AD9253BCPZRL7-105 [ADI]

Quad, 14-Bit, 80 MSPS/105 MSPS/125 MSPS; 四通道,14位, 80 MSPS / 105 MSPS / 125 MSPS
AD9253BCPZRL7-105
型号: AD9253BCPZRL7-105
厂家: ADI    ADI
描述:

Quad, 14-Bit, 80 MSPS/105 MSPS/125 MSPS
四通道,14位, 80 MSPS / 105 MSPS / 125 MSPS

转换器 模数转换器
文件: 总40页 (文件大小:1264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad, 14-Bit, 80 MSPS/105 MSPS/125 MSPS  
Serial LVDS 1.8 V Analog-to-Digital Converter  
Data Sheet  
AD9253  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
AVDD  
PDWN  
DRVDD  
1.8 V supply operation  
14  
Low power: 110 mW per channel at 125 MSPS with scalable  
power options  
SNR = 74 dB (to Nyquist)  
D0+A  
D0–A  
SERIAL  
LVDS  
VIN+A  
VIN–A  
DIGITAL  
PIPELINE  
ADC  
SERIALIZER  
D1+A  
D1–A  
SERIAL  
LVDS  
14  
VIN+B  
DIGITAL  
SERIALIZER  
PIPELINE  
ADC  
D0+B  
D0–B  
SERIAL  
LVDS  
SFDR = 90 dBc (to Nyquist)  
VIN–B  
RBIAS  
VREF  
DNL = 0.75 LSB (typical); INL = 2.0 LSB (typical)  
Serial LVDS (ANSI-644, default) and low power, reduced  
signal option (similar to IEEE 1596.3)  
650 MHz full power analog bandwidth  
2 V p-p input voltage range  
Serial port control  
Full chip and individual channel power-down modes  
Flexible bit orientation  
Built-in and custom digital test pattern generation  
Multichip sync and clock divider  
Programmable output clock and data alignment  
Programmable output resolution  
Standby mode  
SERIAL  
LVDS  
D1+B  
D1–B  
SENSE  
FCO+  
FCO–  
D0+C  
D0–C  
D1+C  
D1–C  
1V  
AD9253  
REF  
SELECT  
SERIAL  
LVDS  
AGND  
14  
14  
VIN+C  
VIN–C  
DIGITAL  
SERIALIZER  
PIPELINE  
ADC  
SERIAL  
LVDS  
D0+D  
D0–D  
SERIAL  
LVDS  
VIN+D  
VIN–D  
DIGITAL  
SERIALIZER  
PIPELINE  
ADC  
D1+D  
D1–D  
DCO+  
DCO–  
SERIAL  
LVDS  
SERIAL PORT  
INTERFACE  
CLOCK  
MANAGEMENT  
VCM  
APPLICATIONS  
Figure 1.  
Medical ultrasound  
High speed imaging  
Quadrature radio receivers  
Diversity radio receivers  
Test equipment  
as programmable output clock and data alignment and digital  
test pattern generation. The available digital test patterns  
include built-in deterministic and pseudorandom patterns, along  
with custom user-defined test patterns entered via the serial port  
interface (SPI).  
GENERAL DESCRIPTION  
The AD9253 is a quad, 14-bit, 80 MSPS/105 MSPS/125 MSPS  
analog-to-digital converter (ADC) with an on-chip sample-  
and-hold circuit designed for low cost, low power, small size,  
and ease of use. The product operates at a conversion rate of  
up to 125 MSPS and is optimized for outstanding dynamic  
performance and low power in applications where a small  
package size is critical.  
The AD9253 is available in a RoHS-compliant, 48-lead LFCSP.  
It is specified over the industrial temperature range of −40°C to  
+85°C. This product is protected by a U.S. patent.  
PRODUCT HIGHLIGHTS  
1. Small Footprint. Four ADCs are contained in a small, space-  
saving package.  
2. Low power of 110 mW/channel at 125 MSPS with scalable  
power options.  
3. Pin compatible to the AD9633 12-bit quad ADC.  
4. Ease of Use. A data clock output (DCO) operates at  
frequencies of up to 500 MHz and supports double data  
rate (DDR) operation.  
The ADC requires a single 1.8 V power supply and LVPECL-/  
CMOS-/LVDS-compatible sample rate clock for full performance  
operation. No external reference or driver components are  
required for many applications.  
The ADC automatically multiplies the sample rate clock for the  
appropriate LVDS serial data rate. A data clock output (DCO) for  
capturing data on the output and a frame clock output (FCO)  
for signaling a new output byte are provided. Individual-channel  
power-down is supported and typically consumes less than 2 mW  
when all channels are disabled. The ADC contains several features  
designed to maximize flexibility and minimize system cost, such  
5. User Flexibility. The SPI control offers a wide range of  
flexible features to meet specific system requirements.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
AD9253  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Clock Input Considerations...................................................... 24  
Power Dissipation and Power-Down Mode ........................... 26  
Digital Outputs and Timing ..................................................... 27  
Output Test Modes..................................................................... 30  
Serial Port Interface (SPI).............................................................. 31  
Configuration Using the SPI..................................................... 31  
Hardware Interface..................................................................... 32  
Configuration Without the SPI ................................................ 32  
SPI Accessible Features.............................................................. 32  
Memory Map .................................................................................. 33  
Reading the Memory Map Register Table............................... 33  
Memory Map Register Table..................................................... 34  
Memory Map Register Descriptions........................................ 37  
Applications Information.............................................................. 39  
Design Guidelines ...................................................................... 39  
Power and Ground Recommendations................................... 39  
Exposed Pad Thermal Heat Slug Recommendations............ 39  
VCM............................................................................................. 39  
Reference Decoupling................................................................ 39  
SPI Port........................................................................................ 39  
Crosstalk Performance .............................................................. 39  
Outline Dimensions....................................................................... 40  
Ordering Guide .......................................................................... 40  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
DC Specifications ......................................................................... 3  
AC Specifications.......................................................................... 4  
Digital Specifications ................................................................... 5  
Switching Specifications .............................................................. 6  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings.......................................................... 11  
Thermal Resistance .................................................................... 11  
ESD Caution................................................................................ 11  
Pin Configuration and Function Descriptions........................... 12  
Typical Performance Characteristics ........................................... 14  
AD9253-80 .................................................................................. 14  
AD9253-105................................................................................ 16  
AD9253-125................................................................................ 18  
Equivalent Circuits......................................................................... 21  
Theory of Operation ...................................................................... 22  
Analog Input Considerations.................................................... 22  
Voltage Reference ....................................................................... 23  
REVISION HISTORY  
10/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
Data Sheet  
AD9253  
SPECIFICATIONS  
DC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 1.  
AD9253-80  
Min Typ Max Min Typ  
14 14  
AD9253-105  
AD9253-125  
Parameter1  
Temp  
Max Min Typ  
Max Unit  
RESOLUTION  
14  
Bits  
ACCURACY  
No Missing Codes  
Offset Error  
Offset Matching  
Gain Error  
Gain Matching  
Differential Nonlinearity (DNL)  
Full  
Full  
Full  
Full  
Full  
Full  
25°C  
Full  
25°C  
Guaranteed  
−0.7 −0.3 +0.1 −0.7 −0.3  
−0.6 +0.2 +0.6 −0.6 +0.2  
Guaranteed  
Guaranteed  
+0.1 −0.7 −0.3  
+0.6 −0.6 +0.2  
+0.1 % FSR  
+0.6 % FSR  
−10 −5  
0
−10 −5  
1
0
1.6  
−10 −5  
1.1  
0
1.6  
% FSR  
% FSR  
1
1.6  
−1  
+1.6 −0.8  
+1.5 −0.8  
+1.5 LSB  
LSB  
+4.0 LSB  
LSB  
0.8  
0.75  
2.0  
2
0.75  
2.0  
2
Integral Nonlinearity (INL)  
−4.0  
+4.0 −4.0  
4.0 −4.0  
1.5  
2
TEMPERATURE DRIFT  
Offset Error  
Full  
ppm/°C  
INTERNAL VOLTAGE REFERENCE  
Output Voltage (1 V Mode)  
Load Regulation at 1.0 mA (VREF = 1 V)  
Input Resistance  
Full  
Full  
Full  
0.98 1.0  
1.02 0.98 1.0  
1.02 0.98 1.0  
1.02  
V
mV  
kΩ  
2
7.5  
2
7.5  
2
7.5  
INPUT-REFERRED NOISE  
VREF = 1.0 V  
25°C  
0.94  
0.94  
0.94  
LSB rms  
ANALOG INPUTS  
Differential Input Voltage (VREF = 1 V)  
Common-Mode Voltage  
Differential Input Resistance  
Differential Input Capacitance  
POWER SUPPLY  
Full  
Full  
2
2
2
V p-p  
V
kΩ  
pF  
0.9  
5.2  
3.5  
0.9  
5.2  
3.5  
0.9  
5.2  
3.5  
Full  
AVDD  
Full  
Full  
Full  
Full  
25°C  
1.7  
1.7  
1.8  
1.8  
131 144  
63  
42  
1.9  
1.9  
1.7  
1.7  
1.8  
1.8  
158  
67  
1.9  
1.9  
172  
95  
1.7  
1.7  
1.8  
1.8  
183  
71  
1.9  
1.9  
200  
100  
V
V
mA  
mA  
mA  
DRVDD  
2
IAVDD  
IDRVDD (ANSI-644 Mode)2  
IDRVDD (Reduced Range Mode)2  
TOTAL POWER CONSUMPTION  
DC Input  
81  
48  
53  
Full  
Full  
326  
349 405  
375  
405  
423  
457  
mW  
mW  
Sine Wave Input (Four Channels Including  
Output Drivers ANSI-644 Mode)  
481  
540  
Sine Wave Input (Four Channels Including  
Output Drivers Reduced Range Mode)  
25°C  
311  
371  
425  
mW  
Power-Down  
Standby3  
Full  
Full  
2
178  
2
209  
2
236  
mW  
mW  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured with a low input frequency, full-scale sine wave on all four channels.  
3 Can be controlled via the SPI.  
Rev. 0 | Page 3 of 40  
 
 
AD9253  
Data Sheet  
AC SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 2.  
AD9253-80  
AD9253-105  
AD9253-125  
Parameter1  
Temp  
Unit  
Min Typ Max Min Typ Max Min Typ  
Max  
SIGNAL-TO-NOISE RATIO (SNR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
75.4  
74.9  
72.2 74.7  
72.3  
75.1  
75.0  
72.2 74.4  
73.1  
75.3  
75.2  
74.2  
72.2  
70.7  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
73  
fIN = 200 MHz  
70.7  
71.2  
SIGNAL-TO-NOISE-AND-DISTORTION RATIO (SINAD)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
75.3  
74.8  
70.8 74.6  
72.1  
75.0  
74.9  
69.8 74.2  
72.8  
75.2  
75.1  
71.6 74.1  
71.9  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 200 MHz  
70.5  
70.8  
70.4  
EFFECTIVE NUMBER OF BITS (ENOB)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
12.2  
12.1  
11.9  
11.6  
11.5  
12.1  
12.1  
12.0  
11.8  
11.5  
12.2  
12.1  
12.0  
11.6  
11.4  
Bits  
Bits  
Bits  
Bits  
Bits  
fIN = 200 MHz  
SPURIOUS-FREE DYNAMIC RANGE (SFDR)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
98  
93  
94  
85  
84  
98  
92  
89  
85  
82  
98  
92  
90  
85  
83  
dBc  
dBc  
dBc  
dBc  
dBc  
77  
75  
77  
fIN = 200 MHz  
WORST HARMONIC (SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−98  
−93  
−94  
−85  
−84  
−98  
−92  
−89 −75  
−85  
−82  
−98  
−92  
−90  
−85  
−83  
dBc  
dBc  
dBc  
dBc  
dBc  
−77  
−77  
−77  
−84  
fIN = 200 MHz  
WORST OTHER HARMONIC (EXCLUDING SECOND OR THIRD)  
fIN = 9.7 MHz  
fIN = 30.5 MHz  
fIN = 70 MHz  
fIN = 140 MHz  
25°C  
25°C  
Full  
25°C  
25°C  
−100  
−99  
−98  
−98  
−95  
−99  
−99  
−95 −77  
−98  
−92  
−101  
−100  
−95  
−96  
−92  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fIN = 200 MHz  
TWO-TONE INTERMODULATION DISTORTION (IMD)—AIN1 AND  
AIN2 = −7.0 dBFS  
fIN1 = 70.5 MHz, fIN2 = 72.5 MHz  
CROSSTALK2  
CROSSTALK (OVERRANGE CONDITION)3  
POWER SUPPLY REJECTION RATIO (PSRR)1, 4  
AVDD  
25°C  
Full  
90  
88  
86  
dBc  
dB  
−95  
−89  
−95  
−89  
−95  
−89  
25°C  
dB  
25°C  
25°C  
25°C  
48  
75  
48  
75  
48  
75  
dB  
dB  
DRVDD  
ANALOG INPUT BANDWIDTH, FULL POWER  
650  
650  
650  
MHz  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Crosstalk is measured at 70 MHz with −1.0 dBFS analog input on one channel and no input on the adjacent channel.  
3 Overrange condition is specified with 3 dB of the full-scale input range.  
4 PSRR is measured by injecting a sinusoidal signal at 10 MHz to the power supply pin and measuring the output spur on the FFT. PSRR is calculated as the ratio of the  
amplitudes of the spur voltage over the pin voltage, expressed in decibels.  
Rev. 0 | Page 4 of 40  
 
