AD7537KR [ADI]

IC DUAL, PARALLEL, 8 BITS INPUT LOADING, 0.8 us SETTLING TIME, 12-BIT DAC, PDSO24, SOIC-24, Digital to Analog Converter;
AD7537KR
型号: AD7537KR
厂家: ADI    ADI
描述:

IC DUAL, PARALLEL, 8 BITS INPUT LOADING, 0.8 us SETTLING TIME, 12-BIT DAC, PDSO24, SOIC-24, Digital to Analog Converter

输入元件 光电二极管 转换器
文件: 总11页 (文件大小:234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2
LC MOS  
(8+4) Loading Dual 12-Bit DAC  
a
AD7537  
FUNCTIO NAL BLO CK D IAGRAM  
FEATURES  
Tw o 12-Bit DACs in One Package  
DAC Ladder Resistance Matching: 0.5%  
Space Saving Skinny DIP and Surface Mount Packages  
4-Quadrant Multiplication  
Low Gain Error (1 LSB m ax Over Tem perature)  
Byte Loading Structure  
Fast Interface Tim ing  
APPLICATIONS  
Autom atic Test Equipm ent  
Program m able Filters  
Audio Applications  
Synchro Applications  
Process Control  
GENERAL D ESCRIP TIO N  
T he AD7537 contains two 12-bit current output DACs on one  
monolithic chip. A separate reference input is provided for each  
DAC. T he dual DAC saves valuable board space, and the  
monolithic construction ensures excellent thermal tracking.  
Both DACs are guaranteed 12-bit monotonic over the full tem-  
perature range.  
T he AD7537 has a 2-byte (8 LSBs, 4 MSBs) loading structure.  
It is designed for right-justified data format. T he control signals  
for register loading are A0, A1, CS, WR and UPD. Data is  
loaded to the input registers when CS and WR are low. T o  
transfer this data to the DAC registers, UPD must be taken low  
with WR.  
P RO D UCT H IGH LIGH TS  
1. DAC to DAC Matching:  
Since both DACs are fabricated on the same chip, precise  
matching and tracking is inherent. Many applications which  
are not practical using two discrete DACs are now possible.  
T ypical matching: 0.5%.  
Added features on the AD7537 include an asynchronous CLR  
line which is very useful in calibration routines. When this is  
taken low, all registers are cleared. T he double buffering of the  
data inputs allows simultaneous update of both DACs. Also,  
each DAC has a separate AGND line. T his increases the device  
versatility; for instance one DAC may be operated with  
AGND biased while the other is connected in the standard  
configuration.  
2. Small Package Size:  
T he AD7537 is packaged in small 24-pin 0.3" DIPs and in  
28-terminal surface mount packages.  
3. Wide Power Supply T olerance:  
T he device operates on a +12 V to +15 V VDD, with 10%  
tolerance on this nominal figure. All specifications are  
guaranteed over this range.  
T he AD7537 is manufactured using the Linear Compatible  
CMOS (LC2MOS) process. It is speed compatible with most  
microprocessors and accepts T T L, 74HC and 5 V CMOS logic  
level inputs.  
REV.  
A
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
781/329-4700  
781/461-3113  
Tel:  
Fax:  
AD7537* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
AD7537 Material Declaration  
PCN-PDN Information  
Quality And Reliability  
Symbols and Footprints  
DOCUMENTATION  
Application Notes  
AN-206: CMOS Multiplying DAC Based Panning Circuit  
Provides Almost Constant Output Power  
DISCUSSIONS  
View all AD7537 EngineerZone Discussions.  
AN-209: 8th Order Programmable Low-Pass Analog Filter  
Using Dual 12-Bit CMOS Multiplying DACs  
AN-225: 12-Bit Voltage-Output DACs for Single-Supply 5V  
and 12V Systems  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
Data Sheet  
AD7537: LC2MOS (8+4) Loading, Dual 12-Bit DAC Data  
