AD8063AR [ADI]

Low-Cost, 300 MHz Rail-to-Rail Amplifiers; 低成本, 300 MHz轨到轨放大器
AD8063AR
型号: AD8063AR
厂家: ADI    ADI
描述:

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
低成本, 300 MHz轨到轨放大器

放大器 光电二极管
文件: 总16页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low-Cost, 300 MHz  
Rail-to-Rail Amplifiers  
a
AD8061/AD8062/AD8063  
CONNECTION DIAGRAMS  
(Top Views)  
FEATURES  
Low Cost  
SOIC-8 (R)  
SOT-23-6 (RT)  
Single (AD8061), Dual (AD8062)  
Single with Disable (AD8063)  
Rail-to-Rail Output Swing  
6 mV VOS  
High Speed  
300 MHz, –3 dB Bandwidth (G = 1)  
800 V/s Slew Rate  
AD8061/  
AD8063  
AD8063  
DISABLE  
1
8
7
6
5
NC  
IN  
+IN  
V
+V  
S
1
2
3
6
5
4
OUT  
(AD8063 ONLY)  
2
3
+V  
S
V  
DISABLE  
S
V
OUT  
V  
4
NC  
IN  
+IN  
S
(Not to Scale)  
(Not to Scale)  
NC = NO CONNECT  
8.5 nV/Hz @ 5 V  
35 ns Settling Time to 0.1% with 1 V Step  
Operates on 2.7 V to 8 V Supplies  
Input Voltage Range = –0.2 V to +3.2 V with VS = 5  
Excellent Video Specs (RL = 150 , G = 2)  
Gain Flatness 0.1 dB to 30 MHz  
0.01% Differential Gain Error  
0.04Differential Phase Error  
35 ns Overload Recovery  
SOIC-8 (R) and SOIC (RM)  
SOT-23-5 (RT)  
AD8061  
AD8062  
V
5
4
+V  
S
1
2
3
V
+V  
V
1
2
3
4
8
7
6
5
OUT  
OUT1  
S
V  
IN1  
S
OUT2  
IN2  
+IN2  
+IN1  
IN  
+IN  
(Not to Scale)  
Low Power  
V  
S
6.8 mA/Amplifier Typical Supply Current  
AD8063 400 A when Disabled  
Small Packaging  
(Not to Scale)  
AD8061 Available in SOIC-8 and SOT-23-5  
AD8062 Available in SOIC-8 and SOIC  
AD8063 Available in SOIC-8 and SOT-23-6  
The AD8061, AD8062, and AD8063 offer a typical low power  
of 6.8 mA/amplifier, while being capable of delivering up to  
50 mA of load current. The AD8063 has a power-down disable  
feature that reduces the supply current to 400 µA. These features  
make the AD8063 ideal for portable and battery-powered  
applications where size and power are critical.  
APPLICATIONS  
Imaging  
Photodiode Preamp  
Professional Video and Cameras  
Hand Sets  
DVD/CD  
Base Stations  
Filters  
3
R
= 50ꢁ  
F
A-to-D Driver  
0
–3  
–6  
V
= 0.2V p-p  
O
R
= 1kꢁ  
R
= 0ꢁ  
L
F
PRODUCT DESCRIPTION  
V
= 1V  
BIAS  
The AD8061, AD8062, and AD8063 are rail-to-rail output volt-  
age feedback amplifiers offering ease of use and low cost. They  
have bandwidth and slew rate typically found in current feed-  
back amplifiers. All have a wide input common-mode voltage  
range and output voltage swing, making them easy to use on  
single supplies as low as 2.7 V.  
R
F
OUT  
IN  
R
L
50ꢁ  
–9  
V
BIAS  
Despite being low cost, the AD8061, AD8062, and AD8063  
provide excellent overall performance. For video applications  
their differential gain and phase errors are 0.01% and 0.04°  
into a 150 load, along with 0.1 dB flatness out to 30 MHz.  
Additionally, they offer wide bandwidth to 300 MHz along  
with 800 V/µs slew rate.  
–12  
1
10  
100  
1000  
FREQUENCY – MHz  
Figure 1. Small Signal Response, RF = 0 , 50 Ω  
REV. C  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© Analog Devices, Inc., 2001  
AD8061/AD8062/AD8063–SPECIFICATIONS(T = 25C, V = 5 V, R = 1 k, V = 1 V,  
unless otherwise noted)  
A
S
L
O
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
150  
60  
320  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
115  
280  
30  
650  
500  
35  
–3 dB Large Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
G = 1, VO = 0.2 V p-p  
G = 1, VO = 2 V Step, RL = 2 kΩ  
G = 2, VO = 2 V Step, RL = 2 kΩ  
G = 2, VO = 2 V Step  
500  
300  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = 2, AD8062  
f = 100 kHz  
f = 100 kHz  
G = 2, RL = 150 Ω  
G = 2, RL = 150 Ω  
–77  
–50  
–90  
8.5  
1.2  
0.01  
0.04  
28  
dBc  
dBc  
dBc  
nV/Hz  
pA/Hz  
%
Degree  
dBc  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
Differential Gain Error (NTSC)  
Differential Phase Error (NTSC)  
Third Order Intercept  
SFDR  
f = 10 MHz  
f = 5 MHz  
62  
dB  
DC PERFORMANCE  
Input Offset Voltage  
1
2
6
6
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
3.5  
3.5  
4
0.3  
70  
90  
9
9
4.5  
TMIN to TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
µA  
dB  
dB  
VO = 0.5 V to 4.5 V, RL = 150 Ω  
VO = 0.5 V to 4.5 V, RL = 2 kΩ  
68  
74  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
13  
1
MΩ  
pF  
V
–0.2 to +3.2  
80  
VCM = –0.2 V to +3.2 V  
62  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing—Load Resistance  
Is Terminated at Midsupply  
Output Current  
Capacitive Load Drive, VOUT = 0.8 V  
RL = 150 Ω  
0.3  
0.25  
25  
0.1 to 4.5  
0.1 to 4.9  
50  
25  
300  
4.75  
4.85  
V
V
mA  
pF  
pF  
RL = 2 kΩ  
VO = 0.5 V to 4.5 V  
30% Overshoot: G = 1, RS = 0 Ω  
G = 2, RS = 4.7 Ω  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off  
DISABLE Voltage—On  
40  
ns  
ns  
V