 
Data Sheet  
AD9253  
DIGITAL SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 3.  
Parameter1  
Temp  
Min  
Typ  
Max  
Unit  
CLOCK INPUTS (CLK+, CLK−)  
Logic Compliance  
CMOS/LVDS/LVPECL  
Differential Input Voltage2  
Input Voltage Range  
Input Common-Mode Voltage  
Input Resistance (Differential)  
Input Capacitance  
Full  
Full  
Full  
25°C  
25°C  
0.2  
AGND − 0.2  
3.6  
AVDD + 0.2  
V p-p  
V
V
kΩ  
pF  
0.9  
15  
4
LOGIC INPUTS (PDWN, SYNC, SCLK)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
30  
2
kΩ  
pF  
LOGIC INPUT (CSB)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
26  
2
kΩ  
pF  
LOGIC INPUT (SDIO)  
Logic 1 Voltage  
Logic 0 Voltage  
Full  
Full  
1.2  
0
AVDD + 0.2  
0.8  
V
V
Input Resistance  
Input Capacitance  
25°C  
25°C  
26  
5
kΩ  
pF  
LOGIC OUTPUT (SDIO)3  
Logic 1 Voltage (IOH = 800 μA)  
Logic 0 Voltage (IOL = 50 μA)  
DIGITAL OUTPUTS (D0 x, D1 x), ANSI-644  
Logic Compliance  
Full  
Full  
1.79  
V
V
0.05  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
290  
1.15  
345  
1.25  
400  
1.35  
mV  
V
Twos complement  
DIGITAL OUTPUTS (D0 x, D1 x), LOW POWER,  
REDUCED SIGNAL OPTION  
Logic Compliance  
LVDS  
Differential Output Voltage (VOD)  
Output Offset Voltage (VOS)  
Output Coding (Default)  
Full  
Full  
160  
1.15  
200  
1.25  
230  
1.35  
mV  
V
Twos complement  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 This is specified for LVDS and LVPECL only.  
3 This is specified for 13 SDIO/OLM pins sharing the same connection.  
Rev. 0 | Page 5 of 40  
 
AD9253  
Data Sheet  
SWITCHING SPECIFICATIONS  
AVDD = 1.8 V, DRVDD = 1.8 V, 2 V p-p differential input, 1.0 V internal reference, AIN = −1.0 dBFS, unless otherwise noted.  
Table 4.  
Parameter1, 2  
CLOCK3  
Temp  
Min  
Typ  
Max  
Unit  
Input Clock Rate  
Conversion Rate  
Full  
Full  
Full  
Full  
10  
10  
1000  
80/105/125  
MHz  
MSPS  
ns  
Clock Pulse Width High (tEH)  
Clock Pulse Width Low (tEL)  
OUTPUT PARAMETERS3  
Propagation Delay (tPD)  
Rise Time (tR) (20% to 80%)  
Fall Time (tF) (20% to 80%)  
FCO Propagation Delay (tFCO  
DCO Propagation Delay (tCPD  
DCO to Data Delay (tDATA  
DCO to FCO Delay (tFRAME  
6.25/4.76/4.00  
6.25/4.76/4.00  
ns  
Full  
Full  
Full  
Full  
Full  
Full  
Full  
2.3  
300  
300  
2.3  
ns  
ps  
ps  
ns  
ns  
ps  
ps  
)
)
1.5  
3.1  
4
tFCO + (tSAMPLE/16)  
(tSAMPLE/16)  
(tSAMPLE/16)  
4
)
(tSAMPLE/16) − 300  
(tSAMPLE/16) − 300  
(tSAMPLE/16) + 300  
(tSAMPLE/16) + 300  
4
)
Lane Delay (tLD)  
90  
ps  
Data to Data Skew (tDATA-MAX − tDATA-MIN  
Wake-Up Time (Standby)  
Wake-Up Time (Power-Down)5  
Pipeline Latency  
)
Full  
50  
200  
ps  
ns  
μs  
25°C  
25°C  
Full  
250  
375  
16  
Clock cycles  
APERTURE  
Aperture Delay (tA)  
Aperture Uncertainty (Jitter, tJ)  
Out-of-Range Recovery Time  
25°C  
25°C  
25°C  
1
135  
1
ns  
fs rms  
Clock cycles  
1 See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for definitions and for details on how these tests were completed.  
2 Measured on standard FR-4 material.  
3 Can be adjusted via the SPI. The conversion rate is the clock rate after the divider.  
4 tSAMPLE/16 is based on the number of bits in two LVDS data lanes. tSAMPLE = 1/fS.  
5 Wake-up time is defined as the time required to return to normal operation from power-down mode.  
TIMING SPECIFICATIONS  
Table 5.  
Unit  
Parameter  
Description  
Limit  
SYNC TIMING REQUIREMENTS  
tSSYNC  
tHSYNC  
SYNC to rising edge of CLK+ setup time  
SYNC to rising edge of CLK+ hold time  
See Figure 74  
0.24  
0.40  
ns typ  
ns typ  
SPI TIMING REQUIREMENTS  
tDS  
tDH  
tCLK  
tS  
tH  
tHIGH  
tLOW  
tEN_SDIO  
Setup time between the data and the rising edge of SCLK  
Hold time between the data and the rising edge of SCLK  
Period of the SCLK  
Setup time between CSB and SCLK  
Hold time between CSB and SCLK  
SCLK pulse width high  
SCLK pulse width low  
Time required for the SDIO pin to switch from an input to an output relative to the  
SCLK falling edge (not shown in Figure 74)  
2
2
40  
2
2
10  
10  
10  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
tDIS_SDIO  
Time required for the SDIO pin to switch from an output to an input relative to the  
SCLK rising edge (not shown in Figure 74)  
10  
ns min  
Rev. 0 | Page 6 of 40  
 
 
 
 
Data Sheet  
AD9253  
Timing Diagrams  
Refer to the Memory Map Register Descriptions section and Table 21 for SPI register settings.  
N – 1  
VIN±x  
N
N + 1  
tA  
tEH  
tEL  
CLK–  
CLK+  
DCO–  
tCPD  
DDR  
SDR  
DCO+  
DCO–  
DCO+  
FCO–  
tFCO  
tFRAME  
FCO+  
D0–A  
tPD  
tDATA  
BITWISE  
MODE  
D12  
D10  
D08  
D06  
D04  
D02  
LSB  
0
D12  
D10  
D08  
D06  
D04  
D02  
LSB  
0
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
tLD  
MSB  
D11  
D09  
D07  
D05  
D03  
D01  
0
MSB  
D11  
D09  
D07  
D05  
D03  
D01  
0
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
FCO–  
FCO+  
D0–A  
BYTEWISE  
MODE  
D05  
D04  
D03  
D02  
D01  
LSB  
0
0
D05  
D04  
D03  
D02  
D01  
LSB  
0
0
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
MSB  
D12  
D11  
D10  
D09  
D08  
D07  
D06  
MSB  
D12  
D11  
D10  
D09  
D08  
D07  
D06  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
Figure 2. 16-Bit DDR/SDR, Two-Lane, 1× Frame Mode (Default)  
Rev. 0 | Page 7 of 40  
 
 
AD9253  
Data Sheet  
N – 1  
VIN±x  
CLK–  
N + 1  
tA  
N
tEH  
tEL  
CLK+  
DCO–  
tCPD  
DDR  
SDR  
DCO+  
DCO–  
DCO+  
FCO–  
tFRAME  
tFCO  
FCO+  
D0–A  
tDATA  
tPD  
BITWISE  
MODE  
D10  
D08  
D06  
D04  
D02  
LSB  
D10  
D08  
D06  
D04  
D02  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
tLD  
MSB  
D09  
D07  
D05  
D03  
D01  
MSB  
D09  
D07  
D05  
D03  
D01  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
FCO–  
FCO+  
D0–A  
BYTEWISE  
MODE  
D05  
D04  
D03  
D02  
D01  
LSB  
D05  
D04  
D03  
D02  
D01  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
MSB  
D10  
D09  
D08  
D07  
D06  
MSB  
D10  
D09  
D08  
D07  
D06  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
N – 1  
Figure 3. 12-Bit DDR/SDR, Two-Lane, 1× Frame Mode  
VIN±x  
N
N + 1  
tA  
tEH  
tEL  
CLK–  
CLK+  
DCO–  
tCPD  
DDR  
SDR  
DCO+  
DCO–  
DCO+  
FCO–  
tFCO  
tFRAME  
FCO+  
D0–A  
tPD  
tDATA  
BITWISE  
MODE  
D12  
D10  
D08  
D06  
D04  
D02  
LSB  
0
D12  
D10  
D08  
D06  
D04  
D02  
LSB  
0
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
tLD  
MSB  
D11  
D09  
D07  
D05  
D03  
D01  
0
MSB  
D11  
D09  
D07  
D05  
D03  
D01  
0
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
FCO–  
FCO+  
D0–A  
BYTEWISE  
MODE  
D05  
D04  
D03  
D02  
D01  
LSB  
0
0
D05  
D04  
D03  
D02  
D01  
LSB  
0
0
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
MSB  
D12  
D11  
D10  
D09  
D08  
D07  
D06  
MSB  
D12  
D11  
D10  
D09  
D08  
D07  
D06  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
Figure 4. 16-Bit DDR/SDR, Two-Lane, 2× Frame Mode  
Rev. 0 | Page 8 of 40  
 
 
Data Sheet  
AD9253  
N – 1  
VIN±x  
CLK–  
N + 1  
tA  
N
tEH  
tEL  
CLK+  
DCO–  
tCPD  
DDR  
SDR  
DCO+  
DCO–  
DCO+  
FCO–  
tFRAME  
tFCO  
FCO+  
D0–A  
tDATA  
tPD  
BITWISE  
MODE  
D10  
D08  
D06  
D04  
D02  
LSB  
D10  
D08  
D06  
D04  
D02  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
tLD  
MSB  
D09  
D07  
D05  
D03  
D01  
MSB  
D09  
D07  
D05  
D03  
D01  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
FCO–  
FCO+  
D0–A  
BYTEWISE  
MODE  
D05  
D04  
D03  
D02  
D01  
LSB  
D05  
D04  
D03  
D02  
D01  
LSB  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D0+A  
D1–A  
MSB  
D10  
D09  
D08  
D07  
D06  
MSB  
D10  
D09  
D08  
D07  
D06  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16 N – 16 N – 16 N – 16  
D1+A  
Figure 5. 12-Bit DDR/SDR, Two-Lane, 2× Frame Mode  
N – 1  
VIN±x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFCO  
tFRAME  
FCO–  
FCO+  
tDATA  
tPD  
D0–x  
D0+x  
MSB  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
LSB  
0
0
MSB  
D14  
D13  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16 N – 16  
Figure 6. Wordwise DDR, One-Lane, 1× Frame, 16-Bit Output Mode  
Rev. 0 | Page 9 of 40  
 
 
AD9253  
Data Sheet  
N – 1  
VIN±x  
tA  
N
tEH  
tEL  
CLK–  
CLK+  
tCPD  
DCO–  
DCO+  
tFCO  
tFRAME  
FCO–  
FCO+  
tDATA  
tPD  
D0–x  
D0+x  
MSB  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
MSB  
D10  
N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 17 N – 16 N – 16  
Figure 7. Wordwise DDR, One-Lane, 1× Frame, 12-Bit Output Mode  
CLK+  
tSSYNC  
tHSYNC  
SYNC  
Figure 8. SYNC Input Timing Requirements  
Rev. 0 | Page 10 of 40  
 
