AD9258-125EBZ [ADI]

Analog-to-Digital Converter (ADC);
AD9258-125EBZ
型号: AD9258-125EBZ
厂家: ADI    ADI
描述:

Analog-to-Digital Converter (ADC)

文件: 总45页 (文件大小:2152K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual  
Analog-to-Digital Converter (ADC)  
AD9258  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
SDIO/ SCLK/  
SNR = 77.6 dBFS @ 70 MHz and 125 MSPS  
SFDR = 88 dBc @ 70 MHz and 125 MSPS  
Low power: 750 mW @ 125 MSPS  
AVDD  
CSB  
DRVDD  
DCS  
DFS  
SPI  
AD9258  
1.8 V analog supply operation  
ORA  
1.8 V CMOS or LVDS output supply  
Integer 1-to-8 input clock divider  
IF sampling frequencies to 300 MHz  
−152.8 dBm/Hz small signal input noise with 200 Ω input  
impedance @ 70 MHz and 125 MSPS  
Optional on-chip dither  
Programmable internal ADC voltage reference  
Integrated ADC sample-and-hold inputs  
Flexible analog input range: 1 V p-p to 2 V p-p  
Differential analog inputs with 650 MHz bandwidth  
ADC clock duty cycle stabilizer  
PROGRAMMING DATA  
CMOS/LVDS  
D13A (MSB)  
TO  
D0A (LSB)  
VIN+A  
VIN–A  
14  
ADC  
OUTPUT BUFFER  
CLK+  
CLK–  
VREF  
DIVIDE 1  
TO 8  
SENSE  
DCOA  
DCOB  
DUTY CYCLE  
STABILIZER  
DCO  
GENERATION  
REF  
SELECT  
VCM  
RBIAS  
ORB  
D13B (MSB)  
TO  
D0B (LSB)  
VIN–B  
VIN+B  
14  
CMOS/LVDS  
OUTPUT BUFFER  
ADC  
95 dB channel isolation/crosstalk  
Serial port control  
MULTICHIP  
SYNC  
User-configurable, built-in self-test (BIST) capability  
Energy-saving power-down modes  
AGND  
SYNC  
PDWN  
OEB  
NOTES  
1. PIN NAMES ARE FOR THE CMOS PIN CONFIGURATION ONLY;  
SEE FIGURE 7 FORLVDS PIN NAMES.  
APPLICATIONS  
Figure 1.  
Communications  
Diversity radio systems  
PRODUCT HIGHLIGHTS  
Multimode digital receivers (3G)  
GSM, EDGE, W-CDMA, LTE,  
CDMA2000, WiMAX, TD-SCDMA  
I/Q demodulation systems  
Smart antenna systems  
General-purpose software radios  
Broadband data applications  
Ultrasound equipment  
1. On-chip dither option for improved SFDR performance  
with low power analog input.  
2. Proprietary differential input that maintains excellent SNR  
performance for input frequencies up to 300 MHz.  
3. Operation from a single 1.8 V supply and a separate digital  
output driver supply accommodating 1.8 V CMOS or  
LVDS outputs.  
4. Standard serial port interface (SPI) that supports various  
product features and functions, such as data formatting  
(offset binary, twos complement, or gray coding), enabling  
the clock DCS, power-down, test modes, and voltage  
reference mode.  
5. Pin compatibility with the AD9268, allowing a simple  
migration from 14 bits to 16 bits. The AD9258 is also pin  
compatible with the AD9251, AD9231, and AD9204 family  
of products for lower sample rate, low power applications.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2009 Analog Devices, Inc. All rights reserved.  
 
 
AD9258* PRODUCT PAGE QUICK LINKS  
Last Content Update: 09/27/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
TOOLS AND SIMULATIONS  
Visual Analog  
AD9258 IBIS Models  
EVALUATION KITS  
REFERENCE DESIGNS  
CN0140  
AD9258 Evaluation Board  
DOCUMENTATION  
REFERENCE MATERIALS  
Application Notes  
AN-1142: Techniques for High Speed ADC PCB Layout  
AN-586: LVDS Outputs for High Speed A/D Converters  
Technical Articles  
Improve The Design Of Your Passive Wideband ADC  
Front-End Network  
AN-742: Frequency Domain Response of Switched-  
Capacitor ADCs  
MS-2210: Designing Power Supplies for High Speed ADC  
AN-807: Multicarrier WCDMA Feasibility  
AN-808: Multicarrier CDMA2000 Feasibility  
DESIGN RESOURCES  
AD9258 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
AN-812: MicroController-Based Serial Port Interface (SPI)  
Boot Circuit  
AN-827: A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs  
AN-878: High Speed ADC SPI Control Software  
AN-905: Visual Analog Converter Evaluation Tool Version  
1.0 User Manual  
DISCUSSIONS  
View all AD9258 EngineerZone Discussions.  
AN-935: Designing an ADC Transformer-Coupled Front  
End  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
Data Sheet  
AD9258: 14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual  
Analog-to-Digital Converter (ADC) Data Sheet  
TECHNICAL SUPPORT  
User Guides  
Submit a technical question or find your regional support  
number.  
UG-003: Evaluating the AD9650/AD9268/AD9258/  
AD9251/AD9231/AD9204 Analog-to-Digital Converters  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
AD9258  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Clock Input Considerations...................................................... 30  
Channel/Chip Synchronization................................................ 31  
Power Dissipation and Standby Mode .................................... 32  
Digital Outputs ........................................................................... 32  
Timing ......................................................................................... 33  
Built-In Self-Test (BIST) and Output Test .................................. 34  
Built-In Self-Test (BIST)............................................................ 34  
Output Test Modes..................................................................... 34  
Serial Port Interface (SPI).............................................................. 35  
Configuration Using the SPI..................................................... 35  
Hardware Interface..................................................................... 36  
Configuration Without the SPI ................................................ 36  
SPI Accessible Features.............................................................. 36  
Memory Map .................................................................................. 37  
Reading the Memory Map Register Table............................... 37  
Memory Map Register Table..................................................... 38  
Memory Map Register Descriptions........................................ 40  
Applications Information.............................................................. 41  
Design Guidelines ...................................................................... 41  
Outline Dimensions....................................................................... 42  
Ordering Guide .......................................................................... 42  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
General Description......................................................................... 3  
Specifications..................................................................................... 4  
ADC DC Specifications................................................................. 4  
ADC AC Specifications ................................................................. 6  
Digital Specifications ................................................................... 7  
Switching Specifications ................................................................ 9  
Timing Specifications ................................................................ 10  
Absolute Maximum Ratings.......................................................... 12  
Thermal Characteristics ............................................................ 12  
ESD Caution................................................................................ 12  
Pin Configurations and Function Descriptions ......................... 13  
Typical Performance Characteristics ........................................... 17  
Equivalent Circuits......................................................................... 25  
Theory of Operation ...................................................................... 26  
ADC Architecture ...................................................................... 26  
Analog Input Considerations.................................................... 26  
Voltage Reference ....................................................................... 29  
REVISION HISTORY  
9/09—Rev. 0 to Rev. A  
Changes to Features List.................................................................. 1  
Changes to Specifications Section.................................................. 4  
Changes to Table 5............................................................................ 9  
Changes to Typical Performance Characteristics Section......... 17  
5/09—Revision 0: Initial Version  
Rev. A | Page 2 of 44  
 
AD9258  
GENERAL DESCRIPTION  
The AD9258 is a dual, 14-bit, 80 MSPS/105 MSPS/125 MSPS  
analog-to-digital converter (ADC). The AD9258 is designed to  
support communications applications where high performance,  
combined with low cost, small size, and versatility, is desired.  
The ADC output data can be routed directly to the two external  
14-bit output ports. These outputs can be set to either 1.8 V CMOS  
or LVDS.  
Flexible power-down options allow significant power savings,  
when desired.  
The dual ADC core features a multistage, differential pipelined  
architecture with integrated output error correction logic. Each  
ADC features wide bandwidth differential sample-and-hold  
analog input amplifiers that support a variety of user-selectable  
input ranges. An integrated voltage reference eases design consid-  
erations. A duty cycle stabilizer is provided to compensate for  
variations in the ADC clock duty cycle, allowing the converters  
to maintain excellent performance.  
Programming for setup and control is accomplished using a 3-wire  
SPI-compatible serial interface.  
The AD9258 is available in a 64-lead LFCSP and is specified over  
the industrial temperature range of −40°C to +85°C.  
Rev. A | Page 3 of 44  
 
AD9258  
SPECIFICATIONS  
ADC DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, unless  
otherwise noted.  
Table 1.  
AD9258BCPZ-80  
AD9258BCPZ-105  
AD9258BCPZ-125  
Max  
Parameter  
Temperature Min Typ  
Max Min Typ Max Min Typ  
Unit  
RESOLUTION  
ACCURACY  
Full  
14  
14  
14  
Bits  
No Missing Codes  
Offset Error  
Gain Error  
Full  
Full  
Full  
Full  
Guaranteed  
±±.1  
±±.4  
Guaranteed  
±±.1  
±±.4  
Guaranteed  
±±.4  
±±.4  
±±.ꢀ  
±2.ꢀ  
±±.ꢀ  
±±.ꢀ  
±2.ꢀ  
±±.ꢀ  
±±.ꢁꢀ % FSR  
±2.ꢀ  
±±.ꢀ  
% FSR  
LSB  
Differential  
Nonlinearity (DNL)1  
2ꢀ°C  
±±.2ꢀ  
±±.ꢀꢀ  
±±.2ꢀ  
±±.ꢂ  
±±.2ꢀ  
±±.ꢃ  
LSB  
LSB  
Integral Nonlinearity Full  
(INL)1  
±1.1  
±1.3  
±1.4  
2ꢀ°C  
LSB  
MATCHING  
CHARACTERISTIC  
Offset Error  
Gain Error  
Full  
Full  
±±.1  
±±.3  
±±.4  
±1.3  
±±.1  
±±.3  
±±.4  
±1.3  
±±.2  
±±.3  
±±.4ꢀ % FSR  
±1.3  
% FSR  
TEMPERATURE DRIFT  
Offset Error  
Gain Error  
Full  
Full  
±2  
±1ꢀ  
±2  
±1ꢀ  
±2  
±1ꢀ  
ppm/°C  
ppm/°C  
INTERNAL VOLTAGE  
REFERENCE  
Output Voltage Error Full  
(1 V Mode)  
±ꢀ  
±12  
±ꢀ  
±12  
±ꢀ  
±12  
mV  
mV  
Load Regulation @  
1.± mA  
Full  
INPUT REFERRED NOISE  
VREF = 1.± V  
2ꢀ°C  
±.ꢁ2  
2
±.ꢁ3  
2
±.ꢂ  
2
LSB  
rms  
ANALOG INPUT  
Input Span, VREF =  
1.± V  
Input Capacitance2  
Input Common-  
Mode Voltage  
Full  
V p-p  
Full  
Full  
±.9  
±.9  
±.9  
pF  
V
REFERENCE INPUT  
RESISTANCE  
Full  
kΩ  
POWER SUPPLIES  
Supply Voltage  
AVDD  
Full  
Full  
1.ꢂ  
1.ꢂ  
1.ꢃ  
1.ꢃ  
1.9  
1.9  
1.ꢂ  
1.ꢂ  
1.ꢃ  
1.ꢃ  
1.9  
1.9  
1.ꢂ  
1.ꢂ  
1.ꢃ  
1.ꢃ  
1.9  
1.9  
V
V
DRVDD  
Supply Current  
IAVDD1  
IDRVDD1 (1.ꢃ V  
CMOS)  
Full  
Full  
234  
33  
24±  
293  
43  
3±±  
39±  
ꢀ3  
4±±  
mA  
mA  
IDRVDD1 (1.ꢃ V  
LVDS)  
Full  
ꢃ1  
ꢃ1  
9±  
mA  
Rev. A | Page 4 of 44  
 
AD9258  
AD9258BCPZ-80  
Temperature Min Typ Max Min Typ  
AD9258BCPZ-105  
AD9258BCPZ-125  
Max  
Parameter  
Max Min Typ  
Unit  
POWER CONSUMPTION  
DC Input  
Sine Wave Input1  
(DRVDD = 1.ꢃ V  
CMOS Output  
Mode)  
Full  
Full  
4ꢁ2  
4ꢃ1  
4ꢃꢂ  
ꢀꢁꢀ  
ꢁ±ꢀ  
ꢀ9±  
ꢂꢀ±  
ꢂ9ꢂ  
ꢂꢂꢂ  
mW  
mW  
Sine Wave Input1  
(DRVDD = 1.ꢃ V  
LVDS Output  
Mode)  
Full  
ꢀꢁꢃ  
ꢁꢂ1  
ꢃꢁꢀ  
mW  
Standby Power3  
Full  
Full  
4ꢀ  
±.ꢀ  
4ꢀ  
±.ꢀ  
4ꢀ  
±.ꢀ  
mW  
mW  
Power-Down Power  
2.ꢀ  
2.ꢀ  
2.ꢀ  
1 Measured with a low input frequency, full-scale sine wave, with approximately ꢀ pF loading on each output bit.  
2 Input capacitance refers to the effective capacitance between one differential input pin and AGND.  
3 Standby power is measured with a dc input and with the CLK pins inactive (set to AVDD or AGND).  
Rev. A | Page ꢀ of 44  
 