300  
2.8  
3.2  
V
POWER SUPPLY  
Operating Range  
2.7  
72  
5
6.8  
0.4  
8
9.5  
V
mA  
mA  
Quiescent Current per Amplifier  
Supply Current when Disabled  
(AD8063 Only)  
Power Supply Rejection Ratio  
VS = 2.7 V to 5 V  
80  
dB  
Specifications subject to change without notice.  
REV. C  
–2–  
AD8061/AD8062/AD8063  
(TA = 25C, VS = 3 V, RL = 1 k, VO = 1 V, unless otherwise noted)  
SPECIFICATIONS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
150  
60  
300  
115  
250  
30  
280  
230  
40  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
–3 dB Large Signal Bandwidth  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
G = 1, VO = 0.2 V p-p  
G = 1, VO = 1 V Step, RL = 2 kΩ  
G = 2, VO = 1.5 V Step, RL = 2 kΩ  
G = 2, VO = 1 V Step  
190  
180  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
fC = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
fC = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
f = 5 MHz, G = 2  
f = 100 kHz  
f = 100 kHz  
–60  
–44  
–90  
8.5  
1.2  
dBc  
dBc  
dBc  
nV/Hz  
pA/Hz  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
DC PERFORMANCE  
Input Offset Voltage  
1
2
6
6
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
3.5  
3.5  
4
0.3  
70  
90  
8.5  
8.5  
4.5  
TMIN to TMAX  
µA  
Input Offset Current  
Open-Loop Gain  
µA  
dB  
dB  
VO = 0.5 V to 2.5 V, RL = 150 Ω  
VO = 0.5 V to 2.5 V, RL = 2 kΩ  
66  
74  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
13  
1
MΩ  
pF  
V
–0.2 to +1.2  
80  
VCM = –0.2 V to +1.2 V  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 150 Ω  
0.3  
0.3  
0.1 to 2.87  
0.1 to 2.9  
25  
25  
300  
2.85  
2.90  
V
V
mA  
pF  
pF  
RL = 2 kΩ  
Output Current  
Capacitive Load Drive, VOUT = 0.8 V  
VO = 0.5 V to 2.5 V  
30% Overshoot, G = 1, RS = 0 ,  
G = 2, RS = 4.7 Ω  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off  
DISABLE Voltage—On  
40  
ns  
ns  
V
300  
0.8  
1.2  
V
POWER SUPPLY  
Operating Range  
2.7  
72  
3
9
V
mA  
mA  
Quiescent Current per Amplifier  
Supply Current when Disabled  
(AD8063 Only)  
6.8  
0.4  
Power Supply Rejection Ratio  
80  
dB  
Specifications subject to change without notice.  
REV. C  
–3–  
(TA = 25C, VS = 2.7 V, RL = 1 k, VO = 1 V,  
unless otherwise noted)  
AD8061/AD8062/AD8063–SPECIFICATIONS  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
–3 dB Small Signal Bandwidth  
G = 1, VO = 0.2 V p-p  
G = –1, +2, VO = 0.2 V p-p  
G = 1, VO = 1 V p-p  
G = 1, VO = 0.2 V p-p, VO DC = 1 V  
G = 1, VO = 0.7 V Step, RL = 2 kΩ  
G = 2, VO = 1.5 V Step, RL = 2 kΩ  
G = 2, VO = 1 V Step  
150  
60  
300  
115  
230  
30  
150  
130  
40  
MHz  
MHz  
MHz  
MHz  
V/µs  
V/µs  
ns  
Bandwidth for 0.1 dB Flatness  
Slew Rate  
110  
95  
Settling Time to 0.1%  
NOISE/DISTORTION PERFORMANCE  
Total Harmonic Distortion  
f
f
C = 5 MHz, VO = 2 V p-p, RL = 1 kΩ  
C = 20 MHz, VO = 2 V p-p, RL = 1 kΩ  
–60  
–44  
–90  
8.5  
1.2  
dBc  
dBc  
dBc  
nV/Hz  
pA/Hz  
Crosstalk, Output to Output  
Input Voltage Noise  
Input Current Noise  
f = 5 MHz, G = 2  
f = 100 kHz  
f = 100 kHz  
DC PERFORMANCE  
Input Offset Voltage  
1
2
6
6
mV  
mV  
µV/°C  
µA  
TMIN to TMAX  
Input Offset Voltage Drift  
Input Bias Current  
3.5  
3.5  
4
0.3  
70  
90  
TMIN to TMAX  
8.5  
4.5  
µA  
Input Offset Current  
Open-Loop Gain  
µA  
dB  
dB  
VO = 0.5 V to 2.2 V, RL = 150 Ω  
VO = 0.5 V to 2.2 V, RL = 2 kΩ  
63  
74  
INPUT CHARACTERISTICS  
Input Resistance  
Input Capacitance  
Input Common-Mode Voltage Range  
Common-Mode Rejection Ratio  
13  
1
MΩ  
pF  
V
–0.2 to +0.9  
80  
VCM = –0.2 V to +0.9 V  
dB  
OUTPUT CHARACTERISTICS  
Output Voltage Swing  
RL = 150 Ω  
0.3  
0.25  
0.1 to 2.55  
0.1 to 2.6  
25  
2.55  
2.6  
V
V
mA  
pF  
pF  
RL = 2 kΩ  
Output Current  
Capacitive Load Drive, VOUT = 0.8 V  
VO = 0.5 V to 2.2 V  
30% Overshoot: G = 1, RS = 0 ,  
G = 2, RS = 4.7 Ω  
25  
300  
POWER-DOWN DISABLE  
Turn-On Time  
Turn-Off Time  
DISABLE Voltage—Off  
DISABLE Voltage—On  
40  
ns  
ns  
V
300  
0.5  
0.9  
V
POWER SUPPLY  
Operating Range  
2.7  
8
V
Quiescent Current per Amplifier  
Supply Current when Disabled  
(AD8063 Only)  
6.8  
0.4  
8.5  
mA  
mA  
Power Supply Rejection Ratio  
80  
dB  
Specifications subject to change without notice.  
REV. C  
–4–  
AD8061/AD8062/AD8063  
MAXIMUM POWER DISSIPATION  
ABSOLUTE MAXIMUM RATINGS1  
The maximum power that can be safely dissipated by the AD806x  
is limited by the associated rise in junction temperature. The  
maximum safe junction temperature for plastic encapsulated  
devices is determined by the glass transition temperature of the  
plastic, approximately 150°C. Temporarily exceeding this limit  
may cause a shift in parametric performance due to a change  
in the stresses exerted on the die by the package. Exceeding a  
