AD629BR-REEL [ADI]

High Common-Mode Voltage Difference Amplifier; 高共模电压差动放大器
AD629BR-REEL
型号: AD629BR-REEL
厂家: ADI    ADI
描述:

High Common-Mode Voltage Difference Amplifier
高共模电压差动放大器

运算放大器 放大器电路 光电二极管
文件: 总12页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Common-Mode Voltage  
Difference Amplifier  
a
AD629  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Improved Replacement for:  
INA117P and INA117KU  
8-Lead Plastic Mini-DIP (N) and SOIC (R) Packages  
؎270 V Common-Mode Voltage Range  
Input Protection to:  
؎500 V Common Mode  
21.1k  
380k⍀  
380k⍀  
380k⍀  
20k⍀  
8
7
6
5
NC  
+V  
1
2
3
4
REF(–)  
–IN  
S
؎500 V Differential  
+IN  
OUTPUT  
REF(+)  
Wide Power Supply Range (؎2.5 V to ؎18 V)  
؎10 V Output Swing on ؎12 V Supply  
1 mA Max Power Supply Current  
–V  
S
AD629  
NC = NO CONNECT  
HIGH ACCURACY DC PERFORMANCE  
3 ppm Max Gain Nonlinearity  
20 V/؇C Max Offset Drift (AD629A)  
10 V/؇C Max Offset Drift (AD629B)  
10 ppm/؇C Max Gain Drift  
GENERAL DESCRIPTION  
The AD629 is a difference amplifier with a very high input  
common-mode voltage range. It is a precision device that  
allows the user to accurately measure differential signals in the  
presence of high common-mode voltages up to 270 V.  
EXCELLENT AC SPECIFICATIONS  
77 dB Min CMRR @ 500 Hz (AD629A)  
86 dB Min CMRR @ 500 Hz (AD629B)  
500 kHz Bandwidth  
The AD629 can replace costly isolation amplifiers in applications  
that do not require galvanic isolation. The device will operate  
over a 270 V common-mode voltage range and has inputs  
that are protected from common-mode or differential mode  
transients up to 500 V.  
APPLICATIONS  
High Voltage Current Sensing  
Battery Cell Voltage Monitor  
Power Supply Current Monitor  
Motor Control  
The AD629 has low offset, low offset drift, low gain error drift,  
as well as low common-mode rejection drift, and excellent CMRR  
over a wide frequency range.  
Isolation  
The AD629 is available in low-cost, plastic 8-lead DIP and  
SOIC packages. For all packages and grades, performance is  
guaranteed over the entire industrial temperature range from  
–40°C to +85°C.  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
2mV/DIV  
60V/DIV  
240  
120  
COMMON-MODE VOLTAGE Volts  
0
120  
240  
20  
100  
1k  
10k 20k  
FREQUENCY Hz  
Figure 1. Common-Mode Rejection Ratio vs. Frequency  
Figure 2. Common-Mode Operating Range. Error Voltage  
vs. Input Common-Mode Voltage  
REV. A  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
(TA = 25؇C, VS = ؎15 V unless otherwise noted)  
AD629–SPECIFICATIONS  
AD629A  
AD629B  
Typ  
Parameter  
Condition  
Min  
Typ  
Max  
Min  
Max  
Unit  
GAIN  
Nominal Gain  
Gain Error  
VOUT 10 V, RL = 2 k  
=
1
1
V/V  
0.01  
0.05  
10  
0.01  
0.03  
10  
3
%
Gain Nonlinearity  
4
1
3
4
1
3
ppm  
ppm  
ppm/°C  
RL = 10 kΩ  
TA = TMIN to TMAX  
Gain vs. Temperature  
10  
10  
OFFSET VOLTAGE  
Offset Voltage  
0.2  
1
0.1  
0.5  
1
mV  
mV  
VS = 5 V  
vs. Temperature  
vs. Supply (PSRR)  
TA = TMIN to TMAX  
VS = 5 V to 15 V  
6
100  
20  
3
110  
10  
µV/°C  
dB  
84  
90  
INPUT  
Common-Mode Rejection Ratio  
VCM  
=
250 V dc  
77  
73  
77  
88  
88  
86  
82  
86  
96  
90  
dB  
dB  
dB  
dB  
V
TA = TMIN to TMAX  
VCM = 500 V p-p DC to 500 Hz  
VCM = 500 V p-p DC to 1 kHz  
Common-Mode  
Operating Voltage Range  
270  
13  
270  
13  
Differential  
V
Input Operating Impedance  
Common-Mode  
Differential  
200  
800  
200  
800  
kΩ  
kΩ  
OUTPUT  
Operating Voltage Range  
RL = 10 kΩ  
13  
12.5  
10  
13  
12.5  
