AD8512ARMZ-REEL [ADI]

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers; 精密,极低噪声,低输入偏置电流,宽带宽JFET运算放大器
AD8512ARMZ-REEL
型号: AD8512ARMZ-REEL
厂家: ADI    ADI
描述:

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
精密,极低噪声,低输入偏置电流,宽带宽JFET运算放大器

运算放大器 放大器电路 光电二极管
文件: 总20页 (文件大小:682K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision, Very Low Noise, Low Input Bias Current,  
Wide Bandwidth JFET Operational Amplifiers  
AD8510/AD8512/AD8513  
FEATURES  
PIN CONFIGURATIONS  
Fast settling time: 500 ns to 0.1%  
Low offset voltage: 400 µV max  
Low TCVOS: 1 µV/°C typ  
Low input bias current: 25 pA typ  
Dual-supply operation: 5 V to 15 V  
Low noise: 8 nV/√Hz  
8
1
OUT A  
–IN A  
+IN A  
V–  
V+  
OUT A  
–IN A  
+IN A  
V–  
V+  
AD8512  
TOP VIEW  
AD8512  
OUT B  
–IN B  
+IN B  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
5
4
Figure 1. 8-Lead MSOP (RM Suffix)  
Figure 2. 8-Lead SOIC (R Suffix)  
Low distortion: 0.0005%  
No phase reversal  
Unity gain stable  
NC  
–IN  
+IN  
V–  
NC  
V+  
NC  
–IN  
+IN  
V–  
NC  
V+  
AD8510  
TOP VIEW  
AD8510  
TOP VIEW  
OUT  
NC  
OUT  
NC  
(Not to Scale)  
(Not to Scale)  
APPLICATIONS  
Instrumentation  
Multipole filters  
Precision current measurement  
Photodiode amplifiers  
Sensors  
Figure 3. 8-Lead MSOP (RM Suffix)  
Figure 4. 8-Lead SOIC (R Suffix)  
1
14  
OUT A  
–IN A  
+IN A  
V+  
1
2
3
4
5
6
7
14 OUT D  
13 –IN D  
12 +IN D  
11 V–  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
V–  
AD8513  
AD8513  
TOP VIEW  
TOP VIEW  
(Not to Scale)  
(Not to Scale)  
+IN B  
–IN B  
OUT B  
10 +IN C  
+IN B  
–IN B  
OUT B  
+IN C  
–IN C  
OUT C  
Audio  
9
8
–IN C  
OUT C  
8
7
Figure 5. 14-Lead SOIC (R Suffix)  
Figure 6. 14-Lead TSSOP (RU Suffix)  
GENERAL DESCRIPTION  
Fast slew rate and great stability with capacitive loads make the  
AD8510/AD8512/AD8513 a perfect fit for high performance  
filters. Low input bias currents, low offset, and low noise result  
in a wide dynamic range of photodiode amplifier circuits. Low  
noise and distortion, high output current, and excellent speed  
make the AD8510/AD8512/AD8513 a great choice for audio  
applications.  
The AD8510, AD8512, AD8513 are single-, dual-, and quad-  
precision JFET amplifiers that feature low offset voltage, input  
bias current, input voltage noise, and input current noise.  
The combination of low offsets, low noise, and very low input  
bias currents makes these amplifiers especially suitable for high  
impedance sensor amplification and precise current measure-  
ments using shunts. The combination of dc precision, low noise,  
and fast settling time results in superior accuracy in medical  
instruments, electronic measurement, and automated test  
equipment. Unlike many competitive amplifiers, the AD8510/  
AD8512/AD8513 maintain their fast settling performance even  
with substantial capacitive loads. Unlike many older JFET  
amplifiers, the AD8510/AD8512/ AD8513 do not suffer from  
output phase reversal when input voltages exceed the maximum  
common-mode voltage range.  
The AD8510/AD8512 are both available in 8-lead narrow SOIC  
and 8-lead MSOP packages. MSOP packaged parts are only  
available in tape and reel. The AD8513 is available in 14-lead  
SOIC and TSSOP packages.  
The AD8510/AD8512/AD8513 are specified over the –40°C to  
+125°C extended industrial temperature range.  
Rev. E  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
AD8510/AD8512/AD8513  
TABLE OF CONTENTS  
Specifications............................................................................................3  
Total Noise Including Source Resistors................................... 13  
Settling Time............................................................................... 14  
Overload Recovery Time .......................................................... 14  
Capacitive Load Drive ............................................................... 14  
Open-Loop Gain and Phase Response.................................... 15  
Precision Rectifiers..................................................................... 16  
I-V Conversion Applications .................................................... 17  
Outline Dimensions ..............................................................................19  
Ordering Guide .......................................................................... 20  
Electrical Characteristics............................................................. 4  
Absolute Maximum Ratings ..................................................................6  
ESD Caution.................................................................................. 6  
Typical Performance Characteristics....................................................7  
General Application Information........................................................13  
Input Overvoltage Protection ................................................... 13  
Output Phase Reversal............................................................... 13  
THD + Noise............................................................................... 13  
REVISION HISTORY  
6/04—Data Sheet Changed from Rev. D to Rev. E  
Changes to Format.............................................................Universal  
Changes to Specifications................................................................ 3  
Updated Outline Dimensions....................................................... 19  
3/03—Data Sheet Changed from Rev. A to Rev. B  
Updated Figure 5 ............................................................................ 11  
Updated Outline Dimensions....................................................... 15  
8/02—Data Sheet Changed from Rev. 0 to Rev. A  
10/03—Data Sheet Changed from Rev. C to Rev. D  
Added AD8510 Model.......................................................Universal  
Added Pin Configurations ...............................................................1  
Changes to Specifications.................................................................2  
Changes to Ordering Guide.............................................................4  
Changes to TPCs 2 and 3..................................................................5  
Added new TPCs 10 and 12.............................................................6  
Replaced TPC 20 ...............................................................................8  
Replaced TPC 27 ...............................................................................9  
Changes to General Application Information Section .............. 10  
Changes to Figure 5........................................................................ 11  
Changes to I-V Conversion Applications Section...................... 13  
Changes to Figures 13 and 14 ....................................................... 13  
Changes to Figure 17...................................................................... 14  
Added AD8513 Model ......................................................Universal  
Changes to Specifications................................................................ 3  
Added Figures 36 through 40........................................................ 10  
Added new Figures 55 and 57....................................................... 17  
Changes to Ordering Guide .......................................................... 20  
9/03—Data Sheet Changed from Rev. B to Rev. C  
Changes to Ordering Guide ........................................................... 4  
Updated Figure 2 ............................................................................ 10  
Changes to Input Overvoltage Protection section .................... 10  
Changes to Figures 10 and 11 ....................................................... 12  
Changes to Photodiode Circuits section ..................................... 13  
Changes to Figures 13 and 14 ....................................................... 13  
Deleted Precision Current Monitoring section .......................... 14  
Updated Outline Dimensions ...................................................... 15  
Rev. E | Page 2 of 20  
AD8510/AD8512/AD8513  
SPECIFICATIONS  
@ VS = 5 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Typ  
0.08  
0.1  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (B Grade)1  
0.4  
0.8  
0.9  
1.8  
75  
0.7  
7.5  
50  
mV  
mV  
mV  
mV  
pA  
nA  
nA  
pA  
nA  
nA  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Offset Voltage (A Grade)  
Input Bias Current  
VOS  
IB  
21  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
5
−40°C < TA < +85°C  
−40°C < TA < +125°C  
0.3  
0.5  
Input Capacitance  
Differential  
Common-Mode  
12.5  
11.5  
pF  
pF  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
Offset Voltage Drift (B Grade)1  
Offset Voltage Drift (A Grade)  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Voltage High  
Output Voltage Low  
Output Voltage High  
Output Voltage Low  
Output Current  
−2.0  
86  
65  
+2.5  
V
dB  
V/mV  
µV/°C  
µV/°C  
CMRR  
AVO  
∆VOS/∆T  
∆VOS/∆T  
VCM = −2.0 V to +2.5 V  
RL = 2 kΩ, VO = −3 V to +3 V  
100  
107  
0.9  
5
12  
1.7  
VOH  
VOL  
VOH  
VOL  
VOH  
VOL  
IOUT  
RL = 10 kΩ  
−40°C < TA < +125°C  
RL = 2 kΩ,  
−40°C < TA < +125°C  
RL = 600 Ω  
−40°C < TA < +125°C  
+4.1  
+3.9  
+3.7  
40  
+4.3  
−4.9  
+ 4.2  
−4.9  
+4.1  
−4.8  
54  
V
V
V
V
V
V
mA  
−4.7  
−4.5  
−4.2  
POWER SUPPLY  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
AD8510/AD8512/AD8513  
AD8510/AD8512  
PSRR  
ISY  
VS = 4.5 V to 18 V  
86  
130  
2.0  
dB  
VO = 0 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2.3  
2.5  
2.75  
mA  
mA  
mA  
AD8513  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
THD + Noise  
Phase Margin  
SR  
GBP  
tS  
THD + N  
ΦO  
RL = 2 kΩ  
20  
8
0.4  
0.0005  
44.5  
V/µs  
MHz  
µs  
To 0.1%, 0 V to 4 V Step, G = +1  
1 kHz, G = +1, RL = 2 kΩ  
%
Degrees  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
34  
12  
8.0  
7.6  
2.4  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
10  
Peak-to-Peak Voltage Noise  
en p-p  
0.1 Hz to 10 Hz Bandwidth  
5.2  
1 AD8510/AD8512 only.  
Rev. E | Page 3 of 20  
 