junction temperature of 175°C for an extended period can result  
in device failure. While the AD806x is internally short circuit  
protected, this may not be sufficient to guarantee that the  
maximum junction temperature (150°C) is not exceeded under  
all conditions.  
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V  
Internal Power Dissipation2  
Plastic Package (N) . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 W  
Small Outline Package (R) . . . . . . . . . . . . . . . . . . . . . 0.8 W  
SOT-23-5 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 W  
SOT-23-6 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 W  
µSOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.6 W  
Input Voltage (Common-Mode) (–VS – 0.2 V) to (+VS – 1.8 V)  
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . VS  
Output Short Circuit Duration  
. . . . . . . . . . . . . . . . . . . . . . Observe Power Derating Curves  
Storage Temperature Range R, RM, SOT-23-5,  
SOT-23-6 . . . . . . . . . . . . . . . . . . . . . . . . –65°C to +125°C  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Lead Temperature Range (Soldering 10 sec) . . . . . . . . 300°C  
To ensure proper operation, it is necessary to observe the  
maximum power derating curves.  
2.0  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2Specification is for device in free air:  
8-Lead SOIC Package: θJA = 160°C/W; θJC = 56°C/W  
5-Lead SOT-23-5 Package: θJA = 240°C/W; θJC = 92°C/W  
6-Lead SOT-23-6 Package: θJA = 230°C/W; θJC = 92°C/W  
8-Lead µSOIC Package: θJA = 200°C/W; θJC = 44°C/W.  
T
= 150C  
8-LEAD SOIC  
PACKAGE  
J
1.5  
1.0  
0.5  
0
SOIC  
SOT-23-5, -6  
50 40 30  
90  
20 10  
0
10 20 30 40 50 60 70 80  
AMBIENT TEMPERATURE C  
Figure 2. Plot of Maximum Power Dissipation vs.  
Temperature for AD8061/AD8062/AD8063  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Branding  
Information  
Model  
AD8061AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
5-Lead SOT-23  
5-Lead SOT-23  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead µSOIC  
8-Lead µSOIC  
8-Lead µSOIC  
8-Lead SOIC  
8-Lead SOIC  
8-Lead SOIC  
6-Lead SOT-23  
6-Lead SOT-23  
SO-8  
AD8061AR-REEL  
AD8061AR-REEL7  
AD8061ART-REEL  
AD8061ART-REEL7  
AD8062AR  
AD8062AR-REEL  
AD8062AR-REEL7  
AD8062ARM  
AD8062ARM-REEL  
AD8062ARM-REEL7  
AD8063AR  
AD8063AR-REEL  
AD8063AR-REEL7  
AD8063ART-REEL  
AD8063ART-REEL7  
13-Inch Tape and Reel  
7-Inch Tape and Reel  
RT-5, 13-Inch Tape and Reel  
RT-5, 7-Inch Tape and Reel  
SO-8  
13-Inch Tape and Reel  
7-Inch Tape and Reel  
RM-8  
13-Inch Tape and Reel  
7-Inch Tape and Reel  
SO-8  
13-Inch Tape and Reel  
7-Inch Tape and Reel  
RT-6, 13-Inch Tape and Reel  
RT-6, 7-Inch Tape and Reel  
HGA  
HGA  
HCA  
HCA  
HCA  
HHA  
HHA  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD8061/AD8062/AD8063 features proprietary ESD protection circuitry, permanent damage  
may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. C  
–5–  
AD8061/AD8062/AD8063Typical Performance Characteristics  
1.2  
3
G = 1  
1.0  
+V  
@ +85C  
OUT  
0
3  
6  
+V  
@ +25C  
OUT  
0.8  
0.6  
0.4  
0.2  
0
G = 2  
+V  
@ 40C  
OUT  
V  
@ 40C  
OUT  
G = 5  
V
R
= 0.2V p-p  
= 1kꢁ  
= 1V  
O
9  
V  
@ +85C  
OUT  
L
V
BIAS  
V  
@ +25C  
OUT  
12  
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
1
10  
100  
1000  
LOAD CURRENT mA  
FREQUENCY MHz  
TPC 1. Output Saturation Voltage vs. Load Current  
TPC 4. Small Signal Frequency Response  
18  
3
V
= 1.0V p-p  
O
R
= 1kꢁ  
= 1V  
AD8062  
L
16  
G = 1  
V
BIAS  
0
3  
6  
14  
12  
G = 2  
10  
AD8061  
8
G = 5  
6
4
9  
2
0
12  
2
3
4
5
6
7
8
1
10  
100  
1000  
SINGLE POWER SUPPLY Voltage  
FREQUENCY MHz  
TPC 2. ISUPPLY vs. VSUPPLY  
TPC 5. Large Signal Frequency Response  
3
3
R
= 50ꢁ  
V
V
R
= 5V  
= 0.2V p-p  
= 1kꢁ  
F
S
O
L
0
3  
6  
0
3  
6  
V
= 1V  
BIAS  
V
R
= 0.2V p-p  
= 1kꢁ  
= 1V  
O
R
= 0ꢁ  
L
F
G = 1  
G = 2  
V
BIAS  
G = 5  
R
R
F
F
OUT  
OUT  
IN  
IN  
R
R
L
L
50ꢁ  
50ꢁ  
9  
9  
V
BIAS  
V
BIAS  
12  
12  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 3. Small Signal Response, RF = 0 , 50 Ω  
TPC 6. Small Signal Frequency Response  
REV. C  
–6–  
AD8061/AD8062/AD8063  
0
3
V
V
R
= 5V  
= 1V p-p  
= 1kꢁ  
V
= 5V  
S
S
10  
R
= 1kꢁ  
O
L
G = 1  
L
20  
30  
0
3  
6  
V
= 1V  
BIAS  
G = 1  
2ND @ 1MHz  
3RD @ 10MHz  
40  
50  
G = 2  
G = 5  
60  
70  
80  
90  
9  
3RD @ 1MHz  
2.5  
2ND @ 10MHz  
1.5 2.0  
100  
12  
0.5  
1.0  
3.5  
3.0  
1
10  
100  
1000  
INPUT SIGNAL BIAS V  
FREQUENCY MHz  
TPC 7. Large Signal Frequency Response  
TPC 10. Harmonic Distortion for a 1 V p-p Signal vs.  
Input Signal DC Bias  
40  
0.1  
0
604ꢁ  
V
R
= 0.2V p-p  
= 1kꢁ  
= 1V  
V
= 2.7V  
O
S
10F  
+5V  
+
L
50  
V
BIAS  
0.1F  
G = 1  
1kꢁ  