Data Sheet  
AD9253  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 6.  
Parameter  
Rating  
Table 7. Thermal Resistance  
Electrical  
Air Flow  
Velocity  
(m/sec)  
AVDD to AGND  
DRVDD to AGND  
Digital Outputs  
(D0 x, D1 x, DCO+,  
DCO−, FCO+, FCO−) to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
1
Package Type  
θJA  
θJB  
θJC  
7.1  
Unit  
48-Lead LFCSP  
0.0  
23.7  
20.0  
18.7  
7.8  
N/A  
N/A  
°C/W  
7 mm × 7 mm 1.0  
(CP-48-13) 2.5  
N/A °C/W  
N/A °C/W  
CLK+, CLK− to AGND  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
−0.3 V to +2.0 V  
1 θJA for a 4-layer PCB with solid ground plane (simulated). Exposed pad  
soldered to PCB.  
VIN+x, VIN−x to AGND  
SCLK/DTP, SDIO/OLM, CSB to AGND  
SYNC, PDWN to AGND  
RBIAS to AGND  
VREF, SENSE to AGND  
Environmental  
ESD CAUTION  
Operating Temperature  
Range (Ambient)  
Maximum Junction  
Temperature  
−40°C to +85°C  
150°C  
Lead Temperature  
(Soldering, 10 sec)  
300°C  
Storage Temperature  
Range (Ambient)  
−65°C to +150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 11 of 40  
 
AD9253  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
9
36 VIN+A  
VIN+D  
VIN–D  
AVDD  
AVDD  
CLK–  
CLK+  
AVDD  
DRVDD  
D1–D  
35  
34  
VIN–A  
AVDD  
33 PDWN  
32  
31  
CSB  
SDIO/OLM  
AD9253  
TOP VIEW  
(Not to Scale)  
30 SCLK/DTP  
DRVDD  
29  
28 D0+A  
10  
D0–A  
D1+D  
27  
11  
D1+A  
D0–D  
26  
D0+D 12  
25 D1–A  
NOTES  
1. THE EXPOSED THERMAL PAD ON THE BOTTOM OF THE  
PACKAGE PROVIDES THE ANALOG GROUND FOR THE PART.  
THIS EXPOSED PAD MUST BE CONNECTED TO GROUND FOR  
PROPER OPERATION.  
Figure 9. 48-Lead LFCSP Pin Configuration, Top View  
Table 8. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
0
AGND,  
Exposed Pad  
Analog Ground, Exposed Pad. The exposed thermal pad on the bottom of the package provides the  
analog ground for the part. This exposed pad must be connected to ground for proper operation.  
1
2
VIN+D  
VIN−D  
ADC D Analog Input True.  
ADC D Analog Input Complement.  
1.8 V Analog Supply Pins.  
3, 4, 7, 34, 39, 45, 46 AVDD  
5, 6  
CLK−, CLK+  
DRVDD  
Differential Encode Clock. PECL, LVDS, or 1.8 V CMOS inputs.  
Digital Output Driver Supply.  
Channel D Digital Outputs.  
Channel D Digital Outputs.  
Channel C Digital Outputs.  
Channel C Digital Outputs.  
Data Clock Outputs.  
Frame Clock Outputs.  
Channel B Digital Outputs.  
Channel B Digital Outputs.  
Channel A Digital Outputs.  
Channel A Digital Outputs.  
SPI Clock Input/Digital Test Pattern.  
SPI Data Input and Output Bidirectional SPI Data/Output Lane Mode.  
SPI Chip Select Bar. Active low enable; 30 kΩ internal pull-up.  
8, 29  
9, 10  
11, 12  
13, 14  
15, 16  
17, 18  
19, 20  
21, 22  
23, 24  
25, 26  
27, 28  
30  
D1−D, D1+D  
D0−D, D0+D  
D1−C, D1+C  
D0−C, D0+C  
DCO−, DCO+  
FCO−, FCO+  
D1−B, D1+B  
D0−B, D0+B  
D1−A, D1+A  
D0−A, D0+A  
SCLK/DTP  
31  
32  
SDIO/OLM  
CSB  
33  
PDWN  
Digital Input, 30 kΩ Internal Pull-Down.  
PDWN high = power-down device.  
PDWN low = run device, normal operation.  
35  
36  
37  
38  
40  
41  
42  
43  
VIN−A  
VIN+A  
VIN+B  
VIN−B  
RBIAS  
SENSE  
VREF  
ADC A Analog Input Complement.  
ADC A Analog Input True.  
ADC B Analog Input True.  
ADC B Analog Input Complement.  
Sets Analog Current Bias. Connect to 10 kΩ (1% tolerance) resistor to ground.  
Reference Mode Selection.  
Voltage Reference Input and Output.  
Analog Input Common-Mode Voltage.  
VCM  
Rev. 0 | Page 12 of 40  
 
 
Data Sheet  
AD9253  
Pin No.  
44  
47  
Mnemonic  
SYNC  
VIN−C  
Description  
Digital Input. SYNC input to clock divider.  
ADC C Analog Input Complement.  
ADC C Analog Input True.  
48  
VIN+C  
Rev. 0 | Page 13 of 40  
AD9253  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AD9253-80  
0
0
–20  
AIN = –1dBFS  
SNR = 75.5dB  
ENOB = 12.07BITS  
AIN = –1 DBFS  
SNR = 72.3dB  
–20  
ENOB = 11.5 BITS  
SFDR = 85dBc  
SFDR = 99.3dBc  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 10. Single-Tone 16k FFT with fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Figure 13. Single-Tone 16k FFT with fIN = 140 MHz, fSAMPLE = 80 MSPS  
0
0
AIN = –1dBFS  
SNR = 73.9dB  
ENOB = 11.9 BITS  
AIN = –1dBFS  
SNR = 70.7dB  
ENOB = 11.3 BITS  
–20  
–20  
SFDR = 92.7dBc  
SFDR = 83.7dBc  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 11. Single-Tone 16k FFT with fIN = 30.5 MHZ, fSAMPLE = 80 MSPS  
Figure 14. Single-Tone 16k FFT with fIN = 200 MHz, fSAMPLE = 80 MSPS  
0
120  
AIN = –1dBFS  
SNR = 74.7dB  
ENOB = 11.9 BITS  
SFDRFS  
–20  
100  
SFDR = 94.2dBc  
SNRFS  
–40  
80  
–60  
–80  
60  
SFDR  
40  
SNR  
–100  
–120  
–140  
20  
0
–20  
0
5
10  
15  
20  
25  
30  
35  
40  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 12. Single-Tone 16k FFT with fIN = 70 MHz, fSAMPLE = 80 MSPS  
Figure 15. SNR/SFDR vs. Analog Input Level, fIN = 9.7 MHz, fSAMPLE = 80 MSPS  
Rev. 0 | Page 14 of 40  
 
Data Sheet  
AD9253  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 90.9dBc  
IMD2 = 91dBc  
SFDR (dBc)  
SNR (dBFS)  
–20  
IMD3 = 90.9dBc  
–40  
–60  
–80  
–100  
–120  
–140  
0
5
10  
15  
20  
25  
30  
35  
40  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 16. Two-Tone 16k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
SAMPLE = 80 MSPS  
Figure 18. SNR/SFDR vs. fIN, fSAMPLE = 80 MSPS  
f
0
105  
100  
95  
SFDR (dBc)  
–20  
SFDR (dBc)  
–40  
–60  
IMD3 (dBc)  
90  
85  
–80  
80  
SFDR (dBFS)  
SNR (dBFS)  
–100  
–120  
75  
IMD3 (dBFS)  
70  
–40  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
–15  
10  
35  
60  
85  
INPUT AMPLITUDE (dBFS)  
TEMPERATURE (°C)  
Figure 17. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 80 MSPS  
Figure 19. SNR/SFDR vs. Temperature, fIN = 10.3 MHz, fSAMPLE = 80 MSPS  
Rev. 0 | Page 15 of 40  
AD9253  
Data Sheet  
AD9253-105  
0
0
–20  
AIN = –1dBFS  
SNR = 75.1dB  
ENOB = 12.02 BITS  
SFDR = 97.8dBc  
AIN = –1dBFS  
SNR = 73.1dB  
ENOB = 11.6 BITS  
SFDR = 85dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. Single-Tone 16k FFT with fIN = 9.7 MHz, fSAMPLE = 105 MSPS  
Figure 23. Single-Tone 16k FFT with fIN = 140 MHz, fSAMPLE = 105 MSPS  
0
0
AIN = –1dBFS  
SNR = 74dB  
ENOB = 11.9 BITS  
AIN = –1dBFS  
SNR = 71.2dB  
–20  
–20  
ENOB = 11.3 BITS  
SFDR = 82dBc  
SFDR = 92.1dBc  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 21. Single-Tone 16k FFT with fIN = 30.5 MHZ, fSAMPLE = 105 MSPS  
Figure 24. Single-Tone 16k FFT with fIN = 200 MHz, fSAMPLE = 105 MSPS  
0
120  
AIN = –1dBFS  
SNR = 73.4dB  
ENOB = 11.9 BITS  
SFDRFS  
–20  
100  
SFDR = 89.8dBc  
–40  
SNRFS  
80  
–60  
–80  
60  
SFDR  
40  
SNR  
–100  
–120  
–140  
20  
0
–20  
0
10  
20  
30  
40  
50  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
FREQUENCY (MHz)  
INPUT AMPLITUDE (dBFS)  
Figure 22. Single-Tone 16k FFT with fIN = 70 MHz, fSAMPLE = 105 MSPS  
Figure 25. SNR/SFDR vs. Analog Input Level, fIN = 9.7 MHz, fSAMPLE = 105 MSPS  
Rev. 0 | Page 16 of 40  
 
Data Sheet  
AD9253  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
AIN1 AND AIN2 = –7dBFS  
SFDR = 87.5dBc  
IMD2 = 92.6dBc  
IMD3 = 87.5dBc  
SFDR (dBc)  
SNR (dBFS)  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
100 120 140 160 180 200  
FREQUENCY (MHz)  
INPUT FREQUENCY (MHz)  
Figure 26. Two-Tone 16k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
Figure 28. SNR/SFDR vs. fIN, fSAMPLE = 105 MSPS  
f
SAMPLE = 105 MSPS  
0
100  
95  
90  
85  
80  
75  
70  
SFDR (dBc)  
–20  
SFDR (dBc)  
–40  
–60  
IMD3 (dBc)  
–80  
SNR (dBFS)  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
–40  
–15  
10  
35  
60  
85  
INPUT AMPLITUDE (dBFS)  
TEMPERATURE (°C)  
Figure 27. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 105 MSPS  
Figure 29. SNR/SFDR vs. Temperature, fIN = 10.3 MHz, fSAMPLE = 105 MSPS  
Rev. 0 | Page 17 of 40  
AD9253  
Data Sheet  
AD9253-125  
0
0
–20  
AIN = –1dBFS  
SNR = 75.3dB  
ENOB = 12.04 BITS  
SFDR = 98.52dBc  
AIN = –1dBFS  
SNR = 73.1dB  
ENOB = 11.6 BITS  
SFDR = 85dBc  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–100  
–120  
–140  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 30. Single-Tone 16k FFT with fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Figure 33. Single-Tone 16k FFT with fIN = 140 MHz, fSAMPLE = 125 MSPS  
0
0
AIN = –1dBFS  
SNR = 70.6dB  
ENOB = 11.2 BITS  
AIN = –1dBFS  
SNR = 74.2dB  
ENOB = 12 BITS  
–20  
–20  
SFDR = 83.2dBc  
SFDR = 92.5dBc  
–40  
–40  
–60  
–80  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 34. Single-Tone 16k FFT with fIN = 200 MHz, fSAMPLE = 125 MSPS  
Figure 31. Single-Tone 16k FFT with fIN = 30.5 MHZ, fSAMPLE = 125 MSPS  
0
0
A
= –1dBFS  
IN  
AIN = –1dBFS  
SNR = 73.2dB  
ENOB = 11.9 BITS  
SNR = 72.4dB  
ENOB = 11.7 BITS  
SFDR = 88.4dBc  
–20  
–40  
–20  
SFDR = 91.2dBc  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 35. Single-Tone 16k FFT with fIN = 140 MHz at fSAMPLE = 122.88 MSPS  
Figure 32. Single-Tone 16k FFT with fIN = 70 MHz, fSAMPLE = 125 MSPS  
Rev. 0 | Page 18 of 40  
 