 
AD8510/AD8512/AD8513  
ELECTRICAL CHARACTERISTICS  
@ VS = 15 V, VCM = 0 V, TA = 25°C, unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage (B Grade)1  
VOS  
0.08  
0.4  
0.8  
mV  
mV  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
Offset Voltage (A Grade)  
Input Bias Current  
VOS  
IB  
0.1  
25  
1.0  
1.8  
80  
0.7  
10  
75  
0.3  
0.5  
mV  
mV  
pA  
nA  
nA  
pA  
nA  
nA  
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Offset Current  
IOS  
6
−40°C < TA < +85°C  
−40°C < TA < +125°C  
Input Capacitance  
Differential  
Common-Mode  
12.5  
11.5  
pF  
pF  
Input Voltage Range  
Common-Mode Rejection Ratio  
Large Signal Voltage Gain  
−13.5  
86  
115  
+13.0  
V
CMRR  
AVO  
VCM = −12.5 V to +12.5 V  
VO = −13.5 V to +13.5 V  
RL = 2 kΩ, VCM = 0 V  
108  
196  
dB  
V/mV  
Offset Voltage Drift (B Grade)1  
Offset Voltage Drift (A Grade)  
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Output Voltage High  
∆VOS/∆T  
∆VOS/∆T  
1.0  
1.7  
5
12  
µV/°C  
µV/°C  
VOH  
VOL  
VOH  
VOL  
VOH  
RL = 10 kΩ  
−40°C < TA < +125°C  
RL = 2 kΩ  
−40°C < TA < +125°C  
RL = 600 Ω, TA = 25°C  
−40°C < TA < +125°C  
RL = 600 Ω, TA = 25°C  
−40°C < TA < +125°C  
+14.0  
+13.8  
+14.2  
−14.9  
+14.1  
–14.8  
+13.9  
V
V
V
V
V
V
V
V
−14.6  
−14.5  
Output Voltage Low  
Output Voltage High  
+13.5  
11.4  
Output Voltage Low  
VOL  
IOUT  
−14.3  
70  
−13.8  
−12.1  
Output Current  
POWER SUPPLY  
mA  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
AD8510/AD8512/AD8513  
AD8510/AD8512  
PSRR  
ISY  
VS = 4.5 V to 18 V  
86  
dB  
VO = 0 V  
−40°C < TA < +125°C  
−40°C < TA < +125°C  
2.2  
2.5  
2.6  
3.0  
mA  
mA  
mA  
AD8513  
DYNAMIC PERFORMANCE  
Slew Rate  
Gain Bandwidth Product  
Settling Time  
SR  
GBP  
tS  
RL = 2 kΩ  
20  
8
0.5  
0.9  
0.0005  
52  
V/µs  
MHz  
µs  
µs  
%
To 0.1%, 0 V to 10 V Step, G = +1  
To 0.01%, 0 V to 10 V Step, G = +1  
1 kHz, G = +1, RL = 2 kΩ  
THD + Noise  
Phase Margin  
THD + N  
ΦO  
Degrees  
Rev. E | Page 4 of 20  
 