Sheet  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
AD7537: Military Data Sheet  
REFERENCE MATERIALS  
Solutions Bulletins & Brochures  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
Digital to Analog Converters ICs Solutions Bulletin  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
(V = +12 V to +15 V, ؎10%, VREFA = VREFB = 10 V; IOUTA = AGND = 0 V,  
DD  
AD7537–SPECIFICATIONS  
IOUTB = AGNDB = 0 V. All specifications TMIN to TMAX unless otherwise noted.)  
J, A  
K, B  
L, C  
S
T
U
P aram eter  
Versions Versions Versions Version  
Version  
Version  
Units  
Test Conditions/Com m ents  
ACCURACY  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
12  
1
1
12  
1/2  
1
12  
1/2  
1
12  
1
1
12  
1/2  
1
12  
1/2  
1
Bits  
LSB max  
LSB max  
All grades guaranteed mono-  
tonic over temperature.  
Gain Error  
6
3
1
6
3
2
LSB max  
Measured using RFBA, RFBB  
Both DAC registers loaded  
with all 1s.  
.
Gain T emperature Coefficient2;  
ΔGain/ΔT emperature  
Output Leakage Current  
IOUT A  
5
5
5
5
5
5
ppm/°C max T ypical value is 1 ppm/°C  
+25°C  
TMIN to T MAX  
10  
150  
10  
150  
10  
150  
10  
250  
10  
250  
10  
250  
nA max  
nA max  
DAC A Register loaded  
with all 0s  
IOUT B  
+25°C  
T MIN to T MAX  
10  
150  
10  
150  
10  
150  
10  
250  
10  
250  
10  
250  
nA max  
nA max  
DAC B Register loaded  
with all 0s  
REFERENCE INPUT  
Input Resistance  
9
20  
9
20  
9
20  
9
20  
9
20  
9
20  
kΩ min  
kΩ max  
T ypical Input Resistance = 14 kΩ  
V
REFA, VREFB  
Input Resistance Match  
3
3
1
3
3
1
% max  
T ypically 0.5%  
DIGIT AL INPUT S  
IH (lnput High Voltage)  
V
2.4  
0.8  
2.4  
0.8  
2.4  
0.8  
2.4  
0.8  
2.4  
0.8  
2.4  
0.8  
V min  
V max  
VIIL (Input Low Voltage)  
IIN (Input Current)  
+25°C  
1
10  
10  
1
10  
10  
1
10  
10  
1
10  
10  
1
10  
10  
1
10  
10  
μA max  
μA max  
pF max  
VIN = VDD  
T MIN to T MAX  
CIN (lnput Capacitance)2  
POWER SUPPLY3  
VDD  
IDD  
10.8/16.5 10.8/16.5 10.8/16.5 10.8/16.5 10.8/16.5 10.8/16.5 V min/V max  
mA max  
2
2
2
2
2
2
AC PERFORMANCE CHARACTERISTICS  
These characteristics are included for Design Guidance only and are not subject to test.  
(V = +12 V to +15 V; VREFA = VREFB = +10 V; IOUTA = AGNDA = 0 V, IOUTB = AGNDB = 0 V. Output Amplifiers are AD644 except where noted.)  
DD  
P aram eter  
TA = +25؇C  
TA = TMIN, TMAX Units  
Test Conditions/Com m ents  
Output Current Settling T ime  
1.5  
μs max  
T o 0.01% of full-scale range. IOUT load = 100 Ω, CEXT = 13 pF.  
DAC output measured from falling edge of WR.  
T ypical Value of Settling T ime is 0.8 μs.  
Digital-to-Analog Glitch lmpulse  
7
nV-s typ  
Measured with VREFA = VREFB = 0 V. IOUT A, IOUT B load = 100 Ω,  
CEXT = 13 pF. DAC registers alternately loaded with all 0s and all 1s.  
AC Feedthrough4  
VREFA to IOUT A  
VREFB to IOUT B  
–70  
–70  
–65  
–65  
dB max  
dB max  
VREFA, VREFB = 20 V p-p 10 kHz sine wave.  
DAC registers loaded with all 0s.  
Power Supply Rejection  
ΔGain/ΔVDD  
0.01  
0.02  
% per % max ΔVDD = VDD max – VDD min  
Output Capacitance  
COUT A  
COUT B  
COUT A  
COUT B  
70  
70  
140  
140  
70  
70  
140  
140  
pF max  
pF max  
pF max  
pF max  
DAC A, DAC B loaded with all 0s  
DAC A, DAC B loaded with all 1s  
Channel-to-Channel Isolation  
VREFA to IOUT B  
–84  
–84  
dB typ  
dB typ  
VREFA = 20 V p-p 10 kHz sine wave, VREFB = 0 V.  
Both DACs loaded with all 1s.  
VREFB = 20 V p-p 10 kHz sine wave, VREFA = 0 V.  
