
Pin No.  
33  
35  
Mnemonic  
VS  
VS  
Description  
Power Supply Connection for the 106.25 MHz LVDS Output Buffer and Output Dividers.  
Power Supply Connection for the FC VCO.  
37  
FORCE_LOW  
Forces the 33.33 MHz output into a low state.  
39  
40  
VS  
VS  
Power Supply Connection for the FC PLL.  
Power Supply Connection for Miscellaneous Logic.  
1 The exposed paddle on this package is an electrical connection as well as a thermal enhancement. For the device to function properly, the paddle must be attached to  
ground (GND).  
Rev. 0 | Page 11 of 20  
 
AD9571  
TYPICAL PERFORMANCE CHARACTERISTICS  
Both 100 MHz and 125 MHz outputs enabled; 33.33 MHz output disabled.  
–100  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–110  
–120  
–130  
–140  
–150  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7. 125 MHz Phase Noise  
Figure 9. 156.25 MHz Phase Noise  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 8. 25 MHz Phase Noise  
Figure 10. 100 MHz Phase Noise  
Rev. 0 | Page 12 of 20  
 
AD9571  
TERMINOLOGY  
Phase Jitter  
Time Jitter  
An ideal sine wave can be thought of as having a continuous  
and even progression of phase with time from 0 degrees to 360  
degrees for each cycle. Actual signals, however, display a certain  
amount of variation from ideal phase progression over time.  
This phenomenon is called phase jitter. Although many causes  
can contribute to phase jitter, one major cause is random noise,  
which is characterized statistically as gaussian (normal) in  
distribution.  
Phase noise is a frequency domain phenomenon. In the time  
domain, the same effect is exhibited as time jitter. When  
observing a sine wave, the time of successive zero crossings is  
seen to vary. In a square wave, the time jitter is seen as a  
displacement of the edges from their ideal (regular) times of  
occurrence. In both cases, the variations in timing from the  
ideal are the time jitter. Because these variations are random in  
nature, the time jitter is specified in units of seconds root mean  
square (rms) or 1 sigma of the gaussian distribution.  
This phase jitter leads to a spreading out of the energy of the  
sine wave in the frequency domain, producing a continuous  
power spectrum. This power spectrum is usually reported as a  
series of values whose units are dBc/Hz at a given offset in  
frequency from the sine wave (carrier). The value is a ratio  
(expressed in dB) of the power contained within a 1 Hz  
bandwidth with respect to the power at the carrier frequency.  
For each measurement, the offset from the carrier frequency is  
also given.  
Additive Phase Noise  
Additive phase noise is the amount of phase noise that is  
attributable to the device or subsystem being measured. The  
phase noise of any external oscillators or clock sources has been  
subtracted. This makes it possible to predict the degree to which  
the device impacts the total system phase noise when used in  
conjunction with the various oscillators and clock sources, each  
of which contributes its own phase noise to the total. In many  
cases, the phase noise of one element dominates the system  
phase noise.  
Phase Noise  
When the total power contained within some interval of offset  
frequencies (for example, 12 kHz to 20 MHz) is integrated, it is  
called the integrated phase noise over that frequency offset  
interval, and it can be readily related to the time jitter due to the  
phase noise within that offset frequency interval.  
Additive Time Jitter  
Additive time jitter is the amount of time jitter that is attributable  
to the device or subsystem being measured. The time jitter of  
any external oscillators or clock sources has been subtracted.  
This makes it possible to predict the degree to which the device  
impacts the total system time jitter when used in conjunction  
with the various oscillators and clock sources, each of which  
contributes its own time jitter to the total. In many cases, the  
time jitter of the external oscillators and clock sources dominates  
the system time jitter.  
Phase noise has a detrimental effect on error rate performance  
by increasing eye closure at the transmitter output and reducing  
the jitter tolerance/sensitivity of the receiver.  
Rev. 0 | Page 13 of 20  
 
AD9571  
THEORY OF OPERATION  
REFSEL VS  
GND  
25MHz  
CMOS  
25M  
25M  
25M  
25M  
25M  
25M  
XTAL  
OSC  
1
0
CMOS  
CMOS  
REFCLK  
PHASE  
FREQUENCY  
DETECTOR  
DIVIDE  
BY 25  
VCO  
156.25MHz  
156M  
156M  
CHARGE  
PUMP  
DIVIDE  
BY 4  
DIVIDE  
BY 4  
LVPECL/  
LVDS  
V
LDO  
125MHz/  
100MHz  
0
1
DIVIDE  
BY 5  
DIVIDE  
BY 4  
100M/125M  
100M/125M  
LVPECL/  
LVDS  
LEVEL  
DECODE  
FREQSEL  
125MHz/  
100MHz  
0
1
100M/125M  
100M/125M  
DIVIDE  
BY 5  
LVPECL/  
LVDS  
AD9571  
33.33MHz  
CMOS  
DIVIDE  
BY 3  
33M  
FORCE_LOW  
Figure 11. Detailed Block Diagram  
Figure 11 shows a block diagram of the AD9571. The chip  
consists of a PLL core, which is configured to generate the  
specific clock frequencies required for Ethernet applications,  
without any user programming. This PLL is based on proven  
Analog Devices synthesizer technology, noted for its exceptional  
phase noise performance. The AD9571 is highly integrated and  
includes loop filters, regulators for supply noise immunity, all  
the necessary dividers with multiple output buffers in a choice  
of formats, and a crystal oscillator. A user need only supply a  
25 MHz reference clock or an external crystal to implement an  
entire line card clocking solution that does not require any  
processor intervention. Six copies of the 25 MHz reference  
source are also available.  
OUTPUTS  
Table 14 provides a summary of the outputs available.  
Table 14. Output Formats  
Frequency  
Format  
Copies  
25 MHz  
CMOS  
6
1
2
1
156.25 MHz  
100 MHz or 125 MHz  
33.33 MHz  
LVPECL/LVDS  
LVPECL/LVDS  
CMOS  
Note that the pins labeled 100M/125M can provide 100 MHz or  
125 MHz by strapping the FREQSEL pin as shown in Table 15.  
Rev. 0 | Page 14 of 20  
 
 
 
 
AD9571  
Table 15. FREQSEL Definition  
PHASE FREQUENCY DETECTOR (PFD) AND  
Frequency Available  
from Pin 19 and Pin 20  
FREQSEL (MHZ)  
Frequency Available  
from Pin 21 and Pin 22  
(MHZ)  
125  
100  
100  
CHARGE PUMP  
The PFD takes inputs from the reference clock and feedback  
divider to produce an output proportional to the phase and  
frequency difference between them. Figure 14 shows a  
simplified schematic.  
0
125  
100  
125  
1
NC  
3.3V  
CHARGE  
PUMP  
3.5mA  
UP  
HIGH  
D1 Q1  
CLR1  
REFCLK  
OUT  
OUT  
CP  
3.5mA  
CLR2  
D2 Q2  
DOWN  
HIGH  
FEEDBACK  
DIVIDER  
Figure 12. LVDS Output Simplified Equivalent Circuit  
The simplified equivalent circuits of the LVDS and LVPECL  
GND  
outputs are shown in Figure 12 and Figure 13.  
Figure 14. PFD Simplified Schematic  
3.3V  
POWER SUPPLY  
The AD9571 requires a 3.3 V 10% power supply for VS. The  
Specifications section gives the performance expected from the  
AD9571 with the power supply voltage within this range. The  
absolute maximum range of (−0.3 V) − (+3.6 V), with respect to  
GND, must never be exceeded on the VS pin.  
OUT  
OUT  
Good engineering practice should be followed in the layout of  
power supply traces and the ground plane of the PCB. Bypass  
the power supply on the PCB with adequate capacitance (>10  
µF). Bypass the AD9571 with adequate capacitors (0.1 µF) at all  
power pins as close as possible to the part. The layout of the  
AD9571 evaluation board is a good example.  
GND  
Figure 13. LVPECL Output Simplified Equivalent Circuit  
The differential outputs are factory programmed to either LVPECL  
or LVDS format, and either option can be sampled on request.  
The exposed metal paddle on the AD9571 package is an electrical  
connection, as well as a thermal enhancement. For the device to  
function properly, the paddle must be properly attached to ground  
(GND). The PCB acts as a heat sink for the AD9571; therefore,  
this GND connection should provide a good thermal path to a  
larger dissipation area, such as a ground plane on the PCB.  
CMOS drivers tend to generate more noise than differential  
outputs and, as a result, the proximity of the 33.33 MHz output  
to Pin 21 and Pin 22 does affect the jitter performance when  
FREQSEL = 0 (that is, when the differential output is generating  
125 MHz). For this reason, the 33.33 MHz pin can be forced to  
a low state by asserting the FORCE_LOW signal on Pin 37 (see  
Table 16). An internal pull-down enables the 33.33 MHz output  
if the pin is not connected.  
CMOS CLOCK DISTRIBUTION  
The AD9571 provides seven CMOS clock outputs (six 25 MHz  
and one 33.33 MHz) that are dedicated CMOS levels. Whenever  
single-ended CMOS clocking is used, some of the following  
general guidelines should be followed.  
Table 16. FORCE_LOW (Pin 37) Definition  
FORCE_LOW  
33.33 MHz Output (Pin 23)  
0 or NC  
1
33.33 MHz  
0 MHz  
Point-to-point nets should be designed such that a driver has  
one receiver only on the net, if possible. This allows for simple  
termination schemes and minimizes ringing due to possible  
mismatched impedances on the net. Series termination at the  
source is generally required to provide transmission line  
matching and/or to reduce current transients at the driver.  
Rev. 0 | Page 15 of 20  
 
 
 
 
 
 
 
 
AD9571  
3.3V  
3.3V  
The value of the resistor is dependent on the board design and  
timing requirements (typically 10to 100 Ω is used). CMOS  
outputs are limited in terms of the capacitive load or trace  
length that they can drive. Typically, trace lengths less than  
6 inches are recommended to preserve signal rise/fall times  
and signal integrity.  
0.1nF  
DIFFERENTIAL  
(COUPLED)  
100  
LVPECL  
LVPECL  
0.1nF  
200Ω  
200Ω  
60.4  
1.0 INCH  
Figure 18. LVPECL with Parallel Transmission Line  
10Ω  
CMOS  
LVDS CLOCK DISTRIBUTION  
MICROSTRIP  
5pF  
Low voltage differential signaling (LVDS) is a second differ-  
ential output option for the AD9571. LVDS uses a current mode  
output stage with a factory programmed current level. The  
normal value (default) for this current is 3.5 mA, which yields a  
350 mV output swing across a 100resistor. The LVDS  
outputs meet or exceed all ANSI/TIA/EIA-644 specifications.  
GND  
Figure 15. Series Termination of CMOS Output  
Termination at the far end of the PCB trace is a second option.  
The CMOS outputs of the AD9571 do not supply enough current  
to provide a full voltage swing with a low impedance resistive,  
far-end termination, as shown in Figure 16. The far-end termin-  
ation network should match the PCB trace impedance and  
provide the desired switching point. The reduced signal swing  
may still meet receiver input requirements in some applications.  
This can be useful when driving long trace lengths on less  
critical nets.  
A recommended termination circuit for the LVDS outputs is  
shown in Figure 19.  
50  
100Ω  
LVDS  
LVDS  
50Ω  
Figure 19. LVDS Output Termination  
V
= 3.3V  
PULLUP  
See the AN-586 Application Note on the Analog Devices  
website at www.analog.com for more information about LVDS.  
100  
50Ω  
10Ω  
CMOS  
5pF  
100Ω  
REFERENCE INPUT  
By default, the crystal oscillator is enabled and used as the  
reference source, which requires the connection of an external  
25 MHz crystal. The REFSEL pin is pulled high internally by  
about 30 kΩ to support default operation. When REFSEL is tied  
low, the crystal oscillator is powered down, and the REFCLK pin  
must provide a good quality 25 MHz reference clock instead.  
This single-ended input can be driven by either a dc-coupled  
LVCMOS level signal or an ac-coupled sine wave or square  
wave, provided that an external divider is used to bias the input  
at VS/2.  
Figure 16. CMOS Output with Far-End Termination  
LVPECL CLOCK DISTRIBUTION  
The low voltage, positive emitter-coupled logic (LVPECL)  
outputs of the AD9571 provide the lowest jitter clock signals  
available from the AD9571. The LVPECL outputs (because they  
are open emitter) require a dc termination to bias the output  
transistors. The simplified equivalent circuit in Figure 13 shows  
the LVPECL output stage.  
In most applications, a standard LVPECL far-end termination is  
recommended, as shown in Figure 17. The resistor network is  
designed to match the transmission line impedance (50Ω) and  
the desired switching threshold (1.3 V).  
Table 17. REFSEL Definition  
REFSEL  
Reference Source  
0
1
REFCLK input  
Internal crystal oscillator  
3.3V  
POWER AND GROUNDING CONSIDERATIONS AND  
POWER SUPPLY REJECTION  
3.3V  
3.3V  
127  
127Ω  
50Ω  
Many applications seek high speed and performance under  
less than ideal operating conditions. In these application  
circuits, the implementation and construction of the PCB is as  
important as the circuit design. Proper RF techniques must be  
used for device selection, placement, and routing, as well as for  
power supply bypassing and grounding to ensure optimum  
performance.  
SINGLE-ENDED  
(NOT COUPLED)  
LVPECL  
LVPECL  
50Ω  
83Ω  
83Ω  
V
= V – 1.3V  
T
CC  
Figure 17. LVPECL Far-End Termination  
Rev. 0 | Page 16 of 20  
 
 
 
 
 
 
 
AD9571  
OUTLINE DIMENSIONS  
6.10  
6.00 SQ  
5.90  
0.30  
0.25  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
31  
30  
40  
1
0.50  
BSC  
*
4.80  
EXPOSED  
PAD  
4.70 SQ  
4.50  
21  
20  
10  
11  
0.45  
0.40  
0.35  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 20. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-7)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
Package Option  
CP-40-7  
CP-40-7  
AD9571ACPZLVD1, 2  
AD9571ACPZLVD-RL1, 2  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ],  
7” Tape Reel, 2,500 Pieces  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ],  
7” Tape Reel, 750 Pieces  
AD9571ACPZLVD-R71, 2  
−40°C to +85°C  
CP-40-7  
AD9571ACPZPEC1, 3  
AD9571ACPZPEC-R71, 3  
−40°C to +85°C  
−40°C to +85°C  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
CP-40-7  
CP-40-7  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ],  
7” Tape Reel, 750 Pieces  
40-Lead Lead Frame Chip Scale Package [LFCSP_WQ],  
7” Tape Reel, 2,500 Pieces  
Evaluation Board  
Evaluation Board  
AD9571ACPZPEC-RL1, 3  
−40°C to +85°C  
CP-40-7  
AD9571-EVALZ-LVD1, 2  
AD9571-EVALZ-PEC1, 3  
1Z = RoHS Compliant Part.  
2LVD indicates LVDS compliant, differential clock outputs.  
3PEC indicates LVPECL compliant, differential clock outputs.  
Rev. 0 | Page 17 of 20  
 
 
 
AD9571  
NOTES  
Rev. 0 | Page 18 of 20  
AD9571  
NOTES  
Rev. 0 | Page 19 of 20  
AD9571  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07499-0-8/09(0)  
Rev. 0 | Page 20 of 20  

相关型号:

AD9571ACPZPEC-RL

Ethernet Clock Generator, 10 Clock Outputs
ADI

AD9572

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572-EVALZ-LVD

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572-EVALZ-PEC

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572ACPZLVD

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572ACPZLVD-R7

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572ACPZLVD-RL

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572ACPZLVD1

IC 156.25 MHz, OTHER CLOCK GENERATOR, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220WJJD-5, LFCSP-40, Clock Generator
ADI

AD9572ACPZPEC

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572ACPZPEC-R7

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9572ACPZPEC-RL

Fiber Channel/Ethernet Clock Generator IC, PLL Core, Dividers, 7 Clock Outputs
ADI

AD9573

PCI-Express Clock Generator IC, PLL Core, Dividers, Two Outputs
ADI