50ꢁ  
1MINPUT  
60  
52.3ꢁ  
0.1F  
0.1  
0.2  
+
V
= 5.0V  
1kꢁ  
S
+1.25V  
dc  
(R  
)
LOAD  
70  
80  
V
= 3.0V  
S
2ND H  
0.3  
0.4  
90  
100  
110  
3RD H  
0.5  
1
10  
100  
1000  
0.01  
0.1  
1
10  
50  
FREQUENCY MHz  
FREQUENCY MHz, START = 10kHz, STOP = 30MHz  
TPC 8. 0.1 dB Flatness  
TPC 11. Harmonic Distortion for a 1 V p-p Output  
Signal vs. Input Signal DC Bias  
80  
60  
200  
30  
V
R
= 5V  
= 1kꢁ  
S
150  
100  
50  
L
40  
50  
G = 5  
= 1V p-p  
SERIES 1  
V
O
2ND  
3RD  
10MHz  
40  
60  
SERIES 2  
0
70  
20  
50  
100  
150  
200  
250  
300  
80  
0
2ND  
90  
3RD  
2ND  
5MHz  
100  
110  
120  
1MHz  
20  
40  
3RD  
0.01  
0.1  
1.0  
10  
100  
1000  
0
1
5
2
3
4
OUTPUT SIGNAL DC BIAS V  
FREQUENCY MHz  
TPC 12. Harmonic Distortion vs. Output Signal  
DC Bias  
TPC 9. AD8062 Open-Loop Gain and Phase vs.  
Frequency, VS = 5 V, RL = 1 kΩ  
REV. C  
–7–  
AD8061/AD8062/AD8063  
40  
0.01  
0.00  
V
R
G = 2  
= 5V  
S
= R = 1kꢁ  
F
L
50  
2ND @ 10MHz  
0.01  
0.02  
0.04  
0.06  
60  
70  
80  
90  
5V  
+
10F  
1Mꢁ  
0.1F  
INPUT  
TO  
3589A  
50ꢁ  
1kꢁ  
50ꢁ  
1kꢁ  
2ND @ 2MHz  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
1kꢁ  
2ND @ 500kHz  
0.02  
0.00  
3RD @ 2MHz  
0.02  
0.04  
0.06  
100  
110  
3RD @ 500kHz  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
1.0  
3.5  
4.0  
4.5  
1.5  
2.0  
2.5  
3.0  
RTO OUTPUT V p-p  
TPC 13. Harmonic Distortion vs. Output Signal  
Amplitude  
TPC 16. Differential Gain and Phase Error, G = 2,  
NTSC Input Signal, RL = 1 k, VS = 5 V  
30  
V
= 5V  
0.010  
0.005  
S
R = R = 1kꢁ  
I
L
40  
50  
60  
V
= 2V p-p  
O
G = +2  
0.000  
0.005  
S1 3RD HARMONIC/  
DUAL 2.5V SUPPLY  
0.010  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
S1 2ND HARMONIC/  
DUAL 2.5V SUPPLY  
70  
80  
0.04  
0.03  
S1 2ND HARMONIC/  
SINGLE +5V SUPPLY  
0.02  
0.01  
0.00  
0.01  
0.02  
90  
100  
110  
S1 3RD HARMONIC/  
SINGLE +5V SUPPLY  
1ST 2ND 3RD 4TH 5TH 6TH 7TH 8TH 9TH 10TH 11TH  
0.01  
0.1  
1
10  
FREQUENCY MHz, START = 10kHz, STOP = 30MHz  
TPC 14. Harmonic Distortion vs. Frequency  
TPC 17. Differential Gain and Phase Error, G = 2,  
NTSC Input Signal, RL = 150 , VS = 5 V  
1.0  
1000  
V
= 5V  
S
FALLING EDGE  
R
G = 1  
= 1kꢁ  
0.9  
0.8  
L
900  
800  
700  
600  
500  
V
R
G = 1  
= 5V  
= 1kꢁ  
S
L
0.7  
0.6  
RISING EDGE  
0.5  
0.4  
0.3  
0.2  
0.1  
400  
300  
200  
100  
0
0
0.20  
TIME s  
0.30  
0.40  
0.50  
0
0.10  
1.5  
OUTPUT STEP AMPLITUDE V  
3.0  
1.0  
2.0  
2.5  
TPC 18. Slew Rate vs. Output Step Amplitude  
TPC 15. 400 mV Pulse Response  
REV. C  
–8–  
AD8061/AD8062/AD8063  
1400  
1200  
1000  
800  
V
= 2.5V  
S
FALLING EDGE  
G = 1  
= 1kꢁ  
V
= 4V  
V
IN  
R
S
L
2.5V  
FALLING EDGE  
= +5V  
V
S
V
OUT  
600  
400  
200  
0
RISING EDGE  
V
= 4V  
S
0.0V  
RISING EDGE  
V
= +5V  
S
500mV/DIV  
20 40  
2.5  
0
0.5  
1.0  
1.5  
2.0  
3.0  
3.5  
4.0  
0
60  
80 100 120 140 160  
180 200  
TIME ns  
OUTPUT STEP V  
TPC 19. Slew Rate vs. Output Step Amplitude, G = 2,  
TPC 22. Input Overload Recovery, Input Step = 0 V to 2 V  
RL = 1 k, VS = 5 V  
1000  
V
= 2.5V  
S
V
R
= 5V  
= 1kꢁ  
S
G = 5  
= 1kꢁ  
R
L
L
V
OUT  
2.5V  
1.0V  
100  
10  
1
V
IN  
0.0V  
500mV/DIV  
20 40  
10  
100  
1k  
10k  
100k  
1M  
10M  
0
60  
80 100 120 140 160  
180 200  
FREQUENCY Hz  
TIME ns  
TPC 20. Voltage Noise vs. Frequency  
TPC 23. Output Overload Recovery, Input Step = 0 V to 1 V  
100  
10  
1
0
V
= 0.2V p-p  
= 100ꢁ  
= 2.5V  
CM  
10  
20  
30  
V
R
= 5V  
= 1kꢁ  
R
V
S
L
L
SIDE 2  
S
SIDE 1  
40  
50  
60  
70  
80  
90  
100  
604ꢁ  
154ꢁ  
604ꢁ  
154ꢁ  
50ꢁ  
V
IN  
200mV p-p  
57.6ꢁ  
0
10  
10M  
100  
1k  
10k  
100k  
1M  
0.01  
0.1  
1
10  
100  
500  
FREQUENCY Hz  
FREQUENCY MHz  
TPC 21. Current Noise vs. Frequency  
TPC 24. CMRR vs. Frequency  
REV. C  
–9–  
AD8061/AD8062/AD8063  
0
7
6
5
4
3
2
1
V = 0.2V p-p  
S
V
= 5V  
S
R
V
= 1kꢁ  
= 5V  
10  
20  
30  
40  
50  
60  
70  
L
S
PSRR  
+PSRR  
80  
90  
100  
0.01  
0
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.1  
1
10  
100  
500  
FREQUENCY MHz  
DISABLE VOLTAGE  
TPC 28. DISABLE Voltage vs. Supply Current  
TPC 25. PSRR vs. Frequency Delta  
20  
30  
6
5
V
= 5V  
S
1kꢁ  
50ꢁ  
1kꢁ  
G = 2  
= 10MHz  
f
+2.5V  
V
IN  
DISABLE  
@ 1.3V  
= 100ꢁ  
40  
BIAS  
R
L
OUT  
1kꢁ  
4
IN  
50  
2.5V  
60  
3
70  
INPUT = SIDE 2  
INPUT = SIDE 1  
2
80  
90  
V
V
R
= 5V  
= 400mV rms  
= 1kꢁ  
1
S
IN  
100  
110  
120  
L
0
V
OUT  
G = 2  
1  
0.1  
1
10  
100  
500  
0
0.4  
0.8  
1.2  
1.6  
2.0  
0.01  
FREQUENCY MHz  
TIME s  
TPC 26. AD8062 Crosstalk, VOUT = 2.0 V p-p, RL = 1 k,  
G = 2, VS = 5 V  
TPC 29. DISABLE Function, Voltage = 0 V to 5 V  
0
1000  
V
V
R
= 5V  
= 0.2V p-p  
= 1kꢁ  
S
V
V
R
= 5V  
= 0.2V p-p  
= 1kꢁ  
S
O
10  
20  
30  
40  
