AD8542ARU-REEL [ADI]

General Purpose CMOS Rail-to-Rail Amplifiers; 通用CMOS轨到轨放大器
AD8542ARU-REEL
型号: AD8542ARU-REEL
厂家: ADI    ADI
描述:

General Purpose CMOS Rail-to-Rail Amplifiers
通用CMOS轨到轨放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:232K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
General-Purpose CMOS  
Rail-to-Rail Amplifiers  
a
AD8541/AD8542/AD8544  
FEATURES  
PIN CONFIGURATIONS  
Single-Supply Operation: 2.7 V to 5.5 V  
Low Supply Current: 45 A/Amplifier  
Wide Bandwidth: 1 MHz  
No Phase Reversal  
5-Lead SC70 and SOT-23  
(KS and RT Suffixes)  
Low Input Currents: 4 pA  
Unity Gain Stable  
Rail-to-Rail Input and Output  
AD8541  
V+  
OUT A  
V؊  
1
2
5
4
+IN A  
3
؊IN A  
APPLICATIONS  
ASIC Input or Output Amplifier  
Sensor Interface  
Piezo Electric Transducer Amplifier  
Medical Instrumentation  
Mobile Communication  
Audio Output  
8-Lead SOIC  
(R Suffix)  
1
8
NC  
V+  
NC  
AD8541  
Portable Systems  
2
7
–IN A  
OUT A  
NC  
3
4
6
5
+IN A  
V–  
GENERAL DESCRIPTION  
The AD8541/AD8542/AD8544 are single, dual, and quad rail-  
to-rail input and output single-supply amplifiers featuring very  
low supply current and 1 MHz bandwidth. All are guaranteed to  
operate from a 2.7 V single supply as well as a 5 V supply. These  
parts provide 1 MHz bandwidth at a low current consumption  
of 45 mA per amplifier.  
NC = NO CONNECT  
8-Lead SOIC, MSOP, and TSSOP  
(R, RM, and RU Suffixes)  
AD8542  
OUT A  
–IN A  
+IN A  
V–  
8
7
6
5
1
2
3
4
V+  
Very low input bias currents enable the AD8541/AD8542/AD8544  
to be used for integrators, photodiode amplifiers, piezo electric  
sensors, and other applications with high source impedance. Sup-  
ply current is only 45 mA per amplifier, ideal for battery operation.  
OUT B  
–IN B  
+IN B  
Rail-to-rail inputs and outputs are useful to designers buffering  
ASICs in single-supply systems. The AD8541/AD8542/AD8544  
are optimized to maintain high gains at lower supply voltages,  
making them useful for active filters and gain stages.  
14-Lead SOIC and TSSOP  
(R and RU Suffixes)  
The AD8541/AD8542/AD8544 are specified over the extended  
industrial temperature range (–40C to +125C). The AD8541  
is available in 8-lead SOIC, 5-lead SC70, and 5-lead SOT-23  
packages. The AD8542 is available in 8-lead SOIC, 8-lead  
MSOP, and 8-lead TSSOP surface-mount packages. The AD8544  
is available in 14-lead narrow SOIC and 14-lead TSSOP surface-  
mount packages. All MSOP, SC70, and SOT versions are available  
in tape and reel only.  
14  
13  
12  
11  
10  
9
OUT D  
–IN D  
OUT A  
–IN A  
1
2
3
4
5
6
7
+IN D  
V–  
+IN A  
V+  
AD8544  
+IN C  
+IN B  
–IN B  
–IN C  
8
OUT C  
OUT B  
REV. D  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8541/AD8542/AD8544–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = 2.7 V, VCM = 1.35 V, TA = 25؇C, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
4
6
7
60  
100  
1,000  
30  
mV  
mV  
pA  
pA  
pA  
pA  
–40C £ TA £ +125C  
Input Bias Current  
Input Offset Current  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
IOS  
0.1  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
50  
500  
2.7  
pA  
pA  
V
Input Voltage Range  
0
Common-Mode Rejection Ratio  
CMRR  
AVO  
V
CM = 0 V to 2.7 V  
40  
38  
100  
50  
2
45  
dB  
dB  
–40C £ TA £ +125C  
RL = 100 kW , VO = 0.5 V to 2.2 V  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
–40C £ TA £ +125C  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
–40C £ TA £ +125C  
Large Signal Voltage Gain  
500  
V/mV  
V/mV  
V/mV  
mV/C  
fA/C  
fA/C  
fA/C  
Offset Voltage Drift  
Bias Current Drift  
DVOS/DT  
DIB/DT  
4
100  
2,000  
25  
Offset Current Drift  
DIOS/DT  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
–40C £ TA £ +125C  
IL = 1 mA  
–40C £ TA £ +125C  
VOUT = VS – 1 V  
2.575 2.65  
2.550  
V
V
Output Voltage Low  
35  
100  
125  
mV  
mV  
mA  
mA  
W
Output Current  
IOUT  
± ISC  
ZOUT  
15  
± 20  
50  
Closed-Loop Output Impedance  
f = 200 kHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
–40C £ TA £ +125C  
VO = 0 V  
65  
60  
76  
38  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
55  
75  
–40C £ TA £ +125C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
Fo  
RL = 100 kW  
To 0.1% (1 V Step)  
0.4  
0.75  
5
980  
63  
V/ms  
ms  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
40  
38  
<0.1  
nV/÷Hz  
nV/÷Hz  
pA/÷Hz  
Current Noise Density  
Specifications subject to change without notice.  