AD8510/AD8512/AD8513  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
NOISE PERFORMANCE  
Voltage Noise Density  
en  
f = 10 Hz  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
34  
12  
8.0  
7.6  
2.4  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
µV p-p  
10  
Peak-to-Peak Voltage Noise  
en p-p  
0.1 Hz to 10 Hz Bandwidth  
5.2  
1 AD8510/AD8512 only.  
Rev. E | Page 5 of 20  
 
AD8510/AD8512/AD8513  
ABSOLUTE MAXIMUM RATINGS  
Table 3. AD8510/AD8512/AD8513 Stress Ratings1  
Table 4. Thermal Resistance  
Package Type  
8-Lead MSOP (RM)  
8-Lead SOIC (R)  
14-Lead SOIC (R)  
14-Lead TSSOP (RU)  
2
Parameter  
Rating  
18 V  
VS  
θJA  
θJC  
45  
43  
36  
35  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Supply Voltage  
Input Voltage  
210  
158  
120  
180  
Output Short-Circuit Duration to GND  
Observe Derating  
Curves  
Storage Temperature Range  
R, RM Packages  
Operating Temperature Range  
Junction Temperature Range  
R, RM Packages  
Lead Temperature Range  
(Soldering, 10 sec)  
Electrostatic Discharge (HBM)  
−65°C to +150°C  
−40°C to +125°C  
1 Stresses above those listed under Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional  
operation of the device at these or any other conditions above those listed in  
the operational sections of this specification is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device  
reliability.  
−65°C to +150°C  
300°C  
2 θJA is specified for worst-case conditions, i.e., θJA is specified for device  
soldered in circuit board for surface-mount packages.  
2000 V  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
this product features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are  
recommended to avoid performance degradation or loss of functionality.  
Rev. E | Page 6 of 20  
 
 
AD8510/AD8512/AD8513  
TYPICAL PERFORMANCE CHARACTERISTICS  
120  
100k  
10k  
V
= ±5V, ±15V  
V
= ±15V  
= 25°C  
SY  
SY  
T
A
100  
80  
1k  
60  
40  
20  
100  
10  
1
0
–0.5 –0.4 –0.3 –0.2 –0.1  
0
0.1 0.2 0.3 0.4 0.5  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
INPUT OFFSET VOLTAGE (mV)  
Figure 10. Input Bias Current vs. Temperature  
Figure 7. Input Offset Voltage Distribution  
30  
25  
20  
1000  
100  
10  
V
= ±15V  
SY  
B GRADE  
±15V  
15  
10  
±5V  
1
5
0
0.1  
0
1
2
3
4
5
6
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
T V  
C
(µV/°C)  
TEMPERATURE (°C)  
OS  
Figure 8. AD8510/AD8512 TCVOS Distribution  
Figure 11. Input Offset Current vs. Temperature  
30  
25  
20  
40  
35  
30  
25  
20  
15  
10  
5
V
= ±15V  
SY  
T
A
= 25°C  
A GRADE  
15  
10  
5
0
0
8
13  
18  
23  
28  
30  
0
1
2
3
4
5
6
T V  
C
(µV/°C)  
OS  
SUPPLY VOLTAGE (V+ – V– )  
Figure 9. AD8510/AD8512 TCVOS Distribution  
Figure 12. Input Bias Current vs. Supply Voltage  
Rev. E | Page 7 of 20  
 
AD8510/AD8512/AD8513  
2.8  
2.0  
T
A
= 25°C  
T
A
= 25°C  
1.9  
1.8  
1.7  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
1.6  
1.4  
1.2  
1.0  
8
13  
18  
23  
28  
30  
8
13  
18  
23  
28  
33  
SUPPLY VOLTAGE (V+ – V–)  
SUPPLY VOLTAGE (V+ – V–)  
Figure 16. AD8510 Supply Current vs. Supply Voltage  
Figure 13. AD8512 Supply Current per Amplifier vs. Supply Voltage  
70  
60  
16  
315  
V
V
= ±15V  
OL  
SY  
V
R
C
= ±15V  
= 2.5kΩ  
SY  
270  
225  
180  
14  
12  
10  
8
L
= 20pF  
SCOPE  
V
OH  
50  
40  
30  
20  
10  
φ
M
= 52 DEGREES  
135  
90  
45  
6
V
V
OL  
OH  
V
= ±5V  
SY  
0
0
–10  
–20  
–30  
4
–45  
2
0
–90  
–135  
50M  
0
10  
20  
30  
40  
50  
60  
70  
80  
10k  
100k  
1M  
FREQUENCY (Hz)  
10M  
LOAD CURRENT (mA)  
Figure 14. AD8510/AD8512 Output Voltage vs. Load Current  
Figure 17. Open-Loop Gain and Phase vs. Frequency  
2.50  
2.50  
2.25  
2.00  
1.75  
1.50  
±15V  
2.25  
±5V  
2.00  
±15V  
1.75  
±5V  
1.50  
1.25  
1.00  
1.25  
1.00  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
–40 –25 –10  
5
20  
35 50  
65  
80  
95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. AD8512 Supply Current per Amplifier vs. Temperature  
Figure 18. AD8510 Supply Current vs. Temperature  
Rev. E | Page 8 of 20  
AD8510/AD8512/AD8513  
300  
270  
240  
210  
180  
150  
120  
90  
70  
60  
V
V
= ±15V  
= 50mV  
SY  
IN  
V
= ±15V, ±5V  
SY  
50  
40  
30  
20  
10  
A
= 100  
= 10  
= 1  
V
A
= 1  
V
A
V
A
= 100  
V
0
–10  
–20  
–30  
A
V
60  
A
= 10  
V
30  
0
100  
1k  
10k  
1M  
FREQUENCY (Hz)  
10M  
100M  
100k  
1k  
10k  
50M  
100k  
FREQUENCY (Hz)  
1M  
10M  
Figure 19. Closed-Loop Gain vs. Frequency  
Figure 22. Output Impedance vs. Frequency  
120  
100  
80  
60  
40  
20  
0
32  
28  
24  
20  
16  
12  
V
= ±5V TO ±15V  
SY  
V
= ±15V  
SY  
8
4
0
100  
1k  
10k  
100k  
1M  
10M  
100M  
0
5.0  
7.5 10.0 12.5 15.0 17.5 20.0 22.5  
FREQUENCY (kHz)  
2.5  
SY  
25.0  
FREQUENCY (Hz)  
Figure 20. CMRR vs. Frequency  
Figure 23. Voltage Noise Density  
120  
100  
V
= ±15V  
V
= ±5V, ±15V  
SY  
80  
60  
–PSRR  
+PSRR  
40  
20  
0
–20  
100  
1k  
10k  
100k  
1M  
10M  
100M  
TIME (1s/DIV)  
FREQUENCY (Hz)  
Figure 24. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 21. PSRR vs. Frequency  
Rev. E | Page 9 of 20  
AD8510/AD8512/AD8513  
280  
245  
210  
175  
140  
105  
90  
80  
70  
V
SY  
= ±5V TO ±15V  
V
R
= ±15V  
SY  
= 2k  
L
60  
50  
40  
30  
+OS  
–OS  
70  
35  
0
20  
10  
0
0
10  
20  
30  
40  
FREQUENCY (Hz)  
50  
60  
70  
80  
90  
100  
10  
10k  
1
100  
CAPACITANCE (pF)  
1k  
Figure 28. Small Signal Overshoot vs. Load Capacitance  
Figure 25. Voltage Noise Density vs. Frequency  
70  
60  
50  
40  
30  
20  
10  
0
315  
270  
V
= ±5V  
= 2.5kΩ  
V
R
C
A
= ±15V  
SY  
SY  
R
C
φ
= 2k  
= 100pF  
= 1  
L
L
L
V
= 20pF  
SCOPE  
= 44.5 DEGREES  
M
225  
180  
135  
90  
45  
0
–10  
–45  
–20  
–30  
–90  
–135  
10k  
100k  
1M  
10M  
50M  
TIME (1µs/DIV)  
FREQUENCY (Hz)  
Figure 26. Large Signal Transient Response  
Figure 29. Open-Loop Gain and Phase vs. Frequency  
120  
100  
80  
60  
40  
20  
0
V
R
C
A
= ±15V  
SY  
V
= ±5V  
= 2kΩ  
= 100pF  
= 1  
SY  
L
L
V
100k  
10k  
FREQUENCY (Hz)  
100  
1k  
1M  
10M  
100M  
TIME (100ns/DIV)  
Figure 27. Small Signal Transient Response  
Figure 30. CMRR vs. Frequency  
Rev. E | Page 10 of 20  
AD8510/AD8512/AD8513  
300  
270  
240  
210  
180  
150  
120  
V
V
= ±5V  
= 50mV  
SY  
IN  
V
= ±5V  
= 2k  
= 100pF  
= 1  
SY  
R
C
A
L
L
V
A
= 1  
V
A
V
= 100  
90  
60  
30  
0
A
= 10  
V
100  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
TIME (100ns/DIV)  
Figure 31. Output Impedance vs. Frequency  
Figure 34. Small Signal Transient Response  
100  
90  
V
SY  
= ±5V  
V
R
= ±5V  
SY  
= 2k  
L
80  
70  
60  
50  
40  
+OS  
–OS  
30  
20  
10  
0
TIME (1s/DIV)  
1
10  
100  
CAPACITANCE (pF)  
1k  
10k  
Figure 32. 0.1 Hz to 10 Hz Input Voltage Noise  
Figure 35. Small Signal Overshoot vs. Load Capacitance  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= ±5V  
= 2kΩ  
= 100pF  
= 1  
SY  
V
= ±15V  
S
R
C
A
L
L
V
0
TIME (1µs/DIV)  
0
6
1
2
3
4
5
T
V
(µV/°C)  
OS  
C
Figure 33. Large Signal Transient Response  
Figure 36. AD8513 TCVOS Distribution  
Rev. E | Page 11 of 20  
AD8510/AD8512/AD8513  
120  
100  
80  
16  
14  
12  
10  
8
V
= ±5V  
S
V
V
V
= ±15V  
SY  
OL  
OH  
60  
6
40  
V
= ±5V  
SY  
V
V
OL  
4
OH  
20  
2
0
0
0
1
6
0
10  
20  
30  
40  
50  
60  
70  
80  
2
3
4
5
T
V
(µV/°C)  
LOAD CURRENT (mA)  
C
OS  
Figure 39. AD8513 Output Voltage vs. Load Current  
Figure 37. AD8513 TCVOS Distribution  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
T
= 25°C  
A
±15V  
±5V  
1.5  
8
18  
23  
28  
33  
13  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
SUPPLY VOLTAGE (V+ – V–)  
TEMPERATURE (°C)  
Figure 40. AD8513 Supply Current vs. Temperature  
Figure 38. AD8513 Supply Current vs. Supply Voltage  
Rev. E | Page 12 of 20  
AD8510/AD8512/AD8513  
GENERAL APPLICATION INFORMATION  
0.01  
INPUT OVERVOLTAGE PROTECTION  
V
R
= ±5V  
SY  
= 100k  
L
The AD8510/AD8512/AD8513 have internal protective  
circuitry that allows voltages as high as 0.7 V beyond the  
supplies to be applied at the input of either terminal without  
causing damage. For higher input voltages, a series resistor is  
necessary to limit the input current. The resistor value can be  
determined from the formula  
BW = 22kHz  
0.001  
VIN VS  
5mA  
RS  
With a very low offset current of <0.5 nA up to 125°C, higher  
resistor values can be used in series with the inputs. A 5 kΩ  
resistor will protect the inputs to voltages as high as 25 V  
beyond the supplies and will add less than 10 µV to the offset.  
0.0001  
20  
100  
1k  
20k  
FREQUENCY (Hz)  
Figure 42. THD + N vs. Frequency  
TOTAL NOISE INCLUDING SOURCE RESISTORS  
OUTPUT PHASE REVERSAL  
The low input current noise and input bias current of the  
AD8510/AD8512/AD8513 make them the ideal amplifiers for  
circuits with substantial input source resistance. Input offset  
voltage increases by less than 15 nV per 500 Ω of source  
resistance at room temperature. The total noise density of the  
circuit is  
Phase reversal is a change of polarity in the transfer function of  
the amplifier. This can occur when the voltage applied at the  
input of an amplifier exceeds the maximum common-mode  
voltage.  
Phase reversal can cause permanent damage to the device and  
may result in system lockups. The AD8510/AD8512/AD8513 do  
not exhibit phase reversal when input voltages are beyond the  
supplies.  
2
2
enTOTAL  
where:  
=
en  
+
(
in RS  
)
+ 4kTRS  
V
= ±5V  
SY  
en is the input voltage noise density of the parts.  
in is the input current noise density of the parts.  
RS is the source resistance at the noninverting terminal.  
k is Boltzman’s constant (1.38 × 10–23 J/K).  
A
V
R
L
= 1  
= 10k  
V
OUT  
T is the ambient temperature in Kelvin (T = 273 + °C).  
For RS < 3.9 kΩ, en dominates and enTOTAL en.  
V
IN  
The current noise of the AD8510/AD8512/AD8513 is so low  
that its total density does not become a significant term unless  
RS is greater than 165 MΩ, an impractical value for most  
applications.  
The total equivalent rms noise over a specific bandwidth is  
expressed as  
TIME (20  
µ
s/DIV)  
Figure 41. No Phase Reversal  
enTOTAL = enTOTAL BW  
THD + NOISE  
The AD8510/AD8512/AD8513 have low total harmonic distor-  
tion and excellent gain linearity, making these amplifiers a great  
choice for precision circuits with high closed-loop gain, and for  
audio application circuits. Figure 42 shows that the AD8510/  
AD8512/AD8513 have approximately 0.0005% of total distor-  
tion when configured in positive unity gain (the worst case) and  
driving a 100 kΩ load.  
where BW is the bandwidth in Hertz.  
Note that the above analysis is valid for frequencies larger than  
150 Hz and assumes flat noise above 10 kHz. For lower frequen-  
cies, flicker noise (1/f) must be considered.  
Rev. E | Page 13 of 20  
 
 
AD8510/AD8512/AD8513  
SETTLING TIME  
V
A
R
= ±15V  
= –100  
= 10k  
SY  
V
L
Settling time is the time it takes the output of the amplifier to  
reach and remain within a percentage of its final value after a  
pulse has been applied at the input. The AD8510/AD8512/  
AD8513 settle to within 0.01% in less than 900 ns with a step of  
0 V to 10 V in unity gain. This makes the each of the parts an  
excellent choice as a buffer at the output of DACs whose settling  
time is typically less than 1 µs.  
+15V  
0V  
0V  
–200mV  
In addition to their fast settling time and fast slew rate, the  
AD8510/AD8512/AD8513s low offset voltage drift and input  
offset current maintain full accuracy of 12-bit converters over  
the entire operating temperature range.  
TIME (2µs/DIV)  
Figure 44. Negative Overload Recovery  
OVERLOAD RECOVERY TIME  
CAPACITIVE LOAD DRIVE  
Overload recovery, also known as overdrive recovery, is the time  
it takes the output of an amplifier to recover from a saturated  
condition to its linear region. This recovery time is particularly  
important in applications where the amplifier must amplify  
small signals in the presence of large transient voltages.  
The AD8510/AD8512/AD8513 are unconditionally stable at all  
gains in inverting and noninverting configurations. They are  
capable of driving up to 1000 pF of capacitive loads without  
oscillation in unity gain, the worst-case configuration.  
However, as with most amplifiers, driving larger capacitive loads  
in a unity gain configuration may cause excessive overshoot and  
ringing or even oscillation. A simple snubber network reduces  
the amount of overshoot and ringing significantly. The advan-  
tage of this configuration is that the output swing of the ampli-  
fier is not reduced, because RS is outside the feedback loop.  
Figure 43 shows the positive overload recovery of the  
AD8510/AD8512/AD8513. The output recovers in  
approximately 200 ns from a saturated condition.  
V
V
A
R
= ±15V  
= 200mV  
= –100  
SY  
IN  
V
L
0V  
= 10kΩ  
V+  
–15V  
7
200mV  
0V  
6
AD8510  
V
OUT  
4
200mV  
R
S
C
S
C
L
V–  
TIME (2µs/DIV)  
Figure 45. Snubber Network Configuration  
Figure 43. Positive Overload Recovery  
Figure 46 shows a scope photograph of the output of the  
AD8510/AD8512/AD8513 in response to a 400 mV pulse. The  
circuit is configured in positive unity gain (worst-case) with a  
load experience of 500 pF.  
The negative overdrive recovery time shown in Figure 44 is less  
than 200 ns.  
In addition to the fast recovery time, the AD8510/AD8512/  
AD8513 show excellent symmetry of the positive and negative  
recovery times. This is an important feature for transient signal  
rectification, because the output signal is kept equally undis-  
torted throughout any given period.  
Rev. E | Page 14 of 20  
 