50  
60  
70  
80  
90  
O
L
L
100  
10  
V
= 1V  
BIAS  
V
= 1V  
BIAS  
1
0.1  
0.01  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY MHz  
FREQUENCY MHz  
TPC 30. Output Impedance vs. Frequency, VOUT = 0.2 V  
TPC 27. Disabled Output Isolation Frequency Response  
p-p, RL = 1 k, VS = 5 V  
REV. C  
–10–  
AD8061/AD8062/AD8063  
V
R
= 5V  
= 1kꢁ  
S
V
G = 2  
= 5V  
S
L
R
= 1kꢁ  
= 1V p-p  
L
V
IN  
+0.1%  
3.5V  
2.5V  
0.1%  
1kꢁ  
1kꢁ  
50ꢁ  
1.5V  
R
= 1kꢁ  
L
500mV/DIV  
t = 0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
20ns/DIV  
TIME ns  
TPC 34. 1 V Step Response  
TPC 31. Output Settling Time to 0.1%  
50  
45  
40  
35  
30  
V
G = 2  
R
= 5V  
S
FALLING EDGE  
= 1kꢁ  
= 100mV  
L
2.6V  
2.5V  
V
IN  
RISING EDGE  
25  
20  
15  
10  
5
2.4V  
V
R
G = 1  
= 5V  
= 1kꢁ  
S
L
20mV/DIV  
0
0.5  
1
1.5  
2
2.5  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
TIME ns  
OUTPUT VOLTAGE STEP  
TPC 35. 100 mV Step Response  
TPC 32. Settling Time vs. VOUT  
V
= 5V  
V
= 5V  
S
S
G = 1  
G = 2  
R
= 1kꢁ  
R
= R = 1kꢁ  
F
L
F
L
R
= 1kꢁ  
V
= 4V p-p  
IN  
4.86  
2.43  
0.0V  
0.0V  
1V  
2s  
2s/DIV  
1V/DIV  
TPC 36. Output Rail-to-Rail Swing  
TPC 33. Output Swing  
REV. C  
–11–  
AD8061/AD8062/AD8063  
The input stage will be the headroom limit for signals when the  
amplifier is used in a gain of 1 for signals approaching the  
positive rail. Figure 3 shows a typical offset voltage versus  
input common-mode voltage for the AD806x amplifier on a  
5 V supply. Accurate dc performance is maintained from about  
200 mV below the minus supply to within 1.8 V of the positive  
supply. For high-speed signals, however, there are other consid-  
erations. Figure 4 shows –3 dB bandwidth versus dc input  
V
G = 1  
R
= 5V  
S
= 1kꢁ  
L
2.6V  
2.5V  
2.4V  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
2.8  
3.2  
3.6  
4.0  
50mV/DIV  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
TIME ns  
TPC 37. 200 mV Step Response  
V
= 5V  
S
G = 2  
R
V
= R = 1kꢁ  
L
F
= 2V p-p  
IN  
4.5V  
2.5V  
0.5V  
0.5  
0
0.5  
1.0  
1.5  
V
2.0  
V  
2.5  
3.0  
3.5  
4.0  
CM  
Figure 3. VOS vs. Common-Mode Voltage, VS = 5 V  
2
0
V
V
V
V
V
= 3.0  
= 3.1  
= 3.2  
= 3.3  
= 3.4  
CM  
CM  
CM  
CM  
CM  
1V/DIV  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
2  
4  
6  
8  
TIME ns  
TPC 38. 2 V Step Response  
CIRCUIT DESCRIPTION  
The AD8061/AD8062/AD8063 family are very high-speed volt-  
age feedback op amps. The high slew rate input stage is a true  
single-supply topology, capable of sensing signals at or below  
the minus supply rail. The rail-to-rail output stage can pull  
within 30 mV of either supply rail when driving light loads and  
within 0.3 V when driving 150 . High-speed performance is  
maintained at supply voltages as low as 2.7 V.  
0.1  
1
10  
100  
1000  
10000  
FREQUENCY MHz  
Figure 4. Unity Gain Follower Bandwidth vs. Input  
Common Mode, VS = 5 V  
Headroom Considerations  
These amplifiers are designed for use in low-voltage systems. To  
obtain optimum performance, it is useful to understand the  
behavior of the amplifier as input and output signals approach  
the amplifier’s headroom limits.  
voltage for a unity gain follower. As the common-mode voltage  
approaches the positive supply, the amplifier holds together  
well, but the bandwidth begins to drop at 1.9 V within +VS.  
This can manifest itself in increased distortion or settling time.  
TPC 10 plots the distortion of a 1 V p-p signal with the AD806x  
amplifier used as a follower on a 5 V supply versus signal common-  
mode voltage. Distortion performance is maintained until the  
input signal center voltage gets beyond 2.5 V, as the peak of the  
input sine wave begins to run into the upper common-mode  
voltage limit. Higher frequency signals require more headroom  
than the lower frequencies to maintain distortion performance.  
Figure 5 illustrates how the rising edge settling time for the  
amplifier configured as a unity gain follower stretches out as the  
top of a 1 V step input approaches and exceeds the specified input  
common-mode voltage limit.  
The AD806x’s input common-mode voltage range extends from  
the negative supply voltage (actually 200 mV below this), or  
“ground” for single supply operation, to within 1.8 V of the  
positive supply voltage. Thus, at a gain of 2, the AD806x can  
provide full “rail-to-rail” output swing for supply voltage as low  
as 3.6 V, assuming the input signal swing from –VS (or ground)  
to +VS/2. At a gain of 3, the AD806x can provide a rail-to-rail  
output range down to 2.7 V total supply voltage.  
Exceeding the headroom limit is not a concern for any inverting  
gain on any supply voltage, as long as the reference voltage at  