Both DACs loaded with all 1s.  
VREFB to IOUT A  
Digital Crosstalk  
7
nV-s typ  
nV/Hz typ  
dB typ  
Measured for a Code T ransition of all 0s to all 1s.  
IOUT A, IOUT B load = 100 Ω, CEXT = 13 pF.  
Output Noise Voltage Density  
(10 Hz–100 kHz)  
25  
–82  
Measured between RFBA and IOUT A or RFBB and IOUT B.  
Frequency of measurement is 10 Hz–100 kHz.  
T otal Harmonic Distortion  
NOT ES  
VIN = 6 V rms, 1 kHz. Both DACs loaded with all 1s.  
1T emperature range as follows: J, K, L Versions: –40°C to +85°C;  
A, B, C Versions: –40°C to +85°C;  
2Sample tested at +25°C to ensure compliance.  
3Functional at VDD = 5 V, with degraded specifications.  
4Pin 12 (DGND) on ceramic DIPs is connected to lid.  
S, T , U Versions: –55°C to +125°C  
Specifications subject to change without notice.  
–2–  
REV.  
A
AD7537  
TIMING CHARACTERISTICS (V = +10.8 V to +16.5 V, V  
REFA = VREFB = +10 V; IOUTA = AGNDA = 0 V, IOUTB = AGNDB = 0 V.)  
DD  
Lim it at  
Lim it at  
Lim it at  
TA = +25؇C  
TA = –40؇C  
to +85؇C  
TA = +55؇C  
to +125؇C  
P aram eter  
Units  
Test Conditions/Com m ents  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
15  
15  
60  
25  
0
0
80  
80  
15  
15  
80  
25  
0
0
80  
80  
30  
25  
80  
25  
0
0
100  
100  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
Address Valid to Write Setup T ime  
Address Valid to Write Hold T ime  
Data Setup T ime  
Data Hold T ime  
Chip Select or Update to Write Setup T ime  
Chip Select or Update to Write Hold T ime  
Write Pulse Width  
Clear Pulse Width  
Specifications subject to change without notice.  
ABSO LUTE MAXIMUM RATINGS*  
(T A = +25°C unless otherwise stated)  
Operating T emperature Range  
Commercial Plastic (J, K, L Versions) . . . . –40°C to +85°C  
Industrial Hermetic (A, B, C Versions) . . . –40°C to +85°C  
Extended Hermetic (S, T , U Versions) . . –55°C to +125°C  
Storage T emperature . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 10 sec) . . . . . . . . . . . . +300°C  
*Stresses above those listed under “Absolute Maximum Ratings” may cause  
permanent damage to the device. T his is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V, +17 V  
V
V
REFA, VREFB to AGNDA, AGNDB . . . . . . . . . . . . . . . . 25 V  
RFBA, VRFBB to AGNDA, AGNDB . . . . . . . . . . . . . . . . 25 V  
Digital Input Voltage to DGND . . . . . . . 0.3 V, VDD +0.3 V  
OUT A, IOUT B to DGND . . . . . . . . . . . . . . 0.3 V, VDD +0.3 V  
I
AGNDA, AGNDB to DGND . . . . . . . . . 0.3 V, VDD +0.3 V  
Power Dissipation (Any Package)  
T o +75°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 mW  
Derates Above +75°C . . . . . . . . . . . . . . . . . . . . . 6 mW/°C  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD7537 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
Figure 1. Tim ing Diagram  
REV.  
A
–3–  
AD7537  
P IN FUNCTIO N D ESCRIP TIO N (PDIP)  
current flowing in each ladder leg is constant, irrespective of  
switch state. T he feedback resistor RFBA is used with an op amp  
(see Figures 4 and 5) to convert the current flowing in IOUT A to  
a voltage output.  
P IN  
MNEMO NIC  
D ESCRIP TIO N  
1
2
3
4
5
AGNDA  
IOUT A  
RFBA  
VREFA  
CS  
Analog Ground for DAC A.  
Current output terminal of DAC A.  
Feedback resistor for DAC A.  
Reference input to DAC A.  
Chip Select Input Active low.  
Eight data inputs, DB0–DB7.  
Digital Ground.  
6–14 DB0–DB7  
12  
15  
16  
17  
DGND  
A0  
Address Line 0.  
A1  
Address Line 1.  