 
 
AD8510/AD8512/AD8513  
OPEN-LOOP GAIN AND PHASE RESPONSE  
V
C
R
= ±15V  
= 500pF  
=10k  
SY  
L
L
In addition to their impressive low noise, low offset voltage, and  
offset current, the AD8510/AD8512/AD8513 have excellent  
loop gain and phase response even when driving large resistive  
and capacitive loads. They were compared to the OPA2132  
under the same conditions. With a 2.5 kΩ load at the output, the  
AD8510/AD8512/AD8513 have more than 8 MHz of band-  
width and a phase margin of more than 52°.  
The OPA2132, on the other hand, has only 4.5 MHz of band-  
width and 28° of phase margin under the same test conditions.  
Even with a 1 nF capacitive load in parallel with the 2 kΩ load  
at the output, the AD8510/AD8512/AD8513 show much better  
response than the OPA2132, whose phase margin is degraded to  
less than 0, indicating oscillation.  
TIME (1µs/DIV)  
Figure 46. Capacitive Load Drive without Snubber  
When the snubber circuit is used, the overshoot is reduced from  
55% to less than 3% with the same load capacitance. Ringing is  
virtually eliminated, as shown in Figure 47.  
70  
60  
315  
270  
225  
190  
V
R
C
= ±15V  
SY  
= 2.5k  
L
L
= 0  
50  
40  
30  
20  
10  
V
= ±15V  
=10kΩ  
= 500pF  
=100Ω  
=1nF  
SY  
R
L
C
L
R
S
C
S
135  
90  
45  
0
0
–10  
–20  
–30  
–45  
–90  
–135  
50M  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 48. Frequency Response of the AD8510/AD8512/AD8513  
TIME (1µs/DIV)  
70  
315  
270  
225  
190  
V
R
C
= ±15V  
SY  
60  
= 2.5k  
= 0  
L
L
Figure 47. Capacitive Load with Snubber Network  
50  
40  
30  
20  
10  
Optimum values for RS and CS depend on the load capacitance  
and input stray capacitance and are determined empirically.  
Table 5 shows a few values that can be used as starting points.  
135  
90  
45  
Table 5. Optimum Values for Capacitive Loads  
0
0
–10  
–20  
–30  
CLOAD  
500 pF  
2 nF  
RS (Ω)  
100  
70  
CS  
–45  
1 nF  
100 pF  
300 pF  
–90  
–135  
50M  
5 nF  
60  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 49. Frequency Response of the OPA2132  
Rev. E | Page 15 of 20  
 
 
 