REV. D  
–2–  
AD8541/AD8542/AD8544  
ELECTRICAL CHARACTERISTICS (VS = 3.0 V, VCM = 1.5 V, TA = 25؇C, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
4
6
7
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
–40C £ TA £ +125C  
Input Bias Current  
Input Offset Current  
60  
100  
1,000  
30  
50  
500  
3
–40C £ TA £ +85C  
–40C £ TA £ +125C  
IOS  
0.1  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
Input Voltage Range  
0
V
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 3 V  
40  
38  
100  
50  
2
45  
dB  
dB  
–40C £ TA £ +125C  
RL = 100 kW , VO = 0.5 V to 2.2 V  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
–40C £ TA £ +125C  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
–40C £ TA £ +125C  
Large Signal Voltage Gain  
500  
V/mV  
V/mV  
V/mV  
mV/C  
fA/C  
fA/C  
fA/C  
Offset Voltage Drift  
Bias Current Drift  
DVOS/DT  
DIB/DT  
4
100  
2,000  
25  
Offset Current Drift  
DIOS/DT  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
–40C £ TA £ +125C  
IL = 1 mA  
–40C £ TA £ +125C  
VOUT = VS – 1 V  
2.875 2.955  
2.850  
32  
V
V
Output Voltage Low  
100  
125  
mV  
mV  
mA  
mA  
W
Output Current  
IOUT  
± ISC  
ZOUT  
18  
± 25  
50  
Closed-Loop Output Impedance  
f = 200 kHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
–40C £ TA £ +125C  
VO = 0 V  
65  
60  
76  
40  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
60  
75  
–40C £ TA £ +125C  
DYNAMIC PERFORMANCE  
Slew Rate  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
tS  
GBP  
Fo  
RL = 100 kW  
To 0.01% (1 V Step)  
0.4  
0.8  
5
980  
64  
V/ms  
ms  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
42  
38  
<0.1  
nV/÷Hz  
nV/÷Hz  
pA/÷Hz  
Current Noise Density  
Specifications subject to change without notice.  
REV. D  
–3–  
AD8541/AD8542/AD8544–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS (VS = 5.0 V, VCM = 2.5 V, TA = 25؇C, unless otherwise noted.)  