AD9258  
ADC AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, DCS enabled, unless  
otherwise noted.  
Table 2.  
AD9258BCPZ-80  
AD9258BCPZ-105  
AD9258BCPZ-125  
Parameter1  
Temp  
Min  
Typ  
Max  
Min Typ  
Max  
Min  
Typ  
Max  
Unit  
SIGNAL-TO-NOISE-RATIO (SNR)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
ꢂ9.±  
ꢂꢃ.3  
ꢂꢃ.4  
ꢂꢂ.3 ꢂꢃ.2  
ꢂꢁ.9  
ꢂꢂ.ꢂ  
ꢂꢂ.ꢁ  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
ꢂꢂ.ꢂ  
ꢂꢂ.4  
ꢂꢁ.ꢃ  
ꢂꢁ.±  
ꢂꢂ.±  
ꢂꢀ.3  
ꢂꢁ.ꢁ  
ꢂꢁ.ꢁ  
ꢂꢀ.1  
fIN = 14± MHz  
fIN = 2±± MHz  
ꢂ4.9  
SIGNAL-TO-NOISE AND DISTORTION (SINAD)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
ꢂꢃ.ꢂ  
ꢂꢃ.±  
ꢂꢂ.ꢃ  
ꢂꢂ.1 ꢂꢃ.±  
ꢂꢁ.ꢂ  
ꢂꢂ.3  
ꢂꢂ.±  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
ꢂꢂ.ꢀ  
ꢂꢂ.2  
ꢂꢁ.ꢀ  
ꢂꢀ.ꢂ  
fIN = 14± MHz  
fIN = 2±± MHz  
ꢂꢀ.1  
ꢂ4.2  
ꢂꢀ.ꢁ  
ꢂ2.1  
ꢂꢀ.3  
ꢂ3.ꢁ  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
fIN = 14± MHz  
fIN = 2±± MHz  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
12.ꢃ  
12.ꢂ  
12.2  
12.±  
12.ꢁ  
12.ꢁ  
12.3  
11.ꢂ  
12.ꢀ  
12.ꢀ  
12.2  
11.9  
Bits  
Bits  
Bits  
Bits  
WORST SECOND OR THIRD HARMONIC  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
−92  
−91  
−ꢃꢂ  
−92  
−9±  
−ꢃꢃ  
dBc  
dBc  
dBc  
dBc  
dBc  
−ꢃꢂ  
−ꢃꢂ  
−ꢃꢂ  
−ꢃꢂ  
−ꢃ3  
−ꢃ3  
fIN = 14± MHz  
fIN = 2±± MHz  
−ꢃ±  
−ꢃ2  
−ꢃ4  
−ꢂꢁ  
−ꢃ3  
−ꢂ9  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
92  
91  
ꢃꢂ  
92  
9±  
ꢃꢃ  
dBc  
dBc  
dBc  
dBc  
dBc  
ꢃꢂ  
ꢃꢂ  
ꢃꢂ  
ꢃꢂ  
ꢃ3  
ꢃ3  
fIN = 14± MHz  
fIN = 2±± MHz  
ꢃ±  
ꢃ2  
ꢃ4  
ꢂꢁ  
ꢃ3  
ꢂ9  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
Without Dither (AIN @ −23 dBFS)  
fIN = 2.4 MHz  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
93  
9ꢀ  
9ꢃ  
1±2  
1±±  
9ꢁ  
9ꢁ  
ꢃꢃ  
ꢃ9  
9±  
ꢃ9  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = ꢂ± MHz  
fIN = 14± MHz  
fIN = 2±± MHz  
1±±  
With On-Chip Dither (AIN @ −23 dBFS)  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
fIN = 14± MHz  
fIN = 2±± MHz  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
2ꢀ°C  
1±ꢂ  
1±ꢁ  
1±ꢁ  
1±ꢀ  
1±ꢁ  
1±ꢂ  
1±ꢀ  
1±ꢁ  
1±ꢂ  
1±ꢁ  
1±3  
1±ꢀ  
dBFS  
dBFS  
dBFS  
dBFS  
Rev. A | Page ꢁ of 44  
 
AD9258  
AD9258BCPZ-80  
AD9258BCPZ-105  
AD9258BCPZ-125  
Parameter1  
Temp  
Min  
Typ  
Max  
Min Typ  
Max  
Min  
Typ  
Max  
Unit  
WORST OTHER (HARMONIC OR SPUR)  
Without Dither  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
−1±±  
−1±± −9ꢁ  
−9ꢁ  
−9ꢂ  
−9ꢀ  
−1±±  
−99  
−99  
−9ꢃ  
dBc  
dBc  
dBc  
dBc  
dBc  
−94  
−94  
−94  
−94  
fIN = 14± MHz  
fIN = 2±± MHz  
−9ꢂ  
−9ꢀ  
−9ꢂ  
−9ꢀ  
With On-Chip Dither  
fIN = 2.4 MHz  
fIN = ꢂ± MHz  
2ꢀ°C  
2ꢀ°C  
Full  
2ꢀ°C  
2ꢀ°C  
−1±9  
−1±ꢀ −9ꢁ  
−9ꢁ  
−1±ꢁ  
−1±2  
−1±ꢂ  
−1±ꢁ  
−1±ꢂ  
−1±ꢀ −9ꢀ  
−9ꢀ  
−1±3  
−9ꢂ  
dBc  
dBc  
dBc  
dBc  
dBc  
−9ꢀ  
−9ꢀ  
fIN = 14± MHz  
fIN = 2±± MHz  
−1±4  
−1±4  
TWO-TONE SFDR WITHOUT DITHER  
fIN = 29 MHz (−ꢂ dBFS ), 32 MHz (−ꢂ dBFS )  
fIN = 1ꢁ9 MHz (−ꢂ dBFS ),1ꢂ2 MHz (−ꢂ dBFS )  
CROSSTALK2  
2ꢀ°C  
2ꢀ°C  
Full  
93  
ꢃ1  
92  
ꢃ±  
9±  
ꢃ2  
dBc  
dBc  
dB  
−9ꢀ  
ꢁꢀ±  
−9ꢀ  
ꢁꢀ±  
−9ꢀ  
ꢁꢀ±  
ANALOG INPUT BANDWIDTH  
2ꢀ°C  
MHz  
1 See the AN-ꢃ3ꢀ Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.  
2 Crosstalk is measured at 1±± MHz with −1.± dBFS on one channel and no input on the alternate channel.  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and DCS enabled, unless  
otherwise noted.  
Table 3.  
Parameter  
Temperature  
Min  
Typ  
Max  
Unit  
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Internal Common-Mode Bias  
Differential Input Voltage  
Input Voltage Range  
Input Common-Mode Range  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
±.9  
V
V p-p  
V
±.3  
AGND  
±.9  
−1±±  
−1±±  
3.ꢁ  
AVDD  
1.4  
+1±±  
+1±±  
V
μA  
μA  
pF  
kΩ  
4
1±  
Input Resistance  
12  
SYNC INPUT  
Logic Compliance  
Internal Bias  
CMOS  
±.9  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
V
Input Voltage Range  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Capacitance  
AGND  
1.2  
AGND  
−1±±  
−1±±  
AVDD  
AVDD  
±.ꢁ  
V
V
V
+1±±  
+1±±  
μA  
μA  
pF  
kΩ  
1
1ꢁ  
Input Resistance  
12  
2±  
Rev. A | Page ꢂ of 44  
 
 
 
AD9258  
Parameter  
LOGIC INPUT (CSB)1  
Temperature  
Min  
Typ  
Max  
Unit  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
±
−1±  
4±  
2.1  
±.ꢁ  
+1±  
132  
V
V
μA  
μA  
kΩ  
pF  
2ꢁ  
2
Input Capacitance  
LOGIC INPUT (SCLK/DFS)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.ꢃ V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
±
−92  
−1±  
2.1  
±.ꢁ  
−13ꢀ  
+1±  
V
V
μA  
μA  
kΩ  
pF  
2ꢁ  
2
Input Capacitance  
LOGIC INPUT/OUTPUT (SDIO/DCS)1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
±
−1±  
3ꢃ  
2.1  
±.ꢁ  
+1±  
12ꢃ  
V
V
μA  
μA  
kΩ  
pF  
2ꢁ  
Input Capacitance  
LOGIC INPUTS (OEB, PDWN)2  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current (VIN = 1.ꢃ V)  
Low Level Input Current  
Input Resistance  
Full  
Full  
Full  
Full  
Full  
Full  
1.22  
±
−9±  
−1±  
2.1  
±.ꢁ  
−134  
+1±  
V
V
μA  
μA  
kΩ  
pF  
2ꢁ  
Input Capacitance  
DIGITAL OUTPUTS  
CMOS Mode—DRVDD = 1.ꢃ V  
High Level Output Voltage  
IOH = ꢀ± μA  
Full  
Full  
1.ꢂ9  
1.ꢂꢀ  
V
V
IOH = ±.ꢀ mA  
Low Level Output Voltage  
IOL = 1.ꢁ mA  
IOL = ꢀ± μA  
Full  
Full  
±.2  
±.±ꢀ  
V
V
LVDS Mode—DRVDD = 1.ꢃ V  
Differential Output Voltage (VOD), ANSI Mode  
Output Offset Voltage (VOS), ANSI Mode  
Differential Output Voltage (VOD), Reduced Swing Mode  
Output Offset Voltage (VOS), Reduced Swing Mode  
Full  
Full  
Full  
Full  
29±  
1.1ꢀ  
1ꢁ±  
1.1ꢀ  
34ꢀ  
1.2ꢀ  
2±±  
1.2ꢀ  
4±±  
1.3ꢀ  
23±  
1.3ꢀ  
mV  
V
mV  
V
1 Pull up.  
2 Pull down.  
Rev. A | Page ꢃ of 44  
 
AD9258  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and DCS enabled, unless  
otherwise noted.  
Table 4.  
AD9258BCPZ-80  
Temperature Min Typ Max Min Typ  
AD9258BCPZ-105  
AD9258BCPZ-125  
Max  
Parameter  
Max Min Typ  
Unit  
CLOCK INPUT PARAMETERS  
Input Clock Rate  
Conversion Rate1  
DCS Enabled  
DCS Disabled  
CLK Period—Divide-by-1 Mode (tCLK  
Full  
625  
625  
625  
MHz  
Full  
Full  
Full  
20  
10  
12.5  
80  
80  
20  
10  
9.5  
105  
105  
20  
10  
8
125  
125  
MSPS  
MSPS  
ns  
)
CLK Pulse Width High (tCH)  
3.75  
5.95  
0.8  
8.75  
6.55  
2.85  
4.5  
6.65  
5.0  
Divide-by-1 Mode, DCS Enabled  
Divide-by-1 Mode, DCS Disabled Full  
Divide-by-2 Mode Through  
Divide-by-8 Mode  
Full  
6.25  
6.25  
4.75  
4.75  
2.4  
3.8  
0.8  
4
4
5.6  
4.2  
ns  
ns  
ns  
Full  
0.8  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Full  
Full  
1.0  
0.07  
1.0  
0.07  
1.0  
0.07  
ns  
ps  
rms  
DATA OUTPUT PARAMETERS  
CMOS Mode  
4.2  
0
2.8  
Data Propagation Delay (tPD)  
DCO Propagation Delay (tDCO  
Full  
Full  
Full  
2.8  
3.5  
3.1  
3.5  
3.1  
4.2  
0
2.8  
3.5  
3.1  
4.2  
0
ns  
ns  
ns  
2
)
DCO to Data Skew (tSKEW  
LVDS Mode  
)
−0.6 −0.4  
−0.6 −0.4  
−0.6 −0.4  
Data Propagation Delay (tPD  
DCO Propagation Delay (tDCO  
Full  
Full  
Full  
Full  
2.9  
3.7  
3.9  
4.5  
2.9  
3.7  
3.9  
4.5  
2.9  
3.7  
3.9  
4.5  
+0.5  
ns  
ns  
ns  
Cycles  
2
)
DCO to Data Skew (tSKEW  
)
−0.1 +0.2  
12  
+0.5 −0.1 +0.2  
12  
+0.5 −0.1 +0.2  
12  
CMOS Mode Pipeline Delay  
(Latency)  
LVDS Mode Pipeline Delay  
Full  
12/12.5  
12/12.5  
12/12.5  
Cycles  
(Latency) Channel A/Channel B  
Wake-Up Time3  
Out-of-Range Recovery Time  
Full  
Full  
500  
2
500  
2
500  
2
μs  
Cycles  
1 Conversion rate is the clock rate after the divider.  
2 Additional DCO delay can be added by writing to Bit 0 through Bit 4 in SPI Register 0x17 (see Table 17).  
3 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
Rev. A | Page 9 of 44  
 
 
AD9258  
TIMING SPECIFICATIONS  
Table 5.  
Parameter  
Conditions  
Limit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK+ setup time  
SYNC to rising edge of CLK+ hold time  
±.3± ns typ  
±.4± ns typ  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
2 ns min  
2 ns min  
4± ns min  
2 ns min  
2 ns min  
1± ns min  
1± ns min  
1± ns min  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative to the SCLK  
falling edge  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to the SCLK  
rising edge  
1± ns min  
Timing Diagrams  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCOA/DCOB  
tSKEW  
N – 12  
CH A/CH B DATA  
N – 13  
N – 11  
N – 10  
N – 9  
N – 8  
tPD  
Figure 2. CMOS Default Output Mode Data Output Timing  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCOA/DCOB  
tSKEW  
tPD  
CH A CH B CH A CH B CH A CH B  
CH A CH B  
CH A  
N – 8  
CH A/CH B DATA  
N – 12 N – 12 N – 11 N – 11 N – 10 N – 10 N – 9 N – 9  
Figure 3. CMOS Interleaved Output Mode Data Output Timing  
Rev. A | Page 1± of 44  
 