10  
V
V
V
mA  
pF  
RL = 2 kΩ  
VS = 12 V, RL = 2 kΩ  
Output Short Circuit Current  
Capacitive Load  
25  
25  
Stable Operation  
1000  
1000  
DYNAMIC RESPONSE  
Small Signal –3 dB Bandwidth  
Slew Rate  
Full Power Bandwidth  
Settling Time  
500  
2.1  
28  
15  
12  
5
500  
2.1  
28  
15  
12  
5
kHz  
V/µs  
kHz  
µs  
1.7  
1.7  
VOUT = 20 V p-p  
0.01%, VOUT = 10 V Step  
0.1%, VOUT = 10 V Step  
0.01%, VCM = 10 V Step, VDIFF = 0 V  
µs  
µs  
OUTPUT NOISE VOLTAGE  
0.01 Hz to 10 Hz  
15  
550  
15  
550  
µV p-p  
nV/Hz  
Spectral Density, 100 Hz1  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Current  
2.5  
18  
1
2.5  
18  
1
V
mA  
mA  
VOUT = 0 V  
TMIN to TMAX  
0.9  
1.2  
0.9  
1.2  
TEMPERATURE RANGE  
For Specified Performance  
TA = TMIN to TMAX  
–40  
+85  
–40  
+85  
°C  
NOTES  
1See Figure 19.  
Specifications subject to change without notice.  
REV. A  
–2–  
AD629  
ABSOLUTE MAXIMUM RATINGS1  
THEORY OF OPERATION  
Supply Voltage VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V  
The AD629 is a unity gain differential-to-single-ended amplifier  
(Diff Amp) that can reject extremely high common-mode  
signals (in excess of 270 V with 15 V supplies). It consists of an  
operational amplifier (Op Amp) and a resistor network.  
Internal Power Dissipation2  
DIP (N) . . . . . . . . . . . . . . . . . . . . . . . . See Derating Curves  
SOIC (R) . . . . . . . . . . . . . . . . . . . . . . . See Derating Curves  
Input Voltage Range, Continuous . . . . . . . . . . . . . . . . 300 V  
Common-Mode and Differential, 10 sec . . . . . . . . . . . 500 V  
Output Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite  
Pin 1, Pin 5 . . . . . . . . . . . . . . . . . . –VS – 0.3 V to +VS + 0.3 V  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 150°C  
Operating Temperature Range . . . . . . . . . . –55°C to +125°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature Range (Soldering 60 sec) . . . . . . . . . 300°C  
In order to achieve high common-mode voltage range, an internal  
resistor divider (Pin 3, Pin 5) attenuates the noninverting signal  
by a factor of 20. Other internal resistors (Pin 1, Pin 2, and the  
feedback resistor) restores the gain to provide a differential gain  
of unity. The complete transfer function equals:  
V
OUT = V (+IN) – V (–IN)  
Laser wafer trimming provides resistor matching so that common-  
mode signals are rejected while differential input signals are  
amplified.  
NOTES  
1Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may effect device reliability.  
2Specification is for device in free air: 8-Lead Plastic DIP, θJA = 100°C/W; 8-Lead  
SOIC Package, θJA = 155°C/W.  
The op amp itself, in order to reduce output drift, uses super  
beta transistors in its input stage The input offset current and  
its associated temperature coefficient contribute no appreciable  
output voltage offset or drift. This has the added benefit of  
reducing voltage noise because the corner where 1/f noise becomes  
dominant is below 5 Hz. In order to reduce the dependence of  
gain accuracy on the op amp, the open-loop voltage gain of the  
op amp exceeds 20 million, and the PSRR exceeds 140 dB.  
2.0  
T
= 150؇C  
J
8-LEAD MINI-DIP PACKAGE  
1.5  
1.0  
21.1k  
380k⍀  
380k⍀  
380k⍀  
8
7
6
5
NC  
+V  
1
2
3
4
REF()  
IN  
S
+IN  
OUTPUT  
REF(+)  
20k⍀  
8-LEAD SOIC PACKAGE  
V  
S
AD629  
0.5  
0
NC = NO CONNECT  
Figure 4. Functional Block Diagram  
50 40 30 20 10  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE ؇C  
