AD8616AR [ADI]

Precision 20 MHz CMOS Rail-to-Rail Input/Output Operational Amplifiers; 高精度20 MHz的CMOS轨到轨输入/输出运算放大器
AD8616AR
型号: AD8616AR
厂家: ADI    ADI
描述:

Precision 20 MHz CMOS Rail-to-Rail Input/Output Operational Amplifiers
高精度20 MHz的CMOS轨到轨输入/输出运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision 20 MHz CMOS Rail-to-Rail  
Input/Output Operational Amplifiers  
AD8616/AD8618  
FEATURES  
PIN CONFIGURATIONS  
Low offset voltage: 65 µV max  
Single-supply operation: 2.7 V to 5.5 V  
Low noise: 8 nV/√Hz  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8616  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Wide bandwidth: >20 MHz  
Slew rate: 12 V/µs  
High output current: 150 mA  
No phase reversal  
Low input bias current: 1 pA  
Low supply current: 2 mA  
Unity gain stable  
Figure 1. 8-Lead MSOP (RM-8)  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
AD8616  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
Figure 2. 8-Lead SOIC (R-8)  
APPLICATIONS  
Barcode scanners  
Battery-powered instrumentation  
Multipole filters  
OUT A  
IN A  
OUT D  
IN D  
+IN D  
1
14  
+IN A  
V+  
AD8618  
V
+IN B  
+IN C  
IN C  
OUT C  
IN B  
8
7
OUT B  
Sensors  
ASIC input or output amplifier  
Audio  
Figure 3. 14-Lead TSSOP (RU-14)  
Photodiode amplification  
OUT A  
IN A  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
+IN A  
V+  
AD8618  
11  
10  
9
V–  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
8
Figure 4. 14-Lead SOIC (R-14)  
GENERAL DESCRIPTION  
The AD8616/AD8618 are dual/quad, rail-to-rail, input and  
output, single-supply amplifiers featuring very low offset  
voltage, wide signal bandwidth, and low input voltage and  
current noise. The parts use a patented trimming technique that  
achieves superior precision without laser trimming. The  
AD8616/AD8618 are fully specified to operate from 2.7 V to  
5 V single supplies.  
DigiTrimTM family, which is excellent for audio line drivers and  
other low impedance applications.  
Applications for the parts include portable and low powered  
instrumentation, audio amplification for portable devices,  
portable phone headsets, bar code scanners, and multipole  
filters. The ability to swing rail to rail at both the input and  
output enables designers to buffer CMOS ADCs, DACs, ASICs,  
and other wide output swing devices in single-supply systems.  
The combination of 20 MHz bandwidth, low offset, low noise,  
and very low input bias current make these amplifiers useful in  
a wide variety of applications. Filters, integrators, photodiode  
amplifiers, and high impedance sensors all benefit from the  
combination of performance features. AC applications benefit  
from the wide bandwidth and low distortion. The AD8616/  
AD8618 offer the highest output drive capability of the  
The AD8616/AD8618 are specified over the extended industrial  
(–40°C to +125°C) temperature range. The AD8616 is available  
in 8-lead MSOP and narrow SOIC surface mount packages; the  
MSOP version is available in tape and reel only. The AD8618 is  
available in 14-lead SOIC and 14-lead TSSOP packages.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8616/AD8618  
TABLE OF CONTENTS  
Specifications..................................................................................... 3  
VS = 5 V.......................................................................................... 3  
VS = 2.7 V....................................................................................... 4  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
ESD Caution.................................................................................. 5  
Typical Performance Characteristics ............................................. 6  
Applications..................................................................................... 12  
Input Overvoltage Protection ................................................... 12  
Output Phase Reversal............................................................... 12  
Driving Capacitive Loads.......................................................... 12  
Overload Recovery Time .......................................................... 13  
D/A Conversion ......................................................................... 13  
Low Noise Applications............................................................. 13  
High Speed Photodiode Preamplifier...................................... 14  
Active Filters ............................................................................... 14  
Power Dissipation ...................................................................... 14  
Power Calculations for Varying or Unknown Loads............. 15  
Outline Dimensions....................................................................... 16  
Ordering Guide .......................................................................... 16  
REVISION HISTORY  
4/04—Data Sheet Changed from Rev. 0 to Rev. A  
Added AD8618................................................................Universal  
Updated Outline Dimensions................................................... 16  
1/04—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
AD8616/AD8618  
SPECIFICATIONS  
VS = 5 V  
@VCM = VS/2, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VS = 3.5 V @ VCM = 0.5 V and 3.0 V  
VCM = 0 V to 5 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
23  
80  
65  
500  
800  
7
µV  
µV  
µV  
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
1.5  
0.2  
µV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
1
−40°C < TA < +85°C  
−40°C < TA < +125°C  
50  
500  
0.5  
50  
250  
5
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CDIFF  
CCM  
VCM = 0 V to 4.5 V  
RL = 2 kΩ, VO = 0.5 V to 5 V  
80  
105  
100  
1500  
2.6  
dB  
V/mV  
pF  
10  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
IL = 1 mA  
IL = 10 mA  
−40°C < TA < +125°C  
IL = 1 mA  
IL = 10 mA  
4.98  
4.88  
4.7  
4.99  
4.92  
V
V
V
mV  
mV  
mV  
mA  
Output Voltage Low  
VOL  
7.5  
70  
15  
100  
200  
−40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
150  
3
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
−40°C < TA < +125°C  
70  
90  
1.7  
dB  
mA  
mA  
2.0  
2.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
ØO  
RL = 2 kΩ  
To 0.01%  
12  
<0.5  
24  
V/µs  
µs  
MHz  
Degrees  
73  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
2.4  
8
µV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
f = 10 kHz  
f = 1 kHz  
6
Current Noise Density  
Channel Separation  
in  
0.05  
–115  
–110  
Cs  
f = 10 kHz  
f = 100 kHz  
dB  
Rev. A | Page 3 of 16  
 
AD8616/AD8618  
VS = 2.7 V  
@VCM = VS /2, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
VS = 3.5 V @ VCM = 0.5 V and 3.0 V  
VCM = 0 V to 2.7 V  
−40°C < TA < +125°C  
23  
80  
65  
µV  
µV  
µV  
500  
800  
7
1
50  
500  
0.5  
50  
250  
2.7  
Offset Voltage Drift  
Input Bias Current  
∆VOS/∆T  
IB  
−40°C < TA < +125°C  
1.5  
0.2  
µV/°C  
pA  
pA  
pA  
pA  
pA  
pA  
V
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
0.1  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Voltage Range  
0
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Input Capacitance  
CMRR  
AVO  
CDIFF  
CCM  
VCM = 0 V to 2.7 V  
RL = 2 kΩ, VO = 0.5 V to 2.2 V  
84  
55  
100  
150  
2.6  
10  
dB  
V/mV  
pF  
pF  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
−40°C < TA < +125°C  
IL = 1 mA  
2.65  
2.6  
2.68  
11  
V
V
mV  
mV  
mA  
Output Voltage Low  
25  
30  
−40°C < TA < +125°C  
Output Current  
Closed-Loop Output Impedance  
POWER SUPPLY  
IOUT  
ZOUT  
50  
3
f = 1 MHz, AV = 1  
Power Supply Rejection Ratio  
Supply Current per Amplifier  
PSRR  
ISY  
VS = 2.7 V to 5.5 V  
VO = 0 V  
−40°C < TA < +125°C  
70  
90  
1.7  
dB  
mA  
mA  
2
2.5  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
ts  
GBP  
ØO  
RL = 2 kΩ  
To 0.01%  
12  
<0.3  
22  
V/µs  
µs  
MHz  
Degrees  
50  
NOISE PERFORMANCE  
Peak-to-Peak Noise  
Voltage Noise Density  
en p-p  
en  
0.1 Hz to 10 Hz  
f = 1 kHz  
2.1  
8
µV  
nV/√Hz  
nV/√Hz  
pA/√Hz  
dB  
f = 10 kHz  
f = 1 kHz  
6
Current Noise Density  
Channel Separation  
in  
0.05  
–115  
–110  
Cs  
f = 10 kHz  
f = 100 kHz  
dB  
Rev. A | Page 4 of 16  
 
AD8616/AD8618  
ABSOLUTE MAXIMUM RATINGS  
Table 3. AD8616/AD8618 Stress Ratings  
Parameter  
Supply Voltage  
THERMAL RESISTANCE  
Rating  
θJA is specified for the worst-case conditions, i.e., θJA is specified  
for device soldered in circuit board for surface-mount packages.  
6 V  
GND to VS  
3 V  
Indefinite  
–65°C to +150°C  
–40°C to +125°C  
300°C  
Input Voltage  
Table 4.  
Package Type  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
Differential Input Voltage  
Ouput Short-Circuit Duration to GND  
Storage Temperature  
Operating Temperature Range  
Lead Temperature Range (Soldering 60 sec)  
Junction Temperature  
θJA  
θJC  
45  
43  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
210  
158  
120  
180  
150°C  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 16  
 