AD8510/AD8512/AD8513  
PRECISION RECTIFIERS  
Rectifying circuits are used in a multitude of applications. One  
of the most popular uses is in the design of regulated power  
supplies, where a rectifier circuit is used to convert an input  
sinusoid to a unipolar output voltage. There are some potential  
problems for amplifiers used in this manner.  
When the input voltage (VIN) is negative, the output is zero. The  
magnitude of VIN is doubled at the inputs of the op amp. This  
voltage can exceed the power supply voltage, which would dam-  
age some amplifiers permanently. The op amp must come out of  
saturation when VIN is negative. This delays the output signal  
because the amplifier requires time to enter its linear region.  
TIME (1ms/DIV)  
The AD8510/AD8512/AD8513 have a very fast overdrive  
recovery time, which makes them great choices for the  
rectification of transient signals. The symmetry of the positive  
and negative recovery times is also important in keeping the  
output signal undistorted.  
Figure 51. Half-Wave Rectifier Signal (Out A)  
Figure 50 shows the test circuit of the rectifier. The first stage of  
the circuit is a half-wave rectifier. When the sine wave applied at  
the input is positive, the output follows the input response.  
During the negative cycle of the input, the output tries to swing  
negative to follow the input, but the power supply restrains it to  
zero. In a similar fashion, the second stage is a follower during  
the positive cycle of the sine wave and an inverter during the  
negative cycle.  
R2  
10k  
R3  
10kΩ  
TIME (1ms/DIV)  
Figure 52. Full-Wave Rectifier Signal (Out B)  
5V  
8
V
6
5
IN  
3V p-p  
4
2/2  
7
3
2
AD8512  
1/2  
OUT B  
(HALF WAVE)  
R1  
1kΩ  
8
1
AD8512  
4
5V  
OUT A  
(HALF WAVE)  
Figure 50. Half-Wave and Full-Wave Rectifier  
Rev. E | Page 16 of 20  
 
 
AD8510/AD8512/AD8513  
I-V CONVERSION APPLICATIONS  
Photodiode Circuits  
includes external parasitic capacitance. Ct creates a pole in the  
frequency response, which may lead to an unstable system. To  
ensure stability and optimize the bandwidth of the signal, a  
capacitor is placed in the feedback loop of the circuit shown in  
Figure 53. It creates a zero and yields a bandwidth whose corner  
frequency is 1/(2π(R2Cf)).  
Common applications for I-V conversion include photodiode  
circuits, where the amplifier is used to convert a current emitted  
by a diode placed at the positive input terminal into an output  
voltage.  
The AD8510/AD8512/AD8513’s low input bias current, wide  
bandwidth, and low noise make them each an excellent choice  
for various photodiode applications, including fax machines,  
fiber optic controls, motion sensors, and bar code readers.  
The value of R2 can be determined by the ratio V/ID, where V is  
the desired output voltage of the op amp and ID is the diode  
current. For example, if ID is 100 µA and a 10 V output voltage is  
desired, R2 should be 100 kΩ. Rd is a junction resistance that  
drops typically by a factor of 2 for every 10°C increase in  
temperature. A typical value for Rd is 1000 MΩ. Since Rd >> R2,  
the circuit behavior is not impacted by the effect of the junction  
resistance. The maximum signal bandwidth is  
The circuit shown in Figure 53 uses a silicon diode with zero  
bias voltage. This is known as a Photovoltaic Mode; this  
configuration limits the overall noise and is suitable for  
instrumentation applications.  
Cf  
ft  
R2  
fMAX  
=
2πR2Ct  
VEE  
where ft is the unity gain frequency of the amplifier.  
4
Using the parameters above, Cf ≈ 1 pF, which yields a signal  
2
bandwidth of about 2.6 MHz.  
6
AD8510  
3
Rd  
Ct  
7
Ct  
2πR2 ft  
Cf =  
VCC  
where ft is the unity gain frequency of the op amp, achieves a  
phase margin, Φm, of approximately 45°.  
Figure 53. Equivalent Preamplifier Photodiode Circuit  
A larger signal bandwidth can be attained at the expense of  
additional output noise. The total input capacitance (Ct)  
consists of the sum of the diode capacitance (typically 3 pF to  
4 pF) and the amplifiers input capacitance (12 pF), which  
A higher phase margin can be obtained by increasing the value  
of Cf. Setting Cf to twice the previous value yields approximately  
Φm = 65° and a maximally flat frequency response, but reduces  
the maximum signal bandwidth by 50%.  
Rev. E | Page 17 of 20  
 