the amplifier’s positive input lies within the amplifier’s input  
common-mode range.  
REV. C  
–12–  
AD8061/AD8062/AD8063  
For signals approaching the minus supply and inverting gain  
and high positive gain configurations, the headroom limit will be  
the output stage. The AD806x amplifiers use a common emitter  
style output stage. This output stage maximizes the available  
output range, limited by the saturation voltage of the output  
transistors. The saturation voltage increases with the drive  
current the output transistor is required to supply, due to the  
output transistors’ collector resistance. The saturation voltage  
can be estimated using the equation VSAT = 25 mV + IO × 8 ,  
where IO is the output current, and 8 is a typical value for the  
output transistors’ collector resistance.  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
2.5  
2.3  
2.1  
VOLTAGE STEP  
FROM 2.4V TO 3.4V  
VOLTAGE STEP  
FROM 2.4V TO 3.6V  
VOLTAGE STEP  
FROM 2.4V TO 3.8V,  
4V AND 5V  
3.6  
3.4  
3.2  
0
100  
200  
300  
400  
500  
600  
TIME ns  
Figure 6. Pulse Response for G = 1 Follower, Input Step  
Overloading the Input Stage  
3.0  
2V TO 3V STEP  
2.8  
2.6  
2.4  
2.2  
2.0  
2.1V TO 3.1V STEP  
Output  
2.2V TO 3.2V STEP  
2.3V TO 3.3V STEP  
Output overload recovery is typically within 40 ns after the  
amplifier’s input is brought to a nonoverloading value. Figure  
7 shows output recovery transients for the amplifier recovering  
from a saturated output from the top and bottom supplies to a  
point at midsupply.  
2.4V TO 3.4V STEP  
5.0  
0
4
8
12  
16  
20  
24  
28  
32  
4.6  
TIME ns  
OUTPUT VOLTAGE  
5V TO 2.5V  
4.2  
3.8  
3.4  
3.0  
2.6  
2.2  
1.8  
1.4  
1.0  
0.60  
Figure 5. Output Rising Edge for 1 V Step at Input Head-  
room Limits, G = 1, VS = 5 V, 0 V  
OUTPUT VOLTAGE  
0V TO 2.5V  
As the saturation point of the output stage is approached, the  
output signal will show increasing amounts of compression and  
clipping. As in the input headroom case, the higher frequency  
signals require a bit more headroom than the lower frequency  
signals. TPCs 11, 12, and 13 illustrate the point, plotting typical  
distortion versus output amplitude and bias for gains of 2 and 5.  
INPUT VOLTAGE  
EDGES  
R
5V  
R
V
IN  
2.5V  
V
O
Overload Behavior and Recovery  
Input  
0.20  
0.20  
The specified input common-mode voltage of the AD806x is  
–200 mV below the negative supply to within 1.8 V of the posi-  
tive supply. Exceeding the top limit results in lower bandwidth  
and increased settling time as seen in Figures 4 and 5. Push-  
ing the input voltage of a unity gain follower beyond 1.6 V within  
the positive supply leads to the behavior shown in Figure 6—an  
increasing amount of output error as well as much increased  
settling time. Recovery time from input voltages 1.6 V or closer  
to the positive supply is about 35 ns, which is limited by the  
settling artifacts caused by transistors in the input stage com-  
ing out of saturation.  
0
10  
20  
30  
40  
TIME ns  
50  
60  
70  
Figure 7. Overload Recovery, G = –1, VS = 5 V  
CAPACITIVE LOAD DRIVE  
The AD806x family is optimized for bandwidth and speed, not  
for driving capacitive loads. Output capacitance will create a  
pole in the amplifier’s feedback path, leading to excessive  
peaking and potential oscillation. If dealing with load capaci-  
tance is a requirement of the application, the two strategies to  
consider are (1) using a small resistor in series with the  
amplifier’s output and the load capacitance and (2) reducing  
the bandwidth of the amplifier’s feedback loop by increasing the  
overall noise gain.  
The AD806x family does not exhibit phase reversal, even for input  
voltages beyond the voltage supply rails. Going more than 0.6 V  
beyond the power supplies will turn on protection diodes at the  
input stage, which will greatly increase the device’s current draw.  
REV. C  
–13–  
AD8061/AD8062/AD8063  
Figure 8 shows a unity gain follower using the series resistor  
strategy. The resistor isolates the output from the capacitance  
and, more importantly, creates a zero in the feedback path that  
compensates for the pole created by the output capacitance.  
BOARD LAYOUT CONSIDERATIONS  
Maintaining the high-speed performance of the AD806x family  
requires the use of high-speed board layout techniques and low  
parasitic components.  
The PCB should have a ground plane covering unused portions  
of the component side of the board to provide a low impedance  
path. The ground plane should be removed near the package to  
reduce parasitic capacitance.  
R
SERIES  
V
AD8061  
O
C
LOAD  
V
IN  
Proper bypassing is critical. A ceramic 0.1 µF chip capacitor  
should be used to bypass both supplies, and be located within  