CLR  
Clear Input. Active low. Clears all  
registers.  
Figure 2. Sim plified Circuit Diagram for DAC A  
18  
19  
WR  
UPD  
Write Input. Active low.  
Updates DAC Registers from inputs  
registers.  
EQ UIVALENT CIRCUIT ANALYSIS  
Figure 3 shows the equivalent circuit for one of the D/A con-  
verters (DAC A) in the AD7537. A similar equivalent circuit  
can be drawn for DAC B.  
20  
VDD  
Power supply input. Nominally +12 V  
to +15 V, with 10% tolerance.  
Reference input to DAC B.  
Feedback resistor for DAC B.  
Current output terminal of DAC B.  
Analog Ground for DAC B.  
21  
22  
23  
24  
VREFB  
RFBB  
IOUT B  
COUT is the output capacitance due to the N-channel switches  
and varies from about 50 pF to 150 pF with digital input code.  
T he current source ILKG is composed of surface and junction  
leakages and approximately doubles every 10°C. R0 is the  
equivalent output resistance of the device which varies with  
input code.  
AGNDB  
P IN CO NFIGURATIO NS  
PDIP and SOIC  
D IGITAL CIRCUIT INFO RMATIO N  
T he digital inputs are designed to be both T T L and 5 V CMOS  
compatible. All logic inputs are static protected MOS gates with  
typical input currents of less than 1 nA.  
Table I. AD 7537 Truth Table  
CLR UPD CS WR A1 A0 FUNCTIO N  
1
1
0
1
1
1
X
1
1
X
1
X
0
X
X
X
0
X
X
X
0
No Data T ransfer  
No Data T ransfer  
All Registers Cleared  
X
X
0
DAC A LS Input Register  
Loaded with DB7–DB0 (LSB)  
DAC A MS Input Register  
Loaded with DB3 (MSB)–DB0  
DAC B LS Input Register  
Loaded with DB7–DB0 (LSB)  
DAC B MS Input Register  
Loaded with DB3 (MSB)–DB0  
DAC A, DAC B Registers  
Updated Simultaneously from  
Input Registers  
1
1
1
1
1
1
1
0
0
0
0
1
0
0
0
0
0
1
P LCC  
1
0
1
1
X
X
1
0
0
0
X
X
DAC A, DAC B Registers are  
T ransparent  
NOT ES: X = Dont care  
CIRCUIT INFO RMATIO N – D /A SECTIO N  
T he AD7537 contains two identical 12-bit multiplying D/A  
converters. Each DAC consists of a highly stable R-2R ladder  
and 12 N-channel current steering switches. Figure 2 shows a  
simplified D/A circuit for DAC A. In the R-2R ladder, binary  
weighted currents are steered between IOUT A and AGNDA. T he  
Figure 3. Equivalent Analog Circuit for DAC A  
REV. A  
–4–  
Applications–AD7537  
UNIP O LAR BINARY O P ERATIO N  
BIP O LAR O P ERATIO N  
(2-Q UAD RANT MULTIP LICATIO N)  
(4-Q UAD RANT MULTIP LICATIO N)  
Figure 4 shows the circuit diagram for unipolar binary opera-  
tion. With an ac input, the circuit performs 2-quadrant multipli-  
cation. T he code table for Figure 4 is given in T able II.  
T he recommended circuit diagram for bipolar operation is  
shown in Figure 5. Offset binary coding is used.  
With the appropriate DAC register loaded to 1000 0000 0000,  
adjust R1 (R3) so that VOUT A (VOUT B) = 0 V. Alternatively, R1,  
R2 (R3, R4) may be omitted and the ratios of R6, R7 (R9, 10)  
varied for VOUT A (VOUT B) = 0 V. Full-scale trimming can be ac-  
complished by adjusting the amplitude of VIN or by varying the  
value of R5 (R8).  
Operational amplifiers A1 and A2 can be in a single package  
(AD644, AD712) or separate packages (AD544, AD711,  
AD OP27). Capacitors C1 and C2 provide phase compensation  
to help prevent overshoot and ringing when high-speed op amps  
are used.  
For zero offset adjustment, the appropriate DAC register is  
loaded with all 0s and amplifier offset adjusted so that VOUT A or  
VOUT B is 0 V. Full-scale trimming is accomplished by loading  