 
 
 
AD9258  
N – 1  
N + 4  
tA  
N + 5  
N
N + 3  
VIN  
N + 1  
N + 2  
tCH  
tCLK  
CLK+  
CLK–  
tDCO  
DCOA/DCOB  
tSKEW  
CH A CH B CH A CH B CH A CH B  
tPD  
CH A CH B  
CH A  
N – 8  
CH A/CH B DATA  
N – 12 N – 12 N – 11 N – 11 N – 10 N – 10 N – 9 N – 9  
Figure 4. LVDS Mode Data Output Timing  
CLK+  
SYNC  
tSSYNC  
tHSYNC  
Figure 5. SYNC Input Timing Requirements  
Rev. A | Page 11 of 44  
 
AD9258  
ABSOLUTE MAXIMUM RATINGS  
THERMAL CHARACTERISTICS  
Table 6.  
The exposed paddle must be soldered to the ground plane for  
the LFCSP package. Soldering the exposed paddle to the PCB  
increases the reliability of the solder joints and maximizes the  
thermal capability of the package.  
Parameter  
Rating  
ELECTRICAL1  
AVDD to AGND  
DRVDD to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0V  
VIN+A/VIN+B, VIN−A/VIN−B to AGND −0.3 V to AVDD + 0.2 V  
Typical θJA is specified for a 4-layer PCB with a solid ground  
plane. As shown in Table 7, airflow improves heat dissipation,  
which reduces θJA. In addition, metal in direct contact with the  
package leads from metal traces, through holes, ground, and  
power planes, reduces θJA.  
CLK+, CLK− to AGND  
SYNC to AGND  
VREF to AGND  
SENSE to AGND  
VCM to AGND  
RBIAS to AGND  
CSB to AGND  
SCLK/DFS to AGND  
SDIO/DCS to AGND  
OEB  
−0.3 V to AVDD + 0.2 V  
−0.3 V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3V to AVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
−0.3 V to DRVDD + 0.2 V  
Table 7. Thermal Resistance  
Airflow  
Velocity  
(m/sec)  
1, 2  
1, 3  
1, 4  
Package Type  
θJA  
θJC  
1.0  
θJB  
Unit  
°C/W  
°C/W  
°C/W  
64-Lead LFCSP  
(CP-64-6)  
0
18.5  
16.1  
14.5  
1.0  
2.5  
9.2  
PDWN  
D0A/D0B through D13A/D13B to  
AGND  
1 Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.  
2 Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).  
3 Per MIL-Std 883, Method 1012.1.  
4 Per JEDEC JESD51-8 (still air).  
DCOA/DCOB to AGND  
ENVIRONMENTAL  
−0.3 V to DRVDD + 0.2 V  
Operating Temperature Range  
(Ambient)  
Maximum Junction Temperature  
Under Bias  
−40°C to +85°C  
150°C  
ESD CAUTION  
Storage Temperature Range  
(Ambient)  
−65°C to +150°C  
1 The inputs and outputs are rated to the supply voltage (AVDD or DRVDD) +  
0.2 V but should not exceed 2.1 V.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 12 of 44  
 
 
 
 
 
 
AD9258  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
CLK+  
CLK–  
SYNC  
NC  
1
2
3
4
5
6
7
8
9
48 PDWN  
47 OEB  
46 CSB  
45 SCLK/DFS  
44 SDIO/DCS  
43 ORA  
42 D13A (MSB)  
41 D12A  
40 D11A  
39 D10A  
38 D9A  
37 DRVDD  
36 D8A  
35 D7A  
34 D6A  
33 D5A  
NC  
D0B (LSB)  
D1B  
D2B  
D3B  
AD9258  
PARALLEL CMOS  
TOP VIEW  
DRVDD 10  
D4B 11  
D5B 12  
D6B 13  
D7B 14  
D8B 15  
D9B 16  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED  
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 6. LFCSP Parallel CMOS Pin Configuration (Top View)  
Table 8. Pin Function Descriptions (Parallel CMOS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
1±, 19, 2ꢃ, 3ꢂ  
49, ꢀ±, ꢀ3, ꢀ4, ꢀ9,  
ꢁ±, ꢁ3, ꢁ4  
DRVDD  
AVDD  
Supply  
Supply  
Digital Output Driver Supply (1.ꢃ V Nominal).  
Analog Power Supply (1.ꢃ V Nominal).  
4, ꢀ, 2ꢀ, 2ꢁ  
±
NC  
AGND,  
Exposed Pad  
Do Not Connect.  
Ground  
The exposed thermal pad on the bottom of the package provides the analog  
ground for the part. This exposed pad must be connected to ground for proper  
operation.  
ADC Analog  
ꢀ1  
ꢀ2  
ꢁ2  
ꢁ1  
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VREF  
Input  
Input  
Input  
Input  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
ꢀꢀ  
Input/Output Voltage Reference Input/Output.  
ꢀꢁ  
ꢀꢃ  
ꢀꢂ  
1
SENSE  
RBIAS  
VCM  
CLK+  
CLK−  
Input  
Voltage Reference Mode Select. See Table 11 for details.  
Input/Output External Reference Bias Resistor.  
Output  
Input  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
2
Input  
Digital Input  
3
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
2ꢂ  
29  
3±  
31  
D±A (LSB)  
D1A  
D2A  
Output  
Output  
Output  
Output  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
D3A  
Rev. A | Page 13 of 44  
 
AD9258  
Pin No.  
Mnemonic  
D4A  
Type  
Description  
32  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A CMOS Output Data.  
Channel A Overrange Output.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B CMOS Output Data.  
Channel B Overrange Output  
Channel A Data Clock Output.  
Channel B Data Clock Output.  
33  
34  
3ꢀ  
3ꢁ  
3ꢃ  
39  
4±  
41  
42  
43  
9
11  
12  
13  
14  
1ꢀ  
1ꢁ  
1ꢂ  
1ꢃ  
2±  
21  
DꢀA  
DꢁA  
DꢂA  
DꢃA  
D9A  
D1±A  
D11A  
D12A  
D13A (MSB)  
ORA  
D±B (LSB)  
D1B  
D2B  
D3B  
D4B  
DꢀB  
DꢁB  
DꢂB  
DꢃB  
D9B  
D1±B  
D11B  
D12B  
D13B (MSB)  
ORB  
22  
24  
23  
DCOA  
DCOB  
SPI Control  
4ꢀ  
44  
4ꢁ  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
Input/Output SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode.  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
4ꢂ  
4ꢃ  
OEB  
PDWN  
Input  
Input  
Output Enable Input (Active Low) in External Pin Mode.  
Power-Down Input in External Pin Mode. In SPI mode, this input can be  
configured as power-down or standby.  
Rev. A | Page 14 of 44  
AD9258  
PIN 1  
INDICATOR  
48  
PDWN  
47 OEB  
46 CSB  
45 SCLK/DFS  
44 SDIO/DCS  
43 OR+  
CLK+  
CLK–  
SYNC  
NC  
NC  
NC  
1
2
3
4
5
6
7
8
9
NC  
D0– (LSB)  
D0+ (LSB)  
DRVDD 10  
D1– 11  
D1+ 12  
D2– 13  
D2+ 14  
D3– 15  
D3+ 16  
42 OR–  
41 D13+ (MSB)  
40 D13– (MSB)  
39 D12+  
38 D12–  
37 DRVDD  
36 D11+  
35 D11–  
34 D10+  
33 D10–  
AD9258  
PARALLEL LVDS  
TOP VIEW  
(Not to Scale)  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE PACKAGE  
PROVIDES THE ANALOG GROUND FOR THE PART. THIS EXPOSED  
PAD MUST BE CONNECTED TO GROUND FOR PROPER OPERATION.  
Figure 7. LFCSP Interleaved Parallel LVDS Pin Configuration (Top View)  
Table 9. Pin Function Descriptions (Interleaved Parallel LVDS Mode)  
Pin No.  
Mnemonic  
Type  
Description  
ADC Power Supplies  
1±, 19, 2ꢃ, 3ꢂ  
DRVDD  
AVDD  
Supply  
Supply  
Digital Output Driver Supply (1.ꢃ V Nominal).  
Analog Power Supply (1.ꢃ V Nominal).  
49, ꢀ±, ꢀ3, ꢀ4, ꢀ9,  
ꢁ±, ꢁ3, ꢁ4  
4, ꢀ, ꢁ, ꢂ  
±
NC  
Do Not Connect.  
AGND,  
Exposed Pad  
Ground  
The exposed thermal pad on the bottom of the package provides the analog  
ground for the part. This exposed pad must be connected to ground for proper  
operation.  
ADC Analog  
ꢀ1  
ꢀ2  
ꢁ2  
ꢁ1  
VIN+A  
VIN−A  
VIN+B  
VIN−B  
VREF  
Input  
Input  
Input  
Input  
Differential Analog Input Pin (+) for Channel A.  
Differential Analog Input Pin (−) for Channel A.  
Differential Analog Input Pin (+) for Channel B.  
Differential Analog Input Pin (−) for Channel B.  
ꢀꢀ  
Input/Output Voltage Reference Input/Output.  
ꢀꢁ  
ꢀꢃ  
ꢀꢂ  
1
SENSE  
RBIAS  
VCM  
CLK+  
CLK−  
Input  
Voltage Reference Mode Select. See Table 11 for details.  
Input/Output External Reference Bias Resistor.  
Output  
Input  
Common-Mode Level Bias Output for Analog Inputs.  
ADC Clock Input—True.  
ADC Clock Input—Complement.  
2
Input  
Digital Input  
3
SYNC  
Input  
Digital Synchronization Pin. Slave mode only.  
Digital Outputs  
9
12  
11  
14  
13  
D±+ (LSB)  
D±− (LSB)  
D1+  
D1−  
D2+  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Output Data ±—True.  
Channel A/Channel B LVDS Output Data ±—Complement.  
Channel A/Channel B LVDS Output Data 1—True.  
Channel A/Channel B LVDS Output Data 1—Complement.  
Channel A/Channel B LVDS Output Data 2—True.  
Channel A/Channel B LVDS Output Data 2—Complement.  
D2−  
Rev. A | Page 1ꢀ of 44  
AD9258  
Pin No.  
Mnemonic  
D3+  
Type  
Description  
1ꢁ  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Channel A/Channel B LVDS Output Data 3—True.  
Channel A/Channel B LVDS Output Data 3—Complement.  
Channel A/Channel B LVDS Output Data 4 —True.  
Channel A/Channel B LVDS Output Data 4—Complement.  
Channel A/Channel B LVDS Output Data ꢀ—True.  
Channel A/Channel B LVDS Output Data ꢀ—Complement.  
Channel A/Channel B LVDS Output Data ꢁ—True.  
Channel A/Channel B LVDS Output Data ꢁ—Complement.  
Channel A/Channel B LVDS Output Data ꢂ—True.  
Channel A/Channel B LVDS Output Data ꢂ—Complement.  
Channel A/Channel B LVDS Output Data ꢃ—True.  
Channel A/Channel B LVDS Output Data ꢃ—Complement.  
Channel A/Channel B LVDS Output Data 9—True.  
Channel A/Channel B LVDS Output Data 9—Complement.  
Channel A/Channel B LVDS Output Data 1±—True.  
Channel A/Channel B LVDS Output Data 1±—Complement.  
Channel A/Channel B LVDS Output Data 11—True.  
Channel A/Channel B LVDS Output Data 11—Complement.  
Channel A/Channel B LVDS Output Data 12—True.  
Channel A/Channel B LVDS Output Data 12—Complement.  
Channel A/Channel B LVDS Output Data 13—True.  
Channel A/Channel B LVDS Output Data 13—Complement.  
Channel A/Channel B LVDS Overrange Output—True.  
Channel A/Channel B LVDS Overrange Output—Complement.  
Channel A/Channel B LVDS Data Clock Output—True.  
Channel A/Channel B LVDS Data Clock Output—Complement.  
1ꢀ  
1ꢃ  
1ꢂ  
21  
2±  
23  
22  
2ꢂ  
2ꢁ  
3±  
29  
32  
31  
34  
33  
3ꢁ  
3ꢀ  
39  
3ꢃ  
41  
4±  
43  
42  
2ꢀ  
D3−  
D4+  
D4−  
Dꢀ+  
Dꢀ−  
Dꢁ+  
Dꢁ−  
Dꢂ+  
Dꢂ−  
Dꢃ+  
Dꢃ−  
D9+  
D9−  
D1±+  
D1±−  
D11+  
D11−  
D12+  
D12−  
D13+ (MSB)  
D13− (MSB)  
OR+  
OR−  
DCO+  
DCO−  
24  
SPI Control  
4ꢀ  
SCLK/DFS  
SDIO/DCS  
CSB  
Input  
SPI Serial Clock/Data Format Select Pin in External Pin Mode.  
44  
4ꢁ  
Input/Output SPI Serial Data I/O/Duty Cycle Stabilizer Pin in External Pin Mode.  
Input  
SPI Chip Select (Active Low).  
ADC Configuration  
4ꢂ  
4ꢃ  
OEB  
PDWN  
Input  
Input  
Output Enable Input (Active Low) in External Pin Mode.  
Power-Down Input in External Pin Mode. In SPI mode, this input can be configured  
as power-down or standby.  
Rev. A | Page 1ꢁ of 44  
AD9258  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = 1.8 V, DRVDD = 1.8 V, rated sample rate, DCS enabled, 1.0 V internal reference, 2 V p-p differential input, VIN = −1.0 dBFS, and  
32k sample, TA = 25°C, unless otherwise noted  
0
–20  
–40  
–60  
0
–20  
–40  
–60  
80MSPS  
80MSPS  
200.3MHz @ –1dBFS  
SNR = 74.3dB (75.3dBFS)  
SFDR = 83dBc  
2.4MHz @ –1dBFS  
SNR = 78.2dB (79.2dBFS)  
SFDR = 99dBc  
SECOND HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
20  
FREQUENCY (MHz)  
0
10  
20  
FREQUENCY (MHz)  
30  
40  
0
10  
30  
40  
Figure 8. AD9258-80 Single-Tone FFT with fIN = 2.4 MHz  
Figure 11. AD9258-80 Single-Tone FFT with fIN = 200.1 MHz  
0
0
80MSPS  
70.1MHz @ –6dBFS  
SNR = 71.6dB (77.6dBFS)  
SFDR = 97dBc  
80MSPS  
70.1MHz @ –1dBFS  
SNR = 77.0dB (78.0dBFS)  
SFDR = 89.0dBc  
–20  
–40  
–60  
–20  
–40  
–60  
THIRD HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–100  
–120  
–80  
–100  
–120  
SECOND HARMONIC  
–140  
–140  
0
10  
20  
30  
40  
0
10  
20  
30  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 9. AD9258-80 Single-Tone FFT with fIN = 70.1 MHz  
Figure 12. AD9258-80 Single-Tone FFT with fIN = 70.1 MHz with Dither  
Enabled  
120  
100  
80  
0
80MSPS  
140.1MHz @ –1dBFS  
SNR = 75.5dB (76.5dBFS)  
SFDR = 82.0dBc  
–20  
–40  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
60  
–80  
–100  
–120  
40  
SNR (dBFS)  
SFDR (dBc)  
SNR (dBc)  
20  
0
SFDR (dBFS)  
–140  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
10  
20  
FREQUENCY (MHz)  
30  
40  
INPUT AMPLITUDE (dBFS)  
Figure 13. AD9258-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
Figure 10. AD9258-80 Single-Tone FFT with fIN = 140.1 MHz  
with fIN = 98.12 MHz  
Rev. A | Page 1ꢂ of 44  
 