3 mm of each power pin. An additional 4.7 µF to 10 µF tanta-  
lum electrolytic capacitor should be connected in parallel to  
provide charge for fast, large signal changes at the output.  
Figure 8. Series Resistor Isolating Capacitive Load  
Voltage feedback amplifiers like those in AD806x family will be  
able to drive more capacitive load without excessive peaking  
when used in higher-gain configurations. This is because the  
increased noise gain reduces the bandwidth of the overall feed-  
back loop. Figure 9 plots the capacitance that produces 30%  
overshoot versus noise gain for a typical amplifier.  
Minimizing parasitic capacitance at the amplifier’s inverting  
input pin is very important. The feedback resistor should be  
located close to the inverting input pin. The value of the feed-  
back resistor may come into play—for instance, 1 kinteracting  
with 1 pF of parasitic capacitance creates a pole at 159 MHz.  
10000  
Stripline design techniques should be used for signal traces  
longer than 25 mm. These should be designed with either 50 Ω  
or 75 characteristic impedance and be properly terminated at  
each end.  
R
= 4.7  
S
1000  
100  
10  
APPLICATIONS  
Single Supply Sync Stripper  
R
= 0  
S
When a video signal contains synchronization pulses, it is  
sometimes desirable to remove them prior to performing  
certain operations. In the case of A-to-D conversion, the sync  
pulses will consume some of the dynamic range, so removing  
them will increase the converter’s available dynamic range for  
the video information.  
1
2
3
4
5
CLOSED-LOOP GAIN  
Figure 11 shows a basic circuit for creating a sync stripper using  
the AD8061 powered by a single supply. When the nega-  
tive supply is at ground potential, the lowest potential to  
which the output can go is ground. This feature is exploited  
to create a waveform whose lowest amplitude is the black level  
of the video and does not include the sync level.  
Figure 9. Capacitive Load vs. Closed-Loop Gain  
DISABLE OPERATION  
The internal circuit for the AD8063 disable function is shown in  
Figure 10. When the DISABLE node is pulled below 2 V from  
the positive supply, the supply current will decrease from typi-  
cally 6.5 mA to under 400 µA, and the AD8063 output will  
enter a high impedance state. If the DISABLE node is not con-  
nected, and thus is allowed to float, the AD8063 will stay biased  
at full power.  
3V  
0.1F  
10F  
75ꢁ  
7
3
2
VIDEO IN  
VIDEO OUT  
6
VCC  
75ꢁ  
AD8061  
4
75ꢁ  
R
F
1kꢁ  
2V  
R
1kꢁ  
G
PIN NUMBERS ARE  
FOR 8-PIN PACKAGE  
TO AMPLIFIER  
BIAS  
DISABLE  
Figure 11. Single 3 V Sync Stripper Using AD8061  
In this case, the input video signal has its black level at ground,  
so it comes out at ground at the input. Since the sync level is below  
the black level, it will not show up at the output. However, all  
of the active video portion of the waveform will be amplified  
by a gain of two and then be normalized to unity gain by the  
back-terminated transmission line. Figure 12 is an oscilloscope  
plot of the input and output waveforms.  
VEE  
Figure 10. Disable Circuit of the AD8063  
TPC 28 shows AD8063 supply current versus DISABLE volt-  
age. TPC 29 plots the output seen when the AD8063 input is  
driven with a 10 MHz sine wave, and the DISABLE is toggled  
from 0 V to 5 V, illustrating the part’s turn-on and turn-off time.  
TPC 27 shows the input/output isolation response with the  
AD8063 shut off.  
REV. C  
–14–  
AD8061/AD8062/AD8063  
RGB Amplifier  
1
2
Most RGB graphics signals are created by video-DAC outputs  
that drive a current through a resistor to ground. At the video  
black level, the current goes to zero, and thus the voltage of the  
video is also zero. Before the availability of high-speed rail-to-  
rail op amps, it was essential that an amplifier have a negative  
supply to amplify such a signal. Such an amplifier is necessary  
if one wants to drive a second monitor with from the same  
DAC outputs.  
INPUT  
OUTPUT  
10s  
500mV  
However, high-speed, rail-to-rail output amplifiers like the  
AD8061 and AD8062 can accept ground level input signals and  
output ground level signals and thus be used as RGB signal  
amplifiers. A combination of the AD8061 (single) and AD8062  
(dual) can amplify the three video channels of an RGB system.  
Figure 13 shows a circuit that performs this function.  
Figure 12. Input and Output Waveforms for a Single  
Supply Video Sync Stripper Using an AD8061  
Some video signals with sync are derived from single supply  
devices, such as video DACs. These signals can contain sync,  
but the whole waveform is positive, and the black level is not at  
ground but at some positive voltage. The circuit can be modified to  
provide the sync stripping function for such a waveform. Instead  