the DAC register with all 1s and adjusting R1 (R3) so that  
If R1, R2 (R3, R4) are not used, then resistors R5, R6, R7 (R8,  
R9, R10) should be ratio matched to 0.01% to ensure gain error  
performance to the data sheet specification. When operating  
over a wide temperature range, it is important that the resistors  
be of the same type so that their temperature coefficients match.  
VOUT A (VOUT B) = –VIN (4095/4096). For high temperature op-  
eration, resistors and potentiometers should have a low T em-  
perature Coefficient. In many applications, because of the  
excellent Gain T .C. and Gain Error specifications of the  
AD7537, Gain Error trimming is not necessary. In fixed refer-  
ence applications, full scale can also be adjusted by omitting R1,  
R2, R3, R4 and trimming the reference voltage magnitude.  
T he code table for Figure 5 is given in T able III.  
Figure 5. Bipolar Operation (Offset Binary Coding)  
Table III. Bipolar Code Table for O ffset Binary  
Circuit of Figure 5  
Binary Num ber in  
D AC Register  
Analog O utput,  
VO UTA or VO UTB  
Figure 4. AD7537 Unipolar Binary Operation  
MSB  
LSB  
Table II. Unipolar Binary Code Table for  
Circuit of Figure 4  
2047 ⎞  
2048  
+VIN  
1111 1111 1111  
Binary Num ber in  
D AC Register  
Analog O utput,  
VO UTA or VO UTB  
1
+VIN  
0 V  
1000 0000 0001  
1000 0000 0000  
MSB  
LSB  
2048  
4095 ⎞  
VIN  
VIN  
1111 1111 1111  
1
4096  
VIN  
0111 1111 1111  
0000 0000 0000  
2048  
2048 ⎞  
1
= − VIN  
1000 0000 0000  
2
2048 ⎞  
4096  
VIN  
= −VIN  
2048  
1
VIN  
0 V  
0000 0000 0001  
0000 0000 0000  
A
4096  
REV.  
–5–  
AD7537  
SEP ARATE AGND P INS  
the AD7537 controls the programmable integrators. T he fre-  
quency of oscillation is given by:  
T he DACs in the AD7537 have separate AGND lines taken to  
pins AGNDA and AGNDB on the package. T his increases the  
applications versatility of the part. Figure 6 is an example of  
this. DAC A is connected in standard fashion as a program-  
mable attenuator. AGNDA is at ground potential. DAC B is op-  
erating with AGND B biased to +5 V by the AD584. T his gives  
an output range of +5 V to +10 V.  
1
R6  
1
f =  
×
2 π R5 C1×C2 × REQ1 × REQ2  
where REQ1 and REQ2 are the equivalent resistances of the  
DACs. T he same digital code is loaded into both DACs.  
If C1 = C2 and R5 = R6, the expression reduces to  
1
2 π  
1
C
1
f =  
×
REQ1 × REQ2  
2n × RLAD  
Since REQ  
=
, (RLAD = DAC ladder resistance).  
N
1
2 π  
1
C
(N /2n )2  
RLAD1 × RLAD2  
f =  
×
1
2π  
D
C
1
N ⎞  
=
×
D =  
2n  
RLAD1 × RLAD2  
1
D
=
×
2 π C × RLAD  
m
where m is the DAC ladder resistance mismatch ratio, typically  
1.005.  
With the values shown in Figure 7, the output frequency varies  
from 0 Hz to 1.38 kHz. T he amplitude of the output signal at  
the A3 output is 10 V peak-to-peak and is constant over the  
entire frequency span.  
Figure 6. AD7537 DACs Used in Different Modes  
P RO GRAMMABLE O SCILLATO R  
Figure 7 shows a conventional state variable oscillator in which  
Figure 7. Program m able State Variable Oscillator  
–6–  
REV. A  
AD7537  
AP P LICATIO N H INTS  
other for the MC68008. Figure 11 shows how an AD7537 sys-  
tem can be easily expanded by tying all the UPD lines together  
and using a single decoder output to control these. T his ex-  
panded system is shown using a Z80 microprocessor but it is  
just as easily configured using any other 8-bit microprocessor  
system. Note how the system shown in Figure 11 produces 4  