Figure 3. Derating Curve of Maximum Power Dissipation  
vs. Temperature for SOIC and PDIP Packages  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Package  
Option  
Model  
AD629AR  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic SOIC  
8-Lead Plastic DIP  
8-Lead Plastic DIP  
SO-8  
SO-8  
SO-8  
SO-8  
SO-8  
SO-8  
N-8  
AD629AR-REEL1  
AD629AR-REEL72  
AD629BR  
AD629BR-REEL1  
AD629BR-REEL72  
AD629AN  
AD629BN  
N-8  
NOTES  
113" Tape and Reel of 2500 each  
27" Tape and Reel of 1000 each  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD629 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. A  
–3–  
AD629Typical Performance Characteristics (@25؇C, V = ؎15 V unless otherwise noted)  
S
400  
100  
360  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= +25؇C  
A
320  
280  
240  
200  
160  
120  
80  
T
= +85؇C  
A
T
= 40؇C  
A
40  
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
100  
1k  
10k  
100k  
1M  
10M  
POWER SUPPLY VOLTAGE ؎Volts  
FREQUENCY Hz  
Figure 8. Common-Mode Operating Range vs. Power  
Supply Voltage  
Figure 5. Common-Mode Rejection Ratio vs. Frequency  
2mV/DIV  
R
= 2k  
R
= 10k  
L
L
V
= ؎18V  
S
V
= ؎18V  
S
V
= ؎15V  
S
V
= ؎15V  
S
V
= ؎12V  
S
V
= ؎12V  
S
S
4V/DIV  
16  
V
= ؎10V  
4V/DIV  
S
V
= ؎10V  
8  
20 16 12  
8  
4  
0
4
8
12  
20  
20 16 12  
4  
0
4
8
12  
16  
20  
V
Volts  
V
Volts  
OUT  
OUT  
Figure 9. Typical Gain Error Normalized @ VOUT = 0 V and  
Output Voltage Operating Range vs. Supply Voltage,  
RL = 2 k(Curves Offset for Clarity)  
Figure 6. Typical Gain Error Normalized @ VOUT = 0 V and  
Output Voltage Operating Range vs. Supply Voltage,  
RL = 10 k(Curves Offset for Clarity)  
R
= 1k  
L
V
V
= ؎5V, R = 10k⍀  
S
L
V
= ؎18V  
S
V
= ؎15V  
= ؎5V, R = 2k⍀  
S
S
L
V
= ؎12V  
V
= ؎5V, R = 1k⍀  
S
S
L
4V/DIV  
16  
V
= ؎2.5V, R = 1k⍀  
1V/DIV  
4
V
= ؎10V  
S
L
S
5  
4  
3  
2  
1  
V
0
1
2
3
5
20 16 12  
8  
4  
0
4
8
12  
20  
Volts  
V
Volts  
OUT  
OUT  
Figure 10. Typical Gain Error Normalized @ VOUT = 0 V  
and Output Voltage Operating Range vs. Supply Voltage  
(Curves Offset for Clarity)  
Figure 7. Typical Gain Error Normalized @ VOUT = 0 V  
and Output Voltage Operating Range vs. Supply Voltage,  
RL = 1 k(Curves Offset for Clarity)  
REV. A  
–4–  
AD629  
10  
5  
0
5
10  
10 8  
6  
4  
2  
OUT  
0
2
4
6
8
10  
V
Volts  
OUT  
V
Volts  
Figure 11. Gain Nonlinearity; VS = 15 V, RL =10 kΩ  
Figure 14. Gain Nonlinearity; VS = 15 V, RL = 2 kΩ  
14.0  
40؇C  
13.0  
12.0  
40؇C  
+85؇C  
V
= ؎15V  
11.0  
+25؇C  
S
10.0  
9.0  
11.5  
12.0  
12.5  
13.0  
13.5  
40؇C  
+25؇C  
+85؇C  
10 8  
6  
4  
2  
OUT  
0
2
4
6
8
10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
V
Volts  
OUTPUT CURRENT mA  
Figure 12. Gain Nonlinearity; VS = 12 V, RL =10 kΩ  
Figure 15. Output Voltage Operating Range vs. Output  
Current; VS = 15 V  
11.5  
+85؇C  
10.5  
9.5  
40؇C  
40؇C  
+25؇C  
8.5  
V
= ؎12V  
S
7.5  
+85؇C  
6.5  
9.0  
9.5  
10.0  
10.5  
11.0  
40؇C  
+25؇C  
+85؇C  
10  
3.0 2.4 1.8 1.2 0.6  
0
0.6 1.2  
1.8  
2.4  
3.0  
0
2
4
6
8
12  
14  
16  
18  
20  
V
Volts  
OUT  
OUTPUT CURRENT mA  
Figure 16. Output Voltage Operating Range vs. Output  
Current; VS = 12 V  
Figure 13. Gain Nonlinearity; VS = 5 V, RL =1 kΩ  
REV. A  
–5–  
AD629  
+85؇C  
4.5  
3.5  
2.5  
1.5  
0.5  
40؇C  
+25؇C  
R
C
= 2k⍀  
= 0pF  
L
L
40؇C  
+85؇C  
V
= ؎5V  
S
+85؇C  
2.0  
2.5  
3.0  
3.5  
4.0  
40؇C  
+25؇C  
4s/DIV  
25mV/DIV  
+25؇C  
+85؇C  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
OUTPUT CURRENT mA  
Figure 20. Small Signal Pulse Response; G = 1, RL = 2 kΩ  
Figure 17. Output Voltage Operating Range vs. Output  
Current; VS = 5 V  
120  
+V  
S
110  
100  
90  
R
C
= 2k⍀  
= 1000pF  
L
L
V  
S
80  
70  
60  
50  
40  
30  
4s/DIV  
25mV/DIV  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY Hz  
Figure 18. Power Supply Rejection Ratio vs. Frequency  
Figure 21. Small Signal Pulse Response; G = 1, RL = 2 k,  
CL = 1000 pF  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = +1  
R
C
= 2k⍀  
= 1000pF  
L
L
5s/DIV  
5V/DIV  
0.01  
0.1  
1
10  
100  
1k  
10k  
100k  
FREQUENCY Hz  
Figure 22. Large Signal Pulse Response; G = 1,  
RL = 2 k, CL = 1000 pF  
Figure 19. Voltage Noise Spectral Density vs. Frequency  
REV. A  
–6–  
AD629  
5V/DIV  
0V  
5V/DIV  
+10V  
V
V
OUT  
OUT  
0V  
10V  
1mV = 0.01%  
OUTPUT  
ERROR  
OUTPUT  
ERROR  
1mV = 0.01%  
10s/DIV  
1mV/DIV  
10s/DIV  
1mV/DIV  
Figure 26. Settling Time to 0.01% for 0 V to –10 V Output  
Step; G = –1, RL = 2 kΩ  
Figure 23. Settling Time to 0.01%, For 0 V to 10 V Output  
Step; G = –1, RL = 2 kΩ  
300  
350  
N = 2180  
N = 2180  
n
Ϸ
200 PCS. FROM  
n Ϸ 200 PCS. FROM  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
10 ASSEMBLY LOTS  
10 ASSEMBLY LOTS  
0
0
900  
900  
600  
300  
0
300  
600  
150  
150  
100  
50  
0
50  
100  
OFFSET VOLTAGE V  
COMMON-MODE REJECTION RATIO ppm  
Figure 27. Typical Distribution of Offset Voltage;  
Package Option N-8  
Figure 24. Typical Distribution of Common-Mode  
Rejection; Package Option N-8  
400  
400  
N = 2180  
350  
N = 2180  
350  
Ϸ 200 PCS. FROM  
n Ϸ 200 PCS. FROM  
n
10 ASSEMBLY LOTS  
300  
10 ASSEMBLY LOTS  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
0
600  
0
600  
400  
200  
0
200  
400  
600  
600  
400  
200  
0
200  
400  
+1 GAIN ERROR ppm  
1 GAIN ERROR ppm  
Figure 28. Typical Distribution of +1 Gain Error;  
Package Option N-8  
Figure 25. Typical Distribution of –1 Gain Error;  
Package Option N-8  
REV. A  
–7–  
AD629  
APPLICATIONS  
Basic Connections  
+V  
S
AD629  
21.1k⍀  
REF()  
IN  
1
2
3
4
8
7
6
5
NC  
+V  
Figure 29 shows the basic connections for operating the AD629  
with a dual supply. A supply voltage of between 3 V and  
18 V is applied between Pins 7 and 4. Both supplies should be  
decoupled close to the pins using 0.1 µF capacitors. 10 µF elec-  
trolytic capacitors, also located close to the supply pins, may  
also be required if low frequency noise is present on the power  
supply. While multiple amplifiers can be decoupled by a single  
set of 10 µF capacitors, each in amp should have its own set of  
0.1 µF capacitors so that the decoupling point can be located  
physically close to the power pins.  
380k380k⍀  
0.1F  
S
V
X
I
R
SHUNT  
SHUNT  
380k⍀  
+IN  
V
Y
20k⍀  
V  
REF(+)  
S
OUTPUT = V  
V  
REF  
OUT  
NC = NO CONNECT  
V
REF  
Figure 30. Operation with a Single Supply  
+V  
3V TO 18V  
S
AD629  
21.1k⍀  
REF()  
IN  
Applying a reference voltage to REF(+) and REF(–) and operating  
on a single supply will reduce the input common-mode range of  
the AD629. The new input common-mode range depends upon  
the voltage at the inverting and noninverting inputs of the internal  
operational amplifier, labeled VX and VY in Figure 30. These  
nodes can swing to within 1 V of either rail. So for a (single)  
supply voltage of 10 V, VX and VY can range between 1 V and  
9 V. If VREF is set to 5 V, the permissible common-mode range  
is +85 V to –75 V. The common-mode voltage ranges can be  
calculated using the following equation.  
1
2
3
4
8
7
6
5
NC  
380k380k⍀  
(SEE  
TEXT)  
+V  
0.1F  
S
I
R
SHUNT  
SHUNT  
380k⍀  
20k⍀  
+IN  
V
= I  
؋
 R  
OUT  
SHUNT SHUNT  
V  
REF(+)  
S
(SEE  
TEXT)  
0.1F  
NC = NO CONNECT  
V  
S
3V TO 18V  
Figure 29. Basic Connections  
V
= 20VX/Y  
19VREF  
CM  
(
)
(
)
The differential input signal, which will typically result from a  
load current flowing through a small shunt resistor, is applied to  
Pins 2 and 3 with the polarity shown in order to obtain a posi-  
tive gain. The common-mode range on the differential input  
signal can range from –270 V to +270 V and the maximum dif-  
ferential range is 13 V. When configured as shown, the device  
operates as a simple gain-of-one differential-to-single-ended  
amplifier, the output voltage being the shunt resistance times the  
shunt current. The output is measured with respect to Pins 1 and 5.  
System-Level Decoupling and Grounding  
The use of ground planes is recommended to minimize the  
impedance of ground returns (and hence the size of dc errors).  
Figure 31 shows how to work with grounding in a mixed-signal  
environment, that is, with digital and analog signals present. In  
order to isolate low-level analog signals from a noisy digital  
environment, many data-acquisition components have separate  
analog and digital ground returns. All ground pins from mixed-  
signal components such as analog-to-digital converters should  
be returned through the high qualityanalog ground plane.  
This includes the digital ground lines of mixed-signal converters  
that should also be connected to the analog ground plane. This  
may seem to break the rule of keeping analog and digital grounds  
separate, but in general, there is also a requirement to keep the  
voltage difference between digital and analog grounds on a con-  
verter as small as possible (typically <0.3 V). The increased  
noise, caused by the converters digital return currents flowing  
through the analog ground plane, will typically be negligible.  
Maximum isolation between analog and digital is achieved by  
connecting the ground planes back at the supplies. Note that  
Figure 31, as drawn, suggests a starground system for the  
analog circuitry, with all ground lines being connected, in this  
case, to the ADCs analog ground. However, when ground planes  
are used, it is sufcient to connect ground pins to the nearest  
point on the low impedance ground plane.  
Pins 1 and 5 (REF(–) and REF(+)) should be grounded for a  
gain of unity and should be connected to the same low imped-  
ance ground plane. Failure to do this will result in degraded  
common-mode rejection. Pin 8 is a no connect pin and should  
be left open.  
Single Supply Operation  
Figure 30 shows the connections for operating the AD629 with  
a single supply. Because the output can swing to within only  
about 2 V of either rail, it is necessary to apply an offset to the  
output. This can be conveniently done by connecting REF(+) and  
REF(–) to a low impedance reference voltage (some analog-  
to-digital converters provide this voltage as an output), which is  
capable of sinking current. Thus, for a single supply of 10 V,  
VREF might be set to 5 V for a bipolar input signal. This would  
allow the output to swing 3 V around the central 5 V reference  
voltage. Alternatively, for unipolar input signals, VREF could be  
set to about 2 V, allowing the output to swing from +2 V (for a 0 V  
input) to within 2 V of the positive rail.  
REV. A  
–8–  
AD629  
shows some sample error voltages generated by a common-mode  
voltage of 200 V dc with shunt resistors from 20 to 2000 .  
Assuming that the shunt resistor has been selected to utilize the  
full 10 V output swing of the AD629, the error voltage becomes  
quite signicant as RSHUNT increases.  
DIGITAL  
ANALOG POWER  
SUPPLY  
POWER SUPPLY  
+5V  
GND  
5V  
+5V  
GND  
0.1F  
0.1F  
0.1F 0.1F  
Table I. Error Resulting from Large Values of RSHUNT  
(Uncompensated Circuit)  
V
AGND  
DGND  
DD  
GND  
V
DD  
12  
+V  
V  
S
S
+IN  
AD7892-2  
PROCESSOR  
AD629  
V
OUT  
V
IN1  
RS ()  
Error VOUT (V)  
Error Indicated (mA)  
IN  
V
REF(+)  
REF()  
IN2  
20  
1000  
2000  
0.01  
0.498  
1
0.5  
0.498  
0.5  
Figure 31. Optimal Grounding Practice for a Bipolar Supply  
Environment with Separate Analog and Digital Supplies  
If it is desired to measure low current or current near zero in a  
high common-mode environment, an external resistor equal to  
the shunt resistor value may be added to the low impedance side  
of the shunt resistor as shown in Figure 33.  
POWER SUPPLY  
+5V  
GND  
0.1F  
0.1F  
+V  
S
AD629  
21.1k⍀  
0.1F  
REF()  
IN  
1
2
3
4
8
7
6
5
NC  
+V  
V
AGND DGND  
ADC  
R
DD  
380k380k⍀  
COMP  
+V  
V  
S
S
V
GND  
DD  
+IN  
0.1F  
S
AD629  
V
OUT  
V
I
R
SHUNT  
IN  
SHUNT  
PROCESSOR  
380k⍀  
20k⍀  
+IN  
IN  
V
REF(+)  
REF()  
V
OUT  
REF  
V  
REF(+)  
S
Figure 32. Optimal Ground Practice in a Single Supply  
Environment  
0.1F  
V  
S
NC = NO CONNECT  
Figure 33. Compensating for Large Sense Resistors  
If there is only a single power supply available, it must be shared  
by both digital and analog circuitry. Figure 32 shows how to  
minimize interference between the digital and analog circuitry.  
In this example, the ADCs reference is used to drive the  
AD629s REF(+) and REF() pins. This means that the reference  
Output Filtering  
A simple 2-pole low-pass Butterworth lter can be implemented  
using the OP177 at the output of the AD629 to limit noise at  
the output, as shown in Figure 34. Table II gives recommended  
component values for various corner frequencies, along with the  
peak-to-peak output noise for each case.  
must be capable of sourcing and sinking a current equal to VCM  
/
200 k. As in the previous case, separate analog and digital  
ground planes should be used (reasonably thick traces can be  
used as an alternative to a digital ground plane). These ground  
planes should be connected at the power supplys ground pin.  
Separate traces (or power planes) should be run from the power  
supply to the supply pins of the digital and analog circuits. Ideally,  
each device should have its own power supply trace, but these  
can be shared by a number of devices as long as a single trace is  
not used to route current to both digital and analog circuitry.  
+V  
S
AD629  
21.1k⍀  
REF()  
1
2
3
4
8
7
6
5
+V  
S
NC  
C1  
0.1F  
0.1F  
380k380k⍀  
IN  
+V  
S
V
OP177  
0.1F  
R1  
R2  
C2  
OUT  
380k⍀  
20k⍀  
+IN  
V  
REF(+)  
S
V  
S
V  
S
Using a Large Sense Resistor  
0.1F  
Insertion of a large shunt resistance across the input Pins 2 and 3  
will imbalance the input resistor network, introducing a common-  
mode error. The magnitude of the error will depend on the  
common-mode voltage and the magnitude of RSHUNT. Table I  
NC = NO CONNECT  
Figure 34. Filtering of Output Noise Using a 2-Pole  
Butterworth Filter  
Table II. Recommended Values for 2-Pole Butterworth Filter  
Corner Frequency  
R1  
R2  
C1  
C2  
Output Noise (p-p)  
No Filter  
50 kHz  
5 kHz  
500 Hz  
50 Hz  
3.2 mV  
1 mV  
0.32 mV  
100 µV  
32 µV  
2.94 k1%  
2.94 k1%  
2.94 k1%  
2.7 k10%  
1.58 k1%  
1.58 k1%  
1.58 k1%  
1.5 k10%  
2.2 nF 10%  
22 nF 10%  
220 nF 10%  
2.2 µF 20%  
1 nF 10%  
10 nF 10%  
0.1 µF 10%  
1 µF 20%  
REV. A  
–9–  
AD629  
Output Current and Buffering  
+V  
S
The AD629 is designed to drive loads of 2 kto within 2 V of  
the rails, but can deliver higher output currents at lower output  
voltages (see Figure 15). If higher output current is required,  
the AD629s output should be buffered with a precision op  
amp such as the OP113 as shown in Figure 35. This op amp  
can swing to within 1 V of either rail while driving a load as  
small as 600 .  
AD629  
21.1k  
REF()  
IN  
1
2
3
4
8
7
6
5
NC  
0.1F  
THERMOCOUPLE  
380k380k⍀  
380k⍀  
20k⍀  
+IN  
V
OUT  
V
REF  
REF(+)  
+V  
S
NC = NO CONNECT  
AD629  
21.1k  
REF()  
1
2
3
4
8
7
6
5
NC  
0.1F  
380k380k⍀  
Figure 36. A Gain of 19 Thermocouple Amplifier  
IN  
0.1F  
Error Budget Analysis Example 1  
380k⍀  
20k⍀  
+IN  
In the dc application below, the 10 A output current from a  
device with a high common-mode voltage (such as a power sup-  
ply or current-mode amplier) is sensed across a 1 shunt  
resistor (Figure 37). The common-mode voltage is 200 V, and  
the resistor terminals are connected through a long pair of lead  
wires located in a high-noise environment, for example, 50 Hz/  
60 Hz 440 V ac power lines. The calculations in Table III  
assume an induced noise level of 1 V at 60 Hz on the leads, in  
addition to a full-scale dc differential voltage of 10 V. The error  
budget table quanties the contribution of each error source.  
Note that the dominant error source in this example is due to  
the dc common-mode voltage.  
V
OP113  
0.1F  
OUT  
REF(+)  
V  
S
0.1F  
V  
S
NC = NO CONNECT  
Figure 35. Output Buffering Application  
A Gain of 19 Differential Amplifier  
While low level signals can be connected directly to the IN and  
+IN inputs of the AD629, differential input signals can also be  
connected as shown in Figure 36 to give a precise gain of 19.  
However, large common-mode voltages are no longer permissible.  
Cold junction compensation can be implemented using a tempera-  
ture sensor such as the AD590.  
Table III. AD629 vs. INA117 Error Budget Analysis Example 1 (VCM = 200 V dc)  
Error, ppm of FS  
Error Source  
AD629  
INA117  
AD629  
INA117  
ACCURACY, TA = 25°C  
Initial Gain Error  
Offset Voltage  
(0.0005 × 10) ÷ 10 V × 106  
(0.001 V ÷ 10 V) × 106  
(0.0005 × 10) ÷ 10 V × 106  
(0.002 V ÷ 10 V) × 106  
500  
100  
4,480  
500  
200  
10,000  
DC CMR (Over Temperature)  
(224 × 10-6 × 200 V) ÷ 10 V × 106 (500 × 10-6 × 200 V) ÷ 10 V × 106  
Total Accuracy Error: 5,080  
10,700  
TEMPERATURE DRIFT (85°C)  
Gain  
10 ppm/°C × 60°C  
10 ppm/°C × 60°C  
(40 µV/°C × 60°C) × 106/10 V  
600  
120  
600  
240  
Offset Voltage  
(20 µV/°C × 60°C) × 106/10 V  
Total Drift Error:  
720  
840  
RESOLUTION  
Noise, Typ, 0.0110 Hz, µV p-p  
CMR, 60 Hz  
15 µV ÷ 10 V × 106  
25 µV ÷ 10 V × 106  
2
14  
10  
3
50  
10  
(141 × 106 × 1 V) ÷ 10 V × 106 (500 × 106 × 1 V) ÷ 10 V × 106  
Nonlinearity  
(105 × 10 V) ÷ 10 V × 106  
(105 × 10 V) ÷ 10 V × 106  
Total Resolution Error:  
26  
63  
Total Error: 5,826  
11,603  
REV. A  
–10–  
AD629  
before. Note that the same kind of power line interference can  
happen as detailed in Example 1. However, the ac common-  
mode component of 200 V p-p coming from the shunt is much  
larger than the interference of 1 V p-p, so that this interference  
component can be neglected.  
OUTPUT  
CURRENT  
21.1k  
REF()  
IN  
10 AMPS  
200V DC  
TO GROUND  
1
2
3
4
8
7
6
5
NC  
CM  
380k380k⍀  
+V  
0.1F  
S
1⍀  
SHUNT  
380k⍀  
20k⍀  
+IN  
V
OUTPUT  
CURRENT  
OUT  
REF(+)  
REF()  
IN  
21.1k⍀  
60Hz  
POWER LINE  
10 AMPS  
؎100V AC CM  
TO GROUND  
V  
1
2
3
4
8
7
6
5
NC  
S
AD629  
0.1F  
380k380k⍀  
NC = NO CONNECT  
+V  
S
1⍀  
SHUNT  
0.1F  
380k⍀  
20k⍀  
Figure 37. Error Budget Analysis Example 1. VIN = 10 V  
Full-Scale, VCM = 200 V DC. RSHUNT = 1 , 1 V p-p 60 Hz  
Power-Line Interference  
+IN  
V
OUT  
REF(+)  
60Hz  
POWER LINE  
V  
S
AD629  
0.1F  
Error Budget Analysis Example 2  
NC = NO CONNECT  
This application is similar to the previous example except that  
the sensed load current is from an amplier with an ac common-  
mode component of 100 V (frequency = 500 Hz) present on  
the shunt (Figure 38). All other conditions are the same as  
Figure 38. Error Budget Analysis Example 2. VIN = 10 V  
Full-Scale, VCM 100 V at 500 Hz, RSHUNT = 1 Ω  
=
Table IV. AD629 vs. INA117 AC Error Budget Example 2 (VCM = ؎100 V @ 500 Hz)  
Error, ppm of FS  
Error Source  
AD629  
INA117  
AD629  
INA117  
ACCURACY, TA = 25°C  
Initial Gain Error  
Offset Voltage  
(0.0005 × 10) ÷ 10 V × 106  
(0.001 V ÷ 10 V) × 106  
(0.0005 × 10) ÷ 10 V × 106  
(0.002 V ÷ 10 V) × 106  
500  
100  
500  
200  
Total Accuracy Error:  
600  
700  
TEMPERATURE DRIFT (85°C)  
Gain  
10 ppm/°C × 60°C  
10 ppm/°C × 60°C  
600  
120  
600  
240  
Offset Voltage  
(20 µV/°C × 60°C) × 106/10 V  
(40 µV/°C × 60°C) × 106/10 V  
Total Drift Error:  
720  
840  
RESOLUTION  
Noise, Typ, 0.0110 Hz, µV p-p 15 µV ÷ 10 V × 106  
25 µV ÷ 10 V × 106  
2
14  
10  
3
50  
10  
CMR @ 60 Hz  
Nonlinearity  
AC CMR @ 500 Hz  
(141 × 106 × 1 V) ÷ 10 V × 106  
(105 × 10 V) ÷ 10 V × 106  
(500 × 106 × 1 V) ÷ 10 V × 106  
(105 × 10 V) ÷ 10 V × 106  
(141 × 106 × 200 V) ÷ 10 V × 106 (500 × 106 × 200 V) ÷ 10 V × 106  
2,820  
10,000  
Total Resolution Error: 2,846  
Total Error: 4,166  
10,063  
11,603  
REV. A  
–11–  
AD629  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead SOIC  
(SO-8)  
8-Lead Plastic DIP  
(N-8)  
0.1968 (5.00)  
0.1890 (4.80)  
0.430 (10.92)  
0.348 (8.84)  
8
1
5
4
8
5
0.2440 (6.20)  
0.2284 (5.80)  
0.1574 (4.00)  
0.1497 (3.80)  
0.280 (7.11)  
0.240 (6.10)  
1
4
0.325 (8.25)  
0.300 (7.62)  
PIN 1  
PIN 1  
0.100 (2.54)  
BSC  
0.0196 (0.50)  
0.0099 (0.25)  
0.0500 (1.27)  
BSC  
؋
 45؇  
0.060 (1.52)  
0.015 (0.38)  
0.0688 (1.75)  
0.0532 (1.35)  
0.210  
(5.33)  
MAX  
0.195 (4.95)  
0.0098 (0.25)  
0.115 (2.93)  
0.0040 (0.10)  
8؇  
0؇  
0.130  
(3.30)  
MIN  
0.0500 (1.27)  
0.0160 (0.41)  
0.0192 (0.49)  
0.0138 (0.35)  
0.0098 (0.25)  
0.0075 (0.19)  
0.160 (4.06)  
0.115 (2.93)  
SEATING  
PLANE  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.022 (0.558) 0.070 (1.77)  
0.014 (0.356) 0.045 (1.15)  
REV. A  
–12–  

相关型号:

AD629BR-REEL7

High Common-Mode Voltage Difference Amplifier
ADI

AD629BRZ

High Common-Mode Voltage, Difference Amplifier
ADI

AD629BRZ-R7

High Common-Mode Voltage, Difference Amplifier
ADI

AD629BRZ-REEL

OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
ADI

AD629BRZ-REEL7

OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8
ADI

AD629BRZ-RL

High Common-Mode Voltage, Difference Amplifier
ADI

AD629_07

High Common-Mode Voltage, Difference Amplifier
ADI

AD63

ADAPTER DIL FUER IC IN SMD 32POL
ETC

AD630

Balanced Modulator/Demodulator
ADI

AD630A

Balanced Modulator/Demodulator
ADI

AD630ACHIPS

AD630ACHIPS
ADI

AD630AD

Balanced Modulator/Demodulator
ADI