of connecting RG to ground, it should be connected to a dc  
voltage that is two times the black level of the input signal. The  
gain from the +input to the output is two, which means that  
the black level will be amplified by two to the output. However,  
the gain through RG is –unity to the output. It will take a dc  
level of twice the input black level to shift the black level to  
ground at the output. When this occurs, the sync will be  
stripped, and the active video will be passed as in the ground  
referenced case.  
Multiplexer  
The AD8063 has a disable pin that can be used to power down  
the amplifier to save power, or can be used to create a mux circuit.  
If two (or more) AD8063 outputs are connected together and  
only one is enabled, then only the signal of the enabled amplifier  
will appear at the output. This configuration can be used to select  
from various input-signal sources. Additionally, the same input  
signal can be applied to different gain stages or differently  
tuned filters to make a gain-step amplifier or a selectable-  
frequency amplifier.  
Figure 14 shows a schematic of two AD8063s used to create a  
mux that selects between two inputs. One of these is a 1 V p-p,  
3 MHz sine wave and the other is a 2 V p-p, 1 MHz sine wave.  
RED  
DAC  
75ꢁ  
75ꢁ  
75ꢁ  
75ꢁ  
75ꢁ  
75ꢁ  
+4V  
MONITOR  
#1  
GREEN  
DAC  
0.1F  
10F  
10F  
BLUE  
DAC  
1
TIME  
BASE  
OUT  
49.9ꢁ  
AD8063  
1V  
P-P  
1kꢁ  
3MHz  
0.1F  
1kꢁ  
3V  
4V  
0.1F  
10F  
V
7
49.9ꢁ  
OUT  
1kꢁ  
2
3
1kꢁ  
75ꢁ  
RED  
75ꢁ  
+4V  
6
49.9ꢁ  
AD8061  
4
0.1F  
10F  
10F  
1kꢁ  
1
49.9ꢁ  
AD8063  
3V  
2V  
1MHz  
MONITOR  
#2  
P-P  
TIME  
BASE  
IN  
0.1F  
10F  
0.1F  
1kꢁ  
8
4V  
1kꢁ  
1kꢁ  
2
75ꢁ  
75ꢁ  
GREEN  
1
AD8062  
1kꢁ  
3
5
75ꢁ  
HCO4  
SELECT  
BLUE  
7
AD8062  
Figure 14. Two-to-One Multiplexer Using Two AD8063s  
75ꢁ  
6
4
1kꢁ  
Figure 13. RGB Cable Driver Using AD8061 and AD8062  
REV. C  
–15–  
AD8061/AD8062/AD8063  
The SELECT signal and the output waveforms for this circuit  
are shown in Figure 15. For synchronization clarity, two differ-  
ent frequency synthesizers whose time bases are locked to each  
other generate the signals.  
2s  
OUTPUT  
SELECT  
1V  
2V  
Figure 15. AD8063 Mux Output  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
5-Lead SOT-23-5  
(RT-5)  
8-Lead SOIC  
(SO-8)  
0.1220 (3.100)  
0.1063 (2.700)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
5
1
4
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
0.1181 (3.000)  
0.0984 (2.500)  
0.0709 (1.800)  
0.0590 (1.500)  
2
3
PIN 1  
PIN 1  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
0.0374 (0.950) REF  
45ꢂ  
0.0688 (1.75)  
0.0532 (1.35)  
0.0748 (1.900)  
REF  
0.0098 (0.25)  
0.0040 (0.10)  
0.0079 (0.200)  
0.0035 (0.090)  
8ꢂ  
0ꢂ  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0512 (1.300)  
0.0354 (0.900)  
0.0571 (1.450)  
0.0354 (0.900)  
0.0098 (0.25)  
0.0075 (0.19)  
SEATING  
PLANE  
10ꢂ  
0ꢂ  
SEATING  
PLANE  
0.0197 (0.500)  
0.0118 (0.300)  
0.0059 (0.150)  
0.0000 (0.000)  
0.0236 (0.600)  
0.0039 (0.100)  
6-Lead SOT-23-6  
(RT-6)  
8-Lead SOIC  
(RM-8)  
0.122 (3.10)  
0.106 (2.70)  
0.122 (3.10)  
0.114 (2.90)  
8
5
4
6
5
2
4
3
0.193  
(4.90)  
BSC  
0.071 (1.80)  
0.059 (1.50)  
0.118 (3.00)  
0.098 (2.50)  
0.122 (3.10)  
0.114 (2.90)  
1
1
PIN 1  
0.037 (0.95) BSC  
PIN 1  
0.0256 (0.65) BSC  
0.037 (0.95)  
0.030 (0.75)  
0.075 (1.90)  
BSC  
0.043  
(1.10)  
MAX  
0.006 (0.15)  
0.002 (0.05)  
6ꢂ  
0ꢂ  
0.051 (1.30)  
0.035 (0.90)  
0.057 (1.45)  
0.035 (0.90)  
0.016 (0.40)  
0.010 (0.25)  
SEATING  
PLANE  
0.028 (0.70)  
0.016 (0.40)  
0.009 (0.23)  
0.005 (0.13)  
10ꢂ  
0ꢂ  
0.020 (0.50)  
0.010 (0.25)  
0.022 (0.55)  
0.014 (0.35)  
0.006 (0.15)  
0.000 (0.00)  
SEATING  
PLANE  
0.009 (0.23)  
0.003 (0.08)  
AD8061/AD8062/AD8063Revision History  
Location  
Page  
Data Sheet changed from REV. B to REV. C.  
Replaced TPC 9 with new graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
REV. C  
–16–  

相关型号:

AD8063AR-REEL

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063AR-REEL7

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ART

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ART-R2

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ART-REEL

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ART-REEL7

Low-Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ARTZ-R2

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ARTZ-REEL

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ARTZ-REEL7

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ARZ

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ARZ-REEL

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI

AD8063ARZ-REEL7

Low Cost, 300 MHz Rail-to-Rail Amplifiers
ADI