analog outputs with a minimum amount of hardware.  
O utput O ffset: CMOS D/A converters in circuits such as Fig-  
ures 4 and 5 exhibit a code dependent output resistance which  
in turn can cause a code dependent error voltage at the output  
of the amplifier. T he maximum amplitude of this error, which  
adds to the D/A converter nonlinearity, depends on VOS, where  
VOS is the amplifier input offset voltage. T o maintain specified  
operation, it is recommended that VOS be no greater than  
(25 ϫ 10–6) (VREF) over the temperature range of operation.  
Suitable op amps are the AD711C and its dual version, the  
AD712C. T hese op amps have a wide bandwidth and high slew  
rate and are recommended for wide bandwidth ac applications.  
AD711/AD712 settling time to 0.01% is typically 3 μs.  
Tem per atur e Coefficients: T he gain temperature coefficient  
of the AD7537 has a maximum value of 5 ppm/°C and typical  
value of 1 ppm/°C. T his corresponds to worst case gain shifts of  
2 LSBs and 0.4 LSBs respectively over a 100°C temperature  
range. When trim resistors R1 (R3) and R2 (R4) are used to ad-  
just full scale range as in Figure 4, the temperature coefficient of  
R1 (R3) and R2 (R4) should also be taken into account. For  
further information see “Gain Error and Gain T emperature Co-  
efficient of CMOS Multiplying DACs”, Application Note, Pub-  
lication Number E630c-5-3/86 available from Analog Devices.  
Figure 9. AD7537–MC6809 Interface  
H igh Fr equency Consider ations: AD7537 output capaci-  
tance works in conjunction with the amplifier feedback resis-  
tance to add a pole to the open loop response. T his can cause  
ringing or oscillation. Stability can be restored by adding a  
phase compensation capacitor in parallel with the feedback re-  
sistor. T his is shown as C1 and C2 in Figures 4 and 5.  
Feedthr ough: T he dynamic performance of the AD7537 de-  
pends upon the gain and phase stability of the output amplifier,  
together with the optimum choice of PC board layout and de-  
coupling components. A suggested printed circuit layout for  
Figure 4 is shown in Figure 8 which minimizes feedthrough  
from VREFA, VREFB to the output in multiplying applications.  
Figure 10. AD7537–MC68008 Interface  
Figure 8. Suggested Layout for AD7537  
MICRO P RO CESSO R INTERFACING  
T he byte loading structure of the AD7537 makes it very easy to  
interface the device to any 8-bit microprocessor system. Figures  
9 and 10 show two interfaces: one for the MC6809 and the  
Figure 11. Expanded AD7537 System  
REV.  
A
–7–  
AD7537  
OUTLINE DIMENSIONS  
1.280 (32.51)  
1.250 (31.75)  
1.230 (31.24)  
24  
1
13  
12  
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 12. 24-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-24-1)  
Dimensions shown in inches and (millimeters)  
0.180 (4.57)  
0.165 (4.19)  
0.048 (1.22)  
0.042 (1.07)  
0.056 (1.42)  
0.042 (1.07)  
0.020 (0.51)  
MIN  
4
26  
25  
0.048 (1.22)  
0.042 (1.07)  
5
0.021 (0.53)  
0.013 (0.33)  
PIN 1  
IDENTIFIER  
BOTTOM  
VIEW  
(PINS UP)  
0.050  
(1.27)  
BSC  
0.430 (10.92)  
0.390 (9.91)  
TOP VIEW  
(PINS DOWN)  
0.032 (0.81)  
0.026 (0.66)  
11  
19  
18  
12  
0.045 (1.14)  
0.025 (0.64)  
R
0.456 (11.582)  
0.450 (11.430)  
SQ  
0.120 (3.04)  
0.090 (2.29)  
0.495 (12.57)  
SQ  
0.485 (12.32)  
COMPLIANT TO JEDEC STANDARDS MO-047-AB  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 16. 28-Lead Plastic Leaded Chip Carrier [PLCC]  
(P-28)  