Data Sheet  
AD9253  
120  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SFDRFS  
SNRFS  
SFDR (dBc)  
SNR (dBFS)  
100  
80  
60  
40  
20  
0
SFDR  
SNR  
–100 –90 –80 –70 –60 –50 –40 –30 –20 –10  
0
0
20  
40  
60  
80  
100 120 140 160 180 200  
INPUT AMPLITUDE (dBFS)  
INPUT FREQUENCY (MHz)  
Figure 36. SNR/SFDR vs. Analog Input Level, fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Figure 39. SNR/SFDR vs. fIN, fSAMPLE = 125 MSPS  
0
100  
95  
90  
85  
80  
75  
70  
SFDR (dBc)  
AIN1 AND AIN2 = –7dBFS  
SFDR = 86.2dBc  
IMD2 = 98.3dBc  
–20  
IMD3 = 86.2dBc  
–40  
–60  
–80  
–100  
–120  
–140  
SNR (dBFS)  
0
10  
20  
30  
40  
50  
60  
–40  
–15  
10  
35  
60  
85  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 37. Two-Tone 16k FFT with fIN1 = 70.5 MHz and fIN2 = 72.5 MHz,  
Figure 40. SNR/SFDR vs. Temperature, fIN = 10.3 MHz, fSAMPLE = 125 MSPS  
f
SAMPLE = 125 MSPS  
2.5  
2.0  
0
–20  
1.5  
SFDR (dBc)  
1.0  
–40  
–60  
0.5  
IMD3 (dBc)  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–80  
SFDR (dBFS)  
–100  
–120  
IMD3 (dBFS)  
0
2000  
4000  
6000  
8000 10000 12000 14000 16000  
–90  
–78  
–66  
–54  
–42  
–30  
–18  
–6  
OUTPUT CODE  
INPUT AMPLITUDE (dBFS)  
Figure 41. INL, fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Figure 38. Two-Tone SFDR/IMD3 vs. Input Amplitude (AIN) with  
fIN1 = 70.5 MHz and fIN2 = 72.5 MHz, fSAMPLE = 125 MSPS  
Rev. 0 | Page 19 of 40  
AD9253  
Data Sheet  
1.0  
0.8  
105  
100  
95  
SFDR  
0.6  
0.4  
90  
0.2  
85  
0
–0.2  
–0.4  
–0.6  
–0.8  
80  
SNRFS  
75  
70  
65  
20  
–1.0  
0
45  
70  
95  
120  
2000  
4000  
6000  
8000 10000 12000 14000 16000  
SAMPLE FREQUENCY (MSPS)  
OUTPUT CODE  
Figure 45. SNR/SFDR vs. Encode, fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Figure 42. DNL, fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
500,000  
450,000  
105  
100  
0.94 LSB rms  
400,000  
350,000  
95  
SFDR  
90  
85  
80  
300,000  
250,000  
200,000  
150,000  
100,000  
50,000  
SNRFS  
75  
70  
0
65  
N – 3  
N – 4  
N – 2 N – 1  
N
N + 1 N + 2 N + 3 N + 4 N + 5  
20  
45  
70  
95  
120  
CODE  
SAMPLE FREQUENCY (MSPS)  
Figure 46. SNR/SFDR vs. Encode, fIN = 70 MHz, fSAMPLE = 125 MSPS  
Figure 43. Input-Referred Noise Histogram, fSAMPLE = 125 MSPS  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
DRVDD  
AVDD  
1
10  
FREQUENCY (MHz)  
Figure 44. PSRR vs. Frequency, fCLK = 125 MHz, fSAMPLE = 125 MSPS  
Rev. 0 | Page 20 of 40  
Data Sheet  
AD9253  
EQUIVALENT CIRCUITS  
AVDD  
AVDD  
350  
SCLK/DTP, SYNC,  
AND PDWN  
VIN±x  
30kΩ  
Figure 47. Equivalent Analog Input Circuit  
Figure 51. Equivalent SCLK/DTP, SYNC, and PDWN Input Circuit  
AVDD  
5  
CLK+  
AVDD  
15kΩ  
15kΩ  
0.9V  
AVDD  
375  
RBIAS  
AND VCM  
5Ω  
CLK–  
Figure 52. Equivalent RBIAS and VCM Circuit  
Figure 48. Equivalent Clock Input Circuit  
AVDD  
AVDD  
30k  
350Ω  
SDIO/OLM  
30k  
350Ω  
30kΩ  
CSB  
Figure 53. Equivalent CSB Input Circuit  
Figure 49. Equivalent SDIO/OLM Input Circuit  
DRVDD  
AVDD  
V
V
D0–x, D1–x  
D0+x, D1+x  
V
V
375  
VREF  
7.5kΩ  
DRGND  
Figure 50. Equivalent Digital Output Circuit  
Figure 54. Equivalent VREF Circuit  
Rev. 0 | Page 21 of 40  
 
 
 
AD9253  
Data Sheet  
THEORY OF OPERATION  
the output stage of the driving source. In addition, low Q inductors  
or ferrite beads can be placed on each leg of the input to reduce  
high differential capacitance at the analog inputs and therefore  
achieve the maximum bandwidth of the ADC. Such use of low  
Q inductors or ferrite beads is required when driving the converter  
front end at high IF frequencies. Either a differential capacitor or  
two single-ended capacitors can be placed on the inputs to  
provide a matching passive network. This ultimately creates a  
low-pass filter at the input to limit unwanted broadband noise.  
See the AN-742 Application Note, the AN-827 Application Note,  
and the Analog Dialogue article “Transformer-Coupled Front-  
End for Wideband A/D Converters” (Volume 39, April 2005) for  
more information. In general, the precise values depend on the  
application.  
The AD9253 is a multistage, pipelined ADC. Each stage  
provides sufficient overlap to correct for flash errors in the  
preceding stage. The quantized outputs from each stage are  
combined into a final 14-bit result in the digital correction  
logic. The serializer transmits this converted data in a 16-bit  
output. The pipelined architecture permits the first stage to  
operate with a new input sample while the remaining stages  
operate with preceding samples. Sampling occurs on the rising  
edge of the clock.  
Each stage of the pipeline, excluding the last, consists of a low  
resolution flash ADC connected to a switched-capacitor DAC  
and an interstage residue amplifier (for example, a multiplying  
digital-to-analog converter (MDAC)). The residue amplifier  
magnifies the difference between the reconstructed DAC output  
and the flash input for the next stage in the pipeline. One bit of  
redundancy is used in each stage to facilitate digital correction  
of flash errors. The last stage simply consists of a flash ADC.  
Input Common Mode  
The analog inputs of the AD9253 are not internally dc-biased.  
Therefore, in ac-coupled applications, the user must provide  
this bias externally. Setting the device so that VCM = AVDD/2 is  
recommended for optimum performance, but the device can  
function over a wider range with reasonable performance, as  
shown in Figure 56.  
The output staging block aligns the data, corrects errors, and  
passes the data to the output buffers. The data is then serialized  
and aligned to the frame and data clocks.  
ANALOG INPUT CONSIDERATIONS  
An on-chip, common-mode voltage reference is included in the  
design and is available from the VCM pin. The VCM pin must  
be decoupled to ground by a 0.1 μF capacitor, as described in  
the Applications Information section.  
The analog input to the AD9253 is a differential switched-  
capacitor circuit designed for processing differential input  
signals. This circuit can support a wide common-mode range  
while maintaining excellent performance. By using an input  
common-mode voltage of midsupply, users can minimize  
signal-dependent errors and achieve optimum performance.  
Maximum SNR performance is achieved by setting the ADC to  
the largest span in a differential configuration. In the case of the  
AD9253, the largest input span available is 2 V p-p.  
100  
SFDR  
90  
H
CPAR  
80  
SNRFS  
H
VIN+x  
CSAMPLE  
70  
60  
50  
40  
30  
20  
S
S
S
S
CSAMPLE  
VIN–x  
H
CPAR  
H
Figure 55. Switched-Capacitor Input Circuit  
0.5  
0.7  
0.9  
(V)  
1.1  
1.3  
The clock signal alternately switches the input circuit between  
sample mode and hold mode (see Figure 55). When the input  
circuit is switched to sample mode, the signal source must be  
capable of charging the sample capacitors and settling within  
one-half of a clock cycle. A small resistor in series with each  
input can help reduce the peak transient current injected from  
V
CM  
Figure 56. SNR/SFDR vs. Common-Mode Voltage,  
fIN = 9.7 MHz, fSAMPLE = 125 MSPS  
Rev. 0 | Page 22 of 40  
 
 
 
Data Sheet  
AD9253  
Differential Input Configurations  
Internal Reference Connection  
There are several ways to drive the AD9253 either actively or  
passively. However, optimum performance is achieved by driving  
the analog inputs differentially. Using a differential double balun  
configuration to drive the AD9253 provides excellent performance  
and a flexible interface to the ADC (see Figure 58) for baseband  
applications.  
A comparator within the AD9253 detects the potential at the  
SENSE pin and configures the reference into two possible  
modes, which are summarized in Table 9. If SENSE is grounded,  
the reference amplifier switch is connected to the internal resistor  
divider (see Figure 57), setting VREF to 1.0 V.  
Table 9. Reference Configuration Summary  
For applications where SNR is a key parameter, differential trans-  
former coupling is the recommended input configuration (see  
Figure 59), because the noise performance of most amplifiers is  
not adequate to achieve the true performance of the AD9253.  
Resulting  
Differential  
Span (V p-p)  
SENSE  
Voltage (V) VREF (V)  
Resulting  
Selected Mode  
Fixed Internal  
Reference  
AGND to  
0.2  
1.0 internal  
2.0  
Regardless of the configuration, the value of the shunt capacitor,  
C, is dependent on the input frequency and may need to be  
reduced or removed.  
Fixed External  
Reference  
AVDD  
1.0 applied  
to external  
VREF pin  
2.0  
It is not recommended to drive the AD9253 inputs single-ended.  
VIN+A/VIN+B  
VOLTAGE REFERENCE  
VIN–A/VIN–B  
A stable and accurate 1.0 V voltage reference is built into the  
AD9253. VREF can be configured using either the internal 1.0 V  
reference or an externally applied 1.0 V reference voltage. The  
various reference modes are summarized in the Internal Reference  
Connection section and the External Reference Operation  
section. The VREF pin should be externally decoupled to  
ground with a low ESR, 1.0 ꢀF capacitor in parallel with a low  
ESR, 0.1 ꢀF ceramic capacitor.  
ADC  
CORE  
VREF  
0.1µF  
1.0µF  
SELECT  
LOGIC  
SENSE  
0.5V  
ADC  
Figure 57. Internal Reference Configuration  
0.1µF  
R
*C1  
5pF  
0.1µF  
VIN+x  
33  
33Ω  
33Ω  
C
2V p-p  
C
ADC  
0.1µF  
C
R
VCM  
VIN–x  
33Ω  
ET1-1-I3  
*C1  
R
200Ω  
*C1 IS OPTIONAL  
0.1µF  
C
0.1µF  
Figure 58. Differential Double Balun Input Configuration for Baseband Applications  
ADT1-1WT  
1:1 Z RATIO  
*C1  
R
VIN+x  
VIN–x  
33  
2Vp-p  
49.9ꢀ  
ADC  
C
5pF  
*C1  
R
VCM  
33ꢀ  
200ꢀ  
0.1µF  
0.1μF  
*C1 IS OPTIONAL  
Figure 59. Differential Transformer-Coupled Configuration  
for Baseband Applications  
Rev. 0 | Page 23 of 40  
 
 
 
 
 
 
AD9253  
Data Sheet  
If the internal reference of the AD9253 is used to drive multiple  
converters to improve gain matching, the loading of the reference  
by the other converters must be considered. Figure 60 shows  
how the internal reference voltage is affected by loading.  
0
Clock Input Options  
The AD9253 has a flexible clock input structure. The clock input  
can be a CMOS, LVDS, LVPECL, or sine wave signal.  
Regardless of the type of signal being used, clock source jitter is  
of the most concern, as described in the Jitter Considerations  
section.  
–0.5  
–1.0  
Figure 62 and Figure 63 show two preferred methods for clock-  
ing the AD9253 (at clock rates up to 1 GHz prior to internal CLK  
divider). A low jitter clock source is converted from a single-  
ended signal to a differential signal using either an RF transformer  
or an RF balun.  
INTERNAL V  
REF  
= 1V  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
The RF balun configuration is recommended for clock frequencies  
between 125 MHz and 1 GHz, and the RF transformer is recom-  
mended for clock frequencies from 10 MHz to 200 MHz. The  
back-to-back Schottky diodes across the transformer/balun  
secondary winding limit clock excursions into the AD9253 to  
approximately 0.8 V p-p differential.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (mA)  
This limit helps prevent the large voltage swings of the clock  
from feeding through to other portions of the AD9253 while  
preserving the fast rise and fall times of the signal that are critical  
to achieving low jitter performance. However, the diode  
capacitance comes into play at frequencies above 500 MHz. Care  
must be taken in choosing the appropriate signal limiting diode.  
Figure 60. VREF Error vs. Load Current  
External Reference Operation  
The use of an external reference may be necessary to enhance  
the gain accuracy of the ADC or improve thermal drift charac-  
teristics. Figure 61 shows the typical drift characteristics of the  
internal reference in 1.0 V mode.  
®
4
Mini-Circuits  
ADT1-1WT, 1:1 Z  
0.1µF  
0.1µF  
XFMR  
CLOCK  
INPUT  
2
0
CLK+  
100  
50ꢀ  
ADC  
0.1µF  
CLK–  
SCHOTTKY  
DIODES:  
0.1µF  
–2  
–4  
–6  
–8  
HSMS2822  
Figure 62. Transformer-Coupled Differential Clock (Up to 200 MHz)  
0.1µF  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
50  
ADC  
–40  
–15  
10  
35  
60  
85  
0.1µF  
CLK–  
TEMPERATURE (°C)  
SCHOTTKY  
DIODES:  
HSMS2822  
Figure 61. Typical VREF Drift  
When the SENSE pin is tied to AVDD, the internal reference is  
disabled, allowing the use of an external reference. An internal  
reference buffer loads the external reference with an equivalent  
7.5 kΩ load (see Figure 54). The internal buffer generates the  
positive and negative full-scale references for the ADC core. There-  
fore, the external reference must be limited to a maximum of 1.0 V.  
Figure 63. Balun-Coupled Differential Clock (Up to 1 GHz)  
If a low jitter clock source is not available, another option is to  
ac couple a differential PECL signal to the sample clock input  
pins, as shown in Figure 65. The AD9510/AD9511/AD9512/  
AD9513/AD9514/AD9515/AD9516/AD9517 clock drivers offer  
excellent jitter performance.  
It is not recommended to leave the SENSE pin floating.  
A third option is to ac couple a differential LVDS signal to the  
sample clock input pins, as shown in Figure 66. The AD9510/  
AD9511/AD9512/AD9513/AD9514/AD9515/AD9516/AD9517  
clock drivers offer excellent jitter performance.  
CLOCK INPUT CONSIDERATIONS  
For optimum performance, clock the AD9253 sample clock  
inputs, CLK+ and CLK−, with a differential signal. The signal  
is typically ac-coupled into the CLK+ and CLK− pins via a  
transformer or capacitors. These pins are biased internally  
(see Figure 48) and require no external bias.  
In some applications, it may be acceptable to drive the sample  
clock inputs with a single-ended 1.8 V CMOS signal. In such  
applications, drive the CLK+ pin directly from a CMOS gate, and  
Rev. 0 | Page 24 of 40  
 
 
 
 
 
 
Data Sheet  
AD9253  
80  
75  
70  
65  
60  
bypass the CLK− pin to ground with a 0.1 ꢀF capacitor (see  
Figure 67).  
SNRFS (DCS ON)  
SNRFS (DCS OFF)  
Input Clock Divider  
The AD9253 contains an input clock divider with the ability  
to divide the input clock by integer values between 1 and 8.  
The AD9253 clock divider can be synchronized using the  
external SYNC input. Bit 0 and Bit 1 of Register 0x109 allow the  
clock divider to be resynchronized on every SYNC signal or  
only on the first SYNC signal after the register is written. A  
valid SYNC causes the clock divider to reset to its initial state.  
This synchronization feature allows multiple parts to have their  
clock dividers aligned to guarantee simultaneous input sampling.  
55  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
DUTY CYCLE (%)  
Clock Duty Cycle  
Figure 64. SNR vs. DCS On/Off  
Typical high speed ADCs use both clock edges to generate a vari-  
ety of internal timing signals and, as a result, may be sensitive to  
clock duty cycle. Commonly, a 5% tolerance is required on the  
clock duty cycle to maintain dynamic performance characteristics.  
Jitter in the rising edge of the input is still of concern and is not  
easily reduced by the internal stabilization circuit. The duty  
cycle control loop does not function for clock rates less than  
20 MHz, nominally. The loop has a time constant associated  
with it that must be considered in applications in which the  
clock rate can change dynamically. A wait time of 1.5 μs to 5 μs  
is required after a dynamic clock frequency increase or decrease  
before the DCS loop is relocked to the input signal.  
The AD9253 contains a duty cycle stabilizer (DCS) that retimes  
the nonsampling (falling) edge, providing an internal clock  
signal with a nominal 50% duty cycle. This allows the user to  
provide a wide range of clock input duty cycles without affecting  
the performance of the AD9253. Noise and distortion perform-  
ance are nearly flat for a wide range of duty cycles with the DCS  
on, as shown in Figure 64.  
0.1µF  
0.1µF  
CLK+  
CLOCK  
INPUT  
AD951x  
PECL DRIVER  
100  
ADC  
0.1µF  
0.1µF  
CLK–  
CLOCK  
INPUT  
240ꢀ  
240ꢀ  
50kꢀ  
50kꢀ  
Figure 65. Differential PECL Sample Clock (Up to 1 GHz)  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK+  
AD951x  
LVDS DRIVER  
100ꢀ  
ADC  
0.1µF  
0.1µF  
CLOCK  
INPUT  
CLK–  
50kꢀ  
50kꢀ  
Figure 66. Differential LVDS Sample Clock (Up to 1 GHz)  
V
CC  
OPTIONAL  
100ꢀ  
0.1µF  
1
0.1µF  
1kꢀ  
1kꢀ  
AD951x  
CMOS DRIVER  
CLOCK  
INPUT  
CLK+  
50ꢀ  
ADC  
CLK–  
0.1µF  
1
50RESISTOR IS OPTIONAL.  
Figure 67. Single-Ended 1.8 V CMOS Input Clock (Up to 200 MHz)  
Rev. 0 | Page 25 of 40  
 
 
 
 
AD9253  
Data Sheet  
Jitter Considerations  
POWER DISSIPATION AND POWER-DOWN MODE  
High speed, high resolution ADCs are sensitive to the quality of the  
clock input. The degradation in SNR at a given input frequency  
(fA) due only to aperture jitter (tJ) can be calculated by  
As shown in Figure 69, the power dissipated by the AD9253 is  
proportional to its sample rate. The digital power dissipation  
does not vary significantly because it is determined primarily by  
the DRVDD supply and bias current of the LVDS output drivers.  
350  
1
SNR Degradation = 20 log  
10   
2fA tJ  
In this equation, the rms aperture jitter represents the root mean  
square of all jitter sources, including the clock input, analog input  
signal, and ADC aperture jitter specifications. IF undersampling  
applications are particularly sensitive to jitter (see Figure 68).  
300  
125 MSPS  
250  
200  
150  
105 MSPS  
80 MSPS  
65 MSPS  
The clock input should be treated as an analog signal in cases  
where aperture jitter may affect the dynamic range of the AD9253.  
Power supplies for clock drivers should be separated from the  
ADC output driver supplies to avoid modulating the clock signal  
with digital noise. Low jitter, crystal-controlled oscillators make  
the best clock sources. If the clock is generated from another  
type of source (by gating, dividing, or other methods), it should  
be retimed by the original clock at the last step.  
50 MSPS  
40 MSPS  
20 MSPS  
100  
10 20 30 40 50 60 70 80 90 100 110 120 130  
SAMPLE RATE (MSPS)  
Figure 69. Analog Core Power vs. fSAMPLE for fIN = 10.3 MHz  
Refer to the AN-501 Application Note and the AN-756  
Application Note for more in-depth information about jitter  
performance as it relates to ADCs.  
The AD9253 is placed in power-down mode either by the SPI  
port or by asserting the PDWN pin high. In this state, the ADC  
typically dissipates 2 mW. During power-down, the output  
drivers are placed in a high impedance state. Asserting the  
PDWN pin low returns the AD9253 to its normal operating  
mode. Note that PDWN is referenced to the digital output  
driver supply (DRVDD) and should not exceed that supply  
voltage.  
130  
RMS CLOCK JITTER REQUIREMENT  
120  
110  
16 BITS  
100  
90  
80  
70  
60  
50  
40  
30  
14 BITS  
12 BITS  
Low power dissipation in power-down mode is achieved by  
shutting down the reference, reference buffer, biasing networks,  
and clock. Internal capacitors are discharged when entering  
power-down mode and then must be recharged when returning  
to normal operation. As a result, wake-up time is related to the  
time spent in power-down mode, and shorter power-down  
cycles result in proportionally shorter wake-up times. When  
using the SPI port interface, the user can place the ADC in  
power-down mode or standby mode. Standby mode allows the  
user to keep the internal reference circuitry powered when  
faster wake-up times are required. See the Memory Map section  
for more details on using these features.  
10 BITS  
8 BITS  
0.125ps  
0.25ps  
0.5ps  
1.0ps  
2.0ps  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
Figure 68. Ideal SNR vs. Input Frequency and Jitter  
Rev. 0 | Page 26 of 40  
 
 
 
 
Data Sheet  
AD9253  
DIGITAL OUTPUTS AND TIMING  
The AD9253 differential outputs conform to the ANSI-644 LVDS  
standard on default power-up. This can be changed to a low power,  
reduced signal option (similar to the IEEE 1596.3 standard) via the  
SPI. The LVDS driver current is derived on chip and sets the  
output current at each output equal to a nominal 3.5 mA. A 100 Ω  
differential termination resistor placed at the LVDS receiver  
inputs results in a nominal 350 mV swing (or 700 mV p-p  
differential) at the receiver.  
When operating in reduced range mode, the output current is  
reduced to 2 mA. This results in a 200 mV swing (or 400 mV p-p  
differential) across a 100 Ω termination at the receiver.  
D0 400mV/DIV  
D1 400mV/DIV  
DCO 400mV/DIV  
FCO 400mV/DIV  
4ns/DIV  
The AD9253 LVDS outputs facilitate interfacing with LVDS  
receivers in custom ASICs and FPGAs for superior switching  
performance in noisy environments. Single point-to-point net  
topologies are recommended with a 100 Ω termination resistor  
placed as close to the receiver as possible. If there is no far-end  
receiver termination or there is poor differential trace routing,  
timing errors may result. To avoid such timing errors, it is  
recommended that the trace length be less than 24 inches and  
that the differential output traces be close together and at equal  
lengths. An example of the FCO and data stream with proper  
trace length and position is shown in Figure 70. Figure 71 shows  
the LVDS output timing example in reduced range mode.  
Figure 71. AD9253-125, LVDS Output Timing Example in Reduced Range Mode  
An example of the LVDS output using the ANSI-644 standard  
(default) data eye and a time interval error (TIE) jitter histo-  
gram with trace lengths less than 24 inches on standard FR-4  
material is shown in Figure 72.  
500  
EYE: ALL BITS  
ULS: 7000/400354  
400  
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
–0.8ns  
–0.4ns  
0ns  
0.4ns  
0.8ns  
7k  
6k  
5k  
4k  
3k  
2k  
1k  
0
D0 500mV/DIV  
D1 500mV/DIV  
DCO 500mV/DIV  
FCO 500mV/DIV  
4ns/DIV  
Figure 70. AD9253-125, LVDS Output Timing Example in ANSI-644 Mode (Default)  
200ps  
250ps  
300ps  
350ps  
400ps  
450ps  
500ps  
Figure 72. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Less than 24 Inches on Standard FR-4 Material, External 100 Ω Far-End  
Termination Only  
Rev. 0 | Page 27 of 40  
 
 
 
 
AD9253  
Data Sheet  
Figure 73 shows an example of trace lengths exceeding 24 inches  
on standard FR-4 material. Notice that the TIE jitter histogram  
reflects the decrease of the data eye opening as the edge deviates  
from the ideal position.  
500  
400  
EYE: ALL BITS  
ULS: 8000/414024  
300  
200  
It is the users responsibility to determine if the waveforms  
meet the timing budget of the design when the trace lengths  
exceed 24 inches. Additional SPI options allow the user to further  
increase the internal termination (increasing the current) of all  
four outputs to drive longer trace lengths. This can be achieved  
by programming Register 0x15. Even though this produces  
sharper rise and fall times on the data edges and is less prone to  
bit errors, the power dissipation of the DRVDD supply increases  
when this option is used.  
100  
0
–100  
–200  
–300  
–400  
–500  
–0.8ns  
–0.4ns  
0ns  
0.4ns  
–0.8ns  
The format of the output data is twos complement by default.  
An example of the output coding format can be found in Table 10.  
To change the output data format to offset binary, see the  
Memory Map section.  
12k  
10k  
8k  
Data from each ADC is serialized and provided on a separate  
channel in two lanes in DDR mode. The data rate for each serial  
stream is equal to 16 bits times the sample clock rate, with a  
maximum of 500 Mbps/lane [(16 bits × 125 MSPS)/(2 × 2) =  
500 Mbps/lane)]. The lowest typical conversion rate is 10 MSPS.  
See the Memory Map section for details on enabling this feature.  
6k  
4k  
2k  
Two output clocks are provided to assist in capturing data from  
the AD9253. The DCO is used to clock the output data and is  
equal to four times the sample clock (CLK) rate for the default  
mode of operation. Data is clocked out of the AD9253 and must  
be captured on the rising and falling edges of the DCO that  
supports double data rate (DDR) capturing. The FCO is used to  
signal the start of a new output byte and is equal to the sample  
clock rate in 1× frame mode. See the Timing Diagrams section  
for more information.  
0k  
–800ps –600ps –400ps –200ps  
0ps  
200ps  
400ps 600ps  
Figure 73. Data Eye for LVDS Outputs in ANSI-644 Mode with Trace Lengths  
Greater than 24 Inches on Standard FR-4 Material, External 100 Ω Far-End  
Termination Only  
Table 10. Digital Output Coding  
Input (V)  
Condition (V)  
<−VREF − 0.5 LSB  
−VREF  
Offset Binary Output Mode  
Twos Complement Mode  
1000 0000 0000 0000  
1000 0000 0000 0000  
0000 0000 0000 0000  
0111 1111 1111 1100  
0111 1111 1111 1100  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
VIN+ − VIN−  
0000 0000 0000 0000  
0000 0000 0000 0000  
1000 0000 0000 0000  
1111 1111 1111 1100  
1111 1111 1111 1100  
0 V  
+VREF − 1.0 LSB  
>+VREF − 0.5 LSB  
Rev. 0 | Page 28 of 40  
 
 
Data Sheet  
AD9253  
Table 11. Flexible Output Test Modes  
Output Test  
Mode  
Bit Sequence  
Subject to  
Data Format  
Select  
Pattern Name  
Off (default)  
Midscale short  
Digital Output Word 1  
Digital Output Word 2  
Notes  
0000  
0001  
N/A  
N/A  
N/A  
N/A  
Yes  
1000 0000 0000 (12-bit)  
1000 0000 0000 0000 (16-bit)  
Offset binary  
code shown  
0010  
0011  
0100  
0101  
+Full-scale short  
−Full-scale short  
Checkerboard  
1111 1111 1111 (12-bit)  
0000 0000 0000 0000 (16-bit)  
0000 0000 0000 (12-bit)  
0000 0000 0000 0000 (16-bit)  
1010 1010 1010 (12-bit)  
1010 1010 1010 1010 (16-bit)  
N/A  
N/A  
N/A  
Yes  
Yes  
No  
Yes  
Offset binary  
code shown  
Offset binary  
code shown  
0101 0101 0101 (12-bit)  
0101 0101 0101 0100 (16-bit)  
N/A  
PN sequence long1  
PN23  
ITU 0.150  
X23 + X18 + 1  
PN9  
ITU 0.150  
X9 + X5 + 1  
0110  
0111  
PN sequence short1 N/A  
N/A  
Yes  
No  
One-/zero-word  
toggle  
1111 1111 1111 (12-bit)  
111 1111 1111 1100 (16-bit)  
0000 0000 0000 (12-bit)  
0000 0000 0000 0000 (16-bit)  
1000  
1001  
User input  
1-/0-bit toggle  
Register 0x19 to Register 0x1A Register 0x1B to Register 0x1C No  
1010 1010 1010 (12-bit)  
1010 1010 1010 1000 (16-bit)  
0000 0011 1111 (12-bit)  
0000 0001 1111 1100 (16-bit)  
N/A  
N/A  
N/A  
No  
No  
No  
1010  
1011  
1× sync  
One bit high  
1000 0000 0000 (12-bit)  
Pattern  
associated  
with the  
1000 0000 0000 0000 (16-bit)  
external pin  
1100  
Mixed frequency  
1010 0011 0011 (12-bit)  
N/A  
No  
1010 0001 1001 1100 (16-bit)  
1 All test mode options except PN sequence short and PN sequence long can support 12-bit to 16-bit word lengths to verify data capture to the receiver.  
patterns do not adhere to the data format select option. In  
addition, custom user-defined test patterns can be assigned in  
the 0x19, 0x1A, 0x1B, and 0x1C register addresses.  
When the SPI is used, the DCO phase can be adjusted in 60°  
increments relative to the data edge. This enables the user to  
refine system timing margins if required. The default DCO+  
and DCO− timing, as shown in Figure 2, is 90° relative to the  
output data edge.  
The PN sequence short pattern produces a pseudorandom bit  
sequence that repeats itself every 29 − 1 or 511 bits. A  
description of the PN sequence and how it is generated can be  
found in Section 5.1 of the ITU-T 0.150 (05/96) standard. The  
seed value is all 1s (see Table 12 for the initial values). The  
output is a parallel representation of the serial PN9 sequence in  
MSB-first format. The first output word is the first 14 bits of the  
PN9 sequence in MSB aligned form.  
A 12-bit serial stream can also be initiated from the SPI. This  
allows the user to implement and test compatibility to lower  
resolution systems. When changing the resolution to a 12-bit  
serial stream, the data stream is shortened. See Figure 3 for the  
12-bit example. However, in the default option with the serial  
output number of bits at 16, the data stream stuffs two 0s at the  
end of the 14-bit serial data.  
The PN sequence long pattern produces a pseudorandom bit  
sequence that repeats itself every 223 − 1 or 8,388,607 bits. A  
description of the PN sequence and how it is generated can be  
found in Section 5.6 of the ITU-T 0.150 (05/96) standard. The  
seed value is all 1s (see Table 12 for the initial values) and the  
AD9253 inverts the bit stream with relation to the ITU standard.  
The output is a parallel representation of the serial PN23 sequence  
in MSB-first format. The first output word is the first 14 bits of the  
PN23 sequence in MSB aligned form  
In default mode, as shown in Figure 2, the MSB is first in the  
data output serial stream. This can be inverted so that the LSB is  
first in the data output serial stream by using the SPI.  
There are 12 digital output test pattern options available that  
can be initiated through the SPI. This is a useful feature when  
validating receiver capture and timing. Refer to Table 11 for the  
output bit sequencing options available. Some test patterns have  
two serial sequential words and can be alternated in various  
ways, depending on the test pattern chosen. Note that some  
Rev. 0 | Page 29 of 40  
 
 
AD9253  
Data Sheet  
Table 12. PN Sequence  
and output data. This pin has an internal 10 kΩ resistor to GND.  
It can be left unconnected.  
Initial  
Value  
First Three Output Samples  
(MSB First) Twos Complement  
Sequence  
Table 14. Digital Test Pattern Pin Settings  
PN Sequence Short  
PN Sequence Long  
0x1FE0  
0x1FFF  
0x1DF1, 0x3CC8, 0x294E  
0x1FE0, 0x2001, 0x1C00  
Resulting  
Selected DTP  
Normal Operation  
DTP  
DTP Voltage  
10 kΩ to AGND  
AVDD  
D0 x and D1 x  
Consult the Memory Map section for information on how to  
change these additional digital output timing features through  
the SPI.  
Normal operation  
1000 0000 0000 0000  
Additional and custom test patterns can also be observed when  
commanded from the SPI port. Consult the Memory Map  
section for information about the options available.  
SDIO/OLM Pin  
For applications that do not require SPI mode operation, the  
CSB pin is tied to AVDD, and the SDIO/OLM pin controls the  
output lane mode according to Table 13.  
CSB Pin  
The CSB pin should be tied to AVDD for applications that do  
not require SPI mode operation. By tying CSB high, all SCLK  
and SDIO information is ignored.  
For applications where this pin is not used, CSB should be  
tied to AVDD. When using the one-lane mode, the encode  
rate should be ≤62.5 MSPS to meet the maximum output rate  
of 1 Gbps.  
RBIAS Pin  
To set the internal core bias current of the ADC, place a  
10.0 kΩ, 1% tolerance resistor to ground at the RBIAS pin.  
Table 13. Output Lane Mode Pin Settings  
OLM Pin  
OUTPUT TEST MODES  
Voltage  
Output Mode  
AVDD (Default)  
GND  
Two-lane. 1× frame, 16-bit serial output  
One-lane. 1× frame, 16-bit serial output  
The output test options are described in Table 11 and controlled by  
the output test mode bits at Address 0x0D. When an output test  
mode is enabled, the analog section of the ADC is disconnected  
from the digital back-end blocks and the test pattern is run  
through the output formatting block. Some of the test patterns  
are subject to output formatting, and some are not. The PN  
generators from the PN sequence tests can be reset by setting  
Bit 4 or Bit 5 of Register 0x0D. These tests can be performed  
with or without an analog signal (if present, the analog signal is  
ignored), but they do require an encode clock. For more  
information, see the AN-877 " QQMJDBUJPO / PUF, Interfacing to  
High Speed ADCs via SPI.  
SCLK/DTP Pin  
The SCLK/DTP pin is for use in applications that do not require  
SPI mode operation. This pin can enable a single digital test  
pattern if it and the CSB pin are held high during device power-  
up. When SCLK/DTP is tied to AVDD, the ADC channel  
outputs shift out the following pattern: 1000 0000 0000 0000.  
The FCO and DCO function normally while all channels shift out  
the repeatable test pattern. This pattern allows the user to  
perform timing alignment adjustments among the FCO, DCO,  
Rev. 0 | Page 30 of 40  
 
 
 
Data Sheet  
AD9253  
SERIAL PORT INTERFACE (SPI)  
The falling edge of the CSB, in conjunction with the rising edge  
of the SCLK, determines the start of the framing. An example of  
the serial timing and its definitions can be found in Figure 74  
and Table 5.  
The AD9253 serial port interface (SPI) allows the user to configure  
the converter for specific functions or operations through a  
structured register space provided inside the ADC. The SPI  
offers the user added flexibility and customization, depending on  
the application. Addresses are accessed via the serial port and  
can be written to or read from via the port. Memory is organized  
into bytes that can be further divided into fields, which are docu-  
mented in the Memory Map section. For detailed operational  
information, see the AN-877 Application Note, Interfacing to  
High Speed ADCs via SPI.  
Other modes involving the CSB are available. The CSB can be  
held low indefinitely, which permanently enables the device;  
this is called streaming. The CSB can stall high between bytes to  
allow for additional external timing. When CSB is tied high, SPI  
functions are placed in high impedance mode. This mode turns  
on any SPI pin secondary functions.  
During an instruction phase, a 16-bit instruction is transmitted.  
Data follows the instruction phase, and its length is determined  
by the W0 and W1 bits.  
CONFIGURATION USING THE SPI  
Three pins define the SPI of this ADC: the SCLK pin, the SDIO  
pin, and the CSB pin (see Table 15). The SCLK (a serial clock) is  
used to synchronize the read and write data presented from and  
to the ADC. The SDIO (serial data input/output) is a dual-  
purpose pin that allows data to be sent to and read from the  
internal ADC memory map registers. The CSB (chip select bar)  
is an active low control that enables or disables the read and  
write cycles.  
In addition to word length, the instruction phase determines  
whether the serial frame is a read or write operation, allowing  
the serial port to be used both to program the chip and to read  
the contents of the on-chip memory. The first bit of the first byte in  
a multibyte serial data transfer frame indicates whether a read  
command or a write command is issued. If the instruction is a  
readback operation, performing a readback causes the serial  
data input/output (SDIO) pin to change direction from an input to  
an output at the appropriate point in the serial frame.  
Table 15. Serial Port Interface Pins  
Pin  
Function  
SCLK Serial clock. The serial shift clock input, which is used to  
synchronize serial interface reads and writes.  
SDIO Serial data input/output. A dual-purpose pin that  
typically serves as an input or an output, depending on  
the instruction being sent and the relative position in the  
timing frame.  
All data is composed of 8-bit words. Data can be sent in MSB-  
first mode or in LSB-first mode. MSB-first mode is the default  
on power-up and can be changed via the SPI port configuration  
register. For more information about this and other features,  
see the AN-877 Application Note, Interfacing to High Speed  
ADCs via SPI.  
CSB  
Chip select bar. An active low control that gates the read  
and write cycles.  
tHIGH  
tDS  
tCLK  
tH  
tS  
tDH  
tLOW  
CSB  
SCLK DON’T CARE  
SDIO DON’T CARE  
DON’T CARE  
R/W  
W1  
W0  
A12  
A11  
A10  
A9  
A8  
A7  
D5  
D4  
D3  
D2  
D1  
D0  
DON’T CARE  
Figure 74. Serial Port Interface Timing Diagram  
Rev. 0 | Page 31 of 40  
 
 
 
AD9253  
Data Sheet  
When the device is in SPI mode, the PDWN pin (if enabled)  
remains active. For SPI control of power-down, the PDWN pin  
should be set to its default state.  
HARDWARE INTERFACE  
The pins described in Table 15 comprise the physical interface  
between the user programming device and the serial port of the  
AD9253. The SCLK pin and the CSB pin function as inputs  
when using the SPI interface. The SDIO pin is bidirectional,  
functioning as an input during write phases and as an output  
during readback.  
SPI ACCESSIBLE FEATURES  
Table 16 provides a brief description of the general features that  
are accessible via the SPI. These features are described in detail  
in the AN-877 Application Note, Interfacing to High Speed ADCs  
via SPI. The AD9253 part-specific features are described in detail  
following Table 17, the external memory map register table.  
The SPI interface is flexible enough to be controlled by either  
FPGAs or microcontrollers. One method for SPI configuration  
is described in detail in the AN-812 Application Note, Micro-  
controller-Based Serial Port Interface (SPI) Boot Circuit.  
Table 16. Features Accessible Using the SPI  
Feature Name  
Description  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK signal, the CSB signal, and the SDIO signal are typically  
asynchronous to the ADC clock, noise from these signals can  
degrade converter performance. If the on-board SPI bus is used for  
other devices, it may be necessary to provide buffers between  
this bus and the AD9253 to prevent these signals from transi-  
tioning at the converter inputs during critical sampling periods.  
Power Mode  
Allows the user to set either power-down mode  
or standby mode  
Allows the user to access the DCS, set the  
clock divider, set the clock divider phase, and  
enable the sync  
Allows the user to digitally adjust the  
converter offset  
Allows the user to set test modes to have  
known data on output bits  
Clock  
Offset  
Test I/O  
Some pins serve a dual function when the SPI interface is not  
being used. When the pins are strapped to DRVDD or ground  
during device power-on, they are associated with a specific  
function. Table 16 describes the strappable functions supported  
on the AD9253.  
Output Mode  
Output Phase  
Allows the user to set the output mode  
Allows the user to set the output clock polarity  
ADC Resolution Allows for power consumption scaling with  
respect to sample rate.  
CONFIGURATION WITHOUT THE SPI  
In applications that do not interface to the SPI control registers,  
the SDIO/OLM pin, the SCLK/DTP pin, and the PDWN pin  
serve as standalone CMOS-compatible control pins. When the  
device is powered up, it is assumed that the user intends to use the  
pins as static control lines for the duty cycle stabilizer, output  
data format, and power-down feature control. In this mode,  
CSB should be connected to AVDD, which disables the serial  
port interface.  
Rev. 0 | Page 32 of 40  
 
 
Data Sheet  
AD9253  
MEMORY MAP  
Default Values  
READING THE MEMORY MAP REGISTER TABLE  
After the AD9253 is reset, critical registers are loaded with  
default values. The default values for the registers are given in  
the memory map register table, Table 17.  
Each row in the memory map register table has eight bit locations.  
The memory map is roughly divided into three sections: the chip  
configuration registers (Address 0x00 to Address 0x02); the device  
index and transfer registers (Address 0x05 and Address 0xFF);  
and the global ADC functions registers, including setup, control,  
and test (Address 0x08 to Address 0x109).  
Logic Levels  
An explanation of logic level terminology follows:  
“Bit is set” is synonymous with “bit is set to Logic 1” or  
“writing Logic 1 for the bit.”  
The memory map register table (see Table 17) lists the default  
hexadecimal value for each hexadecimal address shown. The  
column with the heading Bit 7 (MSB) is the start of the default  
hexadecimal value given. For example, Address 0x05, the device  
index register, has a hexadecimal default value of 0x3F. This  
means that in Address 0x05, Bits[7:6] = 0, and the remaining  
Bits[5:0] = 1. This setting is the default channel index setting.  
The default value results in both ADC channels receiving the  
next write command. For more information on this function  
and others, see the AN-877 " QQMJDBUJPO / PUF, Interfacing to  
High Speed ADCs via SPI. This application note details the  
functions controlled by Register 0x00 to Register 0xFF. The  
remaining registers are documented in the Memory Map  
Register Descriptions section.  
“Clear a bit” is synonymous with “bit is set to Logic 0” or  
“writing Logic 0 for the bit.”  
Channel-Specific Registers  
Some channel setup functions, such as the signal monitor  
thresholds, can be programmed differently for each channel. In  
these cases, channel address locations are internally duplicated  
for each channel. These registers and bits are designated in  
Table 17 as local. These local registers and bits can be accessed  
by setting the appropriate data channel bits (A, B, C, or D) and  
the clock channel DCO bit (Bit 5) and FCO bit (Bit 4) in  
Register 0x05. If all the bits are set, the subsequent write affects  
the registers of all channels and the DCO/FCO clock channels.  
In a read cycle, only one of the channels (A, B, C, or D) should  
be set to read one of the four registers. If all the bits are set  
during a SPI read cycle, the part returns the value for Channel  
A. Registers and bits designated as global in Table 17 affect the  
entire part or the channel features for which independent  
settings are not allowed between channels. The settings in  
Register 0x05 do not affect the global registers and bits.  
Open Locations  
All address and bit locations that are not included in Table 17  
are not currently supported for this device. Unused bits of a  
valid address location should be written with 0s. Writing to these  
locations is required only when part of an address location is  
open (for example, Address 0x05). If the entire address location  
is open or not listed in Table 17 (for example, Address 0x13), this  
address location should not be written.  
Rev. 0 | Page 33 of 40  
 
 
AD9253  
Data Sheet  
MEMORY MAP REGISTER TABLE  
The AD9253 uses a 3-wire interface and 16-bit addressing and,  
therefore, Bit 0 and Bit 7 in Register 0x00 are set to 0, and Bit 3  
and Bit 4 are set to 1. When Bit 5 in Register 0x00 is set high,  
the SPI enters a soft reset, where all of the user registers revert  
to their default values and Bit 2 is automatically cleared.  
Table 17.  
Default  
Value  
(Hex)  
ADDR  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
Chip Configuration Registers  
0x00  
SPI port  
configuration  
0 =  
SDO  
active  
LSB first  
Soft  
reset  
1 =  
16-bit  
address  
1 =  
16-bit  
address  
Soft  
reset  
LSB first  
0 = SDO 0x18  
active  
The nibbles  
are mirrored  
so that LSB-  
first or MSB-  
first mode  
registers  
correctly. The  
default for  
ADCs is 16-bit  
mode.  
0x01  
0x02  
Chip ID (global)  
8-bit chip ID, Bits[7:0]  
AD9253 0x8F = quad 14-bit 80 MSPS/105 MSPS/125 MSPS serial LVDS  
0x8F  
Unique chip  
ID used to  
differentiate  
devices; read  
only.  
Chip grade  
(global)  
Open  
Speed grade ID[6:4]  
100 = 80 MSPS  
Open  
Open  
Open  
Open  
Unique  
speed grade  
ID used to  
differentiate  
graded  
101 = 105 MSPS  
110 = 125 MSPS  
devices; read  
only.  
Device Index and Transfer Registers  
0x05  
Device index  
Open  
Open  
Clock  
Channel Channel  
DCO  
Clock  
Data  
Channel  
D
Data  
Channel  
C
Data  
Channel  
B
Data  
Channel  
A
0x3F  
Bits are set to  
determine  
which device  
on chip  
FCO  
receives the  
next write  
command.  
The default is  
all devices on  
chip.  
0xFF  
Transfer  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Initiate  
override  
0x00  
0x00  
Set resolution/  
sample rate  
override.  
Global ADC Function Registers  
0x08  
Power modes  
(global)  
External  
power-  
down  
Power mode  
Determines  
various  
generic  
modes of chip  
operation.  
00 = chip run  
01 = full power-  
down  
10 = standby  
11 = reset  
pin  
function  
0 = full  
power-  
down  
1 =  
standby  
0x09  
Clock (global)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Duty  
cycle  
stabilize  
0 = off  
1 = on  
0x01  
Turns duty  
cycle stabilizer  
on or off.  
Rev. 0 | Page 34 of 40  
 
 
Data Sheet  
AD9253  
Default  
Value  
(Hex)  
ADDR  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
0x0B  
Clock divide  
(global)  
Open  
Open  
Open  
Open  
Open  
Clock divide ratio[2:0]  
000 = divide by 1  
001 = divide by 2  
010 = divide by 3  
011 = divide by 4  
100 = divide by 5  
101 = divide by 6  
110 = divide by 7  
111 = divide by 8  
0x00  
0x0C  
0x0D  
Enhancement  
control  
Open  
Open  
Open  
Open  
Open  
Chop  
Open  
Open  
0x00  
0x00  
Enables/  
disables chop  
mode.  
mode  
0 = off  
1 = on  
Test mode (local  
except for PN  
sequence resets)  
User input test mode  
00 = single  
Reset  
PN long  
gen  
Reset PN  
short  
gen  
Output test mode[3:0] (local)  
0000 = off (default)  
When set, the  
test data is  
placed on the  
output pins in  
place of  
0001 = midscale short  
0010 = positive FS  
0011 = negative FS  
01 = alternate  
10 = single once  
11 = alternate once  
(affects user input test  
mode only,  
0100 = alternating checkerboard  
0101 = PN 23 sequence  
0110 = PN 9 sequence  
0111 = one/zero word toggle  
1000 = user input  
normal data.  
Bits[3:0] = 1000)  
1001 = 1-/0-bit toggle  
1010 = 1× sync  
1011 = one bit high  
1100 = mixed bit frequency  
0x10  
0x14  
Offset adjust  
(local)  
8-bit device offset adjustment [7:0] (local)  
Offset adjust in LSBs from +127 to −128 (twos complement format)  
0x00  
0x01  
Device offset  
trim.  
Output mode  
Open  
LVDS-ANSI/  
LVDS-IEEE  
option  
0 = LVDS-  
ANSI  
Open  
Open  
Open  
Output  
invert  
(local)  
Open  
Output  
format  
0 =  
offset  
binary  
1 =  
Configures  
the outputs  
and the  
format of the  
data.  
1 = LVDS-  
IEEE  
twos  
reduced  
range link  
(global)  
see  
comple-  
ment  
(global)  
Table 18  
0x15  
0x16  
Output adjust  
Output phase  
Open  
Open  
Open  
Output driver  
termination[1:0]  
00 = none  
01 = 200 Ω  
10 = 100 Ω  
Open  
Open  
Open  
Output  
drive  
0 = 1×  
drive  
1 = 2×  
drive  
0x00  
0x03  
Determines  
LVDS or other  
output  
properties.  
11 = 100 Ω  
Input clock phase adjust[6:4]  
(value is number of input clock  
cycles of phase delay)  
see Table 19  
Output clock phase adjust[3:0]  
(0000 through 1011)  
see Table 20  
On devices  
that use  
global clock  
divide,  
determines  
which phase  
of the divider  
output is used  
to supply the  
output clock.  
Internal  
latching is  
unaffected.  
Rev. 0 | Page 35 of 40  
AD9253  
Data Sheet  
Default  
ADDR  
(Hex)  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Value  
(Hex)  
Parameter Name  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Comments  
0x18  
VREF  
Open  
Open  
Open  
Open  
Open  
Internal VREF adjustment  
digital scheme[2:0]  
000 = 1.0 V p-p  
0x04  
Selects and/or  
adjusts the  
VREF  
.
001 = 1.14 V p-p  
010 = 1.33 V p-p  
011 = 1.6 V p-p  
100 = 2.0 V p-p  
0x19  
0x1A  
0x1B  
0x1C  
0x21  
USER_PATT1_LSB  
(global)  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B9  
B1  
B9  
B0  
B8  
B0  
B8  
0x00  
0x00  
0x00  
0x00  
0x30  
User Defined  
Pattern 1 LSB.  
USER_PATT1_MSB  
(global)  
B15  
B7  
B14  
B6  
B13  
B5  
B12  
B4  
B11  
B3  
B10  
B2  
User Defined  
Pattern 1 MSB.  
USER_PATT2_LSB  
(global)  
User Defined  
Pattern 2 LSB.  
USER_PATT2_MSB  
(global)  
B15  
B14  
B13  
B12  
B11  
Open  
B10  
User Defined  
Pattern 2 MSB.  
Serial output data  
control (global)  
LVDS  
output  
LSB  
SDR/DDR one-lane/two-lane,  
bitwise/bytewise[6:4]  
Select  
2×  
frame  
Serial output  
number of bits  
00 = 16 bits  
Serial stream  
control.  
Default causes  
MSB first and  
the native bit  
stream.  
000 = SDR two-lane, bitwise  
001 = SDR two-lane, bytewise  
010 = DDR two-lane, bitwise  
011 = DDR two-lane, bytewise  
100 = DDR one-lane  
first  
10 = 12 bits  
0x22  
Serial channel  
status (local)  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Channel  
output  
reset  
Channel 0x00  
power-  
down  
Used to power  
down  
individual  
sections of a  
converter.  
0x100  
Resolution/  
sample rate  
override  
Resolution/  
sample rate  
override  
Resolution  
01 = 14 bits  
10 = 12 bits  
Sample rate  
000 = 20 MSPS  
001 = 40 MSPS  
010 = 50 MSPS  
011 = 65 MSPS  
100 = 80 MSPS  
101 = 105 MSPS  
110 = 125 MSPS  
0x00  
Resolution/  
sample rate  
override  
(requires  
transfer  
enable  
register, 0xFF).  
0x101  
0x102  
0x109  
User I/O Control 2  
User I/O Control 3  
Sync  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
Open  
SDIO  
pull-  
down  
0x00  
0x00  
0x00  
Disables SDIO  
pull-down.  
Open  
Open  
VCM  
power-  
down  
Open  
Open  
VCM control.  
Open  
Sync  
next  
only  
Enable  
sync  
Rev. 0 | Page 36 of 40  
Data Sheet  
AD9253  
Output Mode (Register 0x14)  
Bit 7—Open  
MEMORY MAP REGISTER DESCRIPTIONS  
For additional information about functions controlled in  
Register 0x00 to Register 0xFF, see the AN-877 Application Note,  
Interfacing to High Speed ADCs via SPI.  
Bit 6—LVDS-ANSI/LVDS-IEEE Option  
Setting this bit chooses LVDS-IEEE (reduced range) option.  
The default setting is LVDS-ANSI. As described in Table 18,  
when LVDS-ANSI or LVDS-IEEE reduced range link is selected,  
the user can select the driver termination. The driver current  
is automatically selected to give the proper output swing.  
Device Index (Register 0x05)  
There are certain features in the map that can be set inde-  
pendently for each channel, whereas other features apply  
globally to all channels (depending on context) regardless of  
which are selected. The first four bits in Register 0x05 can be  
used to select which individual data channels are affected. The  
output clock channels can be selected in Register 0x05 as well. A  
smaller subset of the independent feature list can be applied to  
those devices.  
Table 18. LVDS-ANSI/LVDS-IEEE Options  
Output  
Mode,  
Bit 6  
Output  
Driver  
Termination  
Output  
Mode  
Output Driver  
Current  
0
LVDS-ANSI  
User  
Automatically  
selected to give  
proper swing  
Automatically  
selected to give  
proper swing  
selectable  
Transfer (Register 0xFF)  
All registers except Register 0x100 are updated the moment  
they are written. Setting Bit 0 of this transfer register high  
initializes the settings in the ADC sample rate override register  
(Address 0x100).  
1
LVDS-IEEE  
reduced  
User  
selectable  
range link  
Bits[5:3]—Open  
Power Modes (Register 0x08)  
Bits[7:6]—Open  
Bit 2—Output Invert  
Setting this bit inverts the output bit stream.  
Bit 1—Open  
Bit 5—External Power-Down Pin Function  
If set, the external PDWN pin initiates power-down mode. If  
cleared, the external PDWN pin initiates standby mode.  
Bit 0—Output Format  
By default, this bit is set to send the data output in twos  
complement format. Resetting this bit changes the output mode  
to offset binary.  
Bits[4:2]—Open  
Bits[1:0]—Power Mode  
In normal operation (Bits[1:0] = 00), all ADC channels are  
active.  
Output Adjust (Register 0x15)  
Bits[7:6]—Open  
In power-down mode (Bits[1:0] = 01), the digital datapath clocks  
are disabled while the digital datapath is reset. Outputs are  
disabled.  
Bits[5:4]—Output Driver Termination  
These bits allow the user to select the internal termination  
resistor.  
In standby mode (Bits[1:0] = 10), the digital datapath clocks  
and the outputs are disabled.  
Bits[3:1]—Open  
Bit 0—Output Drive  
During a digital reset (Bits[1:0] = 11), all the digital datapath  
clocks and the outputs (where applicable) on the chip are reset,  
except the SPI port. Note that the SPI is always left under  
control of the user; that is, it is never automatically disabled or  
in reset (except by power-on reset).  
Bit 0 of the output adjust register controls the drive strength on  
the LVDS driver of the FCO and DCO outputs only. The default  
values set the drive to 1× while the drive can be increased to 2×  
by setting the appropriate channel bit in Register 0x05 and then  
setting Bit 0. These features cannot be used with the output  
driver termination select. The termination selection takes  
precedence over the 2× driver strength on FCO and DCO when  
both the output driver termination and output drive are selected.  
Enhancement Control (Register 0x0C)  
Bits[7:3]—Open  
Bit 2—Chop Mode  
For applications that are sensitive to offset voltages and other  
low frequency noise, such as homodyne or direct conversion  
receivers, chopping in the first stage of the AD9253 is a feature  
that can be enabled by setting Bit 2. In the frequency domain,  
chopping translates offsets and other low frequency noise to  
Output Phase (Register 0x16)  
Bit 7—Open  
Bits[6:4]—Input Clock Phase Adjust  
f
CLK/2 where it can be filtered.  
Bits[1:0]—Open  
Rev. 0 | Page 37 of 40  
 
