AD5691RBRMZ [ADI]

Tiny 12-Bit I<sup>2</sup>C nanoDAC+, with ±1 LSB INL and 2 ppm/&deg;C Reference;
AD5691RBRMZ
型号: AD5691RBRMZ
厂家: ADI    ADI
描述:

Tiny 12-Bit I<sup>2</sup>C nanoDAC+, with ±1 LSB INL and 2 ppm/&deg;C Reference

光电二极管 转换器
文件: 总26页 (文件大小:911K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Tiny 16-/14-/12-Bit I2C nanoDAC+, with  
2 LSB INL (16-Bit) and 2 ppm/°C Reference  
AD5693R/AD5692R/AD5691R/AD5693  
FUNCTIONAL BLOCK DIAGRAM  
Data Sheet  
FEATURES  
V
V
V
DD  
LOGIC  
REF  
Ultrasmall package: 2 mm × 2 mm, 8-lead LFCSP  
High relative accuracy (INL): 2 LSB maximum at 16 bits  
AD5693R/AD5692R/AD5691R  
Low drift, 2.5 V reference: 2 ppm/°C typical  
Selectable span output: 2.5 V or 5 V  
AD5693  
POWER-ON  
RESET  
AD5693R/  
AD5692R/  
AD5691R  
2.5V  
REF  
LDAC  
REF  
DAC  
REGISTER  
OUTPUT  
BUFFER  
V
16-/14-/12-BIT  
DAC  
OUT  
RESET  
External reference only  
Selectable span output: VREF or 2 × VREF  
Total unadjusted error (TUE): 0.06% of FSR maximum  
Offset error: 1.5 mV maximum  
Gain error: 0.05 % of FSR maximum  
Low glitch: 0.1 nV-sec  
INPUT  
POWER-DOWN  
RESISTOR  
NETWORK  
CONTROL LOGIC  
CONTROL LOGIC  
SDA  
SCL  
A0  
GND  
High drive capability: 20 mA  
Low power: 1.2 mW at 3.3 V  
1.8 V VLOGIC compatible  
Figure 1. MSOP  
1
LDAC OR V  
OR RESET  
V
V
DD  
LOGIC  
REF  
Wide operating temperature range: −40°C to +105°C  
AD5693R/  
AD5692R/  
AD5691R/  
AD5693  
2
POWER-ON  
2.5V REF  
RESET  
APPLICATIONS  
Process controls  
REF  
DAC  
REGISTER  
OUTPUT  
BUFFER  
Data acquisition systems  
Digital gain and offset adjustment  
Programmable voltage sources  
Optical modules  
V
OUT  
16-/14-/12-BIT  
DAC  
INPUT  
CONTROL LOGIC  
POWER-DOWN  
CONTROL LOGIC  
RESISTOR  
NETWORK  
GENERAL DESCRIPTION  
The AD5693R/AD5692R/AD5691R/AD5693, members of the  
nanoDAC+® family, are low power, single-channel, 16-/14-/12-bit  
buffered voltage output DACs. The devices, except the AD5693,  
include an enabled by default internal 2.5 V reference, offering  
2 ppm/°C drift. The output span can be programmed to be 0 V to  
SDA  
SCL  
A0  
GND  
1
NOT ALL PINS AVAILABLE IN ALL 8-LEAD LFCSP MODELS.  
NOT AVAILABLE IN THE AD5693.  
2
Figure 2. LFCSP  
VREF or 0 V to 2 × VREF. All devices operate from a single 2.7 V to  
5.5 V supply and are guaranteed monotonic by design. The  
devices are available in a 2.00 mm × 2.00 mm, 8-lead LFCSP or  
a 10-lead MSOP.  
Table 1. Related Devices  
Interface  
Reference 16-Bit  
14-Bit  
12-Bit  
SPI  
Internal  
External  
Internal  
External  
AD5683R AD5682R AD5681R  
AD5683  
The internal power-on reset circuit ensures that the DAC register  
is written to zero scale at power-up while the internal output  
buffer is configured in normal mode. The AD5693R/AD5692R/  
AD5691R/AD5693 contain a power-down mode that reduces the  
current consumption of the device to 2 µA (maximum) at 5 V and  
provides software selectable output loads.  
I2C  
AD5693R AD5692R AD5691R  
AD5693  
PRODUCT HIGHLIGHTS  
1. High relative accuracy (INL): 2 LSB maximum  
(AD5693R/AD5693, 16-bit).  
2. Low drift, 2.5 V on-chip reference: 2 ppm/°C typical and  
5 ppm/°C maximum temperature coefficient.  
3. 2 mm × 2 mm, 8-lead LFCSP and 10-lead MSOP.  
The AD5693R/AD5692R/AD5691R/AD5693 use an I2C  
interface. Some device options also include an asynchronous  
RESET  
pin and a VLOGIC pin, allowing 1.8 V compatibility.  
Rev. D  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2014–2017 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Digital-to-Analog Converter .................................................... 19  
Transfer Function....................................................................... 19  
DAC Architecture....................................................................... 19  
Serial Interface ................................................................................ 20  
I2C Serial Data Interface............................................................ 20  
I2C Address.................................................................................. 20  
Write Operation.......................................................................... 20  
Read Operation........................................................................... 22  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 5  
Timing Characteristics ................................................................ 5  
Absolute Maximum Ratings............................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configurations and Function Descriptions ........................... 8  
Typical Performance Characteristics ........................................... 12  
Terminology .................................................................................... 18  
Theory of Operation ...................................................................... 19  
LDAC  
Load DAC (Hardware  
Pin)........................................... 23  
........................................................................ 23  
RESET  
Hardware  
Thermal Hysteresis .................................................................... 23  
Power-Up Sequence ................................................................... 23  
Recommended Regulator.......................................................... 24  
Layout Guidelines....................................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 26  
REVISION HISTORY  
2/2017—Rev. C to Rev. D  
5/2014—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to Specifications Section.................................................. 3  
Changes to VLOGIC Parameter, Table 2 ............................................ 4  
Changes to AC Characteristics Section and Timing  
Characteristics Section..................................................................... 5  
Changes to Table 5............................................................................ 7  
Added AD5693 ...................................................................Universal  
Changes to Features, General Description, Figure 2, Table 1,  
and Product Highlights ....................................................................1  
Added AD5693 Parameter, Table 1 and AD5693 Parameter,  
Table 1 .................................................................................................3  
Changes to Endnote 1, Specifications Section, Table 1 ................4  
Change to Total Harmonic Distortion, AC Characteristics,  
Table 3 and Endnote 2, Table 3........................................................5  
Changes to Endnote 7, Timing Characteristics, Table 4 ..............5  
Change to Pin 9, Description, Table 7 ............................................8  
Changes to Figure 6 and Table 8......................................................9  
Change to Figure 11 ....................................................................... 10  
Change to Figure 18 ....................................................................... 11  
Change to the External Reference Section.................................. 17  
Change to Figure 46 ....................................................................... 19  
Change to Figure 48 ....................................................................... 20  
Change to Figure 50 ....................................................................... 21  
Changes to Ordering Guide.......................................................... 23  
RESET  
RESET  
Changes to  
Changes to  
Pin Description, Table 7................................. 8  
Pin Description, Table 10 ............................ 11  
Changes to Figure 49...................................................................... 22  
5/2016—Rev. B to Rev. C  
Changed VLOGIC = 1.8 V to 5.5 V to VLOGIC = 1.8 V − 10% to 5 V +  
10% .................................................................................. Throughout  
Changes to Features Section............................................................ 1  
Changes to VLOGIC Parameter, Table 2 ............................................ 4  
Changes to Table 7............................................................................ 8  
Changes to Table 9.......................................................................... 10  