 
AD8510/AD8512/AD8513  
Signal Transmission Applications  
One popular signal transmission method uses pulse-width  
modulation. High data rates may require a fast comparator  
rather than an op amp. However, the need for sharp and  
undistorted signals may favor using a linear amplifier.  
The AD8510/AD8512/AD8513 make excellent voltage  
comparators. In addition to a high slew rate, the AD8510/  
AD8512/AD8513 have a very fast saturation recovery time. In  
the absence of feedback, the amplifiers are in open-loop mode  
(very high gain). In this mode of operation, they spend much of  
their time in saturation.  
TIME (2ms/DIV)  
The circuit in Figure 54 compares two signals of different  
frequencies, namely a 100 Hz sine wave and a 1 kHz triangular  
wave. Figure 56 shows a scope photograph of the output wave-  
form. A pull-up resistor (typically 5 kΩ) may be connected from  
the output to VCC if the output voltage needs to reach the posi-  
tive rail. The trade-off is that power consumption will be higher.  
Figure 56. Pulse-Width Modulation  
Crosstalk  
Crosstalk, also known as channel separation, is a measure of  
signal feedthrough from one channel to the other on the same  
IC. The AD8512/AD8513 have a channel separation better than  
−90 dB for frequencies up to 10 kHz, and better than −50 dB for  
frequencies up to 10 MHz. Figure 57 shows the typical channel  
separation behavior between amplifier A (driving amplifier),  
with respect to amplifiers B, C, and D.  
+15V  
3
7
6
V
OUT  
0
–20  
–40  
2
4
V1  
–15V  
V2  
CH-B  
–60  
–80  
Figure 54. Pulse-Width Modulator  
CH-C  
–100  
–120  
–140  
–160  
V
OUT  
CH-D  
20kΩ  
2.2kΩ  
+V  
S
2
3
6
5
8
1
7
5kΩ  
18V p-p  
100  
1k  
10k  
100k  
1M  
10M  
4
5kΩ  
FREQUENCY (Hz)  
V
IN  
–V  
S
V
OUT  
10V  
CROSSTALK = 20 LOG  
Figure 57. Channel Separation  
IN  
Figure 55. Crosstalk Test Circuit  
Rev. E | Page 18 of 20  
 
 
 
AD8510/AD8512/AD8513  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
5.10  
5.00  
4.90  
8
1
5
4
6.20 (0.2440)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1.27 (0.0500)  
BSC  
0.50 (0.0196)  
0.25 (0.0099)  
× 45°  
1.75 (0.0688)  
1.35 (0.0532)  
1
0.25 (0.0098)  
0.10 (0.0040)  
PIN 1  
8°  
0.51 (0.0201)  
0.31 (0.0122)  
0.65  
BSC  
1.05  
1.00  
0.80  
0° 1.27 (0.0500)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
0.40 (0.0157)  
0.20  
1.20  
MAX  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
COMPLIANT TO JEDEC STANDARDS MS-012AA  
0.15  
0.05  
0.30  
0.19  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AB-1  
Figure 58. 8-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-8)  
Figure 60. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters and (inches)  
Dimensions show in millimeters  
3.00  
BSC  
8.75 (0.3445)  
8.55 (0.3366)  
8
5
4
14  
1
8
7
4.90  
BSC  
3.00  
BSC  
4.00 (0.1575)  
3.80 (0.1496)  
6.20 (0.2441)  
5.80 (0.2283)  
PIN 1  
1.27 (0.0500)  
BSC  
0.50 (0.0197)  
0.25 (0.0098)  
1.75 (0.0689)  
1.35 (0.0531)  
× 45°  
0.65 BSC  
0.25 (0.0098)  
0.10 (0.0039)  
1.10 MAX  
8°  
0°  
0.15  
0.00  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
COPLANARITY  
0.10  
0.25 (0.0098)  
0.17 (0.0067)  
0.80  
0.60  
0.40  
8°  
0°  
0.38  
0.22  
0.23  
0.08  
COMPLIANT TO JEDEC STANDARDS MS-012AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN  
COPLANARITY  
0.10  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-187AA  
Figure 59. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Figure 61. 14-Lead Standard Small Outline Package [SOIC]  
Narrow Body (R-14)  
Dimensions shown in millimeters  
Dimensions shown in millimeters and (inches)  
Rev. E | Page 19 of 20  
 
AD8510/AD8512/AD8513  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead SOIC  
14-Lead TSSOP  
14-Lead TSSOP  
Package Option  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
Branding Information  
AD8510ARM-REEL  
AD8510ARM-R2  
AD8510AR  
AD8510AR-REEL  
AD8510AR-REEL7  
AD8510ARZ1  
AD8510ARZ-REEL1  
AD8510ARZ-REEL71  
AD8510BR  
AD8510BR-REEL  
AD8510BR-REEL7  
AD8512ARM-REEL  
AD8512ARM-R2  
AD8512ARMZ-REEL1  
AD8512ARMZ-R21  
AD8512AR  
AD8512AR-REEL  
AD8512AR-REEL7  
AD8512ARZ1  
AD8512ARZ-REEL1  
AD8512ARZ-REEL71  
AD8512BR  
AD8512BR-REEL  
AD8512BR-REEL7  
AD8513AR  
AD8513AR-REEL  
AD8513AR-REEL7  
AD8513ARU  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
B7A  
B7A  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-14  
R-14  
R-14  
RU-14  
RU-14  
B8A  
B8A  
B8A  
B8A  
AD8513ARU-REEL  
1 Z = Pb-free part.  
©
2004 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02729–0–6/04(E)  
Rev. E | Page 20 of 20  
 
 
 

相关型号:

AD8512ARZ

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8512ARZ

DUAL OP-AMP, 1800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8512ARZ-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8512ARZ-REEL

DUAL OP-AMP, 1800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8512ARZ-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8512ARZ-REEL7

DUAL OP-AMP, 1800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, ROHS COMPLIANT, MS-012AA, SOIC-8
ROCHESTER

AD8512B

Operational Amplifiers Selection Guide
ADI

AD8512BR

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8512BR

DUAL OP-AMP, 800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ROCHESTER

AD8512BR-REEL

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI

AD8512BR-REEL

DUAL OP-AMP, 800 uV OFFSET-MAX, 8 MHz BAND WIDTH, PDSO8, MS-012AA, SOIC-8
ROCHESTER

AD8512BR-REEL7

Precision, Very Low Noise, Low Input Bias Current, Wide Bandwidth JFET Operational Amplifiers
ADI