 
AD9258  
800,000  
700,000  
600,000  
500,000  
400,000  
300,000  
200,000  
100,000  
0
120  
110  
100  
90  
SNRFS (DITHER ON)  
SNRFS (DITHER OFF)  
SFDRFS (DITHER ON)  
SFDRFS (DITHER OFF)  
80  
70  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
OUTPUT CODE  
INPUT AMPLITUDE (dBFS)  
Figure 17. AD9258-80 Grounded Input Histogram  
Figure 14. AD9258-80 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 30 MHz with and without Dither Enabled  
2
1
100  
DITHER ENABLED  
DITHER DISABLED  
SNR @ –40°C  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
95  
90  
85  
80  
75  
70  
65  
0
–1  
–2  
0
2000 4000 6000  
8000 10,000 12,000 14,000 16,000  
0
50  
100  
150  
200  
250  
300  
OUTPUT CODE  
INPUT FREQUENCY (MHz)  
Figure 18. AD9258-80 INL with fIN = 9.7 MHz  
Figure 15. AD9258-80 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
with 2 V p-p Full Scale  
105  
0.50  
SNR, CHANNEL B  
SFDR, CHANNEL B  
SNR, CHANNEL A  
100  
SFDR, CHANNEL A  
0.25  
0
95  
90  
85  
80  
75  
–0.25  
–0.50  
0
25  
30  
35  
40  
45  
50  
55  
60  
65  
70  
75  
80  
2000 4000 6000  
8000 10,000 12,000 14,000 16,000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 16. AD9258-80 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 19. AD9258-80 DNL with fIN = 9.7 MHz  
Rev. A | Page 1ꢃ of 44  
AD9258  
0
–20  
–40  
–60  
0
–20  
–40  
–60  
105MSPS  
105MSPS  
2.4MHz @ –1dBFS  
SNR = 77.5dB (78.5dBFS)  
SFDR = 90dBc  
200.3MHz @ –1dBFS  
SNR = 74.0dB (75.0dBFS)  
SFDR = 80dBc  
SECOND HARMONIC  
THIRD HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–100  
–120  
–80  
–100  
–120  
–140  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. AD9258-105 Single-Tone FFT with fIN = 2.4 MHz  
Figure 23. AD9258-105 Single-Tone FFT with fIN = 200.3 MHz  
0
0
105MSPS  
105MSPS  
70.1MHz @ –1dBFS  
–20 SNR = 76.8dB (77.8dBFS)  
SFDR = 93.5dBc  
70.1MHz @ –6dBFS  
SNR = 72.0dB (78.0dBFS)  
SFDR = 97dBc  
–20  
–40  
–60  
–40  
–60  
SECOND  
HARMONIC  
SECOND  
HARMONIC  
THIRD HARMONIC  
THIRD HARMONIC  
–80  
–100  
–120  
–80  
–100  
–120  
–140  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. AD9258-105 Single-Tone FFT with fIN = 70.1 MHz  
Figure 24. AD9258-105 Single-Tone FFT with fIN = 70.1 MHz with Dither  
Enabled  
120  
100  
80  
0
105MSPS  
140.1MHz @ –1dBFS  
SNR = 75.5dB (76.5dBFS)  
SFDR = 85.0dBc  
–20  
–40  
–60  
SECOND HARMONIC  
THIRD HARMONIC  
60  
–80  
–100  
–120  
40  
SNR (dBFS)  
SFDR (dBc)  
SNR (dBc)  
20  
0
SFDR (dBFS)  
–140  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
10  
20  
30  
40  
50  
INPUT AMPLITUDE (dBFS)  
FREQUENCY (MHz)  
Figure 25. AD9258-105 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
Figure 22. AD9258-105 Single-Tone FFT with fIN = 140.1 MHz  
with fIN = 98.12 MHz  
Rev. A | Page 19 of 44  
AD9258  
700,000  
120  
110  
100  
90  
600,000  
500,000  
400,000  
SNRFS (DITHER ON)  
SNRFS (DITHER OFF)  
SFDRFS (DITHER ON)  
SFDRFS (DITHER OFF)  
300,000  
200,000  
100,000  
0
80  
70  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
OUTPUT CODE  
INPUT AMPLITUDE (dBFS)  
Figure 29. AD9258-105 Grounded Input Histogram  
Figure 26. AD9258-105 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 30 MHz with and without Dither Enabled  
2
100  
DITHER ENABLED  
DITHER DISABLED  
SNR @ –40°C  
SFDR @ –40°C  
95  
90  
85  
80  
75  
70  
65  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
1
0
–1  
–2  
0
0
50  
100  
150  
200  
250  
300  
2000 4000 6000  
8000 10,000 12,000 14,000 16,000  
INPUT FREQUENCY (MHz)  
OUTPUT CODE  
Figure 27. AD9258-105 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
Figure 30. AD9258-105 INL with fIN = 9.7 MHz  
with 2 V p-p Full Scale  
105  
0.50  
SNR, CHANNEL B  
SFDR, CHANNEL B  
SNR, CHANNEL A  
SFDR, CHANNEL A  
100  
95  
0.25  
0
90  
85  
80  
75  
–0.25  
–0.50  
0
25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105  
2000 4000 6000  
8000 10,000 12,000 14,000 16,000  
SAMPLE RATE (MSPS)  
OUTPUT CODE  
Figure 28. AD9258-105 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 31. AD9258-105 DNL with fIN = 9.7 MHz  
Rev. A | Page 2± of 44  
AD9258  
0
0
125MSPS  
125MSPS  
2.4MHz @ –1dBFS  
SNR = 76.6dB (77.6dBFS)  
SFDR = 89dBc  
140.1MHz @ –1dBFS  
SNR = 75.5dB (76.5dBFS)  
SFDR = 85.0dBc  
–20  
–20  
–40  
–60  
–40  
–60  
SECOND HARMONIC  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–80  
THIRD HARMONIC  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 32. AD9258-125 Single-Tone FFT with fIN = 2.4 MHz  
Figure 35. AD9258-125 Single-Tone FFT with fIN = 140.1 MHz  
0
0
125MSPS  
125MSPS  
30.3MHz @ –1dBFS  
SNR = 76.4dB (77.4dBFS)  
SFDR = 91.2dBc  
200.3MHz @ –1dBFS  
SNR = 74.3dB (75.3dBFS)  
SFDR = 81dBc  
–20  
–20  
–40  
–60  
–40  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
THIRD HARMONIC  
–80  
–80  
–100  
–120  
–140  
SECOND HARMONIC  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 33. AD9258-125 Single-Tone FFT with fIN = 30.3 MHz  
Figure 36. AD9258-125 Single-Tone FFT with fIN = 200.3 MHz  
0
0
125MSPS  
125MSPS  
220.1MHz @ –1dBFS  
SNR = 74.0dB (75.0dBFS)  
70.1MHz @ –1dBFS  
SNR = 76.5dB (77.5dBFS)  
–20  
–20  
SFDR = 79.3dBc  
SFDR = 88.0dBc  
–40  
–40  
THIRD HARMONIC  
SECOND HARMONIC  
–60  
–80  
–60  
THIRD HARMONIC  
SECOND HARMONIC  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 37. AD9258-125 Single-Tone FFT with fIN = 220.1 MHz  
Figure 34. AD9258-125 Single-Tone FFT with fIN = 70.1 MHz  
Rev. A | Page 21 of 44  
AD9258  
0
120  
100  
80  
125MSPS  
SFDR (dBFS)  
SNR (dBFS)  
70.1MHz @ –6dBFS  
SNR = 71.6dB (77.6dBFS)  
SFDR = 97dBc  
–20  
–40  
–60  
–80  
60  
SFDR (dBc)  
SECOND HARMONIC  
THIRD HARMONIC  
40  
20  
0
–100  
–120  
–140  
SNR (dBc)  
0
10  
20  
30  
40  
50  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 38. AD9258-125 Single-Tone FFT with fIN = 70.1 MHz @ −6 dBFS  
with Dither Enabled  
Figure 41. AD9258-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 2.4 MHz  
0
120  
125MSPS  
SFDR (dBFS)  
–15 70.1MHz @ –23dBFS  
SNR = 56.1dB (79.1dBFS)  
100  
SFDR = 67.7dBc  
–30  
–45  
–60  
SNR (dBFS)  
80  
THIRD HARMONIC  
60  
–75  
–90  
SECOND HARMONIC  
SFDR (dBc)  
40  
–105  
–120  
–135  
–150  
SNR (dBc)  
20  
0
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 39. AD9258-125 Single-Tone FFT with fIN = 70.1 MHz @ −23 dBFS  
with Dither Disabled, 1M Sample  
Figure 42. AD9258-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 98.12 MHz  
0
120  
125MSPS  
–15 70.1MHz @ –23dBFS  
SNR = 55.4dB (78.4dBFS)  
SFDR (DITHER ON)  
SFDR = 86.2dBc  
–30  
–45  
–60  
110  
100  
–75  
–90  
SECOND HARMONIC  
THIRD HARMONIC  
SFDR (DITHER 0FF)  
90  
–105  
–120  
–135  
–150  
SNR (DITHER 0FF)  
80  
SNR (DITHER ON)  
70  
0
6
12  
18  
24  
30  
36  
42  
48  
54  
60  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 40. AD9258-125 Single-Tone FFT with fIN = 70.1 MHz @ −23 dBFS  
with Dither Enabled, 1M Sample  
Figure 43. AD9258-125 Single-Tone SNR/SFDR vs. Input Amplitude (AIN  
)
with fIN = 30 MHz with and without Dither Enabled  
Rev. A | Page 22 of 44  
AD9258  
0
–20  
100  
95  
90  
85  
80  
75  
70  
65  
SNR @ –40°C  
SFDR @ –40°C  
SNR @ +25°C  
SFDR @ +25°C  
SNR @ +85°C  
SFDR @ +85°C  
SFDR (dBc)  
–40  
IMD3 (dBc)  
–60  
–80  
SFDR (dBFS)  
IMD3 (dBFS)  
–78  
–100  
–120  
–90  
–66  
–54  
–42  
–30  
–18  
–6  
0
50  
100  
150  
200  
250  
300  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 47. AD9258-125 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
Figure 44. AD9258-125 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
with fIN1 = 169.1 MHz, fIN2 = 172.1 MHz, fS = 125 MSPS  
with 2 V p-p Full Scale  
0
95  
90  
125MSPS  
29.1MHz @ –7dBFS  
32.1MHz @ –7dBFS  
SFDR = 88.8dBc (95.8dBFS)  
–20  
SFDR (dBc)  
–40  
85  
–60  
–80  
80  
75  
70  
65  
SNR (dBFS)  
–100  
–120  
–140  
60  
0
10  
20  
30  
40  
50  
60  
0
50  
100  
150  
200  
250  
300  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 48. AD9258-125 Two-Tone FFT with fIN1 = 29.1 MHz and fIN2 = 32.1 MHz  
Figure 45. AD9258-125 Single-Tone SNR/SFDR vs. Input Frequency (fIN  
)
with 1 V p-p Full Scale  
0
125MSPS  
169.1MHz @ –7dBFS  
172.1MHz @ –7dBFS  
0
–20  
SFDR = 81.7dBc (88.7dBFS)  
–20  
–40  
SFDR (dBc)  
–40  
–60  
–80  
–60  
IMD3 (dBc)  
–100  
–120  
–140  
–80  
–100  
SFDR (dBFS)  
IMD3 (dBFS)  
–30  
INPUT AMPLITUDE (dBFS)  
0
10  
20  
30  
40  
50  
60  
–120  
–90  
FREQUENCY (MHz)  
–78  
–66  
–54  
–42  
–18  
–6  
Figure 49. AD9258-125 Two-Tone FFT with fIN1 = 169.1 MHz and  
IN2 = 172.1 MHz  
f
Figure 46. AD9258-125 Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN  
)
with fIN1 = 29.1 MHz, fIN2 = 32.1 MHz, fS = 125 MSPS  
Rev. A | Page 23 of 44  
AD9258  
100  
95  
90  
85  
80  
0.50  
SFDR (dBc), CHANNEL B  
0.25  
0
SFDR (dBc), CHANNEL A  
SNR (dBFS), CHANNEL B  
–0.25  
–0.50  
SNR (dBFS), CHANNEL A  
75 85 95 105 115 125  
SAMPLE RATE (MSPS)  
75  
25  
35  
45  
55  
65  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
OUTPUT CODE  
Figure 50. AD9258-125 Single-Tone SNR/SFDR vs. Sample Rate (fS)  
with fIN = 70.1 MHz  
Figure 53. AD9258-125 DNL with fIN = 9.7 MHz  
100  
90  
700,000  
SFDR (dBc)  
SNR (dBFS)  
0.72LSB rms  
600,000  
80  
500,000  
400,000  
300,000  
70  
60  
50  
40  
30  
200,000  
100,000  
0
0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20  
N – 3  
N – 2  
N – 1  
N
N + 1  
N + 2  
N + 3  
INPUT COMMON-MODE VOLTAGE (V)  
OUTPUT CODE  
Figure 51. AD9258-125 Grounded Input Histogram  
Figure 54. SNR/SFDR vs. Input Common Mode (VCM)  
with fIN = 30 MHz  
2
DITHER ENABLED  
DITHER DISABLED  
1
0
–1  
–2  
0
2048  
4096  
6144  
8192 10,240 12,288 14,336 16,384  
OUTPUT CODE  
Figure 52. AD9258-125 INL with fIN = 9.7 MHz  
Rev. A | Page 24 of 44  
 