Changes to Terminology Section.................................................. 18  
2/2014—Revision 0: Initial Version  
11/2014—Rev. A to Rev. B  
Changes to Figure 2.......................................................................... 1  
Changes to Table 8............................................................................ 9  
Change to Figure 7 ......................................................................... 10  
Added Table 9; Renumbered Sequentially .................................. 10  
Added Figure 8; Renumbered Sequentially, and Table 10......... 11  
Added Recommended Regulator Section ................................... 24  
Changes to Ordering Guide .......................................................... 26  
Rev. D | Page 2 of 26  
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
SPECIFICATIONS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREF = 2.5 V to VDD − 0.2 V, VLOGIC = 1.62 V to 5.5 V, 40°C < TA < +105°C,  
unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE1  
AD5693R  
Resolution  
16  
Bits  
Relative Accuracy (INL)  
A Grade  
B Grade  
8
2
3
1
LSB  
LSB  
LSB  
LSB  
Gain = 2  
Gain = 1  
Differential Nonlinearity  
AD5692R  
Guaranteed monotonic by design  
Resolution  
14  
12  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5691R  
4
1
Guaranteed monotonic by design  
Guaranteed monotonic by design  
Resolution  
Bits  
Relative Accuracy  
A Grade  
B Grade  
Differential Nonlinearity  
AD5693  
2
1
1
LSB  
LSB  
LSB  
Resolution  
16  
Bits  
Relative Accuracy (INL)  
2
3
LSB  
LSB  
Gain = 2  
Gain = 1  
Differential Nonlinearity  
Zero Code Error  
Offset Error  
1
1.25  
1.5  
LSB  
mV  
mV  
Guaranteed monotonic by design  
All 0s loaded to DAC register  
Full-Scale Error  
Gain Error  
Total Unadjusted Error  
0.075  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
% of FSR  
µV/°C  
µV/°C  
ppm/°C  
mV/V  
All 1s loaded to DAC register  
0.05  
0.16  
0.14  
0.075  
0.06  
Internal reference, gain = 1  
Internal reference, gain = 2  
External reference, gain = 1  
External reference, gain = 2  
Zero Code Error Drift  
Offset Error Drift  
Gain Temperature Coefficient  
DC Power Supply Rejection Ratio  
OUTPUT CHARACTERISTICS  
Output Voltage Range  
1
1
1
0.2  
DAC code = midscale, VDD = 5 V 10%  
0
0
VREF  
2 × VREF  
V
V
Gain = 0  
Gain = 1  
Capacitive Load Stability  
2
nF  
RL = ∞  
10  
nF  
RL = 2 kΩ  
Resistive Load  
1
kΩ  
CL = 0 µF  
Load Regulation  
10  
10  
µV/mA  
µV/mA  
mA  
VDD = 5 V, DAC code = midscale, −30 mA ≤ IOUT ≤ +30 mA  
VDD = 3 V, DAC code = midscale, −20 mA ≤ IOUT ≤ +20 mA  
Short-Circuit Current  
Load Impedance at Rails2  
20  
50  
20  
Rev. D | Page 3 of 26  
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
REFERENCE OUTPUT  
Output Voltage  
Voltage Reference TC3  
2.4975  
2.5025  
V
At ambient temperature  
See the Terminology section  
A Grade  
B Grade  
5
2
20  
5
ppm/°C  
ppm/°C  
µV p-p  
nV/√Hz  
µF  
µV/mA  
µV/mA  
mA  
Output Impedance  
Output Voltage Noise  
Output Voltage Noise Density  
Capacitive Load Stability  
Load Regulation Sourcing  
Load Regulation Sinking  
Output Current Load Capability  
Line Regulation  
0.05  
16.5  
240  
5
50  
30  
5
80  
125  
25  
0.1 Hz to 10 Hz  
At ambient temperature, f = 10 kHz, CL = 10 nF  
RL = 2 kΩ  
At ambient temperature, VDD ≥ 3 V  
At ambient temperature  
VDD ≥ 3 V  
At ambient temperature  
First cycle  
µV/V  
ppm  
ppm  
Thermal Hysteresis  
Additional cycles  
REFERENCE INPUT  
Reference Current  
35  
57  
µA  
µA  
V
VREF = VDD = VLOGIC = 5.5 V, gain = 1  
VREF = VDD = VLOGIC = 5.5 V, gain = 2  
Reference Input Range4  
VDD  
Reference Input Impedance  
120  
60  
kΩ  
kΩ  
Gain = 1  
Gain = 2  
LOGIC INPUTS  
IIN, Input Current  
1
3
µA  
µA  
V
V
pF  
Per pin  
SDA and SCL pins  
VINL, Input Low Voltage4  
VINH, Input High Voltage4  
CIN, Pin Capacitance  
0.3 × VDD  
0.7 × VDD  
2
LOGIC OUTPUTS (SDA)4  
Output Low Voltage, VOL  
Output High Voltage, VOH  
Pin Capacitance  
0.4  
V
V
pF  
ISINK = 200 μA  
ISOURCE = 200 μA  
VDD − 0.4  
1.62  
4
POWER REQUIREMENTS  
5
VLOGIC  
ILOGIC  
5.5  
3
5.5  
5.5  
V
µA  
V
5
0.25  
VIH = VLOGIC or VIL = GND  
Gain = 1  
Gain = 2  
VIH = VDD, VIL = GND  
Internal reference enabled  
Internal reference disabled  
VDD  
2.7  
VREF + 1.5  
V
6
IDD  
Normal Mode7  
350  
110  
500  
180  
2
µA  
µA  
µA  
Power-Down Modes8  
1 Linearity calculated using a reduced code range: AD5693R/AD5693 (Code 512 to Code 65,535); AD5692R (Code 128 to Code 16,384); AD5691R (Code 32 to Code 4096).  
Output unloaded.  
2 When drawing a load current at either rail, the output voltage headroom, with respect to that rail, is limited by the 20 Ω typical channel resistance of the output  
devices; for example, when sinking 1 mA, the minimum output voltage with 20 Ω, 1 mA generates 20 mV. See Figure 36 for more details.  
3 Voltage reference temperature coefficient is calculated as per the box method. See the Terminology section for more information.  
4 Substitute VLOGIC for VDD if the device includes a VLOGIC pin.  
5 The VLOGIC pin is not available on all models.  
6 If the VLOGIC pin is not available, IDD = IDD + ILOGIC  
.
7 Interface inactive. DAC active. DAC output unloaded.  
8 DAC powered down.  
Rev. D | Page 4 of 26  
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREF = 2.5 V to VDD − 0.2 V, VLOGIC = 1.62 V to 5.5 V, 40°C < TA < +105°C,  
typical at 25°C, unless otherwise noted.  
Table 3.  
Parameter  
Typ Max Unit  
Conditions/Comments  
Output Voltage Settling Time1, 2  
5
7
µs  
Gain = 1  
Slew Rate  
0.7  
0.1  
0.1  
−80  
300  
6
90  
83  
80  
V/µs  
nV-s  
nV-s  
dB  
Digital-to-Analog Glitch Impulse1  
Digital Feedthrough1  
Total Harmonic Distortion1  
Output Noise Spectral Density1  
Output Noise  
1 LSB change around major carry, gain = 2  
At ambient temperature, BW = 20 kHz, VDD = 5 V, fOUT = 1 kHz  
nV/√Hz DAC code = midscale, 10 kHz  
µV p-p  
dB  
dB  
dB  
0.1 Hz to 10 Hz; internal reference  
SNR  
SFDR  
SINAD  
At ambient temperature, bandwidth (BW) = 20 kHz, VDD =5 V, fOUT = 1 kHz  
At ambient temperature, BW = 20 kHz, VDD =5 V, fOUT = 1 kHz  
At ambient temperature, BW = 20 kHz, VDD =5 V, fOUT = 1 kHz  
1 See the Terminology section.  
2 For the AD5693R/AD5693, to 2 LSB. For the AD5692R, to 1 LSB. For the AD5691R, to 0.5 LSB  
TIMING CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, VLOGIC = 1.62 V to 5.5 V, 40°C < TA < +105°C, unless otherwise noted.  
Table 4.  
Parameter1  
Min  
Typ  
Max  
Unit  
kHz  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
Description  
2
fSCL  
400  
Serial clock frequency  
SCL high time, tHIGH  
SCL low time, tLOW  
Data setup time, tSU; DAT  
t1  
t2  
t3  
0.6  
1.3  
100  
0
0.6  
0.6  
1.3  
0.6  
3
t4  
0.9  
Data hold time, tHD; DAT  
t5  
t6  
t7  
t8  
t9  
Setup time for a repeated start condition, tSU; STA  
Hold time (repeated) start condition, tHD; STA  
Bus free time between a stop and a start condition, tBUF  
Setup time for a stop condition, tSU; STO  
Rise time of SDA signal, tr  
Fall time of SDA signal, tf  
Rise time of SCL signal, tr  
Fall time of SCL signal, tf  
Pulse width of suppressed spike (not shown in Figure 3)  
LDAC falling edge to SCL falling edge  
LDAC pulse width (synchronous mode)  
LDAC pulse width (asynchronous mode)  
RESET pulse width  
20  
300  
300  
300  
300  
50  
4
t10  
20 × (VDD/5.5 V)  
20  
20 × (VDD/5.5 V)  
0
400  
400  
20  
75  
t11  
t12  
tSP  
4
5
t13  
t14  
t15  
t16  
6
tREF_POWER_UP  
tSHUTDOWN  
600  
Reference power-up (not shown in Figure 3)  
Exit shutdown (not shown in Figure 3)  
7
6
1 Maximum bus capacitance is limited to 400 pF. All input signals are specified with tR = tF = 1 ns/V (10% to 90% of VDD) and timed from a voltage level of (VIL + VIH)/2.  
2 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate; however, it has a negative effect on the  
EMC behavior of the device.  
3 The master should add at least 300 ns for the SDA signal (with respect to the VOH (min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.  
4 Substitute VLOGIC for VDD on devices that include a VLOGIC pin.  
5 Not applicable for standard mode.  
6 Expect the same timing when powering up the device after VDD is equal to 2.7 V.  
7 Time to exit power-down to normal mode of AD5693R/AD5692R/AD5691R/AD5693 operation.  
Rev. D | Page 5 of 26  
 