Parameter  
Symbol  
Conditions  
Min  
Typ Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
IB  
1
4
6
7
mV  
mV  
pA  
pA  
pA  
pA  
pA  
pA  
–40C £ TA £ +125C  
Input Bias Current  
60  
100  
1,000  
30  
50  
500  
5
–40C £ TA £ +85C  
–40C £ TA £ +125C  
Input Offset Current  
IOS  
0.1  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
Input Voltage Range  
0
V
Common-Mode Rejection Ratio  
CMRR  
AVO  
VCM = 0 V to 5 V  
40  
38  
20  
10  
2
48  
40  
dB  
dB  
–40C £ TA £ +125C  
RL = 100 kW , VO = 0.5 V to 2.2 V  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
–40C £ TA £ +125C  
–40C £ TA £ +85C  
–40C £ TA £ +125C  
–40C £ TA £ +125C  
Large Signal Voltage Gain  
V/mV  
V/mV  
V/mV  
mV/C  
fA/C  
fA/C  
fA/C  
Offset Voltage Drift  
Bias Current Drift  
DVOS/DT  
DIB/DT  
4
100  
2,000  
25  
Offset Current Drift  
DIOS/DT  
OUTPUT CHARACTERISTICS  
Output Voltage High  
VOH  
VOL  
IL = 1 mA  
–40C £ TA £ +125C  
IL = 1 mA  
–40C £ TA £ +125C  
VOUT = VS – 1 V  
4.9  
4.875  
4.965  
25  
V
V
Output Voltage Low  
100  
125  
mV  
mV  
mA  
mA  
W
Output Current  
IOUT  
± ISC  
ZOUT  
30  
± 60  
45  
Closed-Loop Output Impedance  
f = 200 kHz, AV = 1  
POWER SUPPLY  
Power Supply Rejection Ratio  
PSRR  
ISY  
VS = 2.5 V to 6 V  
–40C £ TA £ +125C  
VO = 0 V  
65  
60  
76  
45  
dB  
dB  
mA  
mA  
Supply Current/Amplifier  
65  
85  
–40C £ TA £ +125C  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
SR  
BWP  
tS  
GBP  
Fo  
RL = 100 kW, CL = 200 pF  
1% Distortion  
To 0.1% (1 V Step)  
0.45  
0.92  
70  
6
1,000  
67  
V/ms  
kHz  
ms  
kHz  
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
en  
in  
f = 1 kHz  
f = 10 kHz  
42  
38  
<0.1  
nV/÷Hz  
nV/÷Hz  
pA/÷Hz  
Current Noise Density  
Specifications subject to change without notice.  
REV. D  
–4–  
AD8541/AD8542/AD8544  
PACKAGE INFORMATION  
ABSOLUTE MAXIMUM RATINGS1  
Supply Voltage (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND to VS  
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . ± 6 V  
Storage Temperature Range . . . . . . . . . . . . –65C to +150C  
Operating Temperature Range . . . . . . . . . . –40C to +125C  
Junction Temperature Range . . . . . . . . . . . . –65C to +150C  
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300C  
Package Type  
JA*  
Unit  
JC  
5-Lead SC70 (KS)  
5-Lead SOT-23 (RT)  
8-Lead SOIC (R)  
8-Lead MSOP (RM)  
8-Lead TSSOP (RU)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
376  
230  
158  
210  
240  
120  
240  
126  
146  
43  
45  
43  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
NOTES  
36  
43  
1 Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2 For supplies less than 6 V, the differential input voltage is equal to ± VS.  
*qJA is specified for worst-case conditions, i.e., JA is specified for device soldered  
onto a circuit board for surface mount packages.  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Branding  
Information  
Model  
AD8541AKS-R2  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
–40C to +125C  
5-Lead SC70  
5-Lead SC70  
5-Lead SC70  
KS-5  
KS-5  
KS-5  
R-8  
R-8  
R-8  
RT-5  
RT-5  
RT-5  
RT-5  
RT-5  
R-8  
A4B  
A4B  
A4B  
AD8541AKS-REEL7  
AD8541AKSZ-REEL7*  
AD8541AR  
AD8541AR-REEL  
AD8541AR-REEL7  
AD8541ART-R2  
AD8541ART-REEL  
AD8541ART-REEL7  
AD8541ARTZ-REEL*  
AD8541ARTZ-REEL7*  
AD8542AR  
AD8542AR-REEL  
AD8542AR-REEL7  
AD8542ARZ*  
AD8542ARZ-REEL*  
AD8542ARZ-REEL7*  
AD8542ARM-R2  
AD8542ARM-REEL  
AD8542ARU  
AD8542ARU-REEL  
AD8542ARUZ*  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
8-Lead TSSOP  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
14-Lead TSSOP  
A4A  
A4A  
A4A  
A4A  
A4A  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RU-8  
RU-8  
RU-8  
RU-8  
R-14  
R-14  
R-14  
R-14  
R-14  
R-14  
RU-14  
RU-14  
RU-14  
RU-14  
AVA  
AVA  
AD8542ARUZ-REEL*  
AD8544AR  
AD8544AR-REEL  
AD8544AR-REEL7  
AD8544ARZ*  
AD8544ARZ-REEL*  
AD8544ARZ-REEL7*  
AD8544ARU  
AD8544ARU-REEL  
AD8544ARUZ*  
AD8544ARUZ-REEL*  
*Z = Pb-free part.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8541/AD8542/AD8544 feature proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. D  
–5–  
–Typical Performance Characteristics  
AD8541/AD8542/AD8544  
180  
1.0  
9
8
7
6
5
4
3
2
1
0
V
V
= 5V  
V
V
= 2.7V AND 5V  
= V /2  
V
V
= 2.7V AND 5V  
= V /2  
S
S
S
0.5  
= 2.5V  
160  
140  
120  
100  
80  
CM  
CM  
S
CM  
S
T
= 25؇C  
A
0.0  
؊0.5  
؊1.0  
؊1.5  
؊2.0  
؊2.5  
؊3.0  
؊3.5  
؊4.0  
60  
40  
20  
0
؊4.5 ؊3.5 ؊2.5 ؊1.5  
؊0.5 0.5 1.5 2.5 3.5 4.5  
INPUT OFFSET VOLTAGE – mV  
؊55 ؊35 ؊15  
5
25 45 65 85 105 125 145  
؊0.5  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
TEMPERATURE – ؇C  
COMMON-MODE VOLTAGE – V  
TPC 1. Input Offset Voltage  
Distribution  
TPC 2. Input Offset Voltage  
vs. Temperature  
TPC 3. Input Bias Current vs.  