Dimensions shown in inches and (millimeters)  
–8–  
REV. A  
AD7537  
15.60 (0.6142)  
15.20 (0.5984)  
24  
1
13  
12  
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
0.75 (0.0295)  
0.25 (0.0  
098)  
45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.51 (0.0201)  
0.31 (0.0122)  
1.27 (0.0500)  
BSC  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AD  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 17. 24-Lead Standard Small Outline Package [SOIC-W]  
Wide Body  
(RW-24)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1, 2, 3  
AD7537JN  
AD7537JNZ  
AD7537KN  
AD7537KNZ  
AD7537ꢀNZ  
AD7537JP  
AD7537JP-REEꢀ  
AD7537JPZ  
AD7537JPZ-REEꢀ  
AD7537KP  
AD7537KPZ  
AD7537KPZ-REEꢀ  
AD7537ꢀP-REEꢀ  
AD7537ꢀPZ  
AD7537ꢀPZ-REEꢀ  
AD7537JR  
AD7537JR-REEꢀ  
AD7537JRZ  
AD7537JRZ-REEꢀ  
AD7537KRZ  
AD7537KR-REEꢀ  
AD7537SR  
AD7537SR-REEꢀ  
AD7537SRZ  
Temperature Range  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
Relative Accuracy  
±± ꢀLS  
±± ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±± ꢀLS  
±± ꢀLS  
±± ꢀLS  
±± ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±± ꢀLS  
±± ꢀLS  
±± ꢀLS  
±± ꢀLS  
Gain Error  
±ꢁ ꢀLS  
±ꢁ ꢀLS  
±3 ꢀLS  
±3 ꢀLS  
±± ꢀLS  
±ꢁ ꢀLS  
±ꢁ ꢀLS  
±ꢁ ꢀLS  
±ꢁ ꢀLS  
±3 ꢀLS  
±3 ꢀLS  
±3 ꢀLS  
±± ꢀLS  
±± ꢀLS  
±± ꢀLS  
±ꢁ ꢀLS  
±ꢁ ꢀLS  
±ꢁ ꢀLS  
±ꢁ ꢀLS  
±3 ꢀLS  
±3 ꢀLS  
±3 ꢀLS  
±3 ꢀLS  
±3 ꢀLS  
Package Description  
Package Option  
24-ꢀead PDIP  
24-ꢀead PDIP  
24-ꢀead PDIP  
24-ꢀead PDIP  
N-24-±  
N-24-±  
N-24-±  
N-24-±  
N-24-±  
P-28  
P-28  
P-28  
P-28  
P-28  
24-ꢀead PDIP  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
28-ꢀead PꢀCC  
24-ꢀead LOIC_W  
24-ꢀead LOIC_W  
24-ꢀead LOIC_W  
24-ꢀead LOIC_W  
24-ꢀead LOIC_W  
24-ꢀead LOIC_W  
24-ꢀead LOIC_W  
24-ꢀead LOIC_W  
24-ꢀead LOIC_W  
P-28  
P-28  
P-28  
P-28  
P-28  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
RW-24  
±±12 ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
±±12 ꢀLS  
± Z = RoHL Compliant Part.  
2 Analog Devices reserves the right to ship side-brazed CERDIP packages (D-24-±) in lieu of CERDIP packages (Q-24-±).  
3 To order MIꢀ-LTD-883, Class S processed parts, add1883S to part number. Contact your local sales office for military data sheet.  
REV. A  
–9–  
AD7537  
REVISION HISTORY  
6/12—Rev. 0 to Rev. A  
Added SOIC Package......................................................... Universal  
Removed LCCC Pin Configuration................................................4  
Updated Outline Dimensions..........................................................8  
Changes to Ordering Guide.............................................................9  
10/87—Revision 0: Initial Version  
©1987–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D01138-0-6/12(A)  
–±0–  
REV. A  

相关型号:

AD7537KR-REEL

LC2MOS 84) Loading Dual 12-Bit DAC
ADI

AD7537KR-REEL

DUAL, PARALLEL, 8 BITS INPUT LOADING, 0.8 us SETTLING TIME, 12-BIT DAC, PDSO24, SOIC-24
ROCHESTER

AD7537KRZ

LC2MOS 84) Loading Dual 12-Bit DAC
ADI

AD7537LCWG

12-Bit Digital-to-Analog Converter
ETC

AD7537LEWG

12-Bit Digital-to-Analog Converter
ETC

AD7537LN

LC2MOS (8+4) Loading Dual 12-Bit DAC
ADI

AD7537LN/+

12-Bit Digital-to-Analog Converter
ETC

AD7537LNZ

LC2MOS 84) Loading Dual 12-Bit DAC
ADI

AD7537LP

LC2MOS (8+4) Loading Dual 12-Bit DAC
ADI

AD7537LP-REEL

LC2MOS 84) Loading Dual 12-Bit DAC
ADI

AD7537LPZ

LC2MOS 84) Loading Dual 12-Bit DAC
ADI

AD7537LPZ-REEL

LC2MOS 84) Loading Dual 12-Bit DAC
ADI