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
Timing Diagrams  
t12  
t11  
t6  
t8  
t2  
SCL  
SDA  
t5  
t1  
t10  
t9  
t3  
t4  
t7  
START  
OR  
REPEAT START  
CONDITION  
STOP  
CONDITION  
REPEAT START  
CONDITION  
Figure 3. I2C Serial Interface Timing Diagram  
SCL  
SDA  
ACK  
STOP  
CONDITION  
t14  
t13  
t15  
LDAC  
ASYNCHRONOUS  
DAC UPDATE  
SYNCHRONOUS  
DAC UPDATE  
t16  
RESET  
2
RESET  
LDAC  
Timing  
Figure 4. I C  
and  
Rev. D | Page 6 of 26  
 
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is defined by the JEDEC JESD51 standard, and the value is  
dependent on the test board and test environment.  
Table 5.  
Parameter  
VDD to GND  
VLOGIC to GND  
VOUT to GND  
Rating  
Table 6. Thermal Resistance1  
−0.3 V to +7 V  
−0.3 V to +7 V  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
−0.3 V to VDD + 0.3 V or +7 V  
(whichever is less)  
Package Type  
8-Lead LFCSP  
10-Lead MSOP  
θJA  
90  
135  
θJC  
25  
N/A  
Unit  
°C/W  
°C/W  
VREF to GND  
1 JEDEC 2S2P test board, still air (0 m/sec airflow).  
Digital Input Voltage to GND1  
ESD CAUTION  
Operating Temperature Range  
Industrial  
Storage Temperature Range  
Junction Temperature (TJ max)  
Power Dissipation  
−40°C to +105°C  
−65°C to +150°C  
135°C  
(TJ max − TA)/θJA  
1 Substitute VDD with VLOGIC on devices that include a VLOGIC pin.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. D | Page 7 of 26  
 
 
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
10  
V
DD  
OUT  
V
9
V
AD5693R/  
AD5691R  
LOGIC  
REF  
RESET  
LDAC  
GND  
8
SDA  
SCL  
A0  
TOP VIEW  
7
(Not to Scale)  
6
Figure 5. AD5693R/AD5691R Pin Configuration, 10-Lead MSOP  
Table 7. AD5693R/AD5691R Pin Function Descriptions, 10-Lead MSOP  
Pin No.  
Mnemonic  
Description  
1
2
3
VDD  
VLOGIC  
RESET  
Power Supply Input. These devices can be operated from 2.7 V to 5.5 V. Decouple the supply to GND.  
Digital Power Supply. Voltage ranges from 1.62 V to 5.5 V. Decouple the supply to GND.  
Hardware Reset Pin. The RESET input is low level sensitive. When RESET is low, the device is reset and external  
pins are ignored. The input and DAC registers are loaded with zero code value and control register loaded with  
default values. Tie this pin to VLOGIC if not used. If this pin is forced low at power-up, the power-on reset (POR)  
circuit does not initialize the device correctly until this pin is released.  
4
LDAC  
Load DAC. Transfers the content of the input register to the DAC register. It can be operated in two modes,  
asynchronously and synchronously, as shown in Figure 4. This pin can be tied permanently low, and the DAC  
updates when new data is written to the input register.  
5
6
7
8
9
GND  
A0  
SCL  
SDA  
VREF  
Ground Reference.  
Programmable Address for Multiple Package Decoding. The address pin can be updated on-the-fly.  
Serial Clock Line.  
Serial Data Input/Output.  
Reference Input/Output. In the AD5693R/AD5691R, this is a reference output pin by default. It is recommended  
to use a 10 nF decoupling capacitor for the internal reference.  
10  
VOUT  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Rev. D | Page 8 of 26  
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
V
1
8 V  
DD  
OUT  
REF  
AD5693R/  
AD5692R/  
AD5691R/  
AD5693  
7 V  
LDAC 2  
GND 3  
A0 4  
6 SDA  
5 SCL  
TOP VIEW  
(Not to Scale)  
NOTES  
1. CONNECT THE EXPOSED PAD TO GND.  
LDAC  
Figure 6. AD5693R/AD5692R/AD5691R/AD5693 Pin Configuration, 8-Lead LFCSP,  
Option  
LDAC  
Table 8. AD5693R/AD5692R/AD5691R/AD5693 Pin Function Descriptions, 8-Lead LFCSP,  
Option  
Pin No. Mnemonic Description  
1
2
VDD  
LDAC  
Power Supply Input. These devices can be operated from 2.7 V to 5.5 V. Decouple the supply to GND.  
Load DAC. Transfers the content of the input register to the DAC register. It can be operated in two modes,  
asynchronously and synchronously, as shown in Figure 4. This pin can be tied permanently low and the DAC  
updates when new data is written to the input register.  
3
4
5
6
7
GND  
A0  
SCL  
SDA  
VREF  
Ground Reference.  
Programmable Address for Multiple Package Decoding. The address pin can be updated on-the-fly.  
Serial Clock Line.  
Serial Data Input/Output.  
Reference Input/Output. In the AD5693R/AD5692R/AD5691R, this is a reference output pin by default. In the AD5693,  
this pin is a reference input only. It is recommended to use a 10 nF decoupling capacitor for the internal reference.  
8
VOUT  
EPAD  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Exposed Pad. Connect the exposed pad to GND.  
Rev. D | Page 9 of 26  
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
V
1
2
8 V  
7 V  
DD  
OUT  
V
REF  
LOGIC  
AD5693R-1  
AD5691R-1  
TOP VIEW  
(Not to Scale)  
6 SDA  
5 SCL  
GND 3  
A0 4  
NOTES  
1. CONNECT THE EXPOSED PAD TO GND.  
Figure 7. AD5693R-1/AD5691R-1 Pin Configuration, 8-Lead LFCSP, VLOGIC Option  
Table 9. AD5693R-1/AD5691R-1 Pin Function Descriptions, 8-Lead LFCSP, VLOGIC Option  
Pin No. Mnemonic  
Description  
1
2
3
4
5
6
7
VDD  
Power Supply Input. These devices can be operated from 2.7 V to 5.5 V. Decouple the supply to GND.  
Digital Power Supply. Voltage ranges from 1.62 V to 5.5 V. Decouple the supply to GND.  
Ground Reference.  
Programmable Address for Multiple Package Decoding. The address pin can be updated on-the-fly.  
Serial Clock Line.  
Serial Data Input/Output.  
Reference Input/Output. In the AD5693R-1/AD5691R-1, this is a reference output pin by default. It is  
recommended to use a 10 nF decoupling capacitor for the internal reference.  
VLOGIC  
GND  
A0  
SCL  
SDA  
VREF  
8
VOUT  
EPAD  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Exposed Pad. Connect the exposed pad to GND.  
Rev. D | Page 10 of 26  
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
V
1
8 V  
DD  
OUT  
REF  
7 V  
RESET 2  
GND 3  
A0 4  
AD5693R-2  
6 SDA  
5 SCL  
TOP VIEW  
(Not to Scale)  
NOTES  
1. CONNECT THE EXPOSED PAD TO GND.  
RESET  
Figure 8. AD5693R-2 Pin Configuration, 8-Lead LFCSP,  
Option  
RESET  
Table 10. AD5693R-2 Pin Function Descriptions, 8-Lead LFCSP,  
Option  
Pin No. Mnemonic Description  
1
2
VDD  
RESET  
Power Supply Input. These devices can be operated from 2.7 V to 5.5 V. Decouple the supply to GND.  
Hardware Reset Pin. The RESET input is low level sensitive. When RESET is low, the device is reset and external pins  
are ignored. The input and DAC registers are loaded with zero code value and the control register is loaded with  
default values. Tie this pin to VDD if not used. If this pin is forced low at power-up, the power-on reset (POR) circuit  
does not initialize the device correctly until this pin is released.  
3
4
5
6
7
GND  
A0  
SCL  
SDA  
VREF  
Ground Reference.  
Programmable Address for Multiple Package Decoding. The address pin can be updated on-the-fly.  
Serial Clock Line.  
Serial Data Input/Output.  
Reference Input/Output. In the AD5693R-2, this is a reference output pin by default. It is recommended to use a  
10 nF decoupling capacitor for the internal reference.  
8
VOUT  
EPAD  
Analog Output Voltage from the DAC. The output amplifier has rail-to-rail operation.  
Exposed Pad. Connect the exposed pad to GND.  
Rev. D | Page 11 of 26  
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
2
2
1
V
= 5V  
V
= 5V  
DD  
DD  
T
= 25°C  
T = 25°C  
A
A
V
= 2.5V  
V
= 2.5V  
REF  
REF  
1
0
0
–1  
–2  
–1  
–2  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000 65535  
0
10000  
20000  
30000  
CODE  
40000  
50000  
60000 65535  
Figure 9. AD5693R/AD5693 INL  
Figure 12. AD5693R/AD5693 DNL  
2
1.0  
0.8  
V
= 5V  
= 25°C  
V
= 5V  
= 25°C  
DD  
DD  
T
T
A
A
V
= 2.5V  
V
= 2.5V  
REF  
REF  
0.6  
1
0
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
0
2000 4000 6000 8000 10000 12000 14000  
CODE  
16383  
0
2000 4000 6000 8000 10000 12000 14000  
CODE  
16383  
Figure 10. AD5692R INL  
Figure 13. AD5692R DNL  
2.0  
1.5  
1.0  
0.8  
V
= 5V  
= 25°C  
V
= 5V  
= 25°C  
= 2.5V  
DD  
DD  
T
T
A
A
V
= 2.5V  
V
REF  
REF  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
500  
1000 1500 2000 2500 3000 3500 4000  
0
500  
1000 1500 2000 2500 3000 3500 4000  
CODE  
CODE  
Figure 11. AD5691R INL  
Figure 14. AD5691R DNL  
Rev. D | Page 12 of 26  
 
 
 
 
 
 
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
1.2  
1.4  
V
V
= 5V  
U1_DNL  
U3_DNL  
U2_INL  
U2_DNL  
U1_INL  
U3_INL  
V
T
= 5V  
DD  
DD  
= 2.5V  
= 25°C  
REF  
A
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
U1_DNL_INT_REF  
U3_DNL_INT_REF  
U2_DNL_EXT_REF  
U1_INL_INT_REF  
U3_INL_INT_REF  
U2_INL_EXT_REF  
U2_DNL_INT_REF  
U1_DNL_EXT_REF  
U3_DNL_EXT_REF  
U2_INL_INT_REF  
U1_INL_EXT_REF  
U3_INL_EXT_REF  
–0.2  
–0.2  
–40  
–20  
0
20  
40  
60  
80  
105  
2
3
4
5
TEMPERATURE (°C)  
V
(V)  
REF  
Figure 15. INL and DNL Error vs. Temperature (AD5693R/AD5693)  
Figure 18. INL and DNL Error vs. VREF (AD5693R/AD5693)  
1.4  
0.02  
0.01  
0
U1_DNL_INT_REF  
U3_DNL_INT_REF  
U2_DNL_EXT_REF  
U1_INL_INT_REF  
U3_INL_INT_REF  
U2_INL_EXT_REF  
U2_DNL_INT_REF  
U1_DNL_EXT_REF  
U3_DNL_EXT_REF  
U2_INL_INT_REF  
U1_INL_EXT_REF  
U3_INL_EXT_REF  
T
= 25°C  
A
(AD5693R/AD5693)  
(AD5692R)  
(AD5691R)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.01  
–0.02  
–0.03  
–0.04  
–0.2  
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
0
0
0
10000  
2000  
500  
20000  
4000  
1000  
30000  
6000  
1500  
40000  
8000  
2000  
50000  
10000  
2500  
60000 65535  
12000 16383  
3000 4095  
V
DD  
CODE  
Figure 16. INL and DNL Error vs. VDD  
Figure 19. TUE vs. Code  
0.06  
0.04  
0.02  
0
0.04  
0.03  
0.02  
0.01  
0
T
= 25°C  
U1_EXT_REF  
U2_EXT_REF  
U3_EXT_REF  
U1_INT_REF  
U2_INT_REF  
U3_INT_REF  
V
= 5V  
A
DD  
GAIN = 1  
V
GAIN = 1  
= 2.5V  
= 2.5V  
V
REF  
REF  
–0.02  
–0.04  
–0.01  
–0.02  
U1_INT_REF  
U2_INT_REF  
U3_INT_REF  
U1_EXT_REF  
U2_EXT_REF  
U3_EXT_REF  
–40  
0
40  
TEMPERATURE (°C)  
80  
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
V
DD  
Figure 17. TUE vs. Temperature  
Figure 20. TUE vs. VDD  
Rev. D | Page 13 of 26  
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
0.03  
0.02  
0.01  
0
T
= 25°C  
A
GAIN = 1  
V
= 2.5V  
REF  
–0.01  
–0.005  
–0.010  
–0.015  
–0.020  
–0.025  
U1_INT_REF  
–0.02  
U2_INT_REF  
U3_INT_REF  
U1_EXT_REF  
U2_EXT_REF  
U3_EXT_REF  
V
= 5V  
DD  
–0.03  
–0.04  
U1_INT_REF  
U2_INT_REF  
U3_INT_REF  
U1_EXT_REF  
U2_EXT_REF  
U3_EXT_REF  
GAIN = 1  
V
= 2.5V  
REF  
–40  
0
40  
80  
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
5.50  
TEMPERATURE (°C)  
V
DD  
Figure 21. Gain Error and Full-Scale Error vs. Temperature  
Figure 24. Gain Error and Full-Scale Error vs. VDD  
500  
400  
300  
200  
100  
0
350  
300  
250  
200  
150  
100  
50  
V
= 5V  
U1_INT_REF  
U2_INT_REF  
U3_INT_REF  
U1_EXT_REF  
U2_EXT_REF  
U3_EXT_REF  
T = 25°C  
A
GAIN = 1  
DD  
GAIN = 1  
V
= 2.5V  
V
= 2.5V  
REF  
REF  
U1_INT_REF  
U2_INT_REF  
U3_INT_REF  
U1_EXT_REF  
U2_EXT_REF  
U3_EXT_REF  
0
–40  
–20  
0
20  
40  
60  
80  
105  
2.70  
3.30  
3.75  
4.25  
(V)  
4.75  
5.25  
5.50  
TEMPERATURE (°C)  
V
DD  
Figure 22. Zero Code Error and Offset Error vs. Temperature  
Figure 25. Zero Code Error and Offset Error vs. VDD  
2.505  
2.503  
2.501  
2.499  
2.497  
2.495  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
U1  
U2  
U3  
V
= 5V  
DD  
= 25°C  
DD  
T
A
GAIN = 1  
–40  
10  
TEMPERATURE (°C)  
60  
V
(V)  
REF  
Figure 23. Internal Reference Voltage vs. Temperature (Grade B)  
Figure 26. Reference Output Spread  
Rev. D | Page 14 of 26  
 
 
 
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
2.50015  
2.50010  
2.50005  
2.50000  
2.49995  
2.49990  
2.5009  
5.5V  
T
= 25°C  
T
= 25°C  
A
A
5.0V  
3.0V  
2.7V  
2.5008  
2.5007  
2.5006  
2.5005  
2.5004  
2.5003  
D11  
2.49985  
2.49980  
D12  
D13  
–0.005  
–0.003  
–0.001  
0.001  
0.003  
0.005  
2.5  
3.5  
4.5  
5.5  
LOAD CURRENT (A)  
V
(V)  
DD  
Figure 27. Internal Reference Voltage vs. VDD  
Figure 30. Internal Reference Voltage vs. Load Current  
1800  
1600  
1400  
1200  
1000  
800  
T
T
V
= 25°C  
V
T
= 5V  
= 25°C  
A
DD  
= 5V  
DD  
A
1
600  
400  
200  
0
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 31. Internal Reference Noise Spectral Density vs. Frequency  
Figure 28. Internal Reference Noise, 0.1 Hz to 10 Hz  
T
T
T
V
= 25°C  
T
V
= 25°C  
= 5V  
A
A
= 5V  
DD  
DD  
1
1
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
CH1 10µV  
M1.00s  
A
CH1  
2.00µV  
Figure 32. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Figure 29. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference On  
Rev. D | Page 15 of 26  
 
 
 
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
1200  
1.4  
1.0  
V
= 5V  
= 25°C  
FULL-SCALE  
MIDSCALE  
ZEROSCALE  
DD  
SINKING, V = 3V  
T = 25°C  
A
DD  
T
A
SOURCING, V = 5V  
DD  
GAIN = 1  
1000  
800  
600  
400  
200  
0
SINKING, V = 5V  
DD  
SOURCING, V = 3V  
DD  
0.6  
0.2  
–0.2  
–0.6  
–1.0  
–1.4  
10  
100  
1k  
10k  
100k  
1M  
0
0.01  
0.02  
0.03  
FREQUENCY (Hz)  
LOAD CURRENT (A)  
Figure 33. Noise Spectral Density vs. Frequency, Gain = 1  
Figure 36. Headroom/Footroom vs. Load Current  
6
5
7
V
T
= 5V  
= 25°C  
V
T
= 5V  
DD  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
0xFFFF  
0xC000  
0x8000  
0x4000  
0x0000  
DD  
= 25°C  
A
A
6
5
GAIN = 1  
GAIN = 2  
4
4
3
3
2
2
1
1
0
0
–1  
–1  
–2  
–50  
0
50  
–50  
0
50  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Figure 34. Source and Sink Capability, Gain = 1  
Figure 37. Source and Sink Capability, Gain = 2  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.0015  
0.0010  
0.0005  
0
V
= 5V  
GAIN = 1  
GAIN = 2  
DD  
V
= 5V  
= 25°C  
DD  
T
A
REFERENCE = 2.5V  
CODE = 0x7FFF TO 0x8000  
ZS_INT_REF_GAIN = 1  
FS_EXT_REF_GAIN = 2  
FS_INT_REF_GAIN = 2  
ZS_INT_REF_GAIN = 2  
FS_INT_REF_GAIN = 1  
FS_EXT_REF_GAIN = 1  
–0.0005  
–0.0010  
–0.0015  
–0.0020  
–0.0025  
0
–40  
–20  
0
20  
40  
60  
80  
105  
0
1
2
3
4
5
6
7
TEMPERATURE (°C)  
TIME (µs)  
Figure 35. IDD vs. Temperature  
Figure 38. Digital-to-Analog Glitch Impulse  
Rev. D | Page 16 of 26  
 
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
2.5  
4.5  
0nF  
0nF  
0.2nF  
1nF  
4.7nF  
10nF  
0.2nF  
1nF  
4.7nF  
10nF  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
= 25°C  
V
= 5V  
DD  
DD  
T
T = 25°C  
A
A
GAIN = 1  
R
INTERNAL REFERENCE = 2.5V  
GAIN = 2  
R = 2kΩ  
L
INTERNAL REFERENCE = 2.5V  
= 2kΩ  
L
0
0.01  
TIME (ms)  
0.02  
0
0.01  
TIME (ms)  
0.02  
Figure 39. Capacitive Load vs. Settling Time, Gain = 1  
Figure 42. Capacitive Load vs. Settling Time, Gain = 2  
20  
–30  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
V
= 5V  
= 25°C  
GAIN = 2  
GAIN = 1  
DD  
T
A
INTERNAL REFERENCE = 2.5V  
–80  
–130  
–180  
V
= 5V  
= 25°C  
DD  
T
A
V
= MIDSCALE  
EXTERNAL REFERENCE = 2.5V, ±0.1V p-p  
OUT  
0
5
10  
15  
20  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
Figure 40. Total Harmonic Distortion at 1 kHz  
Figure 43. Multiplying Bandwidth, External Reference = 2.5 V, 0.1 V p-p,  
10 kHz to 10 MHz  
6
5
0.06  
3
V
= 5V  
= 25°C  
DD  
T
A
MIDSCALE, GAIN = 2  
0.05  
0.04  
0.03  
0.02  
0.01  
0
4
2
1
0
V
DD  
3
SYNC  
MIDSCALE, GAIN = 1  
2
1
V
OUT  
0
–1  
–0.01  
0
1
2
3
4
5
6
7
8
–5  
0
5
10  
15  
TIME (ms)  
TIME (µs)  
Figure 41. Power-On Reset to 0 V  
Figure 44. Exiting Power-Down to Midscale  
Rev. D | Page 17 of 26  
 
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
TERMINOLOGY  
Relative Accuracy or Integral Nonlinearity (INL)  
For the DAC, relative accuracy or integral nonlinearity is a  
measurement of the maximum deviation, in LSBs, from a  
straight line passing through the endpoints of the DAC transfer  
function. For typical INL vs. code plots, see Figure 9, Figure 10,  
and Figure 11.  
Output Voltage Settling Time  
This is the amount of time it takes for the output of a DAC to  
settle to a specified level for a ¼ to ¾ full-scale input change.  
Digital-to-Analog Glitch Impulse  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-sec,  
and is measured when the digital input code is changed by  
1 LSB at the major carry transition (0x7FFF to 0x8000)  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between the measured  
change and the ideal 1 LSB change between any two adjacent codes.  
A specified differential nonlinearity of 1 LSB maximum ensures  
monotonicity. This DAC is guaranteed monotonic by design. For  
typical DNL vs. code plots, see Figure 12, Figure 13, and Figure 14.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital inputs of the  
DAC, but is measured when the DAC output is not updated. It  
is specified in nV-sec, and measured with a full-scale code change  
on the data bus, that is, from all 0s to all 1s and vice versa.  
Zero Code Error  
Zero code error is a measurement of the output error when zero  
code (0x0000) is loaded to the DAC register. Ideally, the output  
is 0 V. The zero code error is always positive in the AD5693R/  
AD5692R/AD5691R/AD5693 because the output of the DAC  
cannot go below 0 V due to a combination of the offset errors in  
the DAC and the output amplifier. Zero code error is expressed  
in m V. For plots of zero code error, see in Figure 22 and Figure 25.  
Noise Spectral Density  
Noise spectral density is a measurement of the internally  
generated random noise. Random noise is characterized as a  
spectral density (nV/√Hz). It is measured by loading the DAC to  
midscale and measuring noise at the output. It is measured in  
nV/√Hz. For plots of noise spectral density, see Figure 29,  
Figure 32, and Figure 33. The noise spectral density for the  
reference is shown in Figure 28 and Figure 31.  
Full-Scale Error  
Full-scale error is a measurement of the output error when  
full-scale code (0xFFFF) is loaded to the DAC register. Ideally,  
the output is VREF − 1 LSB or |2 × VREF| − 1 LSB. Full-scale error is  
expressed in percent of full-scale range. For plots of full-scale error  
vs. temperature, see Figure 21 and Figure 24.  
Multiplying Bandwidth  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of these finite bandwidths. A  
sine wave on the reference (with full-scale code loaded to the DAC)  
appears on the output. The multiplying bandwidth is the frequency  
at which the output amplitude falls to 3 dB below the input.  
Gain Error  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal expressed as % of FSR.  
Total Harmonic Distortion (THD)  
Zero Code Error Drift  
Zero code error drift is a measurement of the change in zero  
code error with a change in temperature. It is expressed in µV/°C.  
THD is the difference between an ideal sine wave and its attenuated  
version using the DAC. The sine wave is used as the reference  
for the DAC, and THD is a measurement of the harmonics  
present on the DAC output. It is measured in dB.  
Gain Temperature Coefficient  
Gain temperature coefficient is a measurement of the change in gain  
error with changes in temperature. It is expressed in ppm of FSR/°C.  
Voltage Reference Temperature Coefficient (TC)  
Voltage reference TC is a measure of the change in the reference  
output voltage with a change in temperature. The reference TC  
is calculated using the box method, which defines the TC as the  
maximum change in the reference output over a given tempera-  
ture range expressed in ppm/°C as follows:  
Offset Error  
Offset error is a measure of the difference between VOUT (actual)  
and VOUT (ideal) expressed in mV in the linear region of the  
transfer function. Offset error is measured on the AD5693R with  
Code 512 loaded in the DAC register (Code 256 for the AD5692R  
and Code 128 for the AD5693R/AD5693). It can be negative or  
positive.  
VREFmax VREFmin  
TC =  
×106  
V
×TempRange  
REFnom  
where:  
REFmax is the maximum reference output measured over the  
total temperature range.  
REFmin is the minimum reference output measured over the total  
temperature range.  
REFnom is the nominal reference output voltage, 2.5 V.  
TempRange is the specified temperature range, −40°C to +105°C.  
DC Power Supply Rejection Ratio (PSRR)  
V
PSRR indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. It is measured  
in mV/V. VREF is held at 2 V, and VDD is varied by 10%.  
V
V
Rev. D | Page 18 of 26  
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
THEORY OF OPERATION  
DIGITAL-TO-ANALOG CONVERTER  
Because each resistance in the string has same value, R, the  
string DAC is guaranteed monotonic.  
The AD5693R/AD5692R/AD5691R/AD5693 are single 16-bit,  
14-bit, and 12-bit, serial input, voltage output DACs with a 2.5 V  
internal reference. The devices operate from supply voltages of 2.7 V  
to 5.5 V. Data is written to the AD5693R/AD5692R/AD5691R/  
AD5693 in a 24-bit word format via an I2C serial interface.  
V
REF  
R
R
The AD5693R/AD5692R/AD5691R/AD5693 incorporate a  
power-on reset circuit that ensures that the DAC output powers up  
to zero scale. The devices also have a software power-down mode  
that reduces the current consumption to 2 µA maximum.  
TO OUTPUT  
BUFFER  
R
TRANSFER FUNCTION  
The internal reference is on by default. The input coding to the  
DAC is straight binary. The ideal output voltage is given by the  
following equations:  
R
R
For the AD5693R/AD5693,  
D
VOUT(D) = Gain × VREF  
×
65,536  
Figure 46. Simplified Resistor String Structure  
For the AD5692R,  
Internal Reference  
The AD5693R/AD5692R/AD5691R on-chip reference is on at  
power-up but can be disabled via a write to the control register.  
D
V
OUT(D) = Gain × VREF  
×
×
16,384  
The AD5693R/AD5692R/AD5691R each have a 2.5 V, 2 ppm/°C  
reference, giving a full-scale output of 2.5 V or 5 V, depending  
on the state of the gain bit.  
For the AD5691R,  
D
VOUT(D) = Gain × VREF  
The internal reference is available at the VREF pin. It is internally  
buffered and capable of driving external loads of up to 5 mA.  
4096  
where:  
External Reference  
D is the decimal equivalent of the binary code that is loaded to  
The VREF pin is an input pin in the AD5693. The VREF pin can also  
be configured as an input pin on the AD5693R/AD5692R/  
AD5691R, allowing the use of an external reference if the  
application requires it.  
the DAC register.  
Gain is the gain of the output amplifier and it is set to ×1 by  
default. The gain can also be set to ×2 using the gain bit in the  
control register.  
In the AD5693R/AD5692R/AD5691R, the default condition of  
the on-chip reference is on at power-up. Before connecting an  
external reference to the pin, disable the internal reference by  
writing to the REF bit (Bit DB12) in the control register.  
DAC ARCHITECTURE  
The AD5693R/AD5692R/AD5691R/AD5693 implement a  
segmented string DAC architecture with an internal output buffer.  
Figure 45 shows the internal block diagram.  
Output Buffer  
V
REF  
2.5V  
REF  
The output buffer is designed as an input/output rail-to-rail  
buffer, which gives a maximum output voltage range of up to  
REF (+)  
V
DD. The gain bit sets the segmented string DAC gain to ×1 or  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
×2, as shown in Table 14.  
REF (–)  
The output buffer voltage is determined by VREF, the gain bit,  
and the offset and gain errors.  
GND  
Figure 45. DAC Channel Architecture Block Diagram  
The output buffer can drive a 10 nF capacitance with a 2 kΩ  
resistor in parallel, as shown in Figure 39 and Figure 42. If  
a higher capacitance load is required, use the snubber method  
or a shunt resistor to isolate the load from the output amplifier.  
The slew rate is 0.7 V/µs with a ¼ to ¾ scale settling time of 5 µs.  
The simplified segmented resistor string DAC structure is  
shown in Figure 46. The code loaded to the DAC register  
determines the switch on the string that is connected to the  
output buffer.  
Rev. D | Page 19 of 26  
 
 
 
 
 
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
SERIAL INTERFACE  
The AD5693R/AD5692R/AD5691R/AD5693 have 2-wire, I2C-  
compatible serial interfaces. These devices can be connected to  
an I2C bus as a slave device, under the control of a master  
device. See Figure 3 for a timing diagram of a typical write  
sequence.  
I2C ADDRESS  
The AD5693R/AD5692R/AD5691R/AD5693 have a 7-bit slave  
address. The five MSBs are 10011. The second last bit set by the  
state of the A0 address pin and the LSB is 0. The ability to make  
hardwired changes to A0 lets the user have two of these devices  
on one bus, as outlined in Table 11. Additionally, the pin can be  
updated before starting the transmission, allowing multiple  
devices in the same bus by connecting the pin to a GPIO or a  
multiplexer.  
The AD5693R/AD5692R/AD5691R/AD5693 support standard  
(100 kHz) and fast (400 kHz) data transfer modes. Support is  
not provided for 10-bit addressing and general call addressing.  
I2C SERIAL DATA INTERFACE  
The 2-wire serial bus protocol operates as follows:  
Table 11. Device Address Selection  
A0 Pin Connection  
A0  
I2C Address  
1001100  
1. The master initiates data transfer by establishing a start  
condition when a high-to-low transition on the SDA line  
occurs while SCL is high. The following byte is the address  
byte, which consists of the 7-bit slave address. The slave  
address corresponding to the transmitted address responds  
by pulling SDA low during the 9th clock pulse (this is  
called the acknowledge (ACK) bit). At this stage, all other  
devices on the bus remain idle while the selected device  
waits for data to be written to, or read from, its shift  
register.  
GND  
0
VLOGIC (VDD on LFCSP Package)  
1
1001110  
WRITE OPERATION  
When writing to the AD5693R/AD5692R/AD5691R/AD5693,  
the user must begin with a start condition followed by an address  
W
byte (R/ = 0), after which the DAC acknowledges that it is pre-  
pared to receive data by pulling SDA low, as shown in Figure 47.  
The AD5693R/AD5692R/AD5691R/AD5693 require a  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during the  
low period of SCL and remain stable during the high  
period of SCL.  
command byte that controls various DAC functions (see Table 12)  
and two bytes of data for the DAC. All these data bytes are  
acknowledged by the AD5693R/AD5692R/AD5691R/AD5693. A  
stop condition follows. The write sequence is shown in Figure 47.  
3. When all data bits have been read or written, a stop  
condition is established. In write mode, the master pulls  
the SDA line high during the 10th clock pulse to establish a  
stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA line  
remains high). The master then brings the SDA line low  
before the 10th clock pulse, and then high during the 10th  
clock pulse to establish a stop condition.  
1
9
1
9
SCL  
SDA  
1
0
0
1
1
A0  
0
R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
START BY  
MASTER  
ACK BY  
ACK BY  
AD5693R/AD5692R/AD5691R/AD5693  
AD5693R/AD5692R/AD5691R/AD5693  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
ACK BY  
ACK BY STOP BY  
AD5693R/AD5692R/AD5691R/AD5693 MASTER  
AD5693R/AD5692R/AD5691R/AD5693  
FRAME 3  
DATA HIGH BYTE  
FRAME 4  
DATA LOW BYTE  
Figure 47. I2C Write Operation  
Rev. D | Page 20 of 26  
 
 
 
 
 
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
Table 12. Command Table1  
Command Byte  
Data High Byte  
Data Low Byte  
DB7 DB6 DB5 DB4 [DB3:DB0] [DB7:DB3] [DB2:DB0] [DB7:DB4] DB3 DB2 DB1  
DB0  
Operation  
0
0
0
0
0
0
0
0
1
0
1
0
XXXX  
XXXX  
XXXX  
XXXXX  
DB15:DB11 DB10:DB8  
XXXXX XXX  
XXX  
XXXX  
X
X
X
NOP: do nothing.  
DB02, 3 Write input register.  
DB7:DB4  
XXXX  
DB32 DB22 DB12, 3  
X
X
X
X
Update DAC register (LDAC  
software).  
DB02, 3 Write DAC and input  
registers.  
0
0
0
1
1
0
1
0
XXXX  
XXXX  
DB15:DB11 DB10:DB8  
DB15:DB11 000  
DB7:DB4  
0000  
DB32 DB22 DB12, 3  
0
0
0
0
Write control register.  
1 X is don’t care.  
2 This bit is a don’t care for the AD5691R.  
3 This bit is a don’t care for the AD5692R.  
Write Input Register  
REF Bit  
The input register allows the preloading of a new value for the  
DAC register. The transfer from the input register to the DAC  
In the AD5693R/AD5692R/AD5691R only, the on-chip reference  
is on at power-up by default. This reference can be turned on or  
off by setting a software programmable bit, DB12, in the control  
register. Table 15 shows how the state of the bit corresponds to  
the mode of operation.  
register can be triggered by hardware, the  
pin, or by  
LDAC  
software using Command 2.  
If new data is loaded into the DAC register, the DAC register  
automatically overwrites the input register.  
To reduce the power consumption, it is recommended to disable  
the internal reference if the device is placed in power-down mode.  
Update DAC Register  
This command transfers the contents of the input register to the  
DAC register and, consequently, the VOUT pin is updated. The  
data contained in the serial write is ignored.  
Table 15. Reference Bit  
REF  
Reference Function  
Reference enabled (default)  
Reference disabled  
0
1
This operation is equivalent to a software  
.
LDAC  
Write DAC Register  
PD0 and PD1 Bits  
This command updates the DAC output on completion of the  
write operation. The input register is refreshed automatically  
with the DAC register value.  
The AD5693R/AD5692R/AD5691R/AD5693 contain two  
separate modes of operation that are accessed by writing to the  
control register.  
Write Control Register  
In normal mode, the output buffer is directly connected to the  
The control register is used to set the power-down and gain  
functions. It is also used to enable/disable the internal reference  
and perform a software reset. See Table 13 for the control  
register functionality.  
V
OUT pin.  
In power-down mode, the output buffer is internally disabled  
and the VOUT pin output impedance can be selected to a well  
known value, as shown in Table 16.  
Table 13. Control Register Bits  
Table 16. Operation Modes  
Operating Mode  
D15  
D14  
D13  
D12  
D11  
PD1  
PD0  
Reset  
PD1  
PD0  
REF  
Gain  
Normal Mode  
0
0
Power-Down Modes  
1 kΩ Output Impedance  
100 kΩ Output Impedance  
Three-State Output Impedance  
Gain Bit  
0
1
1
1
0
1
The gain bit selects the gain of the output amplifier. Table 14  
shows how the output voltage range corresponds to the state of  
the gain bit.  
In power-down mode, the device disables the output buffer but  
does not disable the internal reference. To achieve maximum  
power savings, it is recommended to disable the internal reference.  
Table 14. Gain Bit  
Gain  
Output Voltage Range  
0 V to VREF (default)  
0 V to 2 × VREF  
0
1
Disabling both the internal reference and the output buffer  
results in the supply current falling to 2 μA at 5 V.  
Rev. D | Page 21 of 26  
 
 
 
 
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
The output stage is shown in Figure 48.  
Reset Bit  
The AD5693R/AD5692R/AD5691R/AD5693 control register  
contains a software reset bit that resets the DAC to zero-scale and  
resets the input, DAC, and control registers to their default values.  
A software reset is initiated by setting the RESET bit in the  
control register to 1. When the software reset has completed,  
the reset bit is cleared to 0 automatically.  
DAC  
AMPLIFIER  
V
OUT  
POWER-DOWN  
CIRCUITRY  
RESISTOR  
NETWORK  
READ OPERATION  
When reading the input register back from the AD5693R/  
AD5692R/AD5691R/AD5693 DACs, the user begins with an  
Figure 48. Output Stage During Power-Down  
The output amplifier is shut down when the power-down mode  
is activated. However, unless the internal reference is powered  
down (using Bit DB12 in the control register), the bias  
generator, reference, and resistor string remain on. The supply  
current falls to 2 μA at 5 V. The contents of the DAC register are  
unaffected when in power-down mode, and the DAC register can  
continue to be updated. The time that is required to exit power-  
down is typically 4 µs for VDD = 5 V, or 600 µs if the reference is  
disabled.  
W
address byte (R/ = 1), after which the DAC acknowledges that  
it is prepared to receive data by pulling SDA low. Two bytes of  
data containing the contents of the input register are then read  
from the DAC, as shown in Figure 49. A NACK condition from  
the master followed by a STOP condition completes the read  
sequence.  
1
9
1
9
SCL  
1
0
0
1
1
A0  
0
R/W  
DB7 DB6 DB5 DB4 DB3 DB2 DB1  
DB0  
SDA  
START BY  
MASTER  
ACK BY  
ACK BY MASTER  
AD5693R/AD5692R/AD5691R/AD5693  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
NACK BY STOP BY  
MASTER MASTER  
FRAME 3  
DATA HIGH BYTE  
Figure 49. I2C Read Operation  
Rev. D | Page 22 of 26  
 
 
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
LOAD DAC (HARDWARE LDAC PIN)  
THERMAL HYSTERESIS  
Thermal hysteresis is the voltage difference induced on the  
reference voltage by sweeping the temperature from ambient  
to cold, to hot, and then back to ambient.  
The AD5693R/AD5692R/AD5691R/AD5693 DAC has a double  
buffered interface consisting of an input register and a DAC  
LDAC  
register. The  
pin transfers data from the input register to  
the DAC register, and the output is updated.  
The thermal hysteresis data is shown in Figure 50. It is measured by  
sweeping the temperature from ambient to −40°C, then to +105°C,  
and finally returning to ambient. The VREF delta is measured  
between the two ambient measurements; the result is shown in  
solid lines in Figure 50. The same temperature sweep and  
measurements were immediately repeated; the results are  
shown in dashed lines in Figure 50.  
Synchronous DAC Update  
LDAC  
If the  
pin is held low while the input register is written,  
the DAC register, input register, and output are updated on the  
last SCL falling edge before the ACK bit, as shown in Figure 4.  
Asynchronous DAC Update  
6
LDAC  
is held high while data is transmitted to the device. The  
FIRST TEMPERATURE SWEEP  
LDAC  
DAC output is updated by taking  
low after the stop  
SUBSEQUENT SWEEPS  
5
condition has been generated. The output DAC is updated on  
LDAC LDAC  
device is accessed, the pulse is ignored.  
the falling edge of the  
pin. If  
is pulsed while the  
4
3
2
1
0
HARDWARE RESET  
is an active low signal that resets the DAC output to zero-  
RESET  
scale and sets the input, DAC, and control registers to their  
default values. It is necessary to keep low for 75 ns to  
RESET  
signal is returned high,  
complete the operation. When the  
RESET  
the output remains at zero scale until a new value is programmed.  
While the pin is low, the AD5693R/AD5692R/AD5691R/  
–100  
–80  
–60  
–40  
–20  
0
20  
40  
60  
DISTORTION (ppm)  
RESET  
AD5693 ignore any new command. If the  
Figure 50. Thermal Hysteresis  
pin is held  
RESET  
low at power-up, the internal reference is not initialized  
correctly until the pin is released.  
POWER-UP SEQUENCE  
RESET  
Because diodes limit the voltage compliance at the digital pins  
and analog pins, it is important to power GND first before  
applying any voltage to VDD, VOUT, and VLOGIC. Otherwise, the  
diode is forward-biased such that VDD is powered uninten-  
tionally. The ideal power-up sequence is GND, VDD, VLOGIC  
REF, followed by the digital inputs.  
,
V
Rev. D | Page 23 of 26  
 
 
 
 
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
In systems where many devices are on one board, it is often  
useful to provide some heat sinking capability to allow  
the power to dissipate easily.  
RECOMMENDED REGULATOR  
The AD5693R/AD5692R/AD5691R/AD5693 use a 5 V (VDD  
supply as well as a digital logic supply (VLOGIC).  
)
The LFCSP package of the AD5693R/AD5692R/AD5691R/  
AD5693 has an exposed pad beneath the device. Connect this  
pad to the GND supply of the device. For optimum performance,  
use special consideration when designing the motherboard and  
mounting the package. For enhanced thermal, electrical, and  
board level performance, solder the exposed pad on the bottom  
of the package to the corresponding thermal land pad on the  
PCB. Design thermal vias into the PCB land pad area to further  
improve heat dissipation.  
The analog and digital supplies required for the AD5693R/  
AD5692R/AD5691R/AD5693 can be generated using Analog  
Devices, Inc., low dropout (LDO) regulators such as the ADP7118  
and the ADP162, respectively, for analog and digital supplies.  
LAYOUT GUIDELINES  
In any circuit where accuracy is important, careful consideration of  
the power supply and ground return layout helps to ensure the  
rated performance. Design the printed circuit board (PCB) on  
which the ADCs are mounted such that the AD5693R/AD5692R/  
AD5691R/AD5693 lie on the analog plane.  
The GND plane on the device can be increased (as shown in  
Figure 51) to provide a natural heat sinking effect.  
Ensure that the AD5693R/AD5692R/AD5691R/AD5693 have  
ample supply bypassing of 10 µF, in parallel with a 0.1 µF capacitor  
on each supply that is located as near the package as possible  
(ideally, right up against the device). The 10 µF capacitors are  
of the tantalum bead type. Ensure that the 0.1 µF capacitor has  
low effective series resistance (ESR) and low effective series  
inductance (ESI), such as the common ceramic types, which  
provide a low impedance path to ground at high frequencies to  
handle transient currents due to internal logic switching.  
AD5693R/  
AD5692R/  
AD5691R/  
AD5693  
GND  
PLANE  
BOARD  
Figure 51. Pad Connection to Board  
Rev. D | Page 24 of 26  
 
 
 
Data Sheet  
AD5693R/AD5692R/AD5691R/AD5693  
OUTLINE DIMENSIONS  
1.70  
1.60  
1.50  
2.10  
2.00 SQ  
1.90  
0.50 BSC  
8
5
0.15 REF  
PIN 1 INDEX  
AREA  
EXPOSED  
PAD  
1.10  
1.00  
0.90  
0.425  
0.350  
0.275  
4
1
PIN 1  
INDICATOR  
(R 0.15)  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.60  
0.55  
0.50  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.30  
0.25  
0.20  
0.20 REF  
Figure 52. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD]  
2.00 mm × 2.00 mm Body, Ultra Thin, Dual Lead  
(CP-8-10)  
Dimensions shown in millimeters  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 53. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
Rev. D | Page 25 of 26  
 
AD5693R/AD5692R/AD5691R/AD5693  
Data Sheet  
ORDERING GUIDE  
Package  
Resolution (Bits) Pinout Temperature Range Performance Description  
Package  
Option  
Model1  
Branding  
AB  
AD5693RACPZ-RL7  
16  
LDAC  
VLOGIC  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
A Grade  
A Grade  
A Grade  
A Grade  
B Grade  
B Grade  
B Grade  
B Grade  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
AD5693RACPZ-1RL7 16  
AD5693RARMZ  
AD5693RARMZ-RL7  
AD5693RBCPZ-2RL7 16  
AC  
16  
16  
10-Lead MSOP  
10-Lead MSOP  
RM-10  
RM-10  
DJU  
DJU  
AD  
RESET  
8-Lead LFCSP_UD CP-8-10  
AD5693RBRMZ  
AD5693RBRMZ-RL7  
AD5693BCPZ-RL7  
16  
16  
16  
10-Lead MSOP  
10-Lead MSOP  
RM-10  
RM-10  
DJV  
DJV  
AA  
LDAC  
LDAC  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
AD5692RACPZ-RL7  
14  
−40°C to +105°C  
A Grade  
4M  
AD5691RACPZ-1RL7 12  
VLOGIC  
LDAC  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
A Grade  
B Grade  
B Grade  
B Grade  
8-Lead LFCSP_UD CP-8-10  
8-Lead LFCSP_UD CP-8-10  
5W  
6M  
AD5691RBCPZ-RL7  
AD5691RBRMZ  
12  
12  
12  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
RM-10  
RM-10  
DK2  
DK2  
AD5691RBRMZ-RL7  
EVAL-AD5693RSDZ  
1 Z = RoHS Compliant Part.  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2014–2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12077-0-2/17(D)  
Rev. D | Page 26 of 26  
 

相关型号:

AD5691RBRMZ-RL7

Tiny 16-/14-/12-Bit I2C nanoDAC
ADI

AD5692R

小型、14位 I2C NANODAC+,±4 LSB INL和5PPM/°C 基准电压源
ADI

AD5692RACPZ-RL7

Tiny 16-/14-/12-Bit I2C nanoDAC
ADI

AD5693

Tiny 16-/14-/12-Bit I2C nanoDAC
ADI

AD5693BCPZ-RL7

Tiny 16-/14-/12-Bit I2C nanoDAC
ADI

AD5693R

Tiny 16-/14-/12-Bit I2C nanoDAC
ADI

AD5693RACPZ-1RL7

Tiny 16-Bit I<sup>2</sup>C nanoDAC+, with ±2 (16-Bit) LSB INL and 2 ppm/&deg;C Reference
ADI

AD5693RACPZ-RL7

Tiny 16-Bit I<sup>2</sup>C nanoDAC+, with ±2 (16-Bit) LSB INL and 2 ppm/&deg;C Reference
ADI

AD5693RARMZ

Tiny 16-Bit I<sup>2</sup>C nanoDAC+, with ±2 (16-Bit) LSB INL and 2 ppm/&deg;C Reference
ADI

AD5693RARMZ-RL7

Tiny 16-/14-/12-Bit I2C nanoDAC
ADI

AD5693RBCPZ-2RL7

Tiny 16-/14-/12-Bit I2C nanoDAC
ADI

AD5693RBRMZ

Tiny 16-Bit I<sup>2</sup>C nanoDAC+, with ±2 (16-Bit) LSB INL and 2 ppm/&deg;C Reference
ADI