Common-Mode Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
7
160  
V
V
= 2.7V AND 5V  
= V /2  
V
V
= 2.7V AND 5V  
= V /2  
S
S
V
T
= 2.7V  
= 25؇C  
CM  
S
CM  
S
S
A
140  
120  
100  
80  
6
5
4
؊PSRR  
+PSRR  
3
60  
40  
2
20  
1
0
0
؊20  
؊40  
0
؊1  
؊40 ؊20  
0
20 40 60 80 100 120 140  
؊55 ؊35 ؊15  
5
25 45 65 85 105 125 145  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE – ؇C  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
TPC 5. Input Offset Current vs.  
Temperature  
TPC 4. Input Bias Current vs.  
Temperature  
TPC 6. Power Supply Rejection  
Ratio vs. Frequency  
3.0  
10k  
60  
V
T
= 2.7V  
= 25؇C  
V
V
= 2.7V  
= 2.5V p-p  
= 2k  
S
S
V
= 2.7V  
=
= 25؇C  
S
A
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1k  
100  
10  
50  
40  
30  
20  
R
T
R
T
L
L
= 25؇C  
A
A
+OS  
SOURCE  
SINK  
؊OS  
1
0.1  
10  
0
0.01  
0.001  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
0.01  
0.1  
1
10  
100  
FREQUENCY – Hz  
CAPACITANCE – pF  
LOAD CURRENT – mA  
TPC 9. Small Signal Overshoot vs.  
Load Capacitance  
TPC 8. Closed-Loop Output  
Voltage Swing vs. Frequency  
TPC 7. Output Voltage to Supply  
Rail vs. Load Current  
REV. D  
–6–  
AD8541/AD8542/AD8544  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
V
= 2.7V  
= 100kV  
= 300pF  
= 1  
S
V
R
= 2.7V  
= 10k⍀  
= 25؇C  
V
R
= 2.7V  
= 2k⍀  
= 25؇C  
S
S
R
C
A
T
L
L
V
L
L
T
T
A
A
= 25 C  
A
+OS  
+OS  
؊OS  
1.35V  
؊OS  
10  
0
10s  
50mV  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
CAPACITANCE – pF  
CAPACITANCE – pF  
TPC 10. Small Signal Overshoot vs.  
Load Capacitance  
TPC 11. Small Signal Overshoot  
vs. Load Capacitance  
TPC 12. Small Signal Transient  
Response  
160  
V
= 2.7V  
S
V
T
= 5V  
= 25؇C  
S
A
140  
120  
100  
80  
R
= NO LOAD  
= 25؇C  
L
T
A
80  
60  
40  
20  
0
45  
90  
؊PSRR  
+PSRR  
135  
180  
60  
1.35V  
40  
V
= 2.7V  
= 2k  
= 1  
S
20  
R
A
L
V
A
0
T
= 25؇C  
؊20  
؊40  
10s  
500mV  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY – Hz  
TPC 14. Open-Loop Gain and  
Phase vs. Frequency  
TPC 13. Large Signal Transient  
Response  
TPC 15. Power Supply Rejection  
Ratio vs. Frequency  
10k  
5.0  
90  
V
T
= 5V  
= 25؇C  
V
V
R
= 5V  
S
V
T
= 5V  
= 25؇C  
S
S
4.5  
80  
70  
60  
50  
= 4.9V p-p  
= NO LOAD  
= 25؇C  
A
IN  
A
1k  
100  
10  
L
4.0  
3.5  
T
A
3.0  
2.5  
SOURCE  
40  
30  
20  
SINK  
2.0  
1.5  
1
1.0  
0.5  
0
10  
0.1  
0
0.01  
0.001  
؊10  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
LOAD CURRENT – mA  
TPC 17. Output Voltage to Supply  
Rail vs. Frequency  
TPC 16. Common-Mode Rejection  
Ratio vs. Frequency  
TPC 18. Closed-Loop Output  
Voltage Swing vs. Frequency  
REV. D  
–7–  
AD8541/AD8542/AD8544  
60  
50  
40  
30  
20  
60  
5.0  
V
V
R
= 5V  
= 4.9V p-p  
= 2k⍀  
S
4.5  
V
= 5V  
= 10k  
= 25؇C  
V
= 5V  
S
S
IN  
R
T
50  
40  
30  
20  
10  
0
R
T
= 2k⍀  
= 25؇C  
L
L
L
4.0  
3.5  
A
T
= 25؇C  
A
A
3.0  
2.5  
+OS  
+OS  
؊OS  
؊OS  
2.0  
1.5  
1.0  
0.5  
0
10  
0
10  
100  
1k  
10k  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
10  
100  
1k  
10k  
CAPACITANCE – pF  
CAPACITANCE – pF  
TPC 19. Closed-Loop Output  
Voltage Swing vs. Frequency  
TPC 20. Small Signal Overshoot vs.  
Load Capacitance  
TPC 21. Small Signal Overshoot vs.  
Load Capacitance  
60  
V
= 5V  
S
V
R
= 5V  
=
= 25؇C  
S
R
C
A
= 100k  
= 300pF  
= 1  
L
L
50  
40  
30  
20  
10  
0
L
T
A
V
A
T
= 25؇C  
+OS  
2.5V  
2.5V  
؊OS  
V
= 5V  
= 2k⍀  
= 1  
S
R
A
L
V
A
T
= 25؇C  
10s  
50mV  
10s  
1V  
10  
100  
1k  
10k  
CAPACITANCE – pF  
TPC 22. Small Signal Overshoot vs.  
Load Capacitance  
TPC 23. Small Signal Transient  
Response  
TPC 24. Large Signal Transient  
Response  
60  
V
= 5V  
= 10k⍀  
= 1  
S
V
R
= 5V  
= NO LOAD  
= 25؇C  
S
T
= 25؇C  
A
R
A
L
V
A
L
V
IN  
50  
40  
30  
20  
10  
0
T
A
T
= 25؇C  
80  
60  
40  
20  
0
45  
V
90  
OUT  
135  
180  
2.5V  
20s  
1V  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
10M  
0
1
2
3
4
5
6
SUPPLY VOLTAGE – V  
TPC 25. Open-Loop Gain and Phase  
vs. Frequency  
TPC 26. No Phase Reversal  
TPC 27. Supply Current per  
Amplifier vs. Supply Voltage  
REV. D  
–8–  
AD8541/AD8542/AD8544  
55  
50  
45  
40  
35  
30  
25  
20  
1,000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 2.7V AND 5V  
= 1  
= 25؇C  
V
A
= 5V  
= 1  
S
S
A
T
V
V
MARKER SET @ 10kHz  
V
= 5V  
A
S
MARKER READING: 37.6V/ Hz  
T
= 25؇C  
A
V
= 2.7V  
S
؊55 ؊35؊15  
5
25 45 65 85 105 125 145  
0
5
10  
15  
20  
25  
1k  
10k  
100k  
1M  
10M  
100M  
TEMPERATURE – ؇C  
FREQUENCY – Hz  
FREQUENCY – kHz  
TPC 28. Supply Current per  
Amplifier vs. Temperature  
TPC 29. Closed-Loop Output  
Impedance vs. Frequency  
TPC 30. Voltage Noise  
NOTES ON THE AD854x AMPLIFIERS  
drift will cause the circuit to no longer attenuate at the ideal  
notch frequency. To achieve desired performance, 1% or  
better component tolerances or special component screens  
are usually required. One method to desensitize the circuit-  
to-component mismatch is to increase R2 with respect to  
R1, which lowers Q. A lower Q increases attenuation over a  
wider frequency range but reduces attenuation at the peak  
notch frequency.  
The AD8541/AD8542/AD8544 amplifiers are improved perfor-  
mance general-purpose operational amplifiers. Performance has  
been improved over previous amplifiers in several ways.  
Lower Supply Current for 1 MHz Gain Bandwidth  
The AD854x series typically uses 45 mA of current per amplifier.  
This is much less than the 200 mA to 700 mA used in earlier  
generation parts with similar performance. This makes the  
AD854x series a good choice for upgrading portable designs for  
longer battery life. Alternatively, additional functions and per-  
formance can be added at the same current drain.  
5.0V  
R
R
8
100k  
100k⍀  
1/2 AD8542  
3
2
U1  
VOUT  
C2  
1
Higher Output Current  
4
53.6F  
At 5 V single supply, the short-circuit current is typically 60 mA.  
Even 1 V from the supply rail, the AD854x amplifiers can provide  
30 mA, sourcing or sinking.  
R/2  
50k⍀  
R2  
2.5k⍀  
2.5V  
REF  
C
C
Sourcing and sinking are strong at lower voltages, with 15 mA  
available at 2.7 V and 18 mA at 3.0 V. For even higher output  
currents, please see the Analog Devices AD8531/AD8532/AD8534  
parts, with output currents to 250 mA. Information on these  
parts is available from your Analog Devices representative,  
and data sheets are available at the Analog Devices website at  
www.analog.com.  
1/2 AD8542  
26.7nF  
26.7nF  
5
6
7
U2  
R1  
97.5k⍀  
1
f
=
0
2pRC  
1
2.5V  
REF  
f
=
0
R1  
1 ؊  
4
[
]
R1+R2  
Better Performance at Lower Voltages  
Figure 1. 60 Hz Twin-T Notch Filter, Q = 10  
The AD854x family of parts has been designed to provide better  
ac performance, at 3.0 V and 2.7 V, than previously available  
parts. Typical gain-bandwidth product is close to 1 MHz at 2.7 V.  
Voltage gain at 2.7 V and 3.0 V is typically 500,000. Phase margin  
is typically over 60C, making the part easy to use.  
5.0V  
7
AD8541  
R
R
3
2
VOUT  
6
4
2C  
V
IN  
APPLICATIONS  
Notch Filter  
R/2  
The AD8542 has very high open-loop gain (especially with a  
supply voltage below 4 V), which makes it useful for active filters  
of all types. For example, Figure 1 illustrates the AD8542 in the  
classic Twin-T Notch Filter design. The Twin-T Notch is desired  
for simplicity, low output impedance, and minimal use of op  
amps. In fact, this notch filter may be designed with only one op  
amp if Q adjustment is not required. Simply remove U2 as illus-  
trated in Figure 2. However, a major drawback to this circuit  
topology is ensuring that all the Rs and Cs closely match. The  
components must closely match or notch frequency offset and  
2.5V  
REF  
C
C
=
Figure 2. 60 Hz Twin-T Notch Filter, Q (Ideal)  
Figure 3 shows another example of the AD8542 in a notch  
filter circuit. The FNDR notch filter has fewer critical  
matching requirements than the Twin-T Notch and for the  
FNDR Q is directly proportional to a single resistor R1.  
While matching component values is still important, it is also  
REV. D  
–9–  
AD8541/AD8542/AD8544  
much easier and/or less expensive to accomplish in the FNDR  
circuit. For example, the Twin-T notch uses three capacitors  
with two unique values, whereas the FNDR circuit uses only two  
capacitors, which may be of the same value. U3 is simply a buffer  
that is added to lower the output impedance of the circuit.  
Photodiode Application  
The AD854x family has very high impedance with input bias  
current typically around 4 pA. This characteristic allows the  
AD854x op amps to be used in photodiode applications and  
other applications that require high input impedance. Note that  
the AD854x has significant voltage offset, which can be removed  
by capacitive coupling or software calibration.  
1/4 AD8544  
R1  
Q ADJUST  
200  
9
8
Figure 5 illustrates a photodiode or current measurement  
application. The feedback resistor is limited to 10 MW to avoid  
excessive output offset. Also, note that a resistor is not needed  
on the noninverting input to cancel bias current offset because  
the bias current related output offset is not significant when  
compared to the voltage offset contribution. For the best  
performance follow the standard high impedance layout  
techniques including:  
U3  
VOUT  
10  
C1  
1F  
R
2.5V  
REF  
2.61k⍀  
1/4 AD8544  
1
4
3
C2  
1F  
U1  
1/4 AD8544  
2
6
11  
7
U2  
R
5
Shield the circuit.  
2.61k⍀  
Clean the circuit board.  
R
2.61k⍀  
Put a trace connected to the noninverting input around the  
inverting input.  
1/4 AD8544  
R
13  
1
f =  
14  
2.61k⍀  
2p  
LC1  
U4  
NC  
Use separate analog and digital power supplies.  
12  
2.5V  
REF  
SPARE  
2
L =  
R C2  
C
100pF  
2.5V  
REF  
R
10M⍀  
Figure 3. FNDR 60 Hz Notch Filter with Output Buffer  
Comparator Function  
V+  
A comparator function is a common application for a spare op  
amp in a quad package. Figure 4 illustrates 1/4 of the AD8544  
as a comparator in a standard overload detection application.  
Unlike many op amps, the AD854x family can double as  
comparators because this op amp family has rail-to-rail differential  
input range, rail-to-rail output, and a great speed versus power  
ratio. R2 is used to introduce hysteresis. The AD854x, when  
used as comparators, have 5 ms propagation delay at 5 V and 5 ms  
overload recovery time.  
7
OR  
2
3
6
V
OUT  
4
D
AD8541  
2.5V  
REF  
2.5V  
REF  
Figure 5. High Input Impedance Application–Photodiode  
Amplifier  
R2  
1M  
R1  
1k⍀  
VOUT  
V
IN  
1/4 AD8544  
2.5V  
DC  
2.5V  
REF  
Figure 4. AD854x Comparator Application–Overload Detector  
REV. D  
–10–  
AD8541/AD8542/AD8544  
* AD8542 SPICE Macro-model Typical Values  
VN1 80 0 0  
* 6/98, Ver. 1  
RN1 80 0 16.45E-3  
* TAM / ADSC  
HN 81 0 VN1 35  
*
RN2 81 0 1  
* Copyright 1998 by Analog Devices  
*
*
* INTERNAL VOLTAGE REFERENCE  
*
VFIX 90 98 DC 1  
S1 90 91 (50,99) VSY_SWITCH  
VSN1 91 92 DC 0  
RSY 92 98 1E3  
EREF 98 0 POLY(2) (99,0) (50,0) 0 .5 .5  
GSY 99 50 POLY(1) (99,50) 0 3.7E-6  
*
* ADAPTIVE GAIN STAGE  
* AT Vsy>+4.2, AVol=45 V/mv  
* AT Vsy<+3.8, AVol=450 V/mv  
*
G1 98 30 POLY(2) (4,6) (11,12) 0 2.5E-5 2.5E-5  
VR1 30 31 DC 0  
H1 31 98 POLY(2) VR1 VSN1 0 5.45E6 0 0 49.05E9  
CF 45 30 10E-12  
D3 30 99 DX  
D4 50 30 DX  
* Refer to “README.DOC” file for License  
* Statement. Use of this model indicates your  
* acceptance of the terms and provisions in  
* the License Statement.  
*
* Node Assignments  
*
noninverting input  
*
|
|
|
|
|
|
1
inverting input  
*
|
|
|
|
|
2
positive supply  
*
|
|
|
|
negative supply  
*
|
|
|
output  
*
|
|
*
.SUBCKT AD8542  
99 50 45  
*
* INPUT STAGE  
*
M1 4 1 8 8 PIX L=0.6E-6 W=16E-6  
M2 6 7 8 8 PIX L=0.6E-6 W=16E-6  
*
M3 11 1 10 10 NIX L=0.6E-6 W=16E-6  
* OUTPUT STAGE  
M4 12 7 10 10 NIX L=0.6E-6 W=16E-6  
*
RC1 4 50 20E3  
M5 45 46 99 99 POX L=0.6E-6 W=375E-6  
M6 45 47 50 50 NOX L=0.6E-6 W=500E-6  
EG1 99 46 POLY(1) (98,30) 1.05 1  
EG2 47 50 POLY(1) (30,98) 1.04 1  
*
RC2 6 50 20E3  
RC3 99 11 20E3  
RC4 99 12 20E3  
C1 4 6 1.5E-12  
C2 11 12 1.5E-12  
I1 99 8 1E-5  
* MODELS  
*
I2 10 50 1E-5  
.MODEL POX PMOS (LEVEL=2,KP=20E-6,VTO=-  
+1,LAMBDA=0.067)  
V1 99 9 0.2  
V2 13 50 0.2  
D1 8 9 DX  
D2 13 10 DX  
.MODEL NOX NMOS (LEVEL=2,KP=20E-  
+6,VTO=1,LAMBDA=0.067)  
.MODEL PIX PMOS (LEVEL=2,KP=20E-6,VTO=-  
+0.7,LAMBDA=0.01,KF=1E-31)  
.MODEL NIX NMOS (LEVEL=2,KP=20E-  
+6,VTO=0.7,LAMBDA=0.01,KF=1E-31)  
.MODEL DX D(IS=1E-14)  
.MODEL VSY_SWITCH VSWITCH(ROFF=100E3,RON=1,VOFF=-  
+4.2,VON=-3.5)  
EOS 7 2 POLY(3) (22,98) (73,98) (81,0) 1E-3 1 1 1  
IOS 1 2 2.5E-12  
*
* CMRR 64dB, ZERO AT 20kHz  
*
ECM1 21 98 POLY(2) (1,98) (2,98) 0 .5 .5  
RCM1 21 22 79.6E3  
.ENDS AD8542  
CCM1 21 22 100E-12  
RCM2 22 98 50  
*
* PSRR=90dB, ZERO AT 200Hz  
*
RPS1 70 0 1E6  
RPS2 71 0 1E6  
CPS1 99 70 1E-5  
CPS2 50 71 1E-5  