AD9258  
EQUIVALENT CIRCUITS  
AVDD  
VIN  
350  
SENSE  
Figure 55. Equivalent Analog Input Circuit  
Figure 60. Equivalent SENSE Circuit  
AVDD  
DRVDD  
0.9V  
26k  
10k  
10kΩ  
350Ω  
CLK–  
CLK+  
CSB  
Figure 56. Equivalent Clock Input Circuit  
Figure 61. Equivalent CSB Input Circuit  
DRVDD  
AVDD  
PAD  
VREF  
6k  
Figure 57. Digital Output  
Figure 62. Equivalent VREF Circuit  
DRVDD  
26kΩ  
350  
PDWN  
350Ω  
SDIO/DCS  
26kΩ  
Figure 63. Equivalent PDWN Input Circuit  
Figure 58. Equivalent SDIO/DCS Circuit  
DRVDD  
350  
SCLK/DFS  
OR OEB  
26kΩ  
Figure 59. Equivalent SCLK/DFS or OEB Input Circuit  
Rev. A | Page 2ꢀ of 44  
 
 
AD9258  
THEORY OF OPERATION  
A small resistor in series with each input can help reduce the  
peak transient current required from the output stage of the  
driving source. A shunt capacitor can be placed across the  
inputs to provide dynamic charging currents. This passive  
network creates a low-pass filter at the ADC input; therefore,  
the precise values are dependent on the application.  
The AD9258 dual-core analog-to-digital converter (ADC)  
design can be used for diversity reception of signals, in which the  
ADCs are operating identically on the same carrier but from two  
separate antennae. The ADCs can also be operated with inde-  
pendent analog inputs. The user can sample any fS/2 frequency  
segment from dc to 200 MHz, using appropriate low-pass or  
band-pass filtering at the ADC inputs with little loss in ADC  
performance. Operation to 300 MHz analog input is permitted  
but occurs at the expense of increased ADC noise and distortion.  
In intermediate frequency (IF) undersampling applications, any  
shunt capacitors should be reduced. In combination with the  
driving source impedance, the shunt capacitors limit the input  
bandwidth. Refer to the AN-742 Application Note, Frequency  
Domain Response of Switched-Capacitor ADCs; the AN-827  
Application Note, A Resonant Approach to Interfacing Amplifiers to  
Switched-Capacitor ADCs; and the Analog Dialogue article,  
Transformer-Coupled Front-End for Wideband A/D Converters,”  
for more information on this subject (refer to www.analog.com).  
BIAS  
In nondiversity applications, the AD9258 can be used as a base-  
band or direct downconversion receiver, in which one ADC is  
used for I input data, and the other is used for Q input data.  
Synchronization capability is provided to allow synchronized  
timing between multiple devices.  
Programming and control of the AD9258 are accomplished  
using a 3-wire SPI-compatible serial interface.  
S
S
C
FB  
C
ADC ARCHITECTURE  
S
VIN+  
The AD9258 architecture consists of a dual front-end sample-  
and-hold circuit, followed by a pipelined, switched-capacitor  
ADC. The quantized outputs from each stage are combined into  
a final 14-bit result in the digital correction logic. The pipelined  
architecture permits the first stage to operate on a new input  
sample and the remaining stages to operate on the preceding  
samples. Sampling occurs on the rising edge of the clock.  
C
PAR1  
C
PAR2  
H
S
S
S
C
S
VIN–  
C
FB  
C
C
PAR1  
PAR2  
S
BIAS  
Figure 64. Switched-Capacitor Input  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor digital-  
to-analog converter (DAC) and an interstage residue amplifier  
(MDAC). The MDAC magnifies the difference between the recon-  
structed DAC output and the flash input for the next stage in  
the pipeline. One bit of redundancy is used in each stage to  
facilitate digital correction of flash errors. The last stage simply  
consists of a flash ADC.  
For best dynamic performance, the source impedances driving  
VIN+ and VIN− should be matched, and the inputs should be  
differentially balanced.  
An internal differential reference buffer creates positive and  
negative reference voltages that define the input span of the ADC  
core. The span of the ADC core is set by this buffer to 2 × VREF.  
Input Common Mode  
The input stage of each channel contains a differential sampling  
circuit that can be ac- or dc-coupled in differential or single-  
ended modes. The output staging block aligns the data, corrects  
errors, and passes the data to the output buffers. The output buffers  
are powered from a separate supply, allowing digital output noise to  
be separated from the analog core. During power-down, the  
output buffers go into a high impedance state.  
The analog inputs of the AD9258 are not internally dc biased.  
In ac-coupled applications, the user must provide this bias  
externally. Setting the device so that VCM = 0.5 × AVDD (or  
0.9 V) is recommended for optimum performance, but the  
device functions over a wider range with reasonable perfor-  
mance (see Figure 54). An on-board common-mode voltage  
reference is included in the design and is available from the  
VCM pin. Optimum performance is achieved when the  
common-mode voltage of the analog input is set by the VCM  
pin voltage (typically 0.5 × AVDD). The VCM pin must be  
decoupled to ground by a 0.1 μF capacitor, as described in the  
Applications Information section.  
ANALOG INPUT CONSIDERATIONS  
The analog input to the AD9258 is a differential switched-  
capacitor circuit that has been designed for optimum performance  
while processing a differential input signal.  
The clock signal alternatively switches the input between sample  
mode and hold mode (see Figure 64). When the input is switched  
into sample mode, the signal source must be capable of charging  
the sample capacitors and settling within ½ of a clock cycle.  
Rev. A | Page 2ꢁ of 44  
 
 
 
 
AD9258  
Common-Mode Voltage Servo  
ADC is quantizing large-signal inputs, dithering converts these  
tones to noise and produces a whiter noise floor.  
In applications where there may be a voltage loss between the VCM  
output of the AD9258 and the analog inputs, the common-mode  
voltage servo can be enabled. When the inputs are ac-coupled and  
a resistance of >100 Ω is placed between the VCM output and the  
analog inputs, a significant voltage drop can occur and the  
common-mode voltage servo should be enabled. Setting Bit 0 in  
Register 0x0F to a logic high enables the VCM servo mode. In  
this mode, the AD9258 monitors the common-mode input level  
at the analog inputs and adjusts the VCM output level to keep  
the common-mode input voltage at an optimal level. If both  
channels are operational, Channel A is monitored. However,  
if Channel A is in power-down or standby mode, then the  
Channel B input is monitored.  
Small-Signal FFT  
For small-signal inputs, the front-end sampling circuit typically  
contributes very little distortion, and, therefore, the SFDR is  
likely to be limited by tones caused by DNL errors due to random  
component mismatches. Therefore, for small-signal inputs (typi-  
cally, those below −6 dBFS), dithering can significantly improve  
SFDR by converting these DNL tones to white noise.  
Static Linearity  
Dithering also removes sharp local discontinuities in the INL  
transfer function of the ADC and reduces the overall peak-to-  
peak INL.  
Dither  
In receiver applications, utilizing dither helps to reduce DNL  
errors that cause small-signal gain errors. Often this issue is  
overcome by setting the input noise 5 dB to 10 dB above the  
converter noise. By utilizing dither within the converter to correct  
the DNL errors, the input noise requirement can be reduced.  
The AD9258 has an optional dither mode that can be selected  
for one or both channels. Dithering is the act of injecting a known  
but random amount of white noise, commonly referred to as  
dither, into the input of the ADC. Dithering has the effect of  
improving the local linearity at various points along the ADC  
transfer function. Dithering can significantly improve the SFDR  
when quantizing small-signal inputs, typically when the input  
level is below −6 dBFS.  
Differential Input Configurations  
Optimum performance is achieved while driving the AD9258  
in a differential input configuration. For baseband applications,  
the AD8138, ADA4937-2, and ADA4938-2 differential drivers  
provide excellent performance and a flexible interface to the  
ADC.  
As shown in Figure 65, the dither that is added to the input of  
the ADC through the dither DAC is precisely subtracted out  
digitally to minimize SNR degradation. When dithering is  
enabled, the dither DAC is driven by a pseudorandom number  
generator (PN gen). In the AD9258, the dither DAC is precisely  
calibrated to result in only a very small degradation in SNR and  
the SINAD. The typical SNR and SINAD degradation values,  
with dithering enabled, are only 1 dB and 0.8 dB, respectively.  
The output common-mode voltage of the ADA4938-2 is easily  
set with the VCM pin of the AD9258 (see Figure 66), and the  
driver can be configured in a Sallen-Key filter topology to  
provide band limiting of the input signal.  
15pF  
200Ω  
33Ω  
5pF  
15Ω  
AD9258  
90Ω  
VIN–  
VIN+  
AVDD  
76.8Ω  
VIN  
VIN  
DOUT  
ADC CORE  
AD9258  
ADA4938-2  
0.1µF  
33Ω  
15Ω  
VCM  
DITHER  
DAC  
120Ω  
15pF  
200Ω  
Figure 66. Differential Input Configuration Using the ADA4938-2  
PN GEN  
DITHER ENABLE  
For baseband applications in which SNR is a key parameter,  
differential transformer coupling is the recommended input  
configuration. An example is shown in Figure 67. To bias the  
analog input, the VCM voltage can be connected to the center  
tap of the secondary winding of the transformer.  
Figure 65. Dither Block Diagram  
Large-Signal FFT  
In most cases, dithering does not improve SFDR for large-signal  
inputs close to full-scale, for example with a −1 dBFS input. For  
large-signal inputs, the SFDR is typically limited by front-end  
sampling distortion, which dithering cannot improve. However,  
even for such large-signal inputs, dithering may be useful for  
certain applications because it makes the noise floor whiter.  
As is common in pipeline ADCs, the AD9258 contains small  
DNL errors caused by random component mis-matches that  
produce spurs or tones that make the noise floor somewhat  
randomly colored part-to-part. Although these tones are  
typically at very low levels and do not limit SFDR when the  
C2  
R2  
VIN+  
R1  
2V p-p  
49.9Ω  
C1  
R1  
AD9258  
R2  
VCM  
VIN–  
0.1µF  
C2  
Figure 67. Differential Transformer-Coupled Configuration  
Rev. A | Page 2ꢂ of 44  
 
 
 
AD9258  
The signal characteristics must be considered when selecting  
a transformer. Most RF transformers saturate at frequencies  
below a few megahertz (MHz). Excessive signal power can also  
cause core saturation, which leads to distortion.  
network. At higher input frequencies, good performance can be  
achieved by using a ferrite bead in series with a resistor and  
removing the capacitors. However, these values are dependent  
on the input signal and should be used only as a starting guide.  
At input frequencies in the second Nyquist zone and above, the  
noise performance of most amplifiers is not adequate to achieve  
the true SNR performance of the AD9258. For applications in  
which SNR is a key parameter, differential double balun coupling  
is the recommended input configuration (see Figure 68). In this  
configuration, the input is ac-coupled, and the CML is provided  
to each input through a 33 Ω resistor. These resistors compensate  
for losses in the input baluns to provide a 50 Ω impedance to  
the driver.  
Table 10. Example RC Network  
Frequency  
Range  
(MHz)  
R1 Series C1 Differential R2 Series C2 Shunt  
(Ω Each) (pF) (Ω Each) (pF Each)  
± to 1±±  
33  
1ꢀ  
1±  
ꢁꢁ  
1ꢀ  
1±  
Remove  
1±± to 2±± 1±  
1±± to 3±± 1  
Remove  
1 In this configuration, R1 is a ferrite bead with a value of 1± Ω @ 1±± MHz.  
An alternative to using a transformer-coupled input at  
frequencies in the second Nyquist zone is to use the AD8352  
differential driver. An example is shown in Figure 69. See the  
AD8352 data sheet for more information.  
In the double balun and transformer configurations, the value of  
the input capacitors and resistors is dependent on the input fre-  
quency and source impedance and may need to be reduced or  
removed. Table 10 displays recommended values to set the RC  
C2  
0.1µF  
0.1µF  
0.1µF  
R1  
R2  
R2  
VIN+  
2V p-p  
33  
33Ω  
P
A
S
S
P
C1  
R1  
AD9258  
0.1µF  
VCM  
VIN–  
C2  
Figure 68. Differential Double Balun Input Configuration  
V
CC  
0.1µF  
0Ω  
0.1µF  
16  
1
8, 13  
11  
0.1µF  
0.1µF  
ANALOG INPUT  
R
R
VIN+  
2
200Ω  
C
AD9258  
AD8352  
10  
R
R
G
C
D
D
3
4
5
200Ω  
VCM  
VIN–  
14  
0.1µF  
ANALOG INPUT  
0Ω  
0.1µF  
0.1µF  
Figure 69. Differential Input Configuration Using the AD8352  
Rev. A | Page 2ꢃ of 44  
 
 
 
 
AD9258  
If a resistor divider is connected externally to the chip, as shown  
in Figure 71, the switch again sets to the SENSE pin. This puts  
the reference amplifier in a noninverting mode with the VREF  
output, defined as follows:  
VOLTAGE REFERENCE  
A stable and accurate voltage reference is built into the AD9258.  
The input range can be adjusted by varying the reference voltage  
applied to the AD9258, using either the internal reference or an  
externally applied reference voltage. The input span of the ADC  
tracks reference voltage changes linearly. The various reference  
modes are summarized in the sections that follow. The Reference  
Decoupling section describes the best practices for PCB layout  
of the reference.  
R2  
R1  
VREF = 0.5× 1+  
The input range of the ADC always equals twice the voltage at  
the reference (VREF) pin for either an internal or an external  
reference.  
Internal Reference Connection  
VIN+A/VIN+B  
VIN–A/VIN–B  
A comparator within the AD9258 detects the potential at the  
SENSE pin and configures the reference into four possible modes,  
which are summarized in Table 11. If SENSE is grounded, the  
reference amplifier switch is connected to the internal resistor  
divider (see Figure 70), setting VREF to 1.0 V for a 2.0 V p-p full-  
scale input. In this mode, with SENSE grounded, the full scale can  
also be adjusted through the SPI port by adjusting Bit 6 and Bit 7  
of Register 0x18. These bits can be used to change the full scale  
to 1.25 V p-p, 1.5 V p-p, 1.75 V p-p, or to the default of 2.0 V p-p,  
as shown in Table 17.  
ADC  
CORE  
VREF  
1.0µF  
0.1µF  
R2  
SELECT  
LOGIC  
SENSE  
0.5V  
R1  
Connecting the SENSE pin to the VREF pin switches the reference  
amplifier output to the SENSE pin, completing the loop and pro-  
viding a 0.5 V reference output for a 1 V p-p full-scale input.  
AD9258  
Figure 71. Programmable Reference Configuration  
VIN+A/VIN+B  
VIN–A/VIN–B  
If the internal reference of the AD9258 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 72 shows  
how the internal reference voltage is affected by loading.  
0
ADC  
CORE  
VREF  
–0.5  
1.0µF  
0.1µF  
SELECT  
LOGIC  
VREF = 0.5V  
–1.0  
SENSE  
VREF = 1V  
0.5V  
–1.5  
AD9258  
–2.0  
Figure 70. Internal Reference Configuration  
–2.5  
–3.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
LOAD CURRENT (mA)  
Figure 72. Reference Voltage Accuracy vs. Load Current  
Table 11. Reference Configuration Summary  
Selected Mode  
SENSE Voltage  
Resulting VREF (V)  
Resulting Differential Span (V p-p)  
External Reference  
Internal Fixed Reference  
Programmable Reference  
AVDD  
VREF  
±.2 V to VREF  
N/A  
±.ꢀ  
2 × external reference  
1.±  
2 × VREF  
R2  
R1  
(see Figure ꢂ1)  
±.ꢀ × 1+  
Internal Fixed Reference  
AGND to ±.2 V  
1.±  
2.±  
Rev. A | Page 29 of 44  
 
 
 
 
 
AD9258  
External Reference Operation  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 625 MHz, and the RF transformer is recom-  
mended for clock frequencies from 10 MHz to 200 MHz. The  
back-to-back Schottky diodes across the transformer/balun  
secondary limit clock excursions into the AD9258 to  
approximately 0.8 V p-p differential.  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 73 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
6 kΩ load (see Figure 62). The internal buffer generates the positive  
and negative full-scale references for the ADC core. Therefore,  
the external reference must be limited to a maximum of 1.0 V.  
2.0  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9258 while  
preserving the fast rise and fall times of the signal that are critical  
to a low jitter performance.  
®
Mini-Circuits  
ADC  
ADT1-1WT, 1:1Z  
AD9258  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
1.5  
CLK+  
CLK–  
100Ω  
VREF = 1.0V  
1.0  
50Ω  
0.1µF  
SCHOTTKY  
DIODES:  
HSMS2822  
0.5  
0
0.1µF  
Figure 75. Transformer-Coupled Differential Clock (Up to 200 MHz)  
–0.5  
–1.0  
ADC  
AD9258  
1nF  
50Ω  
1nF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
–1.5  
–2.0  
CLK–  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 73. Typical VREF Drift  
Figure 76. Balun-Coupled Differential Clock (Up to 625 MHz)  
CLOCK INPUT CONSIDERATIONS  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 77. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517/AD9518 clock  
drivers offer excellent jitter performance.  
For optimum performance, the AD9258 sample clock inputs,  
CLK+ and CLK−, should be clocked with a differential signal.  
The signal is typically ac-coupled into the CLK+ and CLK− pins  
via a transformer or capacitors. These pins are biased internally  
(see Figure 74) and require no external bias. If the inputs are  
floated, the CLK− pin is pulled low to prevent spurious clocking.  
AVDD  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9258  
AD951x  
PECL DRIVER  
100  
0.9V  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
CLK+  
CLK–  
240Ω  
240Ω  
50kΩ  
50kΩ  
4pF  
4pF  
Figure 77. Differential PECL Sample Clock (Up to 625 MHz)  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 78. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517/  
AD9518 clock drivers offer excellent jitter performance.  
Figure 74. Equivalent Clock Input Circuit  
Clock Input Options  
The AD9258 has a very flexible clock input structure. Clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal. Regardless of  
the type of signal being used, clock source jitter is of the most  
concern, as described in the Jitter Considerations section.  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
ADC  
AD9258  
AD951x  
LVDS DRIVER  
100Ω  
0.1µF  
Figure 75 and Figure 76 show two preferred methods for clocking  
the AD9258 (at clock rates up to 625 MHz). A low jitter clock  
source is converted from a single-ended signal to a differential  
signal using either an RF balun or an RF transformer.  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kΩ  
50kΩ  
Figure 78. Differential LVDS Sample Clock (Up to 625 MHz)  
Rev. A | Page 3± of 44  
 
 
 
 
 
 
 
AD9258  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended CMOS signal. In such applica-  
tions, the CLK+ pin should be driven directly from a CMOS gate,  
and the CLK− pin should be bypassed to ground with a 0.1 ꢀF  
capacitor (see Figure 79).  
Jitter Considerations  
High speed, high resolution ADCs are sensitive to the quality  
of the clock input. For inputs near full scale, the degradation in  
SNR from the low frequency SNR (SNRLF) at a given input  
frequency (fINPUT) due to jitter (tJRMS) can be calculated by  
SNRHF = −10 log[(2π × fINPUT × tJRMS)2 + 10 (SNR /10)  
]
LF  
V
CC  
OPTIONAL  
100Ω  
0.1µF  
1
0.1µF  
1kΩ  
1kΩ  
AD951x  
CMOS DRIVER  
In the equation, the rms aperture jitter represents the clock input  
jitter specification. IF undersampling applications are particularly  
sensitive to jitter, as illustrated in Figure 80. The measured curve in  
Figure 80 was taken using an ADC clock source with approxi-  
mately 65 fs of jitter, which combines with the 70 fs of jitter  
inherent in the AD9258 to produce the result shown.  
80  
CLOCK  
INPUT  
CLK+  
ADC  
AD9258  
50Ω  
CLK–  
0.1µF  
1
50RESISTOR IS OPTIONAL.  
Figure 79. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
0.05ps  
Input Clock Divider  
75  
The AD9258 contains an input clock divider with the ability to  
divide the input clock by integer values between 1 and 8. For  
divide ratios of 1, 2, or 4, the duty cycle stabilizer (DCS) is  
optional. For other divide ratios, divide by 3, 5, 6, 7, and 8, the  
duty cycle stabilizer must be enabled for proper part operation.  
MEASURED  
70  
0.20ps  
65  
0.50ps  
60  
55  
50  
The AD9258 clock divider can be synchronized using the external  
SYNC input. Bit 1 and Bit 2 of Register 0x100 allow the clock  
divider to be resynchronized on every SYNC signal or only on  
the first SYNC signal after the register is written. A valid SYNC  
causes the clock divider to reset to its initial state. This synchro-  
nization feature allows multiple parts to have their clock dividers  
aligned to guarantee simultaneous input sampling.  
1.00ps  
1.50ps  
1
10  
100  
1k  
INPUT FREQUENCY (MHz)  
Figure 80. SNR vs. Input Frequency and Jitter  
The clock input should be treated as an analog signal in cases in  
which aperture jitter may affect the dynamic range of the AD9258.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another type of  
source (by gating, dividing, or another method), it should be  
retimed by the original clock at the last step.  
Clock Duty Cycle  
Typical high speed ADCs use both clock edges to generate  
a variety of internal timing signals and, as a result, may be  
sensitive to clock duty cycle. The AD9258 requires a tight  
tolerance on the clock duty cycle to maintain dynamic  
performance characteristics.  
The AD9258 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock signal  
with a nominal 50% duty cycle. This allows the user to provide  
a wide range of clock input duty cycles without affecting the perfor-  
mance of the AD9258. Noise and distortion performance are  
nearly flat for a wide range of duty cycles with the DCS enabled.  
Refer to the AN-501 Application Note and the AN-756 Application  
Note (visit www.analog.com) for more information about jitter  
performance as it relates to ADCs.  
CHANNEL/CHIP SYNCHRONIZATION  
Jitter in the rising edge of the input is still of paramount concern  
and is not easily reduced by the internal stabilization circuit. The  
duty cycle control loop does not function for clock rates of less  
than 20 MHz, nominally. The loop has a time constant associated  
with it that must be considered in applications in which the clock  
rate can change dynamically. A wait time of 1.5 μs to 5 μs is  
required after a dynamic clock frequency increase or decrease  
before the DCS loop is relocked to the input signal. During the  
time period that the loop is not locked, the DCS loop is bypassed,  
and internal device timing is dependent on the duty cycle of the  
input clock signal. In such applications, it may be appropriate to  
disable the duty cycle stabilizer. In all other applications, enabling  
the DCS circuit is recommended to maximize ac performance.  
The AD9258 has a SYNC input that offers the user flexible  
synchronization options for synchronizing the clock divider.  
The clock divider sync feature is useful for guaranteeing synchro-  
nized sample clocks across multiple ADCs. The input clock  
divider can be enabled to synchronize on a single occurrence of  
the SYNC signal or on every occurrence.  
The SYNC input is internally synchronized to the sample clock;  
however, to ensure that there is no timing uncertainty between  
multiple parts, the SYNC input signal should be externally  
synchronized to the input clock signal, meeting the setup and  
hold times shown in Table 5. The SYNC input should be driven  
using a single-ended CMOS-type signal.  
Rev. A | Page 31 of 44  
 
 
 
 
AD9258  
1.0  
0.25  
POWER DISSIPATION AND STANDBY MODE  
I
AVDD  
As shown in Figure 81, the power dissipated by the AD9258  
varies with its sample rate. In CMOS output mode, the digital  
power dissipation is determined primarily by the strength of the  
digital drivers and the load on each output bit.  
0.8  
0.6  
0.4  
0.2  
0
0.20  
0.15  
0.10  
0.05  
0
TOTAL POWER  
The maximum DRVDD current (IDRVDD) can be calculated as  
IDRVDD = VDRVDD × CLOAD × fCLK × N  
where N is the number of output bits (28 plus two DCO  
outputs, in the case of the AD9258).  
I
DRVDD  
This maximum current occurs when every output bit switches on  
every clock cycle, that is, a full-scale square wave at the Nyquist  
frequency of fCLK/2. In practice, the DRVDD current is  
established by the average number of output bits switching,  
which is determined by the sample rate and the characteristics  
of the analog input signal.  
25  
35  
45  
55  
65  
75  
ENCODE FREQUENCY (MSPS)  
Figure 83. AD9258-80 Power and Current vs. Encode Frequency (LVDS  
Output Mode)  
By asserting PDWN (either through the SPI port or by asserting  
the PDWN pin high), the AD9258 is placed in power-down  
mode. In this state, the ADC typically dissipates 2.5 mW.  
During power-down, the output drivers are placed in a high  
impedance state. Asserting the PDWN pin low returns the  
AD9258 to its normal operating mode.  
Reducing the capacitive load presented to the output drivers  
reduces digital power consumption. The data in Figure 81 was  
taken in LVDS output mode, using the same operating conditions  
as those used for the Typical Performance Characteristics section.  
1.25  
0.5  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering power-  
down mode and then must be recharged when returning to normal  
operation.  
1.00  
0.75  
0.50  
0.25  
0
0.4  
0.3  
0.2  
0.1  
0
IAVDD  
TOTAL POWER  
When using the SPI port interface, the user can place the ADC  
in power-down mode or standby mode. Standby mode allows  
the user to keep the internal reference circuitry powered when  
faster wake-up times are required.  
IDRVDD  
DIGITAL OUTPUTS  
The AD9258 output drivers can be configured to interface with  
1.8 V CMOS logic families. The AD9258 can also be configured  
for LVDS outputs (standard ANSI or reduced output swing mode),  
using a DRVDD supply voltage of 1.8 V.  
25  
50  
75  
100  
125  
ENCODE FREQUENCY (MHz)  
Figure 81. AD9258-125 Power and Current vs. Encode Frequency (LVDS  
Output Mode)  
1.0  
0.5  
In CMOS output mode, the output drivers are sized to provide  
sufficient output current to drive a wide variety of logic families.  
However, large drive currents tend to cause current glitches on  
the supplies that may affect converter performance.  
0.8  
0.6  
0.4  
0.2  
0
0.4  
0.3  
0.2  
0.1  
0
TOTAL POWER  
Applications requiring the ADC to drive large capacitive loads  
or large fanouts may require external buffers or latches.  
The default output mode is CMOS, with each channel output  
on separate busses as shown in Figure 2. The output can also be  
configured for interleaved CMOS via the SPI port. In interleaved  
CMOS mode, the data for both channels is output through the  
Channel A output bits, and the Channel B output is placed into  
high impedance mode. The timing diagram for interleaved CMOS  
output mode is shown in Figure 3.  
I
AVDD  
I
DRVDD  
25  
35  
45  
55  
65  
75  
85  
95  
105  
ENCODE FREQUENCY (MSPS)  
Figure 82. AD9258-105 Power and Current vs. Encode Frequency (LVDS  
Output Mode)  
The output data format can be selected for either offset binary  
or twos complement by setting the SCLK/DFS pin when operating  
in the external pin mode (see Table 12).  
Rev. A | Page 32 of 44  
 
 
 
 
AD9258  
As detailed in the AN-877 Application Note, Interfacing to High  
Speed ADCs via SPI, the data format can be selected for offset  
binary, twos complement, or gray code when using the SPI control.  
TIMING  
The AD9258 provides latched data with a pipeline delay of  
12 clock cycles. Data outputs are available one propagation  
delay (tPD) after the rising edge of the clock signal.  
Table 12. SCLK/DFS Mode Selection (External Pin Mode)  
The length of the output data lines and loads placed on them  
should be minimized to reduce transients within the AD9258.  
These transients can degrade converter dynamic performance.  
Voltage at Pin  
SCLK/DFS  
SDIO/DCS  
AGND  
Offset binary  
(default)  
Twos complement  
DCS disabled  
AVDD  
DCS enabled  
(default)  
The lowest typical conversion rate of the AD9258 is 10 MSPS.  
At clock rates below 10 MSPS, dynamic performance can degrade.  
Data Clock Output (DCO)  
Digital Output Enable Function (OEB)  
The AD9258 provides two data clock output (DCO) signals  
intended for capturing the data in an external register. In CMOS  
output mode, the data outputs are valid on the rising edge of DCO,  
unless the DCO clock polarity has been changed via the SPI. In  
LVDS output mode, the DCO and data output switching edges  
are closely aligned. Additional delay can be added to the DCO  
output using SPI Register 0x17 to increase the data setup time.  
In this case, the Channel A output data is valid on the rising  
edge of DCO, and the Channel B output data is valid on the  
falling edge of DCO. See Figure 2, Figure 3, and Figure 4 for  
a graphical timing description of the output modes.  
The AD9258 has a flexible three-state ability for the digital output  
pins. The three-state mode is enabled using the OEB pin or  
through the SPI. If the OEB pin is low, the output data drivers and  
DCOs are enabled. If the OEB pin is high, the output data drivers  
and DCOs are placed in a high impedance state. This OEB  
function is not intended for rapid access to the data bus. Note  
that OEB is referenced to the digital output driver supply  
(DRVDD) and should not exceed that supply voltage.  
When using the SPI, the data outputs and DCO of each channel  
can be independently three-stated by using the output enable  
bar bit (Bit 4) in Register 0x14.  
Table 13. Output Data Format  
Input (V)  
Condition (V)  
< −VREF − ±.ꢀ LSB  
= −VREF  
Offset Binary Output Mode  
±± ±±±± ±±±± ±±±±  
±± ±±±± ±±±± ±±±±  
1± ±±±± ±±±± ±±±±  
11 1111 1111 1111  
11 1111 1111 1111  
Twos Complement Mode  
1± ±±±± ±±±± ±±±±  
1± ±±±± ±±±± ±±±±  
±± ±±±± ±±±± ±±±±  
±1 1111 1111 1111  
±1 1111 1111 1111  
OR  
1
±
±
±
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
= ±  
= +VREF − 1.± LSB  
> +VREF − ±.ꢀ LSB  
1
Rev. A | Page 33 of 44  
 
 
AD9258  
BUILT-IN SELF-TEST (BIST) AND OUTPUT TEST  
The AD9258 includes built-in test features designed to enable  
verification of the integrity of each channel as well as facilitate  
board level debugging. A BIST (built-in self-test) feature is included  
that verifies the integrity of the digital datapath of the AD9258.  
Various output test options are also provided to place predictable  
values on the outputs of the AD9258.  
The outputs are not disconnected during this test, so the PN  
sequence can be observed as it runs. The PN sequence can be  
continued from its last value or reset from the beginning, based  
on the value programmed in Register 0x0E, Bit 2. The BIST  
signature result varies based on the channel configuration.  
OUTPUT TEST MODES  
BUILT-IN SELF-TEST (BIST)  
The output test options are shown in Table 17. When an output  
test mode is enabled, the analog section of the ADC is discon-  
nected from the digital back end blocks, and the test pattern is run  
through the output formatting block. Some of the test patterns are  
subject to output formatting, and some are not. The seed value for  
the PN sequence tests can be forced if the PN reset bits are used  
to hold the generator in reset mode by setting Bit 4 or Bit 5 of  
Register 0x0D. These tests can be performed with or without  
an analog signal (if present, the analog signal is ignored), but  
they do require an encode clock. For more information, see the  
AN-877 Application Note, Interfacing to High Speed ADCs via SPI.  
The BIST is a thorough test of the digital portion of the selected  
AD9258 signal path. When enabled, the test runs from an internal  
pseudorandom noise (PN) source through the digital datapath  
starting at the ADC block output. The BIST sequence runs for  
512 cycles and stops. The BIST signature value for Channel A or  
Channel B is placed in Register 0x24 and Register 0x25. If one  
channel is chosen, its BIST signature is written to the two registers.  
If both channels are chosen, the results from Channel A are placed  
in the BIST signature registers.  
Rev. A | Page 34 of 44  
 
AD9258  
SERIAL PORT INTERFACE (SPI)  
The AD9258 serial port interface (SPI) allows the user to  
configure the converter for specific functions or operations  
through a structured register space provided inside the ADC.  
The SPI gives the user added flexibility and customization,  
depending on the application. Addresses are accessed via the  
serial port and can be written to or read from via the port.  
Memory is organized into bytes that can be further divided into  
fields, which are documented in the Memory Map section. For  
detailed operational information, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 84  
and Table 5.  
Other modes involving the CSB are available. When the CSB is  
held low indefinitely, which permanently enables the device,  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode. This mode turns  
on any SPI pin secondary functions.  
CONFIGURATION USING THE SPI  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
Three pins define the SPI of this ADC: the SCLK/DFS pin, the  
SDIO/DCS pin, and the CSB pin (see Table 14). The SCLK/DFS  
(a serial clock) is used to synchronize the read and write data  
presented from and to the ADC. The SDIO/DCS (serial data  
input/output) is a dual-purpose pin that allows data to be sent  
to and read from the internal ADC memory map registers. The  
CSB (chip select bar) is an active-low control that enables or  
disables the read and write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. If the instruction is a  
readback operation, performing a readback causes the serial  
data input/output (SDIO) pin to change direction from an input to  
an output at the appropriate point in the serial frame.  
Table 14. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial Clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial Data Input/Output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
All data is composed of 8-bit words. Data can be sent in MSB-  
first mode or in LSB-first mode. MSB first is the default on  
power-up and can be changed via the SPI port configuration  
register. For more information about this and other features,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
CSB  
Chip Select Bar. An active-low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 84. Serial Port Interface Timing Diagram  
Rev. A | Page 3ꢀ of 44  
 
 
 
AD9258  
When the device is in SPI mode, the PDWN and OEB pins  
remain active. For SPI control of output enable and power-down,  
the OEB and PDWN pins should be set to their default states.  
HARDWARE INTERFACE  
The pins described in Table 14 comprise the physical interface  
between the user programming device and the serial port of the  
AD9258. The SCLK pin and the CSB pin function as inputs  
when using the SPI. The SDIO pin is bidirectional, functioning  
as an input during write phases and as an output during  
readback.  
Table 15. Mode Selection  
External  
Voltage  
Pin  
Configuration  
SDIO/DCS  
AVDD (default) Duty cycle stabilizer enabled  
AGND  
AVDD  
Duty cycle stabilizer disabled  
Twos complement enabled  
The SPI is flexible enough to be controlled by either FPGAs or  
microcontrollers. One method for SPI configuration is  
described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
SCLK/DFS  
OEB  
AGND (default) Offset binary enabled  
AVDD Outputs in high impedance  
AGND (default) Outputs enabled  
AVDD  
Chip in power-down or  
standby  
AGND (default) Normal operation  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9258 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
PDWN  
SPI ACCESSIBLE FEATURES  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9258 part-specific features are described in detail  
following Table 17, the external memory map register table.  
Some pins serve a dual function when the SPI is not being used.  
When the pins are strapped to AVDD or ground during device  
power-on, they are associated with a specific function. The  
Digital Outputs section describes the strappable functions  
supported on the AD9258.  
Table 16. Features Accessible Using the SPI  
Feature Name  
Description  
Mode  
Allows the user to set either power-down mode  
or standby mode  
Allows the user to access the DCS, set the  
clock divider, set the clock divider phase, and  
enable the sync  
Allows the user to digitally adjust the  
converter offset  
Allows the user to set test modes to have  
known data on output bits  
Allows the user to set the output mode  
including LVDS  
Allows the user to set the output clock polarity  
Allows the user to vary the DCO delay  
CONFIGURATION WITHOUT THE SPI  
Clock  
In applications that do not interface to the SPI control registers,  
the SDIO/DCS pin, the SCLK/DFS pin, the OEB pin, and the  
PDWN pin serve as standalone CMOS-compatible control pins.  
When the device is powered up, it is assumed that the user intends  
to use the pins as static control lines for the duty cycle stabilizer,  
output data format, output enable, and power-down feature  
control. In this mode, the CSB chip select bar should be con-  
nected to AVDD, which disables the serial port interface.  
Offset  
Test I/O  
Output Mode  
Output Phase  
Output Delay  
VREF  
Allows the user to set the reference voltage  
Rev. A | Page 3ꢁ of 44  
 
 
 
 
AD9258  
MEMORY MAP  
READING THE MEMORY MAP REGISTER TABLE  
Logic Levels  
An explanation of logic level terminology follows:  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into four sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the  
channel index and transfer registers (Address 0x05 and  
Address 0xFF); the ADC functions registers, including setup,  
control, and test (Address 0x08 to Address 0x30); and the digital  
feature control register (Address 0x100).  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Transfer Register Map  
Address 0x08 through Address 0x18 and Address 0x30 are  
shadowed. Writes to these addresses do not affect part operation  
until a transfer command is issued by writing 0x01 to Address  
0xFF, setting the transfer bit. This allows these registers to be  
updated internally and simultaneously when the transfer bit is  
set. The internal update takes place when the transfer bit is set,  
and the bit autoclears.  
The memory map register table (see Table 17) lists the default  
hexadecimal value for each hexadecimal address shown. The  
column with the heading Bit 7 (MSB) is the start of the default  
hexadecimal value given. For example, Address 0x18, the VREF  
select register, has a hexadecimal default value of 0xC0. This means  
that Bit 7 = 1, Bit 6 = 1, and the remaining bits are 0s. This setting  
is the default reference selection setting. The default value uses a  
2.0 V p-p reference. For more information on this function and  
others, see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI. This application note details the functions con-  
trolled by Register 0x00 to Register 0xFF. The remaining  
register, Register 0x100 is documented in the Memory Map  
Register Table section.  
Channel-Specific Registers  
Some channel setup functions, such as the signal monitor  
thresholds, can be programmed differently for each channel. In  
these cases, channel address locations are internally duplicated for  
each channel. These registers and bits are designated in Table 17  
as local. These local registers and bits can be accessed by setting  
the appropriate Channel A or Channel B bits in Register 0x05.  
If both bits are set, the subsequent write affects the registers of  
both channels. In a read cycle, only Channel A or Channel B  
should be set to read one of the two registers. If both bits are set  
during an SPI read cycle, the part returns the value for Channel A.  
Registers and bits designated as global in Table 17 affect the entire  
part or the channel features for which independent settings are not  
allowed between channels. The settings in Register 0x05 do not  
affect the global registers and bits.  
Open Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x18). If the entire address location  
is open (for example, Address 0x13), this address location should  
not be written.  
Default Values  
After the AD9258 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 17.  
Rev. A | Page 3ꢂ of 44  
 
 
AD9258  
MEMORY MAP REGISTER TABLE  
All address and bit locations that are not included in Table 17 are not currently supported for this device.  
Table 17. Memory Map Registers  
Default Default  
Address Register  
(Hex) Name  
Chip Configuration Registers  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
±x±±  
SPI port  
configuration  
(global)  
±
LSB first  
Soft reset  
1
1
Soft reset  
LSB first  
±
±x1ꢃ  
The nibbles  
are mirrored  
so LSB-first  
mode or MSB-  
first mode  
registers  
correctly,  
regardless of  
shift mode  
±x±1  
±x±2  
Chip ID  
(global)  
ꢃ-bit chip ID[ꢂ:±]  
(AD92ꢀꢃ = ±x33)  
(default)  
±x33  
Read only  
Chip grade  
(global)  
Open  
Open  
Open  
Speed grade ID  
±1 = 12ꢀ MSPS  
Open  
Open  
Open  
Open  
Open  
Speed grade  
ID used to  
differentiate  
devices; read  
only  
1± = 1±ꢀ MSPS  
11 = ꢃ± MSPS  
Channel Index and Transfer Registers  
±x±ꢀ  
Channel  
index  
Open  
Open  
Open  
Open  
Data  
Channel  
B
Data  
Channel A  
(default)  
±x±3  
Bits are set  
to determine  
which device  
on the chip  
receives the  
next write  
(default)  
command;  
applies to local  
registers only  
±xFF  
Transfer  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Transfer  
±x±±  
±xꢃ±  
Synchronously  
transfers data  
from the  
master shift  
register to the  
slave  
ADC Functions  
±x±ꢃ  
Power modes  
(local)  
1
External  
power-  
down pin  
function  
(local)  
± = pdwn  
1 = stndby  
Open  
Internal power-down  
mode (local)  
±± = normal operation  
±1 = full power-down  
1± = standby  
Determines  
various generic  
modes of chip  
operation  
11 = normal operation  
±x±9  
±x±B  
Global clock  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty cycle  
stabilizer  
(default)  
±x±1  
±x±±  
Clock divide  
(global)  
Open  
Clock divide ratio  
±±± = divide by 1  
±±1 = divide by 2  
±1± = divide by 3  
±11 = divide by 4  
1±± = divide by ꢀ  
1±1 = divide by ꢁ  
11± = divide by ꢂ  
111 = divide by ꢃ  
Clock divide  
values other  
than ±±±  
automatically  
cause the duty  
cycle stabilizer  
to become  
active  
±x±D  
Test mode  
(local)  
Open  
Open  
Reset PN  
long gen  
Reset PN  
short gen  
Open  
Output test mode  
±±± = off (default)  
±±1 = midscale short  
±1± = positive FS  
±11 = negative FS  
±x±±  
When this  
register is set,  
the test data  
is placed on  
the output  
pins in place of  
normal data  
1±± = alternating checkerboard  
1±1 = PN long sequence  
11± = PN short sequence  
111 = one/zero word toggle  
Rev. A | Page 3ꢃ of 44  
 
 
 
 
AD9258  
Default Default  
Address Register  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Notes/  
Comments  
(Hex)  
Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
±x±E  
BIST enable  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Reset BIST  
sequence  
Open  
BIST  
enable  
±x±4  
±x±F  
ADC input  
(global)  
Open  
Open  
Open  
Open  
Open  
Open  
Common-  
mode  
±x±±  
servo  
enable  
±x1±  
±x14  
Offset adjust  
(local)  
Offset adjust in LSBs from +12ꢂ to −12ꢃ  
(twos complement format)  
±x±±  
±x±±  
Output mode  
Drive  
Output  
type  
± = CMOS  
1 = LVDS  
(global)  
CMOS  
Output  
enable  
bar  
Open  
Output  
invert  
(local)  
Output format  
Configures the  
outputs and  
the format of  
the data  
strength  
± = ANSI  
LVDS;  
output  
Interleave  
enable  
(global)  
(must be  
written  
low)  
±± = offset binary  
±1 = twos complement  
±1 = gray code  
11 = offset binary  
(local)  
(local)  
1 =  
(global)  
reduced  
swing  
LVDS  
(global)  
±x1ꢁ  
Clock phase  
control  
(global)  
Invert  
DCO clock  
Open  
Open  
Open  
Open  
Input clock divider phase adjust  
±±± = no delay  
±x±±  
Allows  
selection of  
clock delays  
into the input  
clock divider  
±±1 = 1 input clock cycle  
±1± = 2 input clock cycles  
±11 = 3 input clock cycles  
1±± = 4 input clock cycles  
1±1 = ꢀ input clock cycles  
11± = ꢁ input clock cycles  
111 = ꢂ input clock cycles  
±x1ꢂ  
DCO output  
Open  
Open  
Open  
DCO clock delay  
±x±±  
delay (global)  
(delay = 2ꢀ±± ps × register value/31)  
±±±±± = ± ps  
±±±±1 = ꢃ1 ps  
±±±1± = 1ꢁ1 ps  
1111± = 2419 ps  
11111 = 2ꢀ±± ps  
±x1ꢃ  
VREF select  
(global)  
Reference voltage  
Open  
Open  
Open  
Open  
Open  
Open  
±xC±  
selection  
±± = 1.2ꢀ V p-p  
±1 = 1.ꢀ V p-p  
1± = 1.ꢂꢀ V p-p  
11 = 2.± V p-p (default)  
±x24  
±x2ꢀ  
±x3±  
BIST signature  
LSB (local)  
BIST signature[ꢂ:±]  
BIST signature[1ꢀ:ꢃ]  
±x±±  
±x±±  
±x±±  
Read only  
Read only  
BIST signature  
MSB (local)  
Dither enable  
(local)  
Open  
Open  
Open  
Open  
Open  
Dither  
Enable  
Open  
Open  
Open  
Open  
Open  
Digital Feature Control  
±x1±±  
Sync control  
(global)  
Open  
Open  
Clock  
Clock  
divider  
sync  
Master  
sync  
enable  
±x±±  
divider  
next sync  
only  
enable  
Rev. A | Page 39 of 44  
AD9258  
ignore the rest. The clock divider sync enable bit (Address 0x100,  
Bit 1) resets after it syncs.  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application  
Note, Interfacing to High Speed ADCs via SPI.  
Bit 1—Clock Divider Sync Enable  
Bit 1 gates the sync pulse to the clock divider. The sync signal is  
enabled when Bit 1 is high and Bit 0 is high. This is continuous  
sync mode.  
Sync Control (Register 0x100)  
Bits[7:3]—Reserved  
Bit 0—Master Sync Enable  
Bit 2—Clock Divider Next Sync Only  
Bit 0 must be high to enable any of the sync functions. If the  
sync capability is not used this bit should remain low to  
conserve power.  
If the master sync enable bit (Address 0x100, Bit0) and the clock  
divider sync enable bit (Address 0x100, Bit 1) are high, Bit 2 allows  
the clock divider to sync to the first sync pulse it receives and to  
Rev. A | Page 4± of 44  
 
AD9258  
APPLICATIONS INFORMATION  
The copper plane should have several vias to achieve the lowest  
possible resistive thermal path for heat dissipation to flow through  
the bottom of the PCB. These vias should be filled or plugged to  
prevent solder wicking through the vias, which can compromise  
the connection.  
DESIGN GUIDELINES  
Before starting design and layout of the AD9258 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which discuss the special circuit connections and  
layout requirements that are needed for certain pins.  
To maximize the coverage and adhesion between the ADC and  
the PCB, a silkscreen should be overlaid to partition the continuous  
plane on the PCB into several uniform sections. This provides  
several tie points between the ADC and the PCB during the reflow  
process. Using one continuous plane with no partitions guarantees  
only one tie point between the ADC and the PCB. For detailed  
information about packaging and PCB layout of chip scale  
packages, see the AN-772 Application Note, A Design and  
Manufacturing Guide for the Lead Frame Chip Scale Package  
(LFCSP), at www.analog.com.  
Power and Ground Recommendations  
When connecting power to the AD9258, it is recommended that  
two separate 1.8 V supplies be used. Use one supply for analog  
(AVDD); use a separate supply for the digital outputs (DRVDD).  
For both AVDD and DRVDD several different decoupling capa-  
citors should be used to cover both high and low frequencies.  
Place these capacitors close to the point of entry at the PCB level  
and close to the pins of the part, with minimal trace length.  
A single PCB ground plane should be sufficient when using the  
AD9258. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
VCM  
The VCM pin should be decoupled to ground with a 0.1 ꢀF  
capacitor, as shown in Figure 67.  
LVDS Operation  
RBIAS  
The AD9258 defaults to CMOS output mode on power-up.  
If LVDS operation is desired, this mode must be programmed,  
using the SPI configuration registers after power-up. When the  
AD9258 powers up in CMOS mode with LVDS termination  
resistors (100 Ω) on the outputs, the DRVDD current can be  
higher than the typical value until the part is placed in LVDS  
mode. This additional DRVDD current does not cause damage  
to the AD9258, but it should be taken into account when consid-  
ering the maximum DRVDD current for the part.  
The AD9258 requires that a 10 kΩ resistor be placed between  
the RBIAS pin and ground. This resistor sets the master current  
reference of the ADC core and should have at least a 1% tolerance.  
Reference Decoupling  
The VREF pin should be externally decoupled to ground with  
a low ESR, 1.0 ꢀF capacitor in parallel with a low ESR, 0.1 ꢀF  
ceramic capacitor.  
SPI Port  
To avoid this additional DRVDD current, the AD9258 outputs  
can be disabled at power-up by taking the OEB pin high. After  
the part is placed into LVDS mode via the SPI port, the OEB  
pin can be taken low to enable the outputs.  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9258 to keep these signals from transitioning at the converter  
inputs during critical sampling periods.  
Exposed Paddle Thermal Heat Slug Recommendations  
It is mandatory that the exposed paddle on the underside of the  
ADC be connected to analog ground (AGND) to achieve the  
best electrical and thermal performance. A continuous, exposed  
(no solder mask) copper plane on the PCB should mate to the  
AD9258 exposed paddle, Pin 0.  
Rev. A | Page 41 of 44  
 
 
 
AD9258  
OUTLINE DIMENSIONS  
0.60 MAX  
9.00  
BSC SQ  
0.60  
MAX  
PIN 1  
INDICATOR  
64  
49  
1
48  
PIN 1  
INDICATOR  
0.50  
BSC  
7.65  
7.50 SQ  
7.35  
8.75  
BSC SQ  
TOP VIEW  
EXPOSED PAD  
(BOTTOM VIEW)  
0.50  
0.40  
0.30  
16  
17  
33  
32  
0.25 MIN  
7.50  
REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
0.30  
0.23  
0.18  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VMMD-4  
Figure 85. 64-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
9 mm × 9 mm Body, Very Thin Quad  
(CP-64-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package Option  
CP-ꢁ4-ꢁ  
CP-ꢁ4-ꢁ  
CP-ꢁ4-ꢁ  
CP-ꢁ4-ꢁ  
AD92ꢀꢃBCPZ-ꢃ±1  
AD92ꢀꢃBCPZRLꢂ-ꢃ±1  
AD92ꢀꢃBCPZ-1±ꢀ1  
AD92ꢀꢃBCPZRLꢂ-1±ꢀ1 −4±°C to +ꢃꢀ°C  
AD92ꢀꢃBCPZ-12ꢀ1  
−4±°C to +ꢃꢀ°C  
AD92ꢀꢃBCPZRLꢂ-12ꢀ1 −4±°C to +ꢃꢀ°C  
AD92ꢀꢃ-ꢃ±EBZ1  
−4±°C to +ꢃꢀ°C  
−4±°C to +ꢃꢀ°C  
−4±°C to +ꢃꢀ°C  
ꢁ4-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ꢁ4-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ꢁ4-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ꢁ4-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ꢁ4-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
ꢁ4-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
Evaluation Board  
CP-ꢁ4-ꢁ  
CP-ꢁ4-ꢁ  
AD92ꢀꢃ-1±ꢀEBZ1  
AD92ꢀꢃ-12ꢀEBZ1  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 42 of 44  
 
 
AD9258  
NOTES  
Rev. A | Page 43 of 44  
AD9258  
NOTES  
©2009 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08124-0-9/09(A)  
Rev. A | Page 44 of 44  

相关型号:

AD9258-125EBZ1

14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258-80EBZ

Analog-to-Digital Converter (ADC)
ADI

AD9258-80EBZ1

14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZ-105

14-Bit, 125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZ-1051

14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZ-125

14-Bit, 125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZ-1251

14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZ-80

14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZ-801

14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZRL7-105

14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZRL7-1051

14-Bit, 80 MSPS/105 MSPS/125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI

AD9258BCPZRL7-125

14-Bit, 125 MSPS, 1.8 V Dual Analog-to-Digital Converter (ADC)
ADI