AD8616/AD8618  
TYPICAL PERFORMANCE CHARACTERISTICS  
350  
300  
250  
200  
150  
100  
50  
2200  
V
= ±2.5V  
V
= 5V  
S
S
2000  
1800  
1600  
1400  
1200  
1000  
800  
T
= 25°C  
A
V
= 0V TO 5V  
CM  
600  
400  
200  
0
0
–700  
–500  
–300  
–100  
100  
300  
V)  
500  
700  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
OFFSET VOLTAGE (  
µ
Figure 5. Input Offset Voltage Distribution  
Figure 8. Input Bias Current vs. Temperature  
22  
20  
18  
16  
14  
12  
10  
8
1000  
100  
10  
V
T
= 5V  
= 25°C  
V
T
= ±2.5V  
= –40°C TO +125°C  
= 0V  
S
A
S
A
V
CM  
SOURCE  
SINK  
6
1
4
2
0
0.1  
0.001  
0
2
4
6
8
10  
12  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (mA)  
TCV  
(µV/°C)  
OS  
Figure 6. Offset Voltage Drift Distribution  
Figure 9. Output Voltage to Supply Rail vs. Load Current  
500  
400  
120  
100  
80  
60  
40  
20  
0
V
T
= 5V  
= 25  
S
A
V
= 5V  
S
°C  
300  
10mA LOAD  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
1mA LOAD  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
–40 –25 –10  
5
20  
35  
50  
65  
C)  
80  
95 110 125  
COMMON-MODE VOLTAGE (V)  
TEMPERATURE (  
°
Figure 10. Output Voltage Swing vs. Temperature  
Figure 7. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, Five Wafer Lots Including Process Skews)  
Rev. A | Page 6 of 16  
 
AD8616/AD8618  
120  
100  
80  
60  
40  
20  
0
100  
80  
225  
180  
135  
90  
V
T
= ±2.5V  
= 25°C  
= 74°  
S
A
V
= ±2.5V  
S
φ
M
60  
40  
45  
20  
0
0
–45  
–90  
–20  
–40  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. Open-Loop Gain and Phase vs. Frequency  
Figure 14. Common-Mode Rejection Ratio vs. Frequency  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
120  
100  
80  
60  
40  
20  
0
V
= ±2.5V  
V
V
T
R
A
= 5.0V  
= 4.9V p-p  
= 25°C  
= 2kΩ  
= 1  
S
S
IN  
A
L
V
1k  
10k  
100k  
1M  
10M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. Closed-Loop Output Voltage Swing  
Figure 15. PSRR vs. Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±2.5V  
S
V
R
= 5V  
=  
= 25°C  
= 1  
S
L
T
A
A
V
A
= 100  
A = 1  
V
V
–OS  
+OS  
A
= 10  
V
0
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1000  
FREQUENCY (Hz)  
CAPACITANCE (pF)  
Figure 13. Output Impedance vs. Frequency  
Figure 16. Small-Signal Overshoot vs. Load Capacitance  
Rev. A | Page 7 of 16  
AD8616/AD8618  
2.4  
2.2  
2.0  
56  
49  
42  
35  
28  
21  
14  
7
V
= 5V  
S
MKR @ 6.70  
V
= 2.7V  
S
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 5V  
S
0
–40 –25 –10  
5
20  
35  
50  
65  
C)  
80  
95 110 125  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (kHz)  
TEMPERATURE (  
°
Figure 17. Supply Current vs. Temperature  
Figure 20. Voltage Noise Density vs. Frequency  
2000  
1800  
1600  
1400  
1200  
1000  
800  
V
= 5V  
= 10kΩ  
= 200pF  
= 1  
S
R
C
A
L
L
V
600  
400  
200  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
TIME (1µs/DIV)  
SUPPLY VOLTAGE (V)  
Figure 21. Small-Signal Transient Response  
Figure 18. Supply Current vs. Supply Voltage  
V
= 5V  
72  
63  
54  
45  
36  
27  
18  
9
S
R
C
A
= 10kΩ  
= 200pF  
= 1  
V
= 5V  
L
L
V
S
MKR @ 8.72  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
TIME (1µs/DIV)  
FREQUENCY (kHz)  
Figure 22. Large-Signal Transient Response  
Figure 19. Voltage Noise Density vs. Frequency  
Rev. A | Page 8 of 16  
AD8616/AD8618  
0.1  
0.01  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
V
A
= ±2.5V  
= 0.5V rms  
= 1  
S
V
T
= 2.7V  
= 25°C  
= 0V TO 2.7V  
S
IN  
A
V
V
CM  
BW = 22kHz  
R
= 100kΩ  
L
0.001  
0.0001  
–700  
–500  
–300  
–100  
100  
300  
V)  
500  
700  
20  
100  
1k  
20k  
FREQUENCY (Hz)  
OFFSET VOLTAGE (  
µ
Figure 23. THD + N  
Figure 26. Input Offset Voltage Distribution  
500  
400  
V
V
A
= ±2.5V  
= 2V p-p  
= 10  
S
V
T
= 2.7V  
= 25°C  
S
A
IN  
V
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
2.7  
TIME (200ns/DIV)  
COMMON-MODE VOLTAGE (V)  
Figure 24. Settling Time  
Figure 27. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, Five Wafer Lots Including Process Skews)  
500  
400  
V
= 2.7V  
S
V
T
= 3.5V  
= 25°C  
S
A
300  
200  
100  
0
–100  
–200  
–300  
–400  
–500  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
TIME (1s/DIV)  
COMMON-MODE VOLTAGE (V)  
Figure 25. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 28. Input Offset Voltage vs. Common-Mode Voltage  
(200 Units, Five Wafer Lots Including Process Skews)  
Rev. A | Page 9 of 16  
AD8616/AD8618  
1000  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
V
T
= 2.7V  
= 25°C  
S
V
V
T
R
A
= 2.7V  
S
A
= 2.6V p-p  
IN  
A
= 25  
= 2k  
= 1  
°C  
100  
10  
1
L
V
SOURCE  
SINK  
0.1  
0.001  
0.01  
0.1  
LOAD CURRENT (mA)  
1
10  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 29. Output Voltage to Supply Rail vs. Load Current  
Figure 32. Closed-Loop Output Voltage Swing vs. Frequency  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
= 2.7V  
V
= ±1.35V  
S
S
R
T
=  
L
= 25°C  
V
@ 1mA LOAD  
A
OH  
A
= 1  
V
V
@ 1mA LOAD  
OL  
–OS  
+OS  
6
4
2
0
0
10  
100  
CAPACITANCE (pF)  
1000  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
Figure 30. Output Voltage Swing vs. Temperature  
Figure 33. Small-Signal Overshoot vs. Load Capacitance  
100  
80  
225  
180  
135  
90  
64  
V
T
= ±1.35V  
= 25°C  
= 51°  
S
V
= 2.7V  
S
A
MKR @ 7.47  
56  
48  
40  
32  
24  
16  
8
φ
M
60  
40  
20  
45  
0
0
–20  
–40  
–60  
–80  
–100  
–45  
–90  
–135  
–180  
–225  
0
1k  
10k  
100k  
1M  
10M  
100M  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9 1.0  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 31. Open-Loop Gain and Phase vs. Frequency  
Figure 34. Voltage Noise Density vs. Frequency  
Rev. A | Page 10 of 16  
AD8616/AD8618  
48  
42  
36  
30  
24  
18  
12  
6
V
= 2.7V  
= 10kΩ  
= 200pF  
= 1  
S
V
= 2.7V  
S
R
C
A
L
L
V
MKR @ 5.91  
0
0
1
2
3
4
5
6
7
8
9
10  
TIME (1µs/DIV)  
FREQUENCY (kHz)  
Figure 37. Large-Signal Transient Response  
Figure 35. Voltage Noise Density vs. Frequency  
V
= 2.7V  
= 10kΩ  
= 200pF  
= 1  
S
R
C
A
L
L
V
TIME (1µs/DIV)  
Figure 36. Small-Signal Transient Response  
Rev. A | Page 11 of 16  
AD8616/AD8618  
APPLICATIONS  
AD8616/AD8618. One simple technique for compensation is  
the snubber, which consists of a simple RC network. With this  
circuit in place, output swing is maintained and the amplifier is  
stable at all gains.  
INPUT OVERVOLTAGE PROTECTION  
The AD8616/AD8618 have internal protective circuitry that  
allows voltages exceeding the supply to be applied at the input.  
It is recommended, however, not to apply voltages that exceed  
the supplies by more than 1.5 V at either input of the amplifier.  
If a higher input voltage is applied, series resistors should be  
used to limit the current flowing into the inputs.  
Figure 40 shows the implementation of the snubber, which  
reduces overshoot by more than 30% and eliminates ringing,  
which can cause instability. Using the snubber does not recover  
the loss of bandwidth incurred from a heavy capacitive load.  
The input current should be limited to <5 mA. The extremely  
low input bias current allows the use of larger resistors, which  
allows the user to apply higher voltages at the inputs. The use of  
these resistors adds thermal noise, which contributes to the  
overall output voltage noise of the amplifier.  
V
A
C
= ±2.5V  
= 1  
= 500pF  
S
V
L
For example, a 10 kΩ resistor has less than 13 nV/√ of  
Hz  
thermal noise and less than 10 nV of error voltage at room  
temperature.  
OUTPUT PHASE REVERSAL  
The AD8616/AD8618 are immune to phase inversion, a  
phenomenon that occurs when the voltage applied at the input  
of the amplifier exceeds the maximum input common mode.  
TIME (2µs/DIV)  
Phase reversal can cause permanent damage to the amplifier  
and lock-ups to systems with feedback loops.  
Figure 39. Driving Heavy Capacitive Loads without Compensation  
V
V
A
R
= ±2.5V  
S
= 6V p-p  
= 1  
IN  
V
V
L
CC  
= 10k  
+
V–  
V+  
200  
500pF  
+
V
OUT  
500pF  
V
V
EE  
IN  
200mV  
Figure 40. Snubber Network  
V
= ±2.5V  
= 1  
S
A
R
C
C
V
S
S
L
= 200  
TIME (2ms/DIV)  
= 500pF  
= 500pF  
Figure 38. No Phase Reversal  
DRIVING CAPACITIVE LOADS  
Although the AD8616/AD8618 are capable of driving capacitive  
loads of up to 500 pF without oscillating, a large amount of  
overshoot is present when operating at frequencies above  
100 kHz. This is especially true when the amplifier is configured  
in positive unity gain (worst case). When such large capacitive  
loads are required, the use of external compensation is highly  
recommended. This reduces the overshoot and minimizes  
ringing, which in turn improves the frequency response of the  
TIME (10µs/DIV)  
Figure 41. Driving Heavy Capacitive Loads Using the Snubber Network  
Rev. A | Page 12 of 16  
 
 
AD8616/AD8618  
5V  
2.5V  
OVERLOAD RECOVERY TIME  
10  
µF  
+
Overload recovery time is the time it takes the output of the  
amplifier to come out of saturation and recover to its linear  
region. Overload recovery is particularly important in  
applications where small signals must be amplified in the  
presence of large transients. Figure 42 and Figure 43 show the  
positive and negative overload recovery times of the AD8616. In  
both cases, the time elapsed before the AD8616 comes out of  
saturation is less than 1 µs. In addition, the symmetry between  
the positive and negative recovery times allows for excellent  
signal rectification without distortion to the output signal.  
0.1µF  
0.1µF  
SERIAL  
INTERFACE  
V
REFF  
REFS  
DD  
1/2  
AD8616  
CS  
UNIPOLAR  
OUTPUT  
DIN  
AD5542  
V
OUT  
SCLK  
LDAC*  
DGND  
AGND  
Figure 44. Buffering DAC Output  
LOW NOISE APPLICATIONS  
V
R
A
= ±2.5V  
= 10k  
= 100  
S
L
Although the AD8618 typically has less than 8 nV/√ of  
Hz  
V
+2.5V  
V
= 50mV  
IN  
voltage noise density at 1 kHz, it is possible to reduce it further.  
A simple method is to connect the amplifiers in parallel, as  
shown in Figure 45. The total noise at the output is divided by  
the square root of the number of amplifiers. In this case, the  
0V  
0V  
total noise is approximately 4 nV/√ at room temperature.  
Hz  
The 100 Ω resistor limits the current and provides an effective  
output resistance of 50 Ω.  
3
V
–50mV  
IN  
R3  
V+  
V–  
1
1
1
1
R1  
2
100  
10Ω  
TIME (1µs/DIV)  
R2  
Figure 42. Positive Overload Recovery  
1kΩ  
V
R
A
= ±2.5V  
= 10k  
= 100  
S
3
L
R6  
V+  
V–  
V
V
= 50mV  
IN  
R4  
2
100Ω  
10Ω  
–2.5V  
0V  
0V  
R5  
V
OUT  
1kΩ  
3
2
R9  
V+  
V–  
R7  
100Ω  
10Ω  
R8  
+50mV  
1kΩ  
3
2
TIME (1µs/DIV)  
R12  
V+  
V–  
R10  
Figure 43. Negative Overload Recovery  
100Ω  
10Ω  
D/A CONVERSION  
R11  
The AD8616 can be used at the output of high resolution DACs.  
Their low offset voltage, fast slew rate, and fast settling time  
make the parts suitable to buffer voltage output or current  
output DACs.  
1kΩ  
Figure 45. Noise Reduction  
Figure 44 shows an example of the AD8616 at the output of the  
AD5542. The AD8616s rail-to-rail output and low distortion  
help maintain the accuracy needed in data acquisition systems  
and automated test equipment.  
Rev. A | Page 13 of 16  
 
 
 
 
 
AD8616/AD8618  
10  
0
HIGH SPEED PHOTODIODE PREAMPLIFIER  
The AD8616/AD8618 are excellent choices for I-to-V  
conversions. The very low input bias, low current noise, and  
high unity gain bandwidth of the parts make them suitable,  
especially for high speed photodiode preamps.  
–10  
–20  
–30  
–40  
In high speed photodiode applications, the diode is operated in  
a photoconductive mode (reverse biased). This lowers the  
junction capacitance at the expense of an increase in the  
amount of dark current that flows out of the diode.  
The total input capacitance, C1, is the sum of the diode  
capacitance and that of the op amp. This creates a feedback pole  
and causes degradation of the phase margin, making the op  
amp unstable. It is therefore necessary to use a capacitor in the  
feedback to compensate for this pole.  
0.1  
1
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 48. Second-Order Butterworth Low-Pass Filter Frequency Response  
To get the maximum signal bandwidth, select  
POWER DISSIPATION  
C1  
C2 =  
Although the AD8616/AD8618 are capable of providing load  
currents to 150 mA, the usable output load current drive  
capability is limited to the maximum power dissipation allowed  
by the device package used. In any application, the absolute  
maximum junction temperature for the AD8616/AD8618 is  
150°C; this should never be exceeded because the device could  
suffer premature failure. Accurately measuring power dissipa-  
tion of an integrated circuit is not always a straightforward  
exercise; Figure 49 has been provided as a design aid for setting  
a safe output current drive level or selecting a heat sink for the  
package options available on the AD8616.  
2πR2 fU  
where fU is the unity gain bandwidth of the amplifier.  
C2  
R2  
+2.5V  
V–  
I
R
C
C
IN  
D
SH  
D
V+  
+
–2.5V  
–V  
BIAS  
1.5  
Figure 46. High Speed Photodiode Preamplifier  
ACTIVE FILTERS  
1.0  
The low input bias current and high unity gain bandwidth of  
the AD8616 make it an excellent choice for precision filter  
design.  
SOIC  
MSOP  
Figure 47 shows the implementation of a second-order low-pass  
filter. The Butterworth response has a corner frequency of  
100 kHz and a phase shift of 90°. The frequency response is  
shown in Figure 48.  
0.5  
0
2nF  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
V
CC  
Figure 49. Maximum Power Dissipation vs. Ambient Temperature  
V–  
V+  
1.1k  
1.1kΩ  
V
1nF  
IN  
V
EE  
Figure 47. Second-Order Low-Pass Filter  
Rev. A | Page 14 of 16  
 
 
 
 
AD8616/AD8618  
Calculating Power by Measuring Ambient and Case  
Temperature  
These thermal resistance curves were determined using the  
AD8616 thermal resistance data for each package and a  
maximum junction temperature of 150°C. The following  
formula can be used to calculate the internal junction  
temperature of the AD8616/AD8618 for any application:  
Given the two equations for calculating junction temperature:  
TJ = TA + P θJA  
where:  
TJ = PDISS × θJA + TA  
TJ = junction temperature;  
TA = ambient temperature.  
where:  
θJA = the junction-to-ambient thermal resistance.  
TJ = junction temperature;  
P
DISS = power dissipation;  
TJ = TC + P θJC  
θJA = package thermal resistance, junction-to-case; and  
TA = ambient temperature of the circuit.  
where TC is case temperature and θJA and θJC are given in the  
data sheet.  
To calculate the power dissipated by the AD8616/AD8618, use  
the following equation:  
The two equations can be solved for P (power):  
TA + P θJA = TC + P θJC  
P
DISS = ILOAD × (VS VOUT)  
where:  
P = (TA TC)/(θJC – θJA)  
I
LOAD = output load current;  
Once power has been determined, it is necessary to go back and  
calculate the junction temperature to assure that it has not been  
exceeded.  
VS = supply voltage; and  
V
OUT = output voltage.  
The quantity within the parentheses is the maximum voltage  
developed across either output transistor.  
The temperature measurements should be directly on the  
package and on a spot on the board that is near the package but  
not touching it. Measuring the package could be difficult. A very  
small bimetallic junction glued to the package could be used; an  
infrared sensing device could be used if the spot size is small  
enough.  
POWER CALCULATIONS FOR VARYING OR  
UNKNOWN LOADS  
Often, calculating power dissipated by an integrated circuit to  
determine if the device is being operated in a safe range is not  
as simple as it might seem. In many cases, power cannot be  
directly measured. This may be the result of irregular output  
waveforms or varying loads; indirect methods of measuring  
power are required.  
Calculating Power by Measuring Supply Current  
Power can be calculated directly if the supply voltage and  
current are known. However, supply current may have a dc  
component with a pulse into a capacitive load. This could make  
rms current very difficult to calculate. This can be overcome by  
lifting the supply pin and inserting an rms current meter into  
the circuit. For this to work, the user must be sure that all of the  
current is being delivered by the supply pin being measured.  
This is usually a good method in a single-supply system;  
however, if the system uses dual supplies, both supplies may  
need to be monitored.  
There are two methods to calculate power dissipated by an  
integrated circuit. The first can be done by measuring the  
package temperature and the board temperature. The other is to  
directly measure the circuits supply current.  
Rev. A | Page 15 of 16  
 
AD8616/AD8618  
OUTLINE DIMENSIONS  
3.00  
BSC  
8.75 (0.3445)  
8.55 (0.3366)  
14  
1
8
7
8
5
4
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
4.90  
BSC  
3.00  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
PIN 1  
0.25 (0.0098)  
0.10 (0.0039)  
0.65 BSC  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
1.10 MAX  
SEATING  
PLANE  
0.15  
0.00  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 52. 14-Lead Standard Small Outline Package [SOIC]  
(R-14)  
Figure 50. 8-Lead Micro Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters and (inches)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
14  
8
7
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
4.50  
4.40  
4.30  
6.40  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
1
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
PIN 1  
0.10 (0.0040)  
0.65  
BSC  
1.05  
1.00  
0.80  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.20  
0.09  
0.25 (0.0098)  
0.17 (0.0067)  
1.20  
MAX  
SEATING  
PLANE  
0.40 (0.0157)  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
SEATING  
PLANE  
COPLANARITY  
0.10  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 53. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Figure 51. 8-Lead Standard Small Outline Package [SOIC]  
(R-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
Package Outline  
Branding Code  
AD8616ARM-R2  
AD8616ARM-REEL  
AD8616AR  
AD8616AR-REEL  
AD8616AR-REEL7  
AD8618AR  
AD8618AR-REEL  
AD8618AR-REEL7  
AD8618ARU  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-14  
R-14  
R-14  
RU-14  
RU-14  
BLA  
BLA  
AR8618ARU-REEL  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04648–0–4/04(A)  
Rev. A | Page 16 of 16  
 

相关型号:

AD8616AR-REEL

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616AR-REEL7

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616ARM

Precision 20 MHz CMOS Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616ARM-R2

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616ARM-REEL

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616ARMZ

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616ARMZ-R2

DUAL OP-AMP, 800 uV OFFSET-MAX, 23 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8
ROCHESTER

AD8616ARMZ-R2

IC DUAL OP-AMP, 800 uV OFFSET-MAX, 23 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MO-187AA, MSOP-8, Operational Amplifier
ADI

AD8616ARMZ-R21

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616ARMZ-REEL

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616ARMZ-REEL1

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI

AD8616ARMZ1

Precision, 20 MHz, CMOS, Rail-to-Rail Input/Output Operational Amplifiers
ADI