 
 
AD9253  
Data Sheet  
Table 19. Input Clock Phase Adjust Options  
Serial Output Data Control (Register 0x21)  
Input Clock Phase  
Adjust, Bits[6:4]  
Number of Input Clock Cycles of  
Phase Delay  
The serial output data control register is used to program the  
AD9253 in various output data modes depending upon the data  
capture solution. Table 21 describes the various serialization  
options available in the AD9253.  
000 (Default)  
001  
010  
011  
100  
101  
110  
111  
0
1
2
3
4
5
6
7
Resolution/Sample Rate Override (Register 0x100)  
This register is designed to allow the user to downgrade the device.  
Any attempt to upgrade the default speed grade results in a chip  
power-down. Settings in this register are not initialized until Bit 0  
of the transfer register (Register 0xFF) is written high.  
User I/O Control 2 (Register 0x101)  
Bits[7:1]—Open  
Bits[3:0]—Output Clock Phase Adjust  
Table 20. Output Clock Phase Adjust Options  
Bit 0—SDIO Pull-Down  
Output Clock (DCO),  
DCO Phase Adjustment (Degrees  
Bit 0 can be set to disable the internal 30 kꢁ pull-down on the  
SDIO pin, which can be used to limit the loading when many  
devices are connected to the SPI bus.  
Phase Adjust, Bits[3:0]  
Relative to D0 x/D1 x Edge)  
0000  
0001  
0
60  
0010  
0011 (Default)  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
120  
180  
240  
300  
360  
420  
480  
540  
600  
660  
User I/O Control 3 (Register 0x102)  
Bits[7:4]—Open  
Bit 3—VCM Power-Down  
Bit 3 can be set high to power down the internal VCM  
generator. This feature is used when applying an external  
reference.  
Bits[2:0]—Open  
1011  
Table 21. SPI Register Options  
Serialization Options Selected  
Register 0x21  
Contents  
Serial Output Number  
of Bits (SONB)  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
16-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
12-bit  
Frame Mode  
Serial Data Mode  
DCO Multiplier  
4 × fS  
4 × fS  
8 × fS  
8 × fS  
4 × fS  
4 × fS  
8 × fS  
8 × fS  
8 × fS  
3 × fS  
3 × fS  
6 × fS  
6 × fS  
3 × fS  
3 × fS  
6 × fS  
Timing Diagram  
Figure 2 (default setting)  
Figure 2  
Figure 2  
Figure 2  
Figure 4  
Figure 4  
Figure 4  
Figure 4  
Figure 6  
Figure 3  
Figure 3  
Figure 3  
Figure 3  
Figure 5  
Figure 5  
Figure 5  
0x30  
0x20  
0x10  
0x00  
0x34  
0x24  
0x14  
0x04  
0x40  
0x32  
0x22  
0x12  
0x02  
0x36  
0x26  
0x16  
0x06  
0x42  
1×  
1×  
1×  
1×  
2×  
2×  
2×  
2×  
1×  
1×  
1×  
1×  
1×  
2×  
2×  
2×  
2×  
1×  
DDR two-lane bytewise  
DDR two-lane bitwise  
SDR two-lane bytewise  
SDR two-lane bitwise  
DDR two-lane bytewise  
DDR two-lane bitwise  
SDR two-lane bytewise  
SDR two-lane bitwise  
DDR one-lane  
DDR two-lane bytewise  
DDR two-lane bitwise  
SDR two-lane bytewise  
SDR two-lane bitwise  
DDR two-lane bytewise  
DDR two-lane bitwise  
SDR two-lane bytewise  
SDR two-lane bitwise  
DDR one-lane  
6 × fS  
6 × fS  
Figure 5  
Figure 7  
Rev. 0 | Page 38 of 40  
 
 
 
Data Sheet  
AD9253  
APPLICATIONS INFORMATION  
DESIGN GUIDELINES  
VCM  
The VCM pin should be decoupled to ground with a 0.1 ꢀF  
capacitor.  
Before starting design and layout of the AD9253 as a system,  
it is recommended that the designer become familiar with these  
guidelines, which describes the special circuit connections and  
layout requirements that are needed for certain pins.  
REFERENCE DECOUPLING  
The VREF pin should be externally decoupled to ground with a  
low ESR, 1.0 ꢀF capacitor in parallel with a low ESR, 0.1 ꢀF  
ceramic capacitor.  
POWER AND GROUND RECOMMENDATIONS  
When connecting power to the AD9253, it is recommended  
that two separate 1.8 V supplies be used. Use one supply for  
analog (AVDD); use a separate supply for the digital outputs  
(DRVDD). For both AVDD and DRVDD, several different  
decoupling capacitors should be used to cover both high and  
low frequencies. Place these capacitors close to the point of  
entry at the PCB level and close to the pins of the part, with  
minimal trace length.  
SPI PORT  
The SPI port should not be active during periods when the full  
dynamic performance of the converter is required. Because the  
SCLK, CSB, and SDIO signals are typically asynchronous to the  
ADC clock, noise from these signals can degrade converter  
performance. If the on-board SPI bus is used for other devices,  
it may be necessary to provide buffers between this bus and the  
AD9253 to keep these signals from transitioning at the con-  
verter inputs during critical sampling periods.  
A single PCB ground plane should be sufficient when using the  
AD9253. With proper decoupling and smart partitioning of the  
PCB analog, digital, and clock sections, optimum performance  
is easily achieved.  
CROSSTALK PERFORMANCE  
The AD9253 is available in a 48-lead LFCSP package with the  
input pairs on either corner of the chip. See Figure 9 for the pin  
configuration. To maximize the crosstalk performance on the  
board, add grounded filled vias in between the adjacent  
channels as shown in Figure 76.  
EXPOSED PAD THERMAL HEAT SLUG  
RECOMMENDATIONS  
It is required that the exposed pad on the underside of the ADC  
be connected to analog ground (AGND) to achieve the best  
electrical and thermal performance of the AD9253. An exposed  
continuous copper plane on the PCB should mate to the  
AD9253 exposed pad, Pin 0. The copper plane should have  
several vias to achieve the lowest possible resistive thermal path  
for heat dissipation to flow through the bottom of the PCB.  
These vias should be solder-filled or plugged.  
To maximize the coverage and adhesion between the ADC and  
PCB, partition the continuous copper plane by overlaying a  
silkscreen on the PCB into several uniform sections. This provides  
several tie points between the ADC and PCB during the reflow  
process, whereas using one continuous plane with no partitions  
only guarantees one tie point. See Figure 75 for a PCB layout  
example. For detailed information on packaging and the PCB  
layout of chip scale packages, see the AN-772 " QQMJDBUJPO / PUF,  
A Design and Manufacturing Guide for the Lead Frame Chip  
Scale Package (LFCSP), at www.analog.com.  
VIN  
CHANNEL A  
GROUNDED  
FILLED VIAS  
VIN  
FOR ADDED  
CHANNEL D  
CROSSTALK  
ISOLATION  
PIN 1  
VIN  
CHANNEL B  
VIN  
CHANNEL C  
Figure 76. Layout Technique to Maximize Crosstalk Performance  
SILKSCREEN PARTITION  
PIN 1 INDICATOR  
Figure 75. Typical PCB Layout  
Rev. 0 | Page 39 of 40  
 
 
 
 
AD9253  
Data Sheet  
OUTLINE DIMENSIONS  
7.10  
7.00 SQ  
6.90  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
37  
36  
48  
1
0.50  
BSC  
EXPOSED  
PAD  
5.65  
5.60 SQ  
5.55  
24  
13  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD.  
Figure 77. 48-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
7 mm × 7 mm Body, Very Very Thin Quad  
(CP-48-13)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
CP-48-13  
CP-48-13  
CP-48-13  
CP-48-13  
AD9253BCPZ-80  
AD9253BCPZRL7-80  
AD9253BCPZ-105  
AD9253BCPZRL7-105  
AD9253BCPZ-125  
AD9253BCPZRL7-125  
AD9253-125EBZ  
48-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
48-Lead Lead Frame Chip Scale Package (LFCSP_WQ)  
Evaluation Board  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
CP-48-13  
CP-48-13  
1 Z = RoHS Compliant Part.  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D10065-0-10/11(0)  
Rev. 0 | Page 40 of 40  
 
 
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY