AD5750-1ACPZ [ADI]

Industrial Current/Voltage Output Driver; 工业电流/电压输出驱动器
AD5750-1ACPZ
型号: AD5750-1ACPZ
厂家: ADI    ADI
描述:

Industrial Current/Voltage Output Driver
工业电流/电压输出驱动器

驱动器
文件: 总36页 (文件大小:676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Industrial Current/Voltage Output Driver  
with Programmable Ranges  
Data Sheet  
AD5750/AD5750-1/AD5750-2  
The output current range is programmable across five current  
ranges: 4 mA to 20 mA, 0 mA to 20 mA, 0 mA to 24 mA, 20 mA,  
FEATURES  
Current output ranges: 4 mA to 20 mA, 0 mA to 20 mA, 0 mA  
to 24 mA, 20 mA, and 24 mA  
0.03% full-scale range (FSR) total unadjusted error (TUE)  
5 ppm/°C typical output drift  
Voltage output ranges: 0 V to 5 V, 0 V to 10 V, 5 V, and 10 V  
with 20% overrange  
0.02% FSR TUE  
3 ppm/°C typical output drift  
Flexible serial digital interface  
On-chip output fault detection  
Packet error checking (PEC)  
Asynchronous CLEAR function  
Flexible power-up condition to 0 V or tristate  
Power supply range  
AVDD: +12 V ( 10%) to +24 V ( 10%)  
AVSS: −12 V ( 10%) to −24 V ( 10%)  
Output loop compliance to AVDD − 2.75 V  
Temperature range: −40°C to +105°C  
32-lead, 5 mm × 5 mm LFCSP package  
and 24 mA. An overrange of 2% is available on the unipolar  
current ranges.  
Voltage output is provided from a separate pin that can be  
configured to provide 0 V to 5 V, 0 V to 10 V, 5 V, or 10 V  
output ranges. An overrange of 20% is available on the voltage  
ranges.  
Analog outputs are short-circuit and open-circuit protected and  
can drive capacitive loads of 1 µF and inductive loads of 0.1 H.  
The devices are specified to operate with a power supply range  
from 12 V to 24 V. Output loop compliance is 0 V to AVDD  
2.75 V.  
The flexible serial interface is SPI and MICROWIRE compatible  
and can operate in 3-wire mode to minimize the digital isolation  
required in isolated applications. The interface also features an  
optional PEC feature using CRC-8 error checking, useful in  
industrial environments where data communication corruption  
can occur.  
APPLICATIONS  
The devices also include a power-on-reset function, ensuring that  
the devices power up in a known state (0 V or tristate), and an  
asynchronous CLEAR pin that sets the outputs to a zero scale/mid-  
scale voltage output or the low end of the selected current range.  
Process controls  
Actuator controls  
PLCs  
The HW SELECT pin is used to configure the parts for hardware  
or software mode on power-up.  
GENERAL DESCRIPTION  
The AD5750/AD5750-1/AD5750-2 are single-channel, low cost,  
precision voltage/current output drivers with hardware- or  
software-programmable output ranges. The software ranges are  
configured via an SPI-/MICROWIRE™-compatible serial interface.  
The AD5750/AD5750-1/AD5750-2 target applications in PLC  
and industrial process control. The analog input to the AD5750/  
AD5750-1/AD5750-2 is provided from a low voltage, single-supply  
digital-to-analog converter (DAC) and is internally conditioned  
to provide the desired output current/voltage range. Analog input  
ranges available are 0 V to 2.5 V (AD5750-1/AD5750-2) or 0 V  
to 4.096 V (AD5750).  
Table 1. Related Devices  
Part Number Description  
AD5422  
AD5751  
AD5420  
Single channel, 16-bit, serial input current  
source and voltage output DAC  
Industrial I/V output driver, single supply, 55 V  
maximum supply, programmable ranges  
Single channel, 16-bit, serial input, 4 mA to  
20 mA current source DAC  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 www.analog.com  
Fax: 781.461.3113 ©2009–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
OUTEN........................................................................................ 26  
Software Control ........................................................................ 26  
Hardware Control ...................................................................... 28  
Transfer Function....................................................................... 28  
Detailed Description of Features.................................................. 29  
Output Fault Alert—Software Mode ....................................... 29  
Output Fault Alert—Hardware Mode ..................................... 29  
Voltage Output Short-Circuit Protection................................ 29  
Asynchronous Clear (CLEAR)................................................. 29  
External Current Setting Resistor ............................................ 30  
Programmable Overrange Modes............................................ 30  
Packet Error Checking............................................................... 30  
Applications Information .............................................................. 31  
Transient Voltage Protection .................................................... 31  
Thermal Considerations............................................................ 31  
Layout Guidelines....................................................................... 31  
Galvanically Isolated Interface ................................................. 32  
Microprocessor Interfacing....................................................... 32  
Outline Dimensions....................................................................... 33  
Ordering Guide .......................................................................... 33  
Applications....................................................................................... 1  
General Description ......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
Timing Characteristics ................................................................ 8  
Absolute Maximum Ratings.......................................................... 10  
ESD Caution................................................................................ 10  
Pin Configuration and Function Descriptions........................... 11  
Typical Performance Characteristics ........................................... 13  
Voltage Output............................................................................ 13  
Current Output........................................................................... 17  
Terminology .................................................................................... 22  
Theory of Operation ...................................................................... 23  
Software Mode ............................................................................ 23  
Current Output Architecture.................................................... 25  
Driving Inductive Loads............................................................ 25  
Power-On State of AD5750/AD5750-1/AD5750-2................... 25  
Default Registers at Power-On ................................................. 26  
Reset Function ............................................................................ 26  
REVISION HISTORY  
4/12—Rev. C to Rev. D  
8/09—Rev. 0 to Rev. A  
Added AD5750-2................................................................Universal  
Changes to Table 2............................................................................ 4  
Updated Outline Dimensions....................................................... 33  
Changes to Ordering Guide .......................................................... 33  
Added AD5750-1................................................................Universal  
Changes to Features and General Description Sections ..............1  
Changes to Table 2.............................................................................4  
Changes to Theory of Operation Section and Figure 51 .......... 23  
Change to Figure 52 and Table 6 Title......................................... 24  
Changes to Current Output Architecture Section and Power-On  
State of AD5750/AD5750-1 .......................................................... 25  
Changes to Transfer Function Section ........................................ 28  
Changes to Programmable Overrange Modes Section ............. 30  
Changes to Ordering Guide.......................................................... 33  
7/10—Rev. B to Rev. C  
Added Leakage Current in Voltage Output Characteristics  
Parameter (Table 2) .......................................................................... 5  
Added Leakage Current in Current Output Characteristics  
Parameter (Table 2) .......................................................................... 6  
6/10—Rev. A to Rev. B  
7/09—Revision 0: Initial Version  
Changes to Table 1............................................................................ 1  
Changes to Table 2, Power Requirements ..................................... 7  
Rev. D | Page 2 of 36  
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
FUNCTIONAL BLOCK DIAGRAM  
DV  
GND  
AV  
GND COMP1 COMP2  
CC  
DD  
CLEAR  
AD5750/AD5750-1/AD5750-2  
CLRSEL  
VSENSE+  
VOUT  
SCLK/OUTEN*  
SDIN/R0*  
INPUT SHIFT  
REGISTER  
AND  
CONTROL  
LOGIC  
VOUT RANGE  
SCALING  
SYNC/RSET*  
SDO/VFAULT*  
VOUT  
SHORT FAULT  
STATUS  
REGISTER  
HW SELECT  
VSENSE–  
VIN  
R2  
R3  
V
DD  
VREF  
RESET  
IOUT RANGE  
SCALING  
REXT1  
REXT2  
IOUT  
R
SET  
Vx**  
OVERTEMP  
V
SS  
VOUT SHORT FAULT  
IOUT OPEN FAULT  
FAULT/TEMP*  
NC/IFAULT*  
IOUT  
OPEN FAULT  
POWER-  
ON RESET  
AD2/R1*  
AD1/R2*  
AD0/R3*  
AV  
SS  
*DENOTES SHARED PIN. SOFTWARE MODE DENOTED BY REGULAR TEXT, HARDWARE MODE  
DENOTED BY ITALIC TEXT. FOR EXAMPLE, FORFAULT/ TEMP PIN, IN SOFTWARE MODE, THIS  
PIN TAKES ON FAULT FUNCTION. IN HARDWARE MODE, THIS PIN TAKES ON TEMP FUNCTION.  
** Vx IS AN INTERNAL BIAS VOLTAGE (CAN BE GROUND OR OTHER VOLTAGE) THAT IS USED  
TO GENERATE THE INTERNAL SENSE CURRENTS NEEDED FOR THE CURRENT OUTPUTS.  
Figure 1.  
Rev. D | Page 3 of 36  
 
 
AD5750/AD5750-1/AD5750-2  
SPECIFICATIONS  
Data Sheet  
AVDD/AVSS  
= 12 V ( 10%) to 24 V ( 10%), DVCC = 2.7 V to 5.5 V, GND = 0 V. IOUT: RLOAD = 300 Ω. All specifications TMIN to TMAX,  
unless otherwise noted.  
Table 2.  
Parameter1  
Min  
Typ  
Max  
Unit  
V
Test Conditions/Comments  
Output unloaded  
AD5750  
INPUT VOLTAGE RANGE  
0 to 4.096  
0 to 2.5  
AD5750-1/AD5750-2  
Input Leakage Current  
REFERENCE INPUT  
Reference Input Voltage  
−1  
+1  
µA  
V
4.096  
2.5  
AD5750; external reference must  
to be exactly as stated; otherwise,  
accuracy errors show up as error  
in output  
AD5750-2; external reference needs  
to be exactly as stated; otherwise,  
accuracy errors show up as error  
in output  
V
1.25  
V
AD5750-1; external reference needs  
to be exactly as stated; otherwise,  
accuracy errors show up as error  
in output  
Input Leakage Current  
VOLTAGE OUTPUT  
−1  
+1  
µA  
Output Voltage Ranges  
0
0
5
10  
V
V
AVDD needs to have minimum  
1.3 V headroom or >11.3 V  
−5  
−10  
+5  
+10  
V
V
AVDD/AVSS needs to have minimum  
1.3 V headroom or > 11.3 V  
Output Voltage Overranges  
0
6
V
Programmable overranges; see the  
Detailed Description of Features  
section  
0
−6  
−12  
−2.5  
12  
+6  
+12  
+2.5  
V
V
V
V
Accuracy  
Total Unadjusted Error (TUE)  
B Version2  
−0.1  
−0.05  
−0.3  
−0.1  
−0.02  
−10  
−8  
+0.1  
+0.05  
+0.3  
+0.1  
+0.02  
+10  
+8  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
mV  
0.02  
TA = 25°C  
TA = 25°C  
A Version2  
0.05  
0.005  
Relative Accuracy (INL)  
Bipolar Zero Error (Offset at Midscale)  
10 V range  
0.5  
mV  
TA = 25°C, 10 V range  
5 V range  
−5  
+5  
mV  
−4  
0.3  
1.5  
+4  
mV  
TA = 25°C, 5 V range  
Bipolar Zero Error Temperature  
Coefficient3  
ppm FSR/°C All bipolar ranges  
Zero-Scale Error  
−10  
−8  
−5  
+10  
+8  
+5  
mV  
mV  
mV  
mV  
10 V range  
TA = 25°C, 10 V range  
5 V range  
0.5  
0.3  
−4  
+4  
TA = 25°C, 5 V range  
Rev. D | Page 4 of 36  
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
Zero-Scale Error Temperature  
1
ppm FSR/°C All bipolar ranges  
Coefficient3  
Zero-Scale/Offset Error  
−5  
−4  
−3  
−2.2  
+5  
+4  
+3  
+2.2  
mV  
mV  
mV  
mV  
0 V to 10 V range  
TA = 25°C, 0 V to 10 V range  
0 V to 5 V range  
0.5  
0.3  
2
TA = 25°C, 0 V to 5 V range  
Offset Error Temperature Coefficient3  
Gain Error  
ppm FSR/°C All unipolar ranges  
% FSR  
−0.05  
+0.05  
All bipolar/unipolar ranges,  
AD5750 and AD5750-1  
−0.07  
−0.04  
+0.07  
+0.04  
% FSR  
% FSR  
AD5750-2  
TA = 25°C, AD5750, AD5750-1, and  
AD5750-2  
0.015  
Gain Error Temperature Coefficient3  
Full-Scale Error  
0.5  
ppm FSR/°C  
% FSR  
−0.05  
+0.05  
All bipolar/unipolar ranges,  
AD5750 and AD5750-1  
−0.04  
−0.07  
0.015  
1.5  
+0.04  
+0.07  
% FSR  
% FSR  
ppm FSR/°C  
TA = 25°C, AD5750 and AD5750-1  
AD5750-2  
Full-Scale Error Temperature  
Coefficient3  
VOLTAGE OUTPUT CHARACTERISTICS3  
Headroom  
Short-Circuit Current  
Load  
Capacitive Load Stability  
RLOAD = ∞  
RLOAD = 2 kΩ  
1.3  
V
mA  
kΩ  
Output unloaded  
TA = 25°C  
15  
1
1
1
2
nF  
nF  
µF  
RLOAD = ∞  
External compensation capacitor  
required; see the Driving Inductive  
Loads section  
DC Output Impedance  
Leakage Current  
0 V to 5 V Range, ¼ to ¾ Step  
0 V to 5 V Range, 40 mV Input Step  
Slew Rate  
0.12  
nA  
µs  
µs  
V/µs  
µV rms  
µV rms  
nV/√Hz  
−110  
+110  
Output disabled; leakage to ground  
Specified with 2 kΩ || 220 pF, 0.05%  
Specified with 2 kΩ || 220 pF, 0.05%  
Specified with 2 kΩ || 220 pF  
0.1 Hz to 10 Hz bandwidth  
100 kHz bandwidth  
Measured at 10 kHz; specified with  
2 kΩ || 220 pF  
7
4.5  
2
2.5  
45.5  
165  
Output Noise  
Output Noise Spectral Density  
AC PSRR  
−65  
10  
dB  
200 mV, 50 Hz/60 Hz sine wave super-  
imposed on power supply voltage  
Outputs unloaded  
DC PSRR  
µV/V  
CURRENT OUTPUT  
Output Current Ranges  
0
0
4
−20  
−24  
0
24  
20  
20  
+20  
+24  
24.5  
mA  
mA  
mA  
mA  
mA  
mA  
Output Current Overranges  
See the Detailed Description of  
Features section  
0
4
20.4  
20.4  
mA  
mA  
See the Detailed Description of  
Features section  
See the Detailed Description of  
Features section  
Rev. D | Page 5 of 36  
AD5750/AD5750-1/AD5750-2  
Data Sheet  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
ACCURACY, INTERNAL RSET  
Total Unadjusted Error (TUE)  
B Version2  
−0.2  
−0.08  
−0.5  
+0.2  
+0.08  
+0.5  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
% FSR  
µA  
0.03  
TA = 25°C  
A Version2  
−0.3  
0.15  
0.01  
0.015  
+0.3  
TA = 25°C  
Unipolar ranges  
Bipolar ranges  
4 mA to 20 mA, 0 mA to 20 mA,  
0 mA to 24 mA ranges  
Relative Accuracy (INL)  
Offset Error  
−0.02  
−0.03  
−16  
+0.02  
+0.03  
+16  
−10  
−50  
−26  
+5  
+10  
+50  
+26  
µA  
µA  
µA  
TA = 25°C  
20 mA, 24 mA ranges  
TA = 25°C  
+8  
3
Offset Error Temperature Coefficient3  
Bipolar Zero Error  
ppm FSR/°C All ranges  
µA  
µA  
ppm FSR/°C  
% FSR  
−35  
−24  
+35  
+24  
20 mA, 24 mA ranges  
TA = 25°C  
+15  
0.5  
Bipolar Zero Temperature Coefficient3  
Gain Error  
−0.2  
+0.2  
4 mA to 20 mA, 0 mA to 20 mA,  
0 mA to 24 mA ranges  
−0.25  
−0.03  
+0.25  
+0.03  
% FSR  
% FSR  
20 mA, 24 mA ranges  
TA = 25°C  
0.006  
8
Gain Temperature Coefficient3  
Full-Scale Error  
ppm FSR/°C All ranges  
% FSR  
% FSR  
−0.2  
−0.125  
+0.2  
+0.125  
All ranges  
TA = 25°C  
0.02  
4
Full-Scale Temperature Coefficient3  
ACCURACY, EXTERNAL RSET  
Total Unadjusted Error (TUE)  
B Version2  
ppm FSR/°C All ranges  
−0.1  
+0.1  
% FSR  
−0.08  
−0.3  
−0.1  
0.03  
+0.08  
+0.3  
+0.1  
% FSR  
% FSR  
% FSR  
% FSR  
TA = 25°  
A Version2  
0.02  
0.01  
TA = 25°C  
4 mA to 20 mA, 0 mA to 20 mA,  
0 mA to 24 mA ranges  
Relative Accuracy (INL)  
−0.02  
+0.02  
−0.03  
−14  
0.015  
+0.03  
+14  
% FSR  
µA  
20 mA, 24 mA ranges  
4 mA to 20 mA, 0 mA to 20 mA,  
0 mA to 24 mA ranges  
Offset Error  
−11  
−20  
+5  
+11  
+20  
+15  
µA  
µA  
µA  
TA = 25°C  
20 mA, 24 mA ranges  
TA = 25°C  
+8  
2
Offset Error Temperature Coefficient3  
Bipolar Zero Error  
ppm FSR/°C All ranges  
−32  
−22  
+32  
+22  
µA  
µA  
All ranges  
TA = 25°C  
+12  
0.5  
Bipolar Zero Temperature Coefficient3  
Gain Error  
ppm FSR/°C  
% FSR  
% FSR  
−0.08  
−0.07  
+0.08  
+0.07  
All ranges  
TA = 25°C  
0.02  
Gain Temperature Coefficient  
Full-Scale Error  
1
ppm FSR/°C All ranges  
−0.1  
−0.07  
+0.1  
+0.07  
% FSR  
% FSR  
All ranges  
TA = 25°C  
0.02  
2
Full-Scale Temperature Coefficient3  
ppm FSR/°C All ranges  
Rev. D | Page 6 of 36  
Data Sheet  
AD5750/AD5750-1/AD5750-2  
Parameter1  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
CURRENT OUTPUT CHARACTERISTICS3  
Current Loop Compliance Voltage  
Resistive Load  
0
AVDD − 2.75  
V
See test conditions/comments column  
Chosen such that compliance is  
not exceeded  
Inductive Load  
See test conditions/comments column  
Needs appropriate capacitor at  
higher inductance values; see the  
Driving Inductive Loads section  
Settling Time  
4 mA to 20 mA, Full-Scale Step  
4 mA to 20 mA, 120 µA Step  
DC PSRR  
Output Impedance  
Leakage Current  
8.5  
1.2  
1
µs  
µs  
µA/V  
MΩ  
nA  
250 Ω load  
250 Ω load  
130  
−12  
+12  
Output disabled; leakage to ground  
VOUT/VSENSE− Error  
0.9994  
1.0006  
Gain  
Error in VOUT voltage due to changes  
in VSENSE−; specified as gain, for  
example, if VSENSE− moves by 1 V,  
VOUT moves by 0.9994 V  
DIGITAL INPUT  
JEDEC compliant  
Input High Voltage, VIH  
Input Low Voltage, VIL  
Input Current  
2
V
V
µA  
pF  
0.8  
+1  
−1  
Per pin  
Per pin  
Pin Capacitance  
5
DIGITAL OUTPUTS3  
FAULT, IFAULT, TEMP, VFAULT  
Output Low Voltage, VOL  
0.4  
V
V
V
10 kΩ pull-up resistor to DVCC  
At 2.5 mA  
10 kΩ pull-up resistor to DVCC  
0.6  
Output High Voltage, VOH  
3.6  
SDO  
Output Low Voltage, VOL  
Output High Voltage, VOH  
High Impedance Output Capacitance  
High Impedance Leakage Current  
0.5  
DVCC − 0.5  
0.5  
DVCC − 0.5  
3
V
V
pF  
µA  
Sinking 200 µA  
Sourcing 200 µA  
−1  
+1  
POWER REQUIREMENTS  
AVDD  
AVSS  
12  
−12  
24  
−24  
V
V
10%  
10%  
DVCC  
Input Voltage  
AIDD  
2.7  
5.5  
5.6  
V
mA  
4.4  
Output unloaded, output disabled,  
R3, R2, R1, R0 = 0, 1, 0, 1; RSET = 0  
5.2  
5.2  
2.0  
6.2  
6.2  
2.5  
mA  
mA  
mA  
Current output enabled  
Voltage output enabled  
Output unloaded, output disabled,  
R3, R2, R1, R0 = 0, 1, 0, 1; RSET = 0,  
AD5750 and AD5750-1  
AISS  
2.0  
2.5  
2.5  
0.3  
108  
3.5  
3
3
mA  
mA  
mA  
mA  
mW  
AD5750-2  
Current output enabled  
Voltage output enabled  
VIH = DVCC, VIL = GND  
DICC  
1
Power Dissipation  
AVDD/AVSS = 24 V, outputs unloaded  
1 Temperature range: −40°C to +105°C; typical at +25°C.  
2 Specification includes gain and offset errors over temperature and drift after 1000 hours, TA = 125°C.  
3 Guaranteed by characterization, but not production tested.  
Rev. D | Page 7 of 36  
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
TIMING CHARACTERISTICS  
AVDD/AVSS  
= 12 V ( 10%) to 24 V ( 10%), DVCC = 2.7 V to 5.5 V, GND = 0 V. VOUT: RLOAD = 2 kΩ, CL = 200 pF, IOUT: RLOAD =  
300 Ω. All specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter1, 2  
Limit at TMIN, TMAX  
Unit  
Description  
t1  
t2  
t3  
t4  
20  
8
8
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
µs max  
ns min  
ns max  
ns min  
SCLK cycle time  
SCLK high time  
SCLK low time  
5
SYNC falling edge to SCLK falling edge setup time  
16th SCLK falling edge to SYNC rising edge (on 24th SCLK falling edge if using PEC)  
Minimum SYNC high time (write mode)  
Data setup time  
t5  
10  
5
t6  
t7  
t8  
t9, t10  
t11  
t12  
t13  
5
5
1.5  
5
Data hold time  
CLEAR pulse low/high activation time  
Minimum SYNC high time (read mode)  
SCLK rising edge to SDO valid (SDO CL = 15 pF)  
RESET pulse low time  
40  
10  
1 Guaranteed by characterization, but not production tested.  
2 All input signals are specified with tR = tF = 5 ns (10% to 90% of DVCC) and timed from a voltage level of 1.2 V.  
Rev. D | Page 8 of 36  
 
 
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
Timing Diagrams  
t1  
SCLK  
1
2
16  
t3  
t2  
t6  
t4  
t5  
SYNC  
t8  
t7  
SDIN  
CLEAR  
VOUT  
D15  
D0  
t10  
t9  
RESET  
t13  
Figure 2. Write Mode Timing Diagram  
1
2
16  
SCLK  
SYNC  
t11  
A2  
A1  
A0  
R = 1  
0
X
X
X
X
X
X
X
X
X
X
X
SDIN  
SDO  
t12  
PEC  
OVER  
IOUT  
VOUT  
X
X
X
X
X
R3  
R2  
R1  
R0 CLRSEL OUTEN RSET  
ERROR TEMP FAULT FAULT  
Figure 3. Readback Mode Timing Diagram  
Rev. D | Page 9 of 36  
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted. Transient currents of up to  
100 mA do not cause SCR latch-up.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
AVDD to GND  
AVSS to GND  
AVDD to AVSS  
DVCC to GND  
VSENSE+ to GND  
VSENSE− to GND  
Digital Inputs to GND  
−0.3 V to +30 V  
+0.3 V to −28 V  
−0.3 V to +58 V  
−0.3 V to +7 V  
AVSS to AVDD  
5.0 V  
ESD CAUTION  
−0.3 V to DVCC + 0.3 V or  
+7 V (whichever is less)  
Digital Outputs to GND  
−0.3 V to DVCC + 0.3 V or  
+7 V (whichever is less)  
VREF to GND  
VIN to GND  
VOUT, IOUT to GND  
−0.3 V to +7 V  
−0.3 V to +7 V  
AVSS to AVDD  
Operating Temperature Range,  
Industrial  
−40°C to +105°C  
Storage Temperature Range  
Junction Temperature (TJ max)  
32-Lead LFCSP Package  
θJA Thermal Impedance  
Lead Temperature  
−65°C to +150°C  
125°C  
28°C/W  
JEDEC industry standard  
Soldering  
ESD (Human Body Model)  
J-STD-020  
3 kV  
Rev. D | Page 10 of 36  
 
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
PIN 1  
INDICATOR  
SDO/VFAULT  
CLRSEL  
1
2
3
4
5
6
24 VSENSE+  
23 VOUT  
22 VSENSE–  
AD5750/  
AD5750-1/  
AD5750-2  
TOP VIEW  
(Not to Scale)  
CLEAR  
DV  
21 AV  
CC  
SS  
GND  
SYNC/RSET  
SCLK/OUTEN 7  
SDIN/R0  
20 COMP1  
19 COMP2  
18 IOUT  
8
17 AV  
DD  
NOTES  
1. NC = NO CONNECT.  
2. THE EXPOSED PADDLE IS TIED TO AVSS.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
SDO/VFAULT  
Serial Data Output (SDO). In software mode, this pin is used to clock data from the input shift register in  
readback mode. Data is clocked out on the rising edge of SCLK and is valid on the falling edge of SCLK. This pin  
is a CMOS output.  
Short-Circuit Fault Alert (VFAULT). In hardware mode, this pin acts as a short-circuit fault alert pin and is  
asserted low when a short-circuit error is detected. This pin is an open-drain output and must be connected to  
a pull-up resistor.  
2
3
CLRSEL  
CLEAR  
In hardware or software mode, this pin selects the clear value, either zero-scale or midscale code. In software  
mode, this pin is implemented as a logic OR with the internal CLRSEL bit.  
Active High Input. Asserting this pin sets the output current/voltage to zero-scale code or midscale code of the  
range selected (user selectable). CLEAR is a logic OR with the internal clear bit.  
In software mode, during power-up, the CLEAR pin level determines the power-on condition of the voltage  
channel, which can be active 0 V or tristate. See the Asynchronous Clear (CLEAR) section for more details.  
4
5
6
DVCC  
GND  
SYNC/RSET  
Digital Power Supply.  
Ground Connection.  
Positive Edge Sensitive Latch (SYNC). In software mode, a rising edge parallel loads the input shift register data  
into the AD5750/AD5750-1/AD5750-2, also updating the output.  
Resistor Select (RSET). In hardware mode, this pin selects whether the internal or the external current sense resistor is  
used. If RSET = 0, the external sense resistor is chosen, and if RSET = 1, the internal sense resistor is chosen.  
7
8
9
SCLK/OUTEN Serial Clock Input (SCLK). In software mode, data is clocked into the input shift register on the falling edge of  
SCLK. This pin operates at clock speeds up to 50 MHz.  
Output Enable (OUTEN). In hardware mode, this pin acts as an output enable pin.  
SDIN/R0  
AD2/R1  
Serial Data Input (SDIN). In software mode, data must be valid on the falling edge of SCLK.  
Range Decode Bit (R0). In hardware mode, this pin, in conjunction with R1, R2, and R3, selects the output  
current/voltage range setting on the part.  
Device Addressing Bit (AD2). In software mode, this pin, in conjunction with AD1 and AD0, allows up to eight  
devices to be addressed on one bus.  
Range Decode Bit (R1). In hardware mode, this pin, in conjunction with R0, R2, and R3, selects the output  
current/voltage range setting on the part.  
10  
AD1/R2  
Device Addressing Bit (AD1). In software mode, this pin, in conjunction with AD2 and AD0, allows up to eight  
devices to be addressed on one bus.  
Range Decode Bit (R2). In hardware mode, this pin, in conjunction with R0, R1, and R3, selects the output  
current/voltage range setting on the part.  
Rev. D | Page 11 of 36  
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
Pin No.  
Mnemonic  
Description  
11  
AD0/R3  
Device Addressing Bit (AD0). In software mode, this pin, in conjunction with AD1 and AD2, allows up to eight  
devices to be addressed on one bus.  
Range Decode Bit (R3). In hardware mode, this pin, in conjunction with R0, R1, and R2, selects the output  
current/voltage range setting on the part.  
12, 13  
REXT2, REXT1 A 15 kΩ external current setting resistor can be connected between the REXT1 and REXT2 pins to improve the  
IOUT temperature drift performance.  
14  
15  
16  
17  
VREF  
VIN  
GND  
AVDD  
IOUT  
Buffered Reference Input.  
Buffered Analog Input (0 V to 4.096 V).  
Ground Connection.  
Positive Analog Supply.  
Current Output.  
18  
19, 20  
COMP2,  
COMP1  
Optional Compensation Capacitor Connections for the Voltage Output Buffer. These pins are used to drive  
higher capacitive loads on the output. They also reduce overshoot on the output. Care should be taken when  
choosing the value of the capacitor connected between the COMP1 and COMP2 pins because it has a direct  
influence on the settling time of the output. See the Driving Large Capacitive Loads section for further details.  
21  
22  
AVSS  
VSENSE−  
Negative Analog Supply.  
Sense Connection for the Negative Voltage Output Load Connection. This pin must stay within 3.0 V of  
ground for correct operation.  
23  
24  
25, 26,  
27, 28  
VOUT  
VSENSE+  
NC  
Buffered Analog Output Voltage.  
Sense Connection for the Positive Voltage Output Load Connection.  
No Connect. Can be tied to GND.  
29  
HW SELECT  
This pin is used to configure the part to hardware or software mode. HW SELECT = 0 selects software control,  
and HW SELECT = 1 selects hardware control.  
30  
31  
RESET  
Resets the part to its power-on state.  
FAULT/TEMP  
Fault Alert (FAULT). In software mode, this pin acts as a general fault alert pin. It is asserted low when an open-  
circuit error, short-circuit error, overtemperature error, or PEC interface error is detected. This pin is an open-  
drain output and must be connected to a pull-up resistor.  
Overtemperature Fault (TEMP). In hardware mode, this pin acts as an overtemperature fault pin. It is asserted  
low when an overtemperature error is detected. This pin is an open-drain output and must be connected to a  
pull-up resistor.  
32  
NC/IFAULT  
EPAD  
No Connect (NC). In software mode, this pin is a no connect. Instead, tie this pin to GND.  
Open-Circuit Fault Alert (IFAULT). In hardware mode, this pin acts as an open-circuit fault alert pin. It is asserted  
low when an open-circuit error is detected. This pin is an open-drain output and must be connected to a pull-  
up resistor.  
The exposed paddle is tied to AVSS.  
Rev. D | Page 12 of 36  
Data Sheet  
AD5750/AD5750-1/AD5750-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
VOLTAGE OUTPUT  
0.0020  
0.10  
0.08  
0.06  
0.04  
0.02  
0
AV  
= +24V  
DD  
AV = –24V  
SS  
0.0015  
0.0010  
0.0005  
0
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
–0.0030  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
+5V POSITIVE TUE, NO LOAD  
+10V POSITIVE TUE, NO LOAD  
±5V POSITIVE TUE, NO LOAD  
±10V POSITIVE TUE, NO LOAD  
+5V NEGATIVE TUE, NO LOAD  
+10V NEGATIVE TUE, NO LOAD  
±5V NEGATIVE TUE, NO LOAD  
±10V NEGATIVE TUE, NO LOAD  
+5V  
+10V  
±5V  
±10V  
0
0.585  
1.170  
1.755  
2.341  
(V)  
2.926  
3.511  
4.096  
–40  
25  
105  
V
TEMPERATURE (°C)  
IN  
Figure 5. Integral Nonlinearity Error vs. VIN  
Figure 8. Total Unadjusted Error (TUE) vs. Temperature  
0.005  
0.004  
0.003  
0.002  
0.001  
0
0.03  
AV  
= +24V  
+5V LINEARITY, NO LOAD  
DD  
AV = –24V  
+10V LINEARITY, NO LOAD  
±5V LINEARITY, NO LOAD  
±10V LINEARITY, NO LOAD  
SS  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
+5V RANGE, FULL-SCALE ERROR  
+10V RANGE, FULL-SCALE ERROR  
±5V RANGE, FULL-SCALE ERROR  
±10V RANGE, FULL-SCALE ERROR  
–40  
25  
TEMPERATURE (°C)  
105  
–40  
25  
105  
TEMPERATURE (°C)  
Figure 6. Integral Nonlinearity Error vs. Temperature  
Figure 9. Full-Scale Error vs. Temperature  
0.006  
0.004  
0.002  
0
2.5  
2.0  
AV  
= +24V  
AV  
= +24V  
DD  
DD  
AV = –24V  
AV = –24V  
SS  
SS  
1.5  
1.0  
±10V ZERO ERROR  
0.5  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
+5V  
+10V  
±5V  
±10V  
±5V ZERO ERROR  
0
0.585  
1.170  
1.755  
2.341  
(V)  
2.926  
3.511  
4.096  
–40  
25  
105  
V
TEMPERATURE (°C)  
IN  
Figure 10. Bipolar Zero Error vs. Temperature  
Figure 7. Total Unadjusted Error (TUE) vs. VIN  
Rev. D | Page 13 of 36  
 
 
 
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
0.020  
0.015  
0.010  
0.005  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
AV  
= +24V  
+5V POSITIVE TUE, NO LOAD  
+10V POSITIVE TUE, NO LOAD  
±5V POSITIVE TUE, NO LOAD  
±10V POSITIVE TUE, NO LOAD  
+5V NEGATIVE TUE, NO LOAD  
+10V NEGATIVE TUE, NO LOAD  
±5V NEGATIVE TUE, NO LOAD  
±10V NEGATIVE TUE, NO LOAD  
DD  
AV = –24V  
SS  
–0.005  
–0.010  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.015  
+5V GAIN, NO LOAD  
+10V GAIN, NO LOAD  
–0.020  
±5V GAIN, NO LOAD  
±10V GAIN, NO LOAD  
–0.025  
+11.2/–10.8  
±15.0  
±24.0  
±26.4  
–40  
25  
105  
TEMPERATURE (°C)  
SUPPLY VOLTAGES (AV /AV  
)
SS  
DD  
Figure 11. Gain Error vs. Temperature  
Figure 14. Total Unadjusted Error (TUE) vs. Supply Voltages  
2.5  
2.0  
1.2  
1.0  
0.8  
AV  
= +24V  
DD  
AV = –24V  
OUTPUT UNLOADED  
SS  
1.5  
1.0  
0.5  
±10V V  
HEADROOM, LOAD OFF  
DD  
0
0.6  
0.4  
0.2  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
+5V RANGE  
+10V RANGE  
±5V RANGE  
±10V RANGE  
–40  
25  
105  
–40  
25  
TEMPERATURE (°C)  
105  
TEMPERATURE (°C)  
Figure 12. Zero-Scale Error (Offset Error) vs. Temperature  
Figure 15. AVDD Headroom, 10 V Range, Output Set to 10 V, Load Off  
0.05  
0.003  
+5V RANGE  
+5V LINEARITY, NO LOAD  
+10V LINEARITY, NO LOAD  
±5V LINEARITY, NO LOAD  
±10V LINEARITY, NO LOAD  
±10V RANGE  
0.04  
0.002  
0.001  
0
0.03  
0.02  
0.01  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.001  
–0.002  
–0.003  
+11.2/–10.8  
±15.0  
±24.0  
±26.4  
–15 –13 –11 –9 –7 –5 –3 –1  
1
3
5
7
9
11 13 15  
SOURCE/SINK CURRENT (mA)  
SUPPLY VOLTAGES (AV /AV  
)
SS  
DD  
Figure 16. Source and Sink Capability of Output Amplifier  
Figure 13. Integral Nonlinearity Error vs. Supply Voltage  
Rev. D | Page 14 of 36  
 
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
12  
10  
8
1
6
4
2
2
0
–8  
B
CH1 5.00V CH2 20.0mV  
M1.0µs  
A
CH1  
3.00V  
W
–3  
2
7
12  
17  
22  
27  
TIME (µs)  
Figure 17. Full-Scale Positive Step  
Figure 20. VOUT Enable Glitch, Load = 2 kΩ || 1 nF  
12  
10  
8
6
4
2
0
5µV/DIV  
1s/DIV  
–8  
–3  
2
7
12  
17  
22  
27  
TIME (µs)  
Figure 18. Full-Scale Negative Step  
Figure 21. Peak-to-Peak Noise (0.1 Hz to 10 Hz Bandwidth)  
40  
35  
30  
25  
20  
15  
10  
5
0
100µV/DIV  
1s/DIV  
–5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
TIME (ms)  
Figure 19. VOUT vs. Time on Power-Up, Load = 2 kΩ || 200 pF  
Figure 22. Peak-to-Peak Noise (100 kHz Bandwidth)  
Rev. D | Page 15 of 36  
AD5750/AD5750-1/AD5750-2  
Data Sheet  
4.0  
3.5  
3.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
DD  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
OUT  
–0.2  
–1.5  
–1.0  
–0.5  
0
0.5  
1.0  
1.5  
2.0  
TIME (ms)  
Figure 23. VDD and VOUT vs. Time on Power-Up  
Rev. D | Page 16 of 36  
Data Sheet  
AD5750/AD5750-1/AD5750-2  
CURRENT OUTPUT  
0.004  
0.010  
0.008  
0.006  
0.004  
0.002  
0
AV  
= +24V  
+4mA TO +20mA INTERNAL R  
0mA TO +20mA INTERNAL R  
LINEARITY  
DD  
AV = –24V  
SET  
SS  
LINEARITY  
LINEARITY  
SET  
0.002  
0
0mA TO +24mA INTERNAL R  
SET  
±20mA INTERNAL R  
±24mA INTERNAL R  
LINEARITY  
LINEARITY  
SET  
SET  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
+4mA TO +20mA  
0mA TO +20mA  
0mA TO +24mA  
±20mA  
±24mA  
+11.2/–10.8  
±15.0  
±24.0  
±26.4  
0
0.585  
1.170  
1.755  
2.341  
(V)  
2.926  
3.511  
4.096  
V
SUPPLY VOLTAGES (AV /AV  
DD  
)
IN  
SS  
Figure 24. Integral Nonlinearity Error vs. VIN, External RSET Resistor  
Figure 27. Integral Nonlinearity Error, Current Mode,  
Internal RSET Sense Resistor  
0.004  
0.010  
0.008  
0.006  
0.004  
0.002  
0
AV  
= +24V  
+4mA TO +20mA  
0mA TO +20mA  
0mA TO +24mA  
±20mA  
AV  
= +24V  
DD  
AV = –24V  
DD  
AV = –24V  
SS  
SS  
0.002  
0
±24mA  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.012  
–0.002  
–0.004  
–0.006  
–0.008  
+4mA TO +20mA  
0mA TO +20mA  
0mA TO +24mA  
±20mA  
±24mA  
0
0.585  
1.170  
1.755  
2.341  
(V)  
2.926  
3.511  
4.096  
0
0.585  
1.170  
1.755  
2.341  
(V)  
2.926  
3.511  
4.096  
V
V
IN  
IN  
Figure 25. Integral Nonlinearity Error vs. VIN, Internal RSET Resistor  
Figure 28. Total Unadjusted Error (TUE) vs. VIN, External RSET Resistor  
0.010  
0.015  
+4mA TO +20mA EXTERNAL R  
0mA TO +20mA EXTERNAL R  
LINEARITY  
+4mA TO +20mA  
0mA TO +20mA  
0mA TO +24mA  
±20mA  
AV  
= +24V  
SET  
DD  
AV = –24V  
LINEARITY  
LINEARITY  
SS  
0.008  
0.006  
0.004  
0.002  
0
SET  
0mA TO +24mA EXTERNAL R  
SET  
0.010  
0.005  
0
±20mA EXTERNAL R  
±24mA EXTERNAL R  
LINEARITY  
LINEARITY  
±24mA  
SET  
SET  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
–0.005  
–0.010  
–0.015  
+11.2/–10.8  
±15.0  
±24.0  
±26.4  
0
0.585  
1.170  
1.755  
2.341  
(V)  
2.926  
3.511  
4.096  
SUPPLY VOLTAGES (AV /AV  
DD  
)
V
SS  
IN  
Figure 26. Integral Nonlinearity Error, Current Mode,  
External RSET Sense Resistor  
Figure 29. Total Unadjusted Error vs. VIN, Internal RSET Resistor  
Rev. D | Page 17 of 36  
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
0.10  
0.010  
0.008  
0.006  
0.004  
0.002  
0
+4mA TO +20mA EXTERNAL R  
0mA TO +20mA EXTERNAL R  
POSITIVE TUE  
POSITIVE TUE  
POSITIVE TUE  
+4mA TO +20mA EXTERNAL R  
0mA TO +20mA EXTERNAL R  
LINEARITY  
SET  
SET  
LINEARITY  
LINEARITY  
SET  
0.08  
0.06  
0.04  
0.02  
0
SET  
0mA TO +24mA EXTERNAL R  
SET  
0mA TO +24mA EXTERNAL R  
SET  
±20mA EXTERNAL R  
±24mA EXTERNAL R  
LINEARITY  
LINEARITY  
SET  
SET  
±20mA EXTERNAL R  
±24mA EXTERNAL R  
POSITIVE TUE  
POSITIVE TUE  
SET  
SET  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
+4mA TO +20mA EXTERNAL R  
0mA TO +20mA EXTERNAL R  
NEGATIVE TUE  
NEGATIVE TUE  
NEGATIVE TUE  
SET  
SET  
0mA TO +24mA EXTERNAL R  
SET  
AV  
= +24V  
±20mA EXTERNAL R  
±24mA EXTERNAL R  
NEGATIVE TUE  
NEGATIVE TUE  
DD  
SET  
SET  
AV = –24V  
SS  
+11.2/–10.8  
±15.0  
±24.0  
±26.4  
–40  
25  
TEMPERATURE (°C)  
105  
SUPPLY VOLTAGES (AV /AV  
DD  
)
SS  
Figure 30. Total Unadjusted Error (TUE), Current Mode,  
External RSET Sense Resistor  
Figure 33. INL vs. Temperature, External RSET Sense Resistor  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
+4mA TO +20mA INTERNAL R  
0mA TO +20mA INTERNAL R  
POSITIVE TUE  
+4mA TO +20mA INTERNAL R  
0mA TO +20mA INTERNAL R  
POSITIVE TUE  
POSITIVE TUE  
POSITIVE TUE  
SET  
SET  
POSITIVE TUE  
POSITIVE TUE  
SET  
SET  
0mA TO +24mA INTERNAL R  
SET  
0mA TO +24mA INTERNAL R  
SET  
±20mA INTERNAL R  
±24mA INTERNAL R  
POSITIVE TUE  
SET  
SET  
±20mA INTERNAL R  
±24mA INTERNAL R  
POSITIVE TUE  
POSITIVE TUE  
SET  
SET  
POSITIVE TUE  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
+4mA TO +20mA INTERNAL R  
0mA TO +20mA INTERNAL R  
NEGATIVE TUE  
NEGATIVE TUE  
NEGATIVE TUE  
SET  
+4mA TO +20mA INTERNAL R  
0mA TO +20mA INTERNAL R  
NEGATIVE TUE  
SET  
SET  
NEGATIVE TUE  
SET  
0mA TO +24mA INTERNAL R  
SET  
0mA TO +24mA INTERNAL R  
NEGATIVE TUE  
SET  
±20mA INTERNAL R  
±24mA INTERNAL R  
NEGATIVE TUE  
NEGATIVE TUE  
SET  
SET  
±20mA INTERNAL R  
±24mA INTERNAL R  
NEGATIVE TUE  
SET  
SET  
NEGATIVE TUE  
+11.2/–10.8  
±15.0  
±24.0  
±26.4  
–40  
25  
105  
SUPPLY VOLTAGES (AV /AV  
DD  
)
TEMPERATURE (°C)  
SS  
Figure 34. Total Unadjusted Error (TUE) vs. Temperature,  
Internal RSET Sense Resistor  
Figure 31. Total Unadjusted Error (TUE), Current Mode,  
Internal RSET Sense Resistor  
0.10  
0.08  
0.06  
0.04  
0.02  
0
0.010  
0.008  
0.006  
0.004  
0.002  
0
+4mA TO +20mA EXTERNAL R  
0mA TO +20mA EXTERNAL R  
POSITIVE TUE  
SET  
+4mA TO +20mA INTERNAL R  
0mA TO +20mA INTERNAL R  
LINEARITY  
LINEARITY  
LINEARITY  
SET  
POSITIVE TUE  
SET  
SET  
0mA TO +24mA EXTERNAL R  
POSITIVE TUE  
0mA TO +24mA INTERNAL R  
SET  
SET  
±20mA EXTERNAL R  
±24mA EXTERNAL R  
POSITIVE TUE  
POSITIVE TUE  
±20mA INTERNAL R  
±24mA INTERNAL R  
LINEARITY  
LINEARITY  
SET  
SET  
SET  
SET  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
+4mA TO +20mA EXTERNAL R  
0mA TO +20mA EXTERNAL R  
NEGATIVE TUE  
SET  
NEGATIVE TUE  
NEGATIVE TUE  
SET  
0mA TO +24mA EXTERNAL R  
SET  
AV  
= +24V  
±20mA EXTERNAL R  
±24mA EXTERNAL R  
NEGATIVE TUE  
NEGATIVE TUE  
DD  
SET  
SET  
AV = –24V  
SS  
–40  
25  
105  
–40  
25  
105  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 35. Total Unadjusted Error (TUE) vs. Temperature,  
External RSET Sense Resistor  
Figure 32. INL vs. Temperature, Internal RSET Sense Resistor  
Rev. D | Page 18 of 36  
Data Sheet  
AD5750/AD5750-1/AD5750-2  
6
2
1
+4mA TO +20mA EXTERNAL R  
0mA TO +20mA EXTERNAL R  
AV  
= +24V  
SET  
SET  
DD  
AV = –24V  
SS  
0mA TO +24mA EXTERNAL R  
SET  
4
2
0
±20mA, INTERNAL R  
SET  
–1  
–2  
–3  
–4  
–5  
–6  
0
±24mA, INTERNAL R  
SET  
–2  
–4  
–6  
AV  
= +24V  
±20mA EXTERNAL R  
±24mA EXTERNAL R  
DD  
SET  
SET  
AV = –24V  
SS  
–40  
25  
105  
–40  
25  
TEMPERATURE (°C)  
105  
TEMPERATURE (°C)  
Figure 36. Zero-Scale Error vs. Temperature, External RSET Sense Resistor  
Figure 39. Bipolar Zero-Scale Error vs. Temperature,  
Internal RSET Sense Resistor  
25  
0.04  
0.03  
0.02  
0.01  
0
+4mA TO +20mA INTERNAL R  
+4mA TO +20mA EXTERNAL R  
SET  
SET  
0mA TO +20mA INTERNAL R  
0mA TO +24mA INTERNAL R  
0mA TO +20mA EXTERNAL R  
0mA TO +24mA EXTERNAL R  
SET  
SET  
SET  
SET  
20  
15  
AV  
= +24V  
AV  
= +24V  
DD  
AV = –24V  
DD  
AV = –24V  
10  
SS  
SS  
5
0
–0.01  
–0.02  
–0.03  
–0.04  
–5  
–10  
–15  
–20  
±20mA INTERNAL R  
±24mA INTERNAL R  
±20mA EXTERNAL R  
SET  
SET  
SET  
±24mA EXTERNAL R  
SET  
–40  
25  
105  
–40  
25  
105  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 37. Zero-Scale Error vs. Temperature, Internal RSET Sense Resistor  
Figure 40. Full-Scale Error vs. Temperature, External RSET Sense Resistor  
3
2
1
0.04  
+4mA TO +20mA INTERNAL R  
SET  
0mA TO +20mA INTERNAL R  
0mA TO +24mA INTERNAL R  
SET  
SET  
0.03  
0.02  
±20mA INTERNAL R  
±24mA INTERNAL R  
SET  
SET  
0.01  
±24mA, EXTERNAL R  
SET  
0
–1  
–2  
–3  
–4  
–5  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
±20mA, EXTERNAL R  
SET  
AV  
= +24V  
AV  
= +24V  
AV = –24V  
DD  
DD  
AV = –24V  
SS  
SS  
–40  
25  
105  
–40  
25  
TEMPERATURE (°C)  
105  
TEMPERATURE (°C)  
Figure 38. Bipolar Zero-Scale Error vs. Temperature,  
External RSET Sense Resistor  
Figure 41. Full-Scale Error vs. Temperature, Internal RSET Sense Resistor  
Rev. D | Page 19 of 36  
AD5750/AD5750-1/AD5750-2  
Data Sheet  
0.020  
12  
10  
8
0.000010  
0.000008  
0.000006  
0.000004  
0.000002  
0
+4mA TO +20mA EXTERNAL R  
SET  
0mA TO +20mA EXTERNAL R  
0mA TO +24mA EXTERNAL R  
SET  
SET  
0.015  
0.010  
0.005  
0
6
I
OUT  
4
–0.000002  
–0.000004  
–0.000006  
–0.000008  
–0.000010  
2
–0.005  
–0.010  
–0.015  
0
V
DD  
±20mA EXTERNAL R  
±24mA EXTERNAL R  
AV  
= +24V  
SET  
SET  
DD  
–2  
–10  
AV = –24V  
SS  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
–40  
25  
TEMPERATURE (°C)  
105  
TIME (ms)  
Figure 42. Gain Error vs. Temperature, External RSET Sense Resistor  
Figure 45. VDD and Output Current (IOUT) vs. Time-On Power-Up  
0.08  
0
–2  
+4mA TO +20mA INTERNAL R  
SET  
0mA TO +20mA INTERNAL R  
0mA TO +24mA INTERNAL R  
SET  
SET  
0.06  
0.04  
±20mA INTERNAL R  
±24mA INTERNAL R  
SET  
SET  
–4  
0.02  
–6  
0
–8  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
–10  
–12  
–14  
–16  
–18  
AV  
= +24V  
DD  
AV = –24V  
SS  
–40  
25  
TEMPERATURE (°C)  
105  
–2  
–1  
0
1
2
3
4
5
6
7
8
TIME (µs)  
Figure 43. Gain Error vs. Temperature, Internal RSET Sense Resistor  
Figure 46. Output Current (IOUT) vs. Time-On Output Enable  
1.4  
1.2  
0.025  
AV  
COMPLIANCE  
DD  
0.020  
0.015  
0.010  
0.005  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
AV COMPLIANCE  
SS  
–40  
25  
105  
–12 –6  
1
8
14 21 28 34 41 48 54 61 68  
TIME (µs)  
TEMPERATURE (°C)  
Figure 47. 4 mA to 20 mA Output Current Step  
Figure 44. Output Compliance vs. Temperature  
Tested When IOUT = 10.8 mA, 24 mA Range Selected  
Rev. D | Page 20 of 36  
Data Sheet  
AD5750/AD5750-1/AD5750-2  
3000  
2500  
2000  
1500  
1000  
500  
6
5
AI  
DD  
4
3
DV  
= 5V  
CC  
2
1
0
–1  
–2  
–3  
DV  
= 3V  
CC  
AI  
SS  
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOGIC LEVEL (V)  
±10.8  
±15.0  
±24.0  
±26.4  
AV /AV (V)  
DD SS  
Figure 48. DICC vs. Logic Input Voltage  
Figure 50. AIDD/AISS vs. AVDD/AVSS, IOUT = 0 mA  
6
5
AI  
DD  
4
3
2
1
0
–1  
–2  
–3  
AI  
SS  
±10.8  
±15.0  
±24.0  
±26.4  
AV /AV (V)  
DD SS  
Figure 49. AIDD/AISS vs. AVDD/AVSS, VOUT = 0 V  
Rev. D | Page 21 of 36  
AD5750/AD5750-1/AD5750-2  
Data Sheet  
TERMINOLOGY  
Total Unadjusted Error (TUE)  
Zero-Scale Error  
TUE is a measure of the output error taking all the various  
errors into account: INL error, offset error, gain error, and  
output drift over supplies, temperature, and time. TUE is  
expressed as a percentage of full-scale range (% FSR).  
Zero-scale error is the deviation of the actual zero-scale analog  
output from the ideal zero-scale output. Zero-scale error is  
expressed in millivolts (mV).  
Zero-Scale TC  
Relative Accuracy or Integral Nonlinearity (INL)  
INL is a measure of the maximum deviation, in % FSR, from a  
straight line passing through the endpoints of the output driver  
transfer function. A typical INL vs. input voltage plot can be  
seen in Figure 5.  
Zero-scale TC is a measure of the change in zero-scale error  
with a change in temperature. Zero-scale error TC is expressed  
in ppm FSR/°C.  
Offset Error  
Offset error is a measurement of the difference between the  
actual VOUT and the ideal VOUT, expressed in millivolts (mV)  
in the linear region of the transfer function. It can be negative  
or positive.  
Bipolar Zero Error  
Bipolar zero error is the deviation of the actual vs. ideal half-scale  
output of 0 V/0 mA with a bipolar range selected. A plot of  
bipolar zero error vs. temperature can be seen in Figure 10.  
Output Voltage Settling Time  
Bipolar Zero Temperature Coefficient (TC)  
Bipolar zero TC is a measure of the change in the bipolar zero error  
with a change in temperature. It is expressed in ppm FSR/°C.  
Output voltage settling time is the amount of time it takes for  
the output to settle to a specified level for a half-scale input change.  
Slew Rate  
Full-Scale Error  
The slew rate of a device is a limitation in the rate of change of the  
output voltage. The output slewing speed is usually limited by the  
slew rate of the amplifier used at its output. Slew rate is measured  
from 10% to 90% of the output signal and is expressed in V/µs.  
Full-scale error is the deviation of the actual full-scale analog  
output from the ideal full-scale output. Full-scale error is  
expressed as a percentage of full-scale range (% FSR).  
Full-Scale Temperature Coefficient (TC)  
Current Loop Voltage Compliance  
Full-scale TC is a measure of the change in the full-scale error  
with a change in temperature. It is expressed in ppm FSR/°C.  
Current loop voltage compliance is the maximum voltage at  
the IOUT pin for which the output current is equal to the  
programmed value.  
Gain Error  
Gain error is a measure of the span error of the output. It is the  
deviation in slope of the output transfer characteristic from the  
ideal expressed in % FSR. A plot of gain error vs. temperature  
can be seen in Figure 11.  
Power-On Glitch Energy  
Power-on glitch energy is the impulse injected into the analog  
output when the AD5750/AD5750-1/AD5750-2 are powered on.  
It is specified as the area of the glitch in nV-sec.  
Gain Error Temperature Coefficient (TC)  
Gain error TC is a measure of the change in gain error with  
changes in temperature. Gain error TC is expressed in ppm  
FSR/°C.  
Power Supply Rejection Ratio (PSRR)  
PSRR indicates how the output is affected by changes in the  
power supply voltage.  
Rev. D | Page 22 of 36  
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
THEORY OF OPERATION  
The AD5750/AD5750-1/AD5750-2 are single-channel, precision  
voltage/current output drivers with hardware- or software-  
programmable output ranges. The software ranges are configured  
via an SPI-/MICROWIRE-compatible serial interface. The analog  
input to the AD5750/AD5750-1/AD5750-2 is provided from a  
low voltage, single-supply DAC and is internally conditioned to  
provide the desired output current/voltage range. Analog input  
ranges available are 0 V to 2.5 V (AD5750-1/AD5750-2) or 0 V  
to 4.096 V (AD5750).  
Figure 51 and Figure 52 show a typical configuration of the  
AD5750/AD5750-1/AD5750-2 in software mode and in hardware  
mode, respectively, in an output module system. The HW SELECT  
pin selects whether the part is configured in software or hardware  
mode. The analog input to the AD5750/AD5750-1/AD5750-2 is  
provided from a low voltage, single-supply DAC, such as the  
AD506x or AD566x, which provides an output range of 0 V to  
4.096 V. The supply and reference for the DAC, as well as the  
reference for the AD5750/AD5750-1/AD5750-2, can be supplied  
from a reference such as the ADR392. The AD5750/AD5750-1/  
AD5750-2 can operate from supplies up to 26.4 V.  
The output current range is programmable across five current  
ranges: +4 mA to +20 mA, 0 mA to +20 mA, 0 mA to +24 mA,  
20 mA, and 24 mA.  
SOFTWARE MODE  
The voltage output is provided from a separate pin that can be  
configured to provide 0 V to +5 V, 0 V to +10 V, 5 V, or 10 V  
output ranges. An overrange of 20% is available on the voltage  
ranges. An overrange of 2% is available on the 4 mA to 20 mA,  
0 mA to 20 mA, and 0 mA to 24 mA current ranges. The current  
and voltage outputs are available on separate pins. Only one  
output can be enabled at one time. The output range is selected  
by programming the R3 to R0 bits in the control register (see  
Table 7 and Table 8).  
In current mode, software-selectable output ranges include  
20 mA, 24 mA, 0 mA to +20 mA, +4 mA to +20 mA, and  
0 mA to +24 mA.  
In voltage mode, software-selectable output ranges include 0 V  
to +5 V, 0 V to +10 V, 5 V, and 10 V.  
VDD AGND VSS  
AV  
GND AV  
SS  
AD5750/  
DD  
ADP1720  
ADR392  
AD5750-1/  
AD5750-2  
VSENSE+  
VSENSE–  
VREF  
VDD REFIN  
SCLK  
VOUT  
RANGE  
SCALE  
VOUT  
0V TO +5V, 0V TO +10V,  
±5V, ±10V  
SDI/DIN  
VIN  
AD506x  
MCU  
SDO  
AD566x  
IOUT  
RANGE  
SCALE  
SYNC1  
IOUT  
0mA TO +20mA,  
0mA TO +24mA,  
+4mA TO +20mA  
±20mA, ±24mA  
SCLK  
SDIN  
SDO  
VOUT SHORT FAULT  
IOUT OPEN FAULT  
OVERTEMP FAULT  
SERIAL  
INTERFACE  
SYNC  
STATUS REGISTER  
HW SELECT  
FAULT  
Figure 51. Typical System Configuration in Software Mode (Pull-Up Resistors Not Shown for Open-Drain Outputs)  
Rev. D | Page 23 of 36  
 
 
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
VDD AGND VSS  
AD5750/  
AD5750-1/  
AD5750-2  
AV  
GND AV  
SS  
DD  
ADP1720  
VSENSE+  
VSENSE–  
VREF  
ADR392  
VDD  
REFIN  
VOUT  
SCLK  
SDI/DIN  
SDO  
VOUT  
RANGE  
SCALE  
0V TO +5V, 0V TO +10V,  
±5V, ±10V  
VIN  
AD506x  
AD566x  
MCU  
SYNC1  
IOUT  
RANGE  
SCALE  
IOUT  
0mA TO +20mA,  
0mA TO +24mA,  
+4mA TO +20mA  
±20mA, ±24mA  
DV  
HW SELECT  
OUTEN  
CC  
R3  
R2  
R1  
OUTPUT RANGE  
SELECT PINS  
TEMP  
VFAULT  
IFAULT  
R0  
Figure 52. Typical System Configuration in Hardware Mode Using Internal DAC Reference (Pull-Up Resistors Not Shown for Open-Drain Outputs)  
Table 6. Suggested Parts for Use with AD5750, AD5750-1, and AD5750-2  
DAC  
Reference  
Internal  
Internal  
Internal  
ADR434  
ADR434  
ADR3922  
ADR3922  
Power  
ADP17201  
Accuracy  
Description  
AD5660  
AD5664R  
AD5668  
AD5060  
AD5064  
AD5662  
AD5664  
12-bit INL  
Midend system, single channel, internal reference  
Midend system, quad channel, internal reference  
Midend system, octal channel, internal reference  
High end system, single channel, external reference  
High end system, quad channel, external reference  
Midend system, single channel, external reference  
Midend system, quad channel, external reference  
Not applicable  
Not applicable  
ADP17201  
Not applicable  
ADR3922  
Not applicable  
Not applicable  
16-bit INL  
Not applicable  
12-bit INL  
Not applicable  
Not applicable  
1 The input range of the ADP1720 is up to 28 V.  
2 The input range of the ADR392 is up to 15 V.  
Rev. D | Page 24 of 36  
 
 
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
The current and voltage are output on separate pins and cannot  
be output simultaneously. This allows the user to tie both the  
current and voltage output pins together and configure the end  
system as a single channel output.  
CURRENT OUTPUT ARCHITECTURE  
The voltage input from the analog input VIN pin (0 V to 4.096 V  
for AD5750 and 0 V to 2.5 V for the AD5750-1/AD5750-2) is  
either converted to a current (see Figure 53), which is then  
mirrored to the supply rail so that the application simply sees  
a current source output with respect to an internal reference  
voltage, or it is buffered and scaled to output a software-selectable  
unipolar or bipolar voltage range (see Figure 54). The reference  
is used to provide internal offsets for range and gain scaling.  
The selectable output range is programmable through the  
digital interface.  
Driving Large Capacitive Loads  
The voltage output amplifier is capable of driving capacitive loads  
of up to 1 µF with the addition of a nonpolarized compensation  
capacitor between the COMP1 and COMP2 pins.  
Without the compensation capacitor, up to 20 nF capacitive loads  
can be driven. Care should be taken to choose an appropriate  
value for the CCOMP capacitor. This capacitor, while allowing the  
AD5750/AD5750-1/AD5750-2 to drive higher capacitive loads  
and reduce overshoot, increases the settling time of the part  
and, therefore, affects the bandwidth of the system. Considered  
values of this capacitor should be in the range 100 pF to 4 nF,  
depending on the trade-off required between settling time,  
overshoot, and bandwidth.  
RANGE DECODE  
FROM INTERFACE  
R2  
R3  
V
DD  
IOUT  
RANGE  
SCALING  
VIN  
REXT1  
REXT2  
IOUT  
VREF  
R
SET  
Vx  
POWER-ON STATE OF AD5750/AD5750-1/AD5750-2  
V
SS  
On power-up, the AD5750/AD5750-1/AD5750-2 sense whether  
hardware or software mode is loaded and set the power-up  
conditions accordingly.  
R1  
R4  
IOUT  
OPEN FAULT  
In software SPI mode, the power-up state of the output is  
dependent on the state of the CLEAR pin. If the CLEAR pin is  
pulled high, the part powers up, driving an active 0 V on the  
output. If the CLEAR pin is pulled low, the part powers up with  
the voltage output channel in tristate mode. In both cases, the  
current output channel powers up in the tristate condition (0 mA).  
This allows the voltage and current outputs to be connected  
together, if desired.  
Figure 53. Current Output Configuration  
RANGE DECODE  
FROM INTERFACE  
VSENSE+  
VOUT  
VIN  
(0V TO 4.096V)  
VOUT RANGE  
SCALING  
VREF  
VOUT  
SHORT FAULT  
VSENSE–  
Figure 54. Voltage Output  
To put the part into normal operation, the user must set the  
OUTEN bit in the control register to enable the output and, in  
the same write, set the output range configuration using the R3  
to R0 range bits. If the CLEAR pin is still high (active) during  
this write, the part automatically clears to its normal clear state  
as defined by the programmed range and by the CLRSEL pin or  
the CLRSEL bit (see the Asynchronous Clear (CLEAR) section  
for more details). To operate the part in normal mode, take the  
CLEAR pin low.  
DRIVING INDUCTIVE LOADS  
When driving inductive or poorly defined loads, connect a 0.01 µF  
capacitor between IOUT and GND. This ensures stability with  
loads beyond 50 mH. There is no maximum capacitance limit.  
The capacitive component of the load may cause slower settling.  
Voltage Output Amplifier  
The voltage output amplifier is capable of generating both unipolar  
and bipolar output voltages. It is capable of driving a load of 1 kΩ  
in parallel with 1.2 µF (with an external compensation capacitor  
on the COMP1 and COMP2 pins). The source and sink capabilities  
of the output amplifier can be seen in Figure 16. The slew rate  
is 2 V/µs.  
The CLEAR pin is typically driven directly from a microcontroller.  
In cases where the power supply for the AD5750/AD5750-1/  
AD5750-2 supply may be independent of the microcontroller  
power supply, connect a weak pull-up resistor to DVCC or a pull-  
down resistor to ground to ensure that the correct power-up  
condition is achieved independent of the microcontroller. A  
10 kΩ pull-up/pull-down resistor on the CLEAR pin should be  
sufficient for most applications.  
Internal to the device, there is a 2.5 MΩ resistor connected  
between the VOUT and VSENSE+ pins and, similarly, between  
the VSENSE− pin and the internal device ground. If a fault  
condition occurs, these resistors act to protect the AD5750/  
AD5750-1/AD5750-2 by ensuring that the amplifier loop is closed  
so that the part does not enter into an open-loop condition.  
If hardware mode is selected, the part powers up to the conditions  
defined by the R3 to R0 range bits and the status of the OUTEN  
or CLEAR pin. It is recommended to keep the output disabled  
when powering up the part in hardware mode.  
The VSENSE− pin can work in a common-mode range of 3 V  
with respect to the remote load ground point.  
Rev. D | Page 25 of 36  
 
 
 
 
 
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
DEFAULT REGISTERS AT POWER-ON  
OUTEN  
The AD5750/AD5750-1/AD5750-2 power-on-reset circuit  
ensures that all registers are loaded with zero code.  
In software mode, the output can be enabled or disabled using  
the OUTEN bit in the control register. When the output is  
disabled, both the current and voltage channels go into tristate.  
The user must set the OUTEN bit to enable the output and  
simultaneously set the output range configuration.  
In software SPI mode, the part powers up with all outputs  
disabled (OUTEN bit = 0). The user must set the OUTEN bit in  
the control register to enable the output and, in the same write,  
to set the output range configuration using the R3 to R0 bits.  
In hardware mode, the output can be enabled or disabled using  
the OUTEN pin. When the output is disabled, both the current  
and voltage channels go into tristate. The user must write to the  
OUTEN pin to enable the output. It is recommended that the  
output be disabled when changing the ranges.  
If hardware mode is selected, the part powers up to the  
conditions defined by the R3 to R0 bits and the status of the  
OUTEN pin. It is recommended to keep the output disabled  
when powering up the part in hardware mode.  
SOFTWARE CONTROL  
RESET FUNCTION  
Software control is enabled by connecting the HW SELECT pin  
to ground. In software mode, the AD5750/AD5750-1/AD5750-2  
are controlled over a versatile 3-wire serial interface that operates at  
clock rates up to 50 MHz. It is compatible with SPI, QSPI™,  
MICROWIRE, and DSP standards.  
RESET  
In software mode, the part can be reset using the  
pin  
(active low) or the reset bit (reset = 1). A reset disables both the  
current and voltage outputs to their power-on condition. The  
user must write to the OUTEN bit to enable the output and, in  
RESET  
the same write, to set the output range configuration. The  
pin is a level-sensitive input; the part stays in reset mode as long  
RESET  
Input Shift Register  
as the  
pin is low. The reset bit clears to 0 following a  
The input shift register is 16 bits wide. Data is loaded into the  
device MSB first as a 16-bit word under the control of the serial  
clock input, SCLK. Data is clocked in on the falling edge of SCLK.  
The input shift register consists of 16 control bits, as shown in  
Table 7. The timing diagram for this write operation is shown in  
Figure 2. The first three bits of the input shift register are used to  
set the hardware address of the AD5750/AD5750-1/AD5750-2  
device on the printed circuit board (PCB). Up to eight devices  
can be addressed per board.  
reset command to the control register.  
In hardware mode, there is no reset. If using the part in hardware  
RESET  
mode, tie the  
pin high.  
Bit D11, Bit D1, and Bit D0 must always be set to 0 during any  
write sequence.  
Table 7. Input Shift Register Contents for a Write Operation—Control Register  
MSB  
LSB  
D0  
0
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
A2  
A1  
A0  
R/W  
0
R3  
R2  
R1  
R0  
CLRSEL  
OUTEN  
Clear  
RSET  
Reset  
0
Table 8. Input Shift Register Descriptions  
Bit  
Description  
A2, A1, A0  
Used in association with the AD2, AD1, and AD0 external pins to determine which part is being addressed by the system  
controller.  
A2  
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
Function  
Addresses part with Pin AD2 = 0, Pin AD1 = 0, Pin AD0 = 0.  
Addresses part with Pin AD2 = 0, Pin AD1 = 0, Pin AD0 = 1.  
Addresses part with Pin AD2 = 0, Pin AD1 = 1, Pin AD0 = 0.  
Addresses part with Pin AD2 = 0, Pin AD1 = 1, Pin AD0 = 1.  
Addresses part with Pin AD2 = 1, Pin AD1 = 0, Pin AD0 = 0.  
Addresses part with Pin AD2 = 1, Pin AD1 = 0, Pin AD0 = 1.  
Addresses part with Pin AD2 = 1, Pin AD1 = 1, Pin AD0 = 0.  
Addresses part with Pin AD2 = 1, Pin AD1 = 1, Pin AD0 = 1.  
R/W  
Indicates a read from or a write to the addressed register.  
Rev. D | Page 26 of 36  
 
 
 
 
 
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
Bit  
Description  
Selects the output configuration in conjunction with RSET.  
RSET R3 Output Configuration  
R3, R2, R1, R0  
R2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
R1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
R0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
4 mA to 20 mA (external 15 kΩ current sense resistor).  
0 mA to 20 mA (external 15 kΩ current sense resistor).  
0 mA to 24 mA (external 15 kΩ current sense resistor).  
20 mA (external 15 kΩ current sense resistor).  
24 mA (external 15 kΩ current sense resistor).  
0 V to 5 V.  
0 V to 10 V.  
5 V.  
10 V.  
0 V to 6.0 V (20% overrange).  
0 V to 12.0 V (20% overrange).  
6.0 V (20% overrange).  
12.0 V (20% overrange).  
2.5 V.  
Not applicable; if selected, output drives between 0 V and −1 V.  
Not applicable; if selected, output drives between 0 V and −1 V.  
4 mA to 20 mA (internal current sense resistor).  
0 mA to 20 mA (internal current sense resistor).  
0 mA to 24 mA (internal current sense resistor).  
20 mA (internal current sense resistor).  
24 mA (internal current sense resistor).  
0 V to 5 V.  
0 V to 10 V.  
5 V.  
10 V.  
0 V to 6.0 V (20% overrange).  
0 V to 12.0 V (20% overrange).  
6.0 V (20% overrange).  
12.0 V (20% overrange).  
3.92 mA to 20.4 mA (internal current sense resistor).  
0 mA to 20.4 mA (internal current sense resistor).  
0 mA to 24.5 mA (internal current sense resistor).  
CLRSEL  
Sets clear mode to zero scale or midscale. See the Asynchronous Clear (CLEAR) section.  
CLRSEL  
Function  
0
1
Clear to 0 V.  
Clear to midscale in unipolar mode; clear to zero scale in bipolar mode.  
OUTEN  
Clear  
Output enable bit. This bit must be set to 1 to enable the outputs.  
Software clear bit, active high.  
RSET  
Select internal/external current sense resistor.  
RSET  
Function  
1
0
Select internal current sense resistor; used with R3 to R0 bits to select range.  
Select external current sense resistor; used with R3 to R0 bits to select range.  
Reset  
Resets the part to its power-on state.  
Rev. D | Page 27 of 36  
AD5750/AD5750-1/AD5750-2  
Data Sheet  
Readback Operation  
In hardware mode, there is no status register. The fault conditions  
(open circuit, short circuit, and overtemperature) are available  
on the IFAULT, VFAULT, and TEMP pins. If any one of these  
fault conditions are set, a low is asserted on the specific fault pin.  
IFAULT, VFAULT, and TEMP are open-drain outputs and,  
therefore, can be connected together to allow the user to generate  
one interrupt to the system controller to communicate a fault.  
If hardwired in this way, it is not possible to isolate which fault  
occurred in the system.  
Readback mode is activated by selecting the correct device address  
(A2, A1, A0) and then setting the R/ bit to 1. By default, the  
SDO pin is disabled. After having addressed the AD5750/  
AD5750-1/AD5750-2 for a read operation, setting R/ to 1  
enables the SDO pin and SDO data is clocked out on the fifth  
rising edge of SCLK. After data is clocked out on SDO, a rising  
W
W
SYNC  
edge on  
disables (tristate) the SDO pin again. Status  
register data (see Table 9) and control register data are both  
available during the same read cycle.  
TRANSFER FUNCTION  
The AD5750/AD5750-1/AD5750-2 consist of an internal signal  
conditioning block that maps the analog input voltage to a  
programmed output range. The available analog input ranges are  
0 V to 4.096 V (AD5750) and 0 V to 2.5 V (AD5750-1/AD5750-2).  
The status bits comprise four read-only bits. They are used to  
notify the user of specific fault conditions that occur, such as an  
open circuit or short circuit on the output, an overtemperature  
error, or an interface error. If any of these fault conditions occur,  
a hardware FAULT is also asserted low, which can be used as a  
hardware interrupt to the controller.  
For all ranges, both current and voltage, the AD5750, AD5750-1,  
and AD5750-2 implement a straight linear mapping function,  
where 0 V maps to the lower end of the selected range and 4.096 V  
(or 2.5 V for AD5750-1/AD5750-2) maps to the upper end of the  
selected range.  
See the Detailed Description of Features section for a full  
explanation of fault conditions.  
HARDWARE CONTROL  
Hardware control is enabled by connecting the HW SELECT  
pin to DVCC. In this mode, the R3, R2, R1, and R0 pins, in  
conjunction with the RSET pin, are used to configure the  
output range per Table 8.  
Table 9. Input Shift Register Contents for a Read Operation—Status Register  
MSB  
LSB  
D0  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6  
D5  
D4  
D3  
D2  
D1  
A2  
A1  
A0  
1
0
R3  
R2 R1 R0 CLRSEL OUTEN RSET PEC  
Error  
OVER  
TEMP  
IOUT  
Fault  
VOUT  
Fault  
Table 10. Status Bit Options  
Bit  
Description  
PEC Error  
OVER TEMP  
IOUT Fault  
VOUT Fault  
This bit is set if there is an interface error detected by CRC-8 error checking. See the Detailed Description of Features section.  
This bit is set if the AD5750/AD5750-1/AD5750-2 core temperature exceeds approximately 150°C.  
This bit is set if there is an open circuit on the IOUT pin.  
This bit is set if there is a short circuit on the VOUT pin.  
Rev. D | Page 28 of 36  
 
 
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
DETAILED DESCRIPTION OF FEATURES  
circuitry that develops the fault output avoids using a  
comparator with window limits because this requires an  
actual output error before the fault output becomes active.  
Instead, the signal is generated when the internal amplifier  
in the output stage has less than approximately 1 V of  
remaining drive capability. Thus, the fault output activates  
slightly before the compliance limit is reached. Because the  
comparison is made within the feedback loop of the output  
amplifier, the output accuracy is maintained by its open-  
loop gain, and an output error does not occur before the  
fault output becomes active. If this fault is detected, the  
IFAULT pin is forced low.  
A short is detected on the voltage output pin (VOUT). The  
short-circuit current is limited to 15 mA. If this fault is  
detected, the VFAULT pin is forced low.  
The core temperature of the AD5750/AD5750-1/AD5750-2  
exceeds approximately 150°C. If this fault is detected, the  
TEMP pin is forced low.  
OUTPUT FAULT ALERT—SOFTWARE MODE  
In software mode, the AD5750/AD5750-1/AD5750-2 are equipped  
with one FAULT pin; this is an open-drain output allowing several  
AD5750/AD5750-1/AD5750-2 devices to be connected together  
to one pull-up resistor for global fault detection. In software mode,  
the FAULT pin is forced active low by any one of the following  
fault scenarios:  
The voltage at IOUT attempts to rise above the compliance  
range due to an open-loop circuit or insufficient power supply  
voltage. The internal circuitry that develops the fault output  
avoids using a comparator with window limits because this  
requires an actual output error before the fault output becomes  
active. Instead, the signal is generated when the internal  
amplifier in the output stage has less than approximately  
1 V of remaining drive capability. Thus, the fault output  
activates slightly before the compliance limit is reached.  
Because the comparison is made within the feedback loop  
of the output amplifier, the output accuracy is maintained  
by its open-loop gain, and an output error does not occur  
before the fault output becomes active.  
VOLTAGE OUTPUT SHORT-CIRCUIT PROTECTION  
Under normal operation, the voltage output sinks and sources  
up to 12 mA and maintains specified operation. The maximum  
current that the voltage output delivers is 15 mA; this is the  
short-circuit current.  
A short is detected on the voltage output pin (VOUT). The  
short-circuit current is limited to 15 mA.  
An interface error is detected due to PEC failure. See the  
Packet Error Checking section.  
The core temperature of the AD5750/AD5750-1/AD5750-2  
exceeds approximately 150°C.  
ASYNCHRONOUS CLEAR (CLEAR)  
CLEAR is an active high clear that allows the voltage output to  
be cleared to either zero-scale code or midscale code and is  
user-selectable via the CLRSEL pin or the CLRSEL bit of the input  
shift register, as described in Table 8. (The clear select feature is  
a logical OR function of the CLRSEL pin and the CLRSEL bit).  
The current loop output clears to the bottom of its programmed  
range. When the CLEAR signal is returned low, the output returns  
to its programmed value or to a new programmed value. A clear  
operation can also be performed via the clear command in the  
control register (see Table 11).  
OUTPUT FAULT ALERT—HARDWARE MODE  
In hardware mode, the AD5750/AD5750-1/AD5750-2 are  
equipped with three fault pins: VFAULT, IFAULT, and TEMP.  
These are open-drain outputs allowing several AD5750/AD5750-1/  
AD5750-2 devices to be connected together to one pull-up resistor  
for global fault detection. In hardware control mode, these fault  
pins are forced active by any one of the following fault scenarios:  
An open circuit is detected. The voltage at IOUT attempts  
to rise above the compliance range, due to an open-loop  
circuit or insufficient power supply voltage. The internal  
Table 11. CLRSEL Options  
Output Clear Value  
CLRSEL Unipolar Output Voltage Range Unipolar Current Output Range  
Bipolar Output Range Bipolar Current Output Range  
0
0 V  
Zero scale; for example,  
Negative full scale  
Zero scale; for example,  
4 mA on the 4 mA to 20 mA range,  
0 mA on the 0 mA to 20 mA range  
−24 mA on the 24 mA range  
1
Midscale  
Midscale; for example,  
0 V  
Midscale; for example,  
12 mA on the 4 mA to 20 mA range,  
10 mA on the 0 mA to 20 mA range  
0 mA on the 24 mA range  
Rev. D | Page 29 of 36  
 
 
 
 
 
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
PACKET ERROR CHECKING  
EXTERNAL CURRENT SETTING RESISTOR  
To verify that data has been received correctly in noisy environ-  
ments, the AD5750/AD5750-1/AD5750-2 offer the option of error  
checking based on an 8-bit cyclic redundancy check (CRC-8).  
The device controlling the AD5750/AD5750-1/AD5750-2 should  
generate an 8-bit frame check sequence using the following  
polynomial:  
Referring to Figure 1, RSET is an internal sense resistor and is  
part of the voltage-to-current conversion circuitry. The nominal  
value of the internal current sense resistor is 15 kΩ. To allow for  
overrange capability in current mode, the user can also select  
the internal current sense resistor to be 14.7 kΩ, giving a nominal  
2% overrange capability. This feature is available in the 0 mA to  
+20 mA, +4 mA to +20 mA, and 20 mA current ranges.  
C(x) = x8 + x2 + x1 + 1  
The stability of the output current value over temperature is  
dependent on the stability of the value of RSET. As a method of  
improving the stability of the output current over temperature,  
an external low drift resistor can be connected to the REXT1  
and REXT2 pins of the AD5750/AD5750-1/AD5750-2, which  
can be used instead of the internal resistor. The external resistor  
is selected via the input shift register. If the external resistor option  
is not used, leave the REXT1 and REXT2 pins floating.  
This is added to the end of the data-word, and 24 data bits are  
SYNC  
sent to the AD5750/AD5750-1/AD5750-2 before taking  
high. If the AD5750/AD5750-1/AD5750-2 receive a 24-bit data  
SYNC  
frame, the parts perform the error check when  
goes high.  
If the check is valid, the data is written to the selected register. If  
the error check fails, the FAULT pin goes low, and Bit D3 of the  
status register is set. After reading this register, this error flag is  
cleared automatically, and the FAULT pin goes high again.  
PROGRAMMABLE OVERRANGE MODES  
UPDATE ON SYNC HIGH  
SYNC  
The AD5750/AD5750-1/AD5750-2 contain an overrange mode  
for most of the available ranges. The overranges are selected by  
configuring the R3, R2, R1, and R0 bits (or pins) accordingly.  
SCLK  
D15  
D0  
In voltage mode, the overranges are typically 20%, providing  
programmable output ranges of 0 V to +6 V, 0 V to +12 V, 6 V,  
and 12 V. The analog input remains the same.  
(MSB)  
(LSB)  
16-BIT DATA  
SDIN  
16-BIT DATA TRANSER—NO ERROR CHECKING  
In current mode, the overranges are typically 2%. In current  
mode, the overrange capability is available on only three ranges,  
0 mA to 20 mA, 0 mA to 24 mA, and 4 mA to 20 mA. For these  
ranges, the analog input also remains the same (0 V to 4.096 V  
for the AD5750, and 0 V to 2.5 V for the AD5750-1/AD5750-2).  
UPDATE AFTER SYNC HIGH  
ONLY IF ERROR CHECK PASSED  
SYNC  
SCLK  
SDIN  
D23  
(MSB)  
D8  
(LSB)  
D7  
D0  
8-BIT FCS  
16-BIT DATA  
FAULT GOES LOW IF  
ERROR CHECK FAILS  
FAULT  
16-BIT DATA TRANSER WITH ERROR CHECKING  
Figure 55. PEC Error Checking Timing  
Rev. D | Page 30 of 36  
 
 
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
APPLICATIONS INFORMATION  
TRANSIENT VOLTAGE PROTECTION  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure the  
rated performance. The PCB on which the AD5750/AD5750-1/  
AD5750-2 are mounted should be designed so that the AD5750/  
AD5750-1/AD5750-2 lie on the analog plane.  
The AD5750/AD5750-1/AD5750-2 contain ESD protection  
diodes that prevent damage from normal handling. The industrial  
control environment can, however, subject I/O circuits to much  
higher transients. To protect the AD5750/AD5750-1/AD5750-2  
from excessively high voltage transients, external power diodes  
and a surge current limiting resistor may be required, as shown  
in Figure 56. The constraint on the resistor value is that during  
normal operation the output level at IOUT must remain within  
its voltage compliance limit of AVDD − 2.75 V and the two  
protection diodes and resistor must have appropriate power  
ratings. Further protection can be added with transient voltage  
suppressors, if needed.  
The AD5750/AD5750-1/AD5750-2 should have ample supply  
bypassing of 10 µF in parallel with 0.1 µF on each supply located  
as close to the package as possible, ideally right up against the  
device. The 10 µF capacitors are the tantalum bead type. The  
0.1 µF capacitor should have low effective series resistance  
(ESR) and low effective series inductance (ESI) such as the  
common ceramic types, which provide a low impedance path to  
ground at high frequencies to handle transient currents due to  
internal logic switching.  
AV  
DD  
In systems where there are many devices on one board, it is often  
useful to provide some heat sinking capability to allow the power  
to dissipate easily.  
AV  
DD  
AD5750/  
AD5750-1/  
AD5750-2  
R
P
IOUT  
R
LOAD  
The AD5750/AD5750-1/AD5750-2 have an exposed paddle  
beneath the device. Connect this paddle to the AVSS supply of  
the part. For optimum performance, use special considerations to  
design the motherboard and to mount the package. For enhanced  
thermal, electrical, and board level performance, solder the  
exposed paddle on the bottom of the package to the corresponding  
thermal land paddle on the PCB. Design thermal vias into the  
PCB land paddle area to further improve heat dissipation.  
AV  
SS  
Figure 56. Output Transient Voltage Protection  
THERMAL CONSIDERATIONS  
It is important to understand the effects of power dissipation  
on the package and how it affects junction temperature. The  
internal junction temperature should not exceed 125°C. The  
AD5750/AD5750-1/AD5750-2 are packaged in a 32-lead, 5 mm ×  
5 mm LFCSP package. The thermal impedance, θJA, is 28°C/W. It  
is important that the devices are not being operated under  
conditions that cause the junction temperature to exceed its  
junction temperature.  
The AVSS plane on the device can be increased (as shown in  
Figure 57) to provide a natural heat sinking effect.  
AD5750/  
AD5750-1/  
AD5750-2  
Worst-case conditions occur when the AD5750/AD5750-1/  
AD5750-2 are operated from the maximum AVDD (26.4 V) and  
are driving the maximum current (24 mA) directly to ground.  
The quiescent current of the AD5750/AD5750-1/AD5750-2  
should also be taken into account, nominally ~4 mA.  
AV  
SS  
PLANE  
The following calculations estimate maximum power dissipation  
under these worst-case conditions and determine the maximum  
ambient temperature:  
BOARD  
Figure 57. Paddle Connection to Board  
Power Dissipation = 26.4 V × 28 mA = 0.7392 W  
Temperature Increase = 28°C × 0.7392 W = 20.7°C  
Maximum Ambient Temperature = 125°C − 20.7°C = 104.3°C  
These figures assume that proper layout and grounding techniques  
are followed to minimize power dissipation, as outlined in the  
Layout Guidelines section.  
Rev. D | Page 31 of 36  
 
 
 
 
 
 
AD5750/AD5750-1/AD5750-2  
Data Sheet  
GALVANICALLY ISOLATED INTERFACE  
MICROPROCESSOR INTERFACING  
In many process control applications, it is necessary to provide  
an isolation barrier between the controller and the unit being  
controlled to protect and isolate the controlling circuitry from  
any hazardous common-mode voltages that may occur. The  
iCoupler® family of products from Analog Devices, Inc., provides  
voltage isolation in excess of 5.0 kV. The serial loading structure  
of the AD5750/AD5750-1/AD5750-2 makes it ideal for isolated  
interfaces because the number of interface lines is kept to a  
minimum. Figure 58 shows a 4-channel isolated interface  
using an ADuM1400. For further information, visit  
Microprocessor interfacing to the AD5750/AD5750-1/AD5750-2  
is via a serial bus that uses a protocol that is compatible with  
microcontrollers and DSP processors. The communication  
channel is a 3-wire (minimum) interface consisting of a clock  
SYNC  
signal, a data signal, and a  
signal. The AD5750/AD5750-1/  
AD5750-2 require a 16-bit data-word with data valid on the  
falling edge of SCLK.  
www.analog.com/icouplers.  
CONTROLLER  
ADuM14001  
V
V
V
V
V
V
V
V
OA  
OB  
OC  
OD  
IA  
TO  
SERIAL  
SCLK  
CLOCK OUT  
IB  
IC  
ID  
TO  
SDIN  
SERIAL  
DATA OUT  
TO  
SYNC  
SYNC OUT  
TO  
CLEAR  
CONTROL OUT  
1
ADDITIONAL PINS OMITTED FOR CLARITY.  
Figure 58. Isolated Interface  
Rev. D | Page 32 of 36  
 
 
 
Data Sheet  
AD5750/AD5750-1/AD5750-2  
OUTLINE DIMENSIONS  
5.00  
BSC SQ  
0.60 MAX  
0.60 MAX  
PIN 1  
32  
25  
INDICATOR  
1
24  
0.50  
BSC  
PIN 1  
INDICATOR  
4.75  
BSC SQ  
3.25  
3.10 SQ  
2.95  
EXPOSED  
PAD  
17  
8
16  
9
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
3.50 REF  
0.80 MAX  
0.65 TYP  
12° MAX  
1.00  
0.85  
0.80  
0.05 MAX  
0.02 NOM  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
COPLANARITY  
0.08  
0.30  
0.25  
0.18  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2  
Figure 59. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]  
5 mm × 5 mm Body, Very Thin Quad  
(CP-32-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Analog Input External  
Temperature  
Package  
Option  
Model1  
TUE Accuracy (%)  
Range (V)  
0 to 4.096  
0 to 4.096  
0 to 4.096  
0 to 4.096  
0 to 4.096  
0 to 4.096  
Reference (V) Range  
Package Description  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
Evaluation Board  
AD5750ACPZ  
0.3  
0.3  
0.3  
0.1  
0.1  
0.1  
4.096  
4.096  
4.096  
4.096  
4.096  
4.096  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
AD5750ACPZ-REEL  
AD5750ACPZ-REEL7  
AD5750BCPZ  
AD5750BCPZ-REEL  
AD5750BCPZ-REEL7  
EVAL-AD5750EBZ  
AD5750-1ACPZ  
AD5750-1ACPZ-REEL  
AD5750-1ACPZ-REEL7  
AD5750-1BCPZ  
AD5750-1BCPZ-REEL  
AD5750-1BCPZ-REEL7  
AD5750-2BCPZ  
0.3  
0.3  
0.3  
0.1  
0.1  
0.1  
0.1  
0.1  
0 to 2.5  
0 to 2.5  
0 to 2.5  
0 to 2.5  
0 to 2.5  
0 to 2.5  
0 to 2.5  
0 to 2.5  
1.25  
1.25  
1.25  
1.25  
1.25  
1.25  
2.5  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
32-Lead LFCSP_VQ  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
CP-32-2  
AD5750-2BCPZ-RL7  
2.5  
1 Z = RoHS Compliant Part.  
Rev. D | Page 33 of 36  
 
 
 
AD5750/AD5750-1/AD5750-2  
NOTES  
Data Sheet  
Rev. D | Page 34 of 36  
Data Sheet  
NOTES  
AD5750/AD5750-1/AD5750-2  
Rev. D | Page 35 of 36  
AD5750/AD5750-1/AD5750-2  
NOTES  
Data Sheet  
©2009–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07268-0-4/12(D)  
Rev. D | Page 36 of 36  

相关型号:

AD5750-1ACPZ-REEL

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-1ACPZ-REEL7

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-1BCPZ

Industrial Current/Voltage Output Driver
ADI

AD5750-1BCPZ-REEL

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-1BCPZ-REEL7

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750-2

Industrial Current/Voltage Output Driver
ADI

AD5750-2BCPZ

Industrial Current/Voltage Output Driver
ADI

AD5750-2BCPZ-RL7

Industrial Current/Voltage Output Driver
ADI

AD5750ACPZ

Industrial Current/Voltage Output Driver, Programmable Ranges
ADI

AD5750ACPZ-REEL

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750ACPZ-REEL7

Industrial Current/Voltage Output Driver with Programmable Ranges
ADI

AD5750BCPZ

Industrial Current/Voltage Output Driver, Programmable Ranges
ADI