EPSY 98 72 POLY(2) (70,0) (0,71) 0 1 1  
RPS3 72 73 1.59E6  
CPS3 72 73 500E-12  
RPS4 73 98 25  
*
* VOLTAGE NOISE REFERENCE OF 35nV/rt(Hz)  
*
REV. D  
–11–  
AD8541/AD8542/AD8544  
OUTLINE DIMENSIONS  
8-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
(RU-8)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
5.10  
5.00  
4.90  
8
5
4
14  
8
7
4.50  
4.40  
4.30  
4.50  
4.40  
4.30  
6.40 BSC  
6.40  
BSC  
1
1
PIN 1  
PIN 1  
0.65  
BSC  
1.05  
1.00  
0.80  
0.65  
BSC  
0.15  
0.05  
0.20  
0.09  
1.20  
1.20  
MAX  
0.75  
0.60  
0.45  
MAX  
8؇  
0؇  
8؇  
0؇  
0.15  
0.05  
0.30  
0.19  
0.75  
0.60  
0.45  
0.30  
0.19  
SEATING  
PLANE  
0.20  
0.09  
COPLANARITY  
0.10  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AA  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
8-Lead Standard Small Outline Package [SOIC]  
14-Lead Standard Small Outline Package [SOIC]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Narrow Body  
(R-14)  
Dimensions shown in millimeters and (inches)  
5.00 (0.1968)  
4.80 (0.1890)  
8.75 (0.3445)  
8.55 (0.3366)  
8
1
5
4
14  
1
8
7
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
0.50 (0.0196)  
0.25 (0.0099)  
1.75 (0.0689)  
1.35 (0.0531)  
1.27 (0.0500)  
BSC  
؋
 45؇  
؋
 45؇  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0039)  
0.25 (0.0098)  
0.10 (0.0040)  
8؇  
0؇  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
8؇  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
0؇ 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
REV. D  
–12–  
AD8541/AD8542/AD8544  
OUTLINE DIMENSIONS  
8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
5-Lead Small Outline Transistor Package [SOT-23]  
(RT-5)  
Dimensions shown in millimeters  
Dimensions shown in millimeters  
3.00  
BSC  
2.90 BSC  
8
5
4
5
1
4
3
4.90  
BSC  
3.00  
BSC  
2.80 BSC  
1.60 BSC  
1
2
PIN 1  
PIN 1  
0.95 BSC  
0.65 BSC  
1.90  
BSC  
1.30  
1.15  
0.90  
1.10 MAX  
0.15  
0.00  
0.80  
0.60  
0.40  
8؇  
0؇  
1.45 MAX  
0.22  
0.08  
0.38  
0.22  
0.23  
0.08  
10؇  
5؇  
0؇  
SEATING  
PLANE  
COPLANARITY  
0.10  
0.15 MAX  
0.60  
0.45  
0.30  
0.50  
0.30  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
COMPLIANT TO JEDEC STANDARDS MO-178AA  
5-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-5)  
Dimensions shown in millimeters  
2.00 BSC  
5
1
4
3
1.25 BSC  
PIN 1  
2.10 BSC  
2
0.65 BSC  
1.10 MAX  
1.00  
0.90  
0.70  
0.22  
0.08  
0.46  
0.36  
0.26  
0.30  
0.15  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203AA  
REV. D  
–13–  
AD8541/AD8542/AD8544  
Revision History  
Location  
Page  
8/04—Data Sheet changed from REV. C to REV. D.  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Change to Figure 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
1/03—Data Sheet changed from REV. B to REV. C.  
Updated format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal  
Change to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Changes to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Changes to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
REV. D  
–14–  
–15–  
–16–  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY