AD5669RBRUZ-2-RL7 [ADI]

Octal, 16-bit, I<sup>2</sup>C Voltage Output denseDAC with 5 ppm/&deg;C On-Chip Reference;
AD5669RBRUZ-2-RL7
型号: AD5669RBRUZ-2-RL7
厂家: ADI    ADI
描述:

Octal, 16-bit, I<sup>2</sup>C Voltage Output denseDAC with 5 ppm/&deg;C On-Chip Reference

光电二极管 转换器
文件: 总32页 (文件大小:1287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Octal, 12-/16-Bit, I2C, denseDACs  
with 5 ppm/°C On-Chip Reference  
Data Sheet  
AD5629R/AD5669R  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
V
V
/V  
DD  
REFIN REFOUT  
Low power octal DACs  
AD5629R: 12 bits  
AD5669R: 16 bits  
AD5629R/AD5669R  
1.25V/2.5V REF  
BUFFER  
LDAC  
INPUT  
REGISTER  
DAC  
STRING  
DAC A  
V
V
V
V
V
V
V
V
A
B
C
D
E
F
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
REGISTER  
2.6 mm × 2.6 mm 16-ball WLCSP  
4 mm × 4 mm 16-lead LFCSP and 16-lead TSSOP  
On-chip 1.25 V/2.5 V, 5 ppm/°C reference  
Power down to 400 nA at 5 V, 200 nA at 3 V  
2.7 V to 5.5 V power supply  
Guaranteed monotonic by design  
Power-on reset to zero scale or midscale  
3 power-down functions  
SCL  
SDA  
A0  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
BUFFER  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC B  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC C  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC D  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC E  
LDAC  
CLR  
functions  
Hardware  
and  
I2C-compatible serial interface supports standard (100 kHz)  
and fast (400 kHz) modes  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC F  
APPLICATIONS  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC G  
G
H
Process control  
INPUT  
REGISTER  
DAC  
REGISTER  
STRING  
DAC H  
Data acquisition systems  
Portable battery-powered instruments  
Digital gain and offset adjustment  
Programmable voltage and current sources  
POWER-ON RESET  
POWER-DOWN LOGIC  
GND  
LDAC CLR  
Figure 1.  
GENERAL DESCRIPTION  
The AD5629R/AD5669R devices are low power, octal, 12-/16-  
bit, buffered voltage-output DACs. All devices are guaranteed  
monotonic by design.  
The parts incorporate a power-on reset circuit to ensure that  
the DAC output powers up to 0 V (AD5629R-1/AD5629R-2,  
AD5669R-1/AD5669R-2) or midscale (AD5629R-3/AD5669R-3)  
and remains powered up at this level until a valid write takes place.  
The part contains a power-down feature that reduces the current  
consumption of the device to 400 nA at 5 V and provides software-  
selectable output loads while in power-down mode for any or  
all DAC channels.  
The AD5629R/AD5669R have an on-chip reference with an  
internal gain of 2. The AD5629R-1/AD5669R-1 have a 1.25 V,  
5 ppm/°C reference, giving a full-scale output range of 2.5 V.  
The AD5629R-2/AD5629R-3 and the AD5669R-2/AD5669R-3  
have a 2.5 V 5 ppm/°C reference, giving a full-scale output range  
of 5 V depending on the option selected. Devices with 1.25 V  
reference selected operate from a single 2.7 V to 5.5 V supply.  
Devices with 2.5 V reference selected operate from 4.5 V to 5.5 V.  
The on-chip reference is off at power-up, allowing the use of an  
external reference. The internal reference is enabled via a  
software write.  
PRODUCT HIGHLIGHTS  
1. Octal, 12-/16-bit DACs.  
2. On-chip 1.25 V/2.5 V, 5 ppm/°C reference.  
3. Available in 16-lead LFCSP and TSSOP, and 16-ball  
WLCSP.  
4. Power-on reset to 0 V or midscale.  
5. Power-down capability. When powered down, the DAC  
typically consumes 200 nA at 3 V and 400 nA at 5 V.  
Rev. E  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2010–2016 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
 
AD5629R/AD5669R  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Resistor String............................................................................. 21  
Internal Reference ...................................................................... 21  
Output Amplifier........................................................................ 22  
Serial Interface............................................................................ 22  
Write Operation.......................................................................... 22  
Read Operation........................................................................... 22  
Input Shift Register .................................................................... 23  
Multiple Byte Operation............................................................ 23  
Internal Reference Register....................................................... 24  
Power-On Reset.......................................................................... 24  
Power-Down Modes .................................................................. 25  
Clear Code Register ................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
AC Characteristics........................................................................ 6  
I2C Timing Characteristics.......................................................... 7  
Absolute Maximum Ratings............................................................ 9  
ESD Caution.................................................................................. 9  
Pin Configurations and Function Descriptions ......................... 10  
Typical Performance Characteristics ........................................... 12  
Terminology .................................................................................... 19  
Theory of Operation ...................................................................... 21  
Digital-to-Analog Converter (DAC) Section ......................... 21  
LDAC  
Function .......................................................................... 27  
Power Supply Bypassing and Grounding................................ 27  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 30  
REVISION HISTORY  
9/2016—Rev. D to Rev. E  
12/2010—Rev. 0 to Rev. A  
Change to Read Operation Section.............................................. 22  
Changes to Features, General Description, and Product  
Highlights Sections............................................................................1  
Changes to AD5629R Relative Accuracy Parameter, Reference  
Output (1.25 V) Reference Input Range Parameter, and Reference  
Output (2.5 V) Reference Input Range Parameter (Table 1).......3  
Changes to Relative Accuracy Parameter, Reference Tempco  
Parameter (Table 2)...........................................................................5  
Changes to Output Voltage Settling Time Parameter (Table 3)..6  
Changes to Table 5.............................................................................9  
4/2014—Rev. C to Rev. D  
Change to VOUTB, VOUTC, VOUTD, VOUTE, VOUTG, VOUTH Ball  
Numbers; Table 6............................................................................ 11  
2/2014—Rev. B to Rev. C  
Change to Table 6 ........................................................................... 11  
Changes to Figure 38, Figure 39, and Figure 40 ......................... 17  
Changes to Ordering Guide .......................................................... 30  
CLR  
Changes to  
Pin Description (Table 6)................................. 10  
Added Figure 32 and Figure 33 .................................................... 15  
Added Figure 46 ............................................................................. 17  
Changes to Internal Reference Section........................................ 20  
Changes to Power-On Reset Section ........................................... 23  
Changes to Clear Code Register Section..................................... 24  
Updated Outline Dimensions....................................................... 27  
Changes to Ordering Guide.......................................................... 28  
2/2013—Rev. A to Rev. B  
Added 16-Ball WLCSP.......................................................Universal  
Changes to Features Section............................................................ 1  
Added Figure 5, Renumbered Sequentially ................................ 10  
Moved Table 6 ................................................................................. 11  
Changes to Figure 25 and Figure 26............................................. 15  
Added Figure 58.............................................................................. 29  
Changes to Ordering Guide .......................................................... 30  
10/2010—Revision 0: Initial Version  
Rev. E | Page 2 of 32  
 
Data Sheet  
AD5629R/AD5669R  
SPECIFICATIONS  
VDD = 4.5 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 1.  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
Min  
Min  
Unit  
Test Conditions/Comments  
STATIC PERFORMANCE2  
AD5629R  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
12  
12  
Bits  
LSB  
±0.25 LSB  
±0.5 ±±  
±0.25  
±0.5 ±1  
See Figure 7  
Guaranteed monotonic by design  
(see Figure 9)  
AD5669R  
Resolution  
16  
16  
Bits  
Relative Accuracy  
Differential Nonlinearity  
±ꢀ  
±32  
±1  
±ꢀ  
±16  
±1  
LSB  
LSB  
See Figure 6  
Guaranteed monotonic by design  
(see Figure ꢀ)  
Zero-Code Error  
Zero-Code Error Drift  
Full-Scale Error  
Gain Error  
Gain Temperature Coefficient  
Offset Error  
6
±2  
−0.2 −1  
±1  
±2.5  
19  
6
±2  
−0.2 −1  
±1  
±2.5  
19  
mV  
All 0s loaded to DAC register (see Figure 19)  
All 1s loaded to DAC register (see Figure 20)  
Of FSR/°C  
µV/°C  
% FSR  
% FSR  
ppm  
mV  
±6  
±19  
±6  
±19  
DC Power Supply Rejection  
Ratio  
–ꢀ0  
–ꢀ0  
dB  
VDD ± 10%  
DC Crosstalk  
(External Reference)  
10  
10  
µV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
5
10  
25  
5
10  
25  
µV/mA  
µV  
µV  
Due to load current change  
Due to powering down (per channel)  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
DC Crosstalk  
(Internal Reference)  
10  
10  
µV/mA  
Due to load current change  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
0
VDD  
V
Capacitive Load Stability  
2
2
nF  
nF  
mA  
µs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
±
10  
0.5  
30  
±
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 5 V  
Coming out of power-down mode, VDD = 5 V  
REFERENCE INPUTS  
Reference Current  
±0  
50  
VDD  
±0  
50  
VDD  
µA  
V
kΩ  
VREFIN = VDD = 5.5 V (per DAC channel)  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT (1.25 V)  
Output Voltage  
0
0
1±.6  
1±.6  
1.2±7  
1.253 1.2±7  
2.505 2.±95  
1.253 µA  
±15 ppm/°C LFCSP, TSSOP  
TA = 25°C  
WLCSP  
Reference Input Range  
±15  
7.5  
±5  
±15  
7.5  
Output Impedance  
REFERENCE OUTPUT (2.5 V)  
Output Voltage  
kΩ  
2.±95  
2.505 µA  
ppm/°C  
kΩ  
TA = 25°C  
Reference Input Range  
Output Impedance  
±15  
7.5  
±5  
7.5  
±10  
Rev. E | Page 3 of 32  
 
 
AD5629R/AD5669R  
Data Sheet  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
LOGIC INPUTS3  
Min  
Min  
Unit  
Test Conditions/Comments  
Input Current  
±3  
0.ꢀ  
±3  
0.ꢀ  
µA  
V
V
All digital inputs  
VDD = 5 V  
VDD = 5 V  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Pin Capacitance  
POWER REQUIREMENTS  
VDD  
2
2
3
3
pF  
±.5  
5.5  
±.5  
5.5  
V
All digital inputs at 0 or VDD,  
DAC active, excludes load current  
IDD (Normal Mode)±  
VDD = ±.5 V to 5.5 V  
VIH = VDD and VIL = GND  
Internal reference off  
Internal reference on  
1.3  
2
1.ꢀ  
2.5  
1.3  
2
1.ꢀ  
2.5  
mA  
mA  
IDD (All Power-Down Modes)5  
VDD = ±.5 V to 5.5 V  
0.±  
1
0.±  
1
µA  
VIH = VDD and VIL = GND  
1 Temperature range is −±0°C to +105°C, typical at 25°C.  
2 Linearity calculated using a reduced code range of the AD5629R (Code 32 to Code ±06±) and the AD5669R (Code 512 to 65,02±). Output unloaded.  
3 Guaranteed by design and characterization; not production tested.  
± Interface inactive. All DACs active. DAC outputs unloaded.  
5 All eight DACs powered down.  
Rev. E | Page ± of 32  
 
Data Sheet  
AD5629R/AD5669R  
VDD = 2.7 V to 3.6 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 2.  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
STATIC PERFORMANCE2  
Min  
Min  
Unit  
Conditions/Comments  
AD5629R  
Resolution  
12  
12  
Bits  
LSB  
±0.25 LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5669R  
±0.5 ±±  
±0.25  
±0.5 ±1  
See Figure 7  
Guaranteed monotonic by design (see Figure 9)  
Resolution  
16  
16  
Bits  
Relative Accuracy  
Differential Nonlinearity  
Zero-Code Error  
Zero-Code Error Drift  
Full-Scale Error  
Gain Error  
Gain Temperature Coefficient  
Offset Error  
DC Power Supply Rejection  
Ratio  
±ꢀ  
±32  
±1  
19  
±ꢀ  
±16  
±1  
19  
LSB  
LSB  
mV  
µV/°C  
% FSR  
% FSR  
ppm  
mV  
See Figure 6  
Guaranteed monotonic by design (see Figure ꢀ)  
All 0s loaded to DAC register (see Figure 19)  
6
±2  
−0.2 −1  
±1  
±2.5  
6
±2  
−0.2 −1  
±1  
±2.5  
All 1s loaded to DAC register (see Figure 20)  
Of FSR/°C  
VDD ± 10%  
±6  
–ꢀ0  
±19  
±6  
–ꢀ0  
±19  
dB  
DC Crosstalk  
(External Reference)  
10  
10  
µV  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
5
10  
25  
5
10  
25  
µV/mA  
µV  
µV  
Due to load current change  
Due to powering down (per channel)  
Due to full-scale output change,  
RL = 2 kΩ to GND or VDD  
DC Crosstalk  
(Internal Reference)  
10  
10  
µV/mA  
Due to load current change  
OUTPUT CHARACTERISTICS3  
Output Voltage Range  
0
VDD  
0
VDD  
V
Capacitive Load Stability  
2
2
nF  
nF  
mA  
µs  
RL = ∞  
RL = 2 kΩ  
10  
0.5  
30  
±
10  
0.5  
30  
±
DC Output Impedance  
Short-Circuit Current  
Power-Up Time  
VDD = 3 V  
Coming out of power-down mode, VDD = 3 V  
REFERENCE INPUTS  
Reference Current  
Reference Input Range  
Reference Input Impedance  
REFERENCE OUTPUT  
Output Voltage  
±0  
50  
VDD  
±0  
50  
VDD  
µA  
kΩ  
VREFIN = VDD = 3.6 V (per DAC channel)  
0
0
1±.6  
1±.6  
AD5629R/AD5669R  
Reference Tempco3  
1.2±7  
1.253 1.2±7  
1.253  
V
TA = 25°C  
±15  
7.5  
ppm/°C LFCSP, TSSOP  
±5  
±15  
7.5  
±15  
WLCSP  
kΩ  
Reference Output Impedance  
LOGIC INPUTS3  
Input Current  
±3  
0.ꢀ  
2
±3  
0.ꢀ  
µA  
V
V
All digital inputs  
VDD = 3 V  
VDD = 3 V  
Input Low Voltage, VINL  
Input High Voltage, VINH  
Pin Capacitance  
2
3
3
pF  
Rev. E | Page 5 of 32  
 
 
 
 
AD5629R/AD5669R  
Data Sheet  
A Grade1  
Typ Max  
B Grade1  
Typ Max  
Parameter  
Min  
Min  
Unit  
Conditions/Comments  
POWER REQUIREMENTS  
VDD  
2.7  
3.6  
2.7  
3.6  
V
All digital inputs at 0 or VDD,  
DAC active, excludes load current  
VIH = VDD and VIL = GND  
Internal reference off  
IDD (Normal Mode)±  
VDD = 2.7 V to 3.6 V  
1.0  
1.ꢀ  
1.5  
2.25  
1.0  
1.7  
1.5  
2.25  
mA  
mA  
Internal reference on  
IDD (All Power-Down Modes)5  
VDD = 2.7 V to 3.6 V  
0.2  
1
0.2  
1
µA  
VIH = VDD and VIL = GND  
1 Temperature range is −±0°C to +105°C, typical at 25°C.  
2 Linearity calculated using a reduced code range of the AD5629R (Code 32 to Code ±06±) and the AD5669R (Code 512 to 65,02±). Output unloaded.  
3 Guaranteed by design and characterization; not production tested.  
± Interface inactive. All DACs active. DAC outputs unloaded.  
5 All eight DACs powered down.  
AC CHARACTERISTICS  
VDD = 2.7 V to 5.5 V, RL = 2 kΩ to GND, CL = 200 pF to GND, VREFIN = VDD. All specifications TMIN to TMAX, unless otherwise noted.  
Table 3.  
Parameter 1, 2  
Min  
Typ  
2.5  
1.2  
±
Max  
Unit  
µs  
Conditions/Comments 3  
Output Voltage Settling Time  
Slew Rate  
Digital-to-Analog Glitch Impulse  
7
¼ to ¾ scale settling to ±2 LSB  
V/µs  
nV-s  
nV-s  
nV-s  
dB  
nV-s  
nV-s  
nV-s  
kHz  
1 LSB change around major carry (see Figure 35)  
From Code 5990± to Code 59903  
19  
Digital Feedthrough  
Reference Feedthrough  
Digital Crosstalk  
0.1  
−90  
0.2  
0.±  
0.ꢀ  
320  
−ꢀ0  
120  
100  
VREFIN = 2 V ± 0.1 V p-p, frequency = 10 Hz to 20 MHz  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
Output Noise Spectral Density  
VREFIN = 2 V ± 0.2 V p-p  
VREFIN = 2 V ± 0.1 V p-p, frequency = 10 kHz  
DAC code = 0xꢀ±00, 1 kHz  
dB  
nV/√Hz  
nV/√Hz  
DAC code = 0xꢀ±00, 10 kHz  
1 Guaranteed by design and characterization; not production tested.  
2 See the Terminology section.  
3 Temperature range is −±0°C to +105°C, typical at 25°C.  
Rev. E | Page 6 of 32  
 
 
 
Data Sheet  
AD5629R/AD5669R  
I2C TIMING CHARACTERISTICS  
VDD = 2.7 V to 5.5 V; all specifications TMIN to TMAX, fSCL = 400 kHz, unless otherwise noted.  
Table 4.  
Parameter Conditions  
Min  
Max  
100  
±00  
Unit  
kHz  
kHz  
μs  
μs  
μs  
μs  
ns  
ns  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Description  
1
fSCL  
t1  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Serial clock frequency  
±
tHIGH, SCL high time  
tLOW, SCL low time  
0.6  
±.7  
1.3  
250  
100  
0
t2  
Standard mode  
Fast mode  
t3  
Standard mode  
Fast mode  
tSU;DAT, data setup time  
tHD;DAT, data hold time  
t±  
Standard mode  
Fast mode  
3.±5  
0.9  
0
t5  
Standard mode  
Fast mode  
±.7  
0.6  
±
0.6  
±.7  
1.3  
±
tSU;STA, setup time for a repeated start condition  
tHD;STA, hold time (repeated) start condition  
tBUF, bus-free time between a stop and a start condition  
tSU;STO, setup time for a stop condition  
tRDA, rise time of SDA signal  
t6  
Standard mode  
Fast mode  
t7  
Standard mode  
Fast mode  
tꢀ  
Standard mode  
Fast mode  
0.6  
t9  
Standard mode  
Fast mode  
1000  
300  
300  
300  
1000  
300  
t10  
t11  
t11A  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
tFDA, fall time of SDA signal  
tRCL, rise time of SCL signal  
Standard mode  
1000  
tRCL1, rise time of SCL signal after a repeated start condition and  
after an acknowledge bit  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
Fast mode  
Standard mode  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
ns  
t12  
t13  
t1±  
tFCL, fall time of SCL signal  
LDAC pulse width low  
10  
10  
300  
Falling edge of ninth SCL clock pulse of last byte of a valid write to  
the LDAC falling edge  
Fast mode  
Standard mode  
Fast mode  
300  
20  
20  
0
ns  
ns  
ns  
ns  
t15  
CLR pulse width low  
2
tSP  
Fast mode  
50  
Pulse width of spike suppressed  
1 The SDA and SCL timing is measured with the input filters enabled. Switching off the input filters improves the transfer rate but has a negative effect on the EMC  
behavior of the part.  
2 Input filtering on the SCL and SDA inputs suppresses noise spikes that are less than 50 ns for fast mode or less than 10 ns for high speed mode.  
Rev. E | Page 7 of 32  
 
AD5629R/AD5669R  
Data Sheet  
t11  
t12  
t6  
t2  
t6  
SCL  
t1  
t3  
t5  
t10  
t8  
t4  
t9  
SDA  
t7  
P
S
S
P
t14  
t13  
LDAC*  
CLR  
t15  
*ASYNCHRONOUS LDAC UPDATE MODE.  
Figure 2. Serial Write Operation  
Rev. E | Page 8 of 32  
 
Data Sheet  
AD5629R/AD5669R  
ABSOLUTE MAXIMUM RATINGS  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
TA = 25°C, unless otherwise noted.  
Table 5.  
Parameter  
Rating  
VDD to GND  
−0.3 V to +7 V  
Digital Input Voltage to GND  
VOUT to GND  
VREFIN/VREFOUT to GND  
Operating Temperature Range  
Industrial  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
−0.3 V to VDD + 0.3 V  
ESD CAUTION  
−±0°C to +105°C  
−65°C to +150°C  
+150°C  
Storage Temperature Range  
Junction Temperature (TJ MAX  
)
Power Dissipation  
(TJ MAX − TA)/θJA  
Thermal Impedance, θJA  
16-Lead TSSOP (±-Layer Board)  
16-Lead LFCSP (±-Layer Board)  
Reflow Soldering Peak Temperature  
Pb Free  
112.6°C/W  
30.±°C/W  
260°C  
Rev. E | Page 9 of 32  
 
 
 
 
AD5629R/AD5669R  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
AD5629R/AD5669R  
V
1
2
3
4
12 GND  
DD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
LDAC  
A0  
SCL  
V
V
A
C
11  
10  
9
V
V
B
D
OUT  
OUT  
OUT  
TOP VIEW  
(Not to Scale)  
SDA  
GND  
OUT  
V
DD  
AD5629R/  
AD5669R  
TOP VIEW  
(Not to Scale)  
V
E
V
F
OUT  
OUT  
V
V
A
C
V
V
V
V
B
D
F
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
V
E
OUT  
V
G
H
OUT  
V
/V  
REFIN REFOUT  
CLR  
NOTES  
1. EXPOSED PAD MUST BE TIED TO GND.  
Figure 4. 16-Lead TSSOP (RU-16)  
Figure 3. 16-Lead LFCSP (CP-16-17)  
BALL A1  
INDICATOR  
1
2
3
4
GND SCL  
SDA  
A0  
A
V
V
B LDAC  
V
V
A
OUT  
OUT  
DD  
B
C
D
F V  
D V  
E V  
C
G
OUT  
OUT  
OUT  
OUT  
OUT  
V
H
CLR  
V
V
REF  
OUT  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 5. 16-Ball WLCSP  
Rev. E | Page 10 of 32  
 
Data Sheet  
AD5629R/AD5669R  
Table 6. Pin Function Descriptions  
Pin No.  
LFCSP  
TSSOP  
WLCSP  
Mnemonic  
Description  
15  
1
B2  
LDAC  
Pulsing this pin low allows any or all DAC registers to be updated if the input registers  
have new data. This allows all DAC outputs to simultaneously update. Alternatively,  
this pin can be tied permanently low.  
16  
1
2
3
A±  
B3  
A0  
VDD  
Address Input. Sets the least significant bit of the 7-bit slave address.  
Power Supply Input. These parts can be operated from 2.7 V to 5.5 V. Decouple the  
supply with a 10 µF capacitor in parallel with a 0.1 µF capacitor to GND.  
2
3
±
5
6
±
5
6
7
B±  
C±  
C3  
D±  
D3  
VOUT  
VOUT  
VOUT  
VOUT  
A
C
E
Analog Output Voltage from DAC A. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC C. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC E. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC G. The output amplifier has rail-to-rail operation.  
The AD5629R/AD5669R have a common pin for reference input and reference  
output. When using the internal reference, this is the reference output pin. When  
using an external reference, this is the reference input pin. The default for this pin is  
as a reference input.  
G
VREFIN/VREFOUT  
7
9
D2  
CLR  
Asynchronous Clear Input. The CLR input is falling edge sensitive. When CLR is low, all  
LDAC pulses are ignored. When CLR is activated, the input register and the DAC  
register are updated with the data contained in the CLR code register—zero scale,  
midscale, or full scale. The default setting clears the output to 0 V.  
9
10  
11  
12  
13  
10  
11  
12  
13  
1±  
15  
D1  
C1  
C2  
B1  
A1  
A3  
VOUT  
VOUT  
VOUT  
VOUT  
GND  
SDA  
H
F
D
B
Analog Output Voltage from DAC H. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC F. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC D. The output amplifier has rail-to-rail operation.  
Analog Output Voltage from DAC B. The output amplifier has rail-to-rail operation.  
Ground Reference Point for All Circuitry on the Parts.  
Serial Data Input. This is used in conjunction with the SCL line to clock data into or  
out of the 32-bit input shift register. It is a bidirectional, open-drain data line that  
should be pulled to the supply with an external pull-up resistor.  
1±  
17  
16  
A2  
SCL  
Serial Clock Line. This is used in conjunction with the SDA line to clock data into or  
out of the 32-bit input shift register.  
The exposed pad must be tied to GND.  
N/A  
N/A  
Exposed Pad  
(EPAD)  
Rev. E | Page 11 of 32  
AD5629R/AD5669R  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
0.20  
0.15  
0.10  
0.05  
0
V
= 5V  
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
DD  
EXT REF = 5V  
= 25°C  
8
6
T
T
A
A
4
2
0
–2  
–4  
–6  
–8  
–10  
–0.05  
–0.10  
–0.15  
–0.20  
0
0
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
Figure 6. INL AD5669RExternal Reference  
Figure 9. DNL AD5629RExternal Reference  
1.0  
0.8  
10  
5
V
= 5V  
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
DD  
INT REF = 2.5V  
= 25°C  
T
T
A
A
0.6  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–5  
–10  
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
Figure 7. INL AD5629RExternal Reference  
Figure 10. INL AD5669R-2Internal Reference  
1.0  
0.8  
1.0  
0.5  
V
= 5V  
EXT REF = 5V  
= 25°C  
V
= 5V  
DD  
DD  
INT REF = 2.5V  
= 25°C  
T
T
A
A
0.6  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
Figure 8. DNL AD5669RExternal Reference  
Figure 11. INL AD5629R-2Internal Reference  
Rev. E | Page 12 of 32  
 
 
 
 
 
 
 
Data Sheet  
AD5629R/AD5669R  
1.0  
1.0  
0.5  
V
= 5V  
V
= 3V  
DD  
INT REF = 2.5V  
= 25°C  
DD  
INT REF = 1.25V  
T = 25°C  
A
T
A
0.5  
0
0
–0.5  
–1.0  
–0.5  
–1.0  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
Figure 12. DNL AD5669R-2Internal Reference  
Figure 15. INL AD5629R-1Internal Reference  
0.20  
0.15  
0.10  
0.05  
0
1.0  
0.5  
V
= 5V  
DD  
INT REF = 2.5V  
= 25°C  
V
= 3V  
DD  
INT REF = 1.25V  
= 25°C  
T
A
T
A
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.5  
–1.0  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
Figure 13. DNL AD5629R-2Internal Reference  
Figure 16. DNL AD5669R-1Internal Reference  
10  
8
0.20  
0.15  
0.10  
0.05  
0
V
= 3V  
V
= 3V  
DD  
INT REF = 1.25V  
= 25°C  
DD  
INT REF = 1.25V  
T = 25°C  
A
T
A
6
4
2
0
–2  
–4  
–6  
–8  
–10  
–0.05  
–0.10  
–0.15  
–0.20  
0
10k  
20k  
30k  
CODES  
40k  
50k  
60k 65535  
0
500  
1000 1500 2000 2500 3000 3500  
CODES  
4095  
Figure 14. INL AD5669R-1Internal Reference  
Figure 17. DNL AD5629R-1Internal Reference  
Rev. E | Page 13 of 32  
 
 
 
 
 
 
AD5629R/AD5669R  
Data Sheet  
0
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
V
= 5V  
DD  
T
= 25°C  
A
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
OFFSET ERROR  
FULL-SCALE ERROR  
GAIN ERROR  
ZERO-CODE ERROR  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
TEMPERATURE (°C)  
V
DD  
Figure 18. Gain Error and Full-Scale Error vs. Temperature  
Figure 21. Zero-Code Error and Offset Error vs. Supply Voltage  
21  
18  
15  
12  
9
6
V
= 5V  
DD  
5
4
3
2
1
0
OFFSET ERROR  
ZERO-CODE ERROR  
6
3
0
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
0.85  
0.90  
0.95  
1.00  
1.05  
I
WITH EXTERNAL REFERENCE (mA)  
TEMPERATURE (°C)  
DD  
Figure 22. IDD Histogram with External Reference  
Figure 19. Zero-Code Error and Offset Error vs. Temperature  
18  
–0.16  
–0.17  
–0.18  
–0.19  
–0.20  
–0.21  
–0.22  
–0.23  
–0.24  
–0.25  
–0.26  
T
= 25°C  
A
FULL-SCALE ERROR  
16  
14  
12  
10  
8
6
4
GAIN ERROR  
2
0
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
I
WITH INTERNAL REFERENCE (mA)  
V
DD  
DD  
Figure 23. IDD Histogram with Internal Reference  
Figure 20. Gain Error and Full-Scale Error vs. Supply Voltage  
Rev. E | Page 14 of 32  
 
 
 
Data Sheet  
AD5629R/AD5669R  
0.4  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
T = 25°C  
A
T
= 25°C  
A
0.3  
0.2  
V
= 5V  
DD  
0.1  
V
= 3V, INT REF = 1.25V  
DD  
0
V
= 3V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
= 5V, INT REF = 2.5V  
DD  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
8
10  
0.03  
0.03  
0
10k  
20k  
30k  
40k  
50k  
60k  
SOURCE/SINK CURRENT (mA)  
DIGITAL CODES (Decimal)  
Figure 24. Headroom at Rails vs. Source and Sink  
Figure 27. Supply Current vs. Code  
6
5
2.0  
V
= 5V  
DD  
T = 25°C  
A
INT REF = 2.5V  
T
FULL SCALE  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
= 25°C  
A
4
3/4 SCALE  
V
V
= 5.5V  
DD  
3
MIDSCALE  
1/4 SCALE  
= 3.6V  
DD  
2
1
0
ZERO CODE  
–1  
–0.03  
–0.02  
–0.01  
0
0.01  
0.02  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
SOURCE AND SINK CURRENT (A)  
TEMPERATURE (°C)  
Figure 25. AD5669R-2 Source and Sink Capability  
Figure 28. Supply Current vs. Temperature  
1.48  
1.46  
1.44  
1.42  
1.40  
1.38  
1.36  
1.34  
4.0  
T
= 25°C  
V
= 3V  
A
DD  
INT REF = 1.25V  
T
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
= 25°C  
A
FULL SCALE  
3/4 SCALE  
MIDSCALE  
1/4 SCALE  
ZERO CODE  
–0.5  
–1.0  
2.7  
3.1  
3.5  
3.9  
4.3  
(V)  
4.7  
5.1  
5.5  
–0.03  
–0.02  
–0.01  
0
0.01  
0.02  
V
SOURCE AND SINK CURRENT (A)  
DD  
Figure 26. AD5669R-1 Source and Sink Capability  
Figure 29. Supply Current vs. Supply Voltage  
Rev. E | Page 15 of 32  
 
 
AD5629R/AD5669R  
Data Sheet  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
2.3  
T
= 25°C  
A
T
A
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
V
DD  
V
= 5V  
DD  
V
A
OUT  
V
= 3V  
DD  
–0.5  
–0.0010  
–0.0006  
–0.0002  
0.0002  
0.0006  
0.0010  
TIME (s)  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
(V)  
3.5  
4.0  
4.5  
5.0  
V
LOGIC  
Figure 30. Supply Current vs. Logic Input Voltage  
Figure 33. Power-On Reset to Midscale  
5.5  
TH  
24 CLK RISING EDGE  
6
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
V
= 5V  
DD  
EXT REF = 5V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
A
T
= 25°C  
A
5
4
3
2
1
0
V
A
OUT  
–0.5  
–10  
–5  
0
5
10  
–2  
0
2
4
6
8
TIME (µs)  
TIME (µs)  
Figure 31. Full-Scale Settling Time, 5 V  
Figure 34. Exiting Power-Down to Midscale  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 5V  
DD  
T
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
EXT REF = 5V  
T
= 25°C  
A
T
A
V
DD  
V
A
OUT  
3
TH  
24 CLK RISING EDGE  
V
A
OUT  
4
–0.5  
–0.0010  
–0.0006  
–0.0002  
0.0002  
0.0006  
0.0010  
M400ns  
17.0%  
A
CH4  
1.50V  
B
CH3 10.0mV  
CH4 5.0V  
T
TIME (s)  
W
Figure 32. Power-On Reset to 0 V  
Figure 35. Digital-to-Analog Glitch Impulse (Negative)  
Rev. E | Page 16 of 32  
 
Data Sheet  
AD5629R/AD5669R  
20  
15  
0.0010  
EXT REF = 2.5V  
DAC CODE = 0xFF00  
V
= 5V  
DD  
EXT REF = 5V  
= 25°C  
T
A
0.0005  
0
10  
5
0
–0.0005  
–0.0010  
–0.0015  
–5  
–10  
–15  
–20  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (s)  
Figure 36. Analog Crosstalk  
Figure 39. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
0.0020  
0.0015  
0.0010  
0.0005  
0
20  
V
= 5V  
INT REF = 1.25V  
DAC CODE = 0xFF00  
DD  
EXT REF = 5V  
= 25°C  
15  
T
A
10  
5
0
–5  
–0.0005  
–0.0010  
–0.0015  
–10  
–15  
–20  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
9
10  
TIME (µs)  
TIME (s)  
Figure 37. DAC-to-DAC Crosstalk  
Figure 40. 0.1 Hz to 10 Hz Output Noise Plot, Internal Reference  
6
800  
V
= 5.5V  
V
= 5.5V  
DD  
DAC CODE = 0x8400  
DD  
EXT REF = 5V  
700  
600  
500  
400  
300  
200  
100  
0
DAC CODE = 0xFF00  
4
2
0
V
= 2.5V  
REF  
–2  
–4  
–6  
–8  
V
= 1.25V  
REF  
100  
1k  
10k  
100k  
1M  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY (Hz)  
TIME (s)  
Figure 41. Noise Spectral Density, Internal Reference  
Figure 38. 0.1 Hz to 10 Hz Output Noise Plot, External Reference  
Rev. E | Page 17 of 32  
AD5629R/AD5669R  
Data Sheet  
0
10  
0
V
= 5.5V  
DD  
EXT REF = 5V  
= 25°C  
T
–20  
–40  
A
V
= 2V ± 0.1V p-p  
REF  
FREQUENCY = 10kHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–60  
–80  
CH A  
CH B  
CH C  
CH D  
CH E  
CH F  
CH G  
CH H  
–3dB  
–100  
–120  
–140  
V
= 5.5V  
DD  
EXT REF = 5V  
= 25°C  
T
A
V
= 2V ± 0.2V p-p  
REF  
0
2000  
4000  
6000  
8000  
10,000  
10  
100  
1k  
1k0  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42. Total Harmonic Distortion  
Figure 45. Multiplying Bandwidth  
1.2510  
1.2508  
1.2506  
1.2504  
1.2502  
1.2500  
1.2498  
1.2496  
1.2494  
1.2492  
1.2490  
V
= 5.5V  
DD  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
A
V
= EXTERNAL REFERENCE = 5V  
DD  
V
= EXTERNAL REFERENCE = 3V  
DD  
–40  
25  
105  
TEMPERATURE (°C)  
0
1
2
3
4
5
6
7
8
9
10  
CAPACITIVE LOAD (nF)  
Figure 43. Settling Time vs. Capacitive Load  
Figure 46. 1.25 V Reference Temperature Coefficient vs. Temperature  
2.503  
2.502  
2.501  
2.500  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
EXT REF = 5V  
2.499  
2.498  
2.497  
2.496  
2.495  
V
A
OUT  
CLR PULSE  
105  
25  
–40  
–0.5  
–10  
TEMPERATURE (°C)  
–5  
0
5
10  
TIME (µs)  
CLR  
Figure 44. Hardware  
Figure 47. 2.5 V Reference Temperature Coefficient vs. Temperature  
Rev. E | Page 18 of 32  
 
Data Sheet  
AD5629R/AD5669R  
TERMINOLOGY  
Digital-to-Analog Glitch Impulse  
Relative Accuracy  
Digital-to-analog glitch impulse is the impulse injected into the  
analog output when the input code in the DAC register changes  
state. It is normally specified as the area of the glitch in nV-s and  
is measured when the digital input code is changed by 1 LSB at  
the major carry transition (0x7FFF to 0x8000). Figure 35 shows  
a typical digital-to-analog glitch impulse plot.  
For the DAC, relative accuracy, or integral nonlinearity (INL), is  
a measure of the maximum deviation in LSBs from a straight line  
passing through the endpoints of the DAC transfer function.  
Figure 6, Figure 7, Figure 10, Figure 11, Figure 14, and Figure 15  
show plots of typical INL vs. code.  
Differential Nonlinearity  
DC Power Supply Rejection Ratio (PSRR)  
Differential nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed  
monotonic by design. Figure 8, Figure 9, Figure 12, Figure 13,  
Figure 16, and Figure 17 show plots of typical DNL vs. code.  
PSRR indicates how the output of the DAC is affected by changes  
in the supply voltage. PSRR is the ratio of the change in VOUT to  
a change in VDD for full-scale output of the DAC. VREF is held at  
2 V, and VDD is varied 10%. It is measured in decibels.  
DC Crosstalk  
DC crosstalk is the dc change in the output level of one DAC in  
response to a change in the output of another DAC. It is measured  
with a full-scale output change on one DAC (or soft power-down  
and power-up) while monitoring another DAC kept at midscale.  
It is expressed in microvolts.  
Offset Error  
Offset error is a measure of the difference between the actual  
V
OUT and the ideal VOUT, expressed in millivolts in the linear  
region of the transfer function. Offset error is measured on the  
AD5669R between Code 512 and Code 65024 loaded into the  
DAC register. It can be negative or positive and is expressed in  
millivolts.  
DC crosstalk due to load current change is a measure of the  
impact that a change in load current on one DAC has on another  
DAC kept at midscale. It is expressed in microvolts per milliamp.  
Zero-Code Error  
Zero-code error is a measure of the output error when zero  
code (0x0000) is loaded into the DAC register. Ideally, the  
output should be 0 V. The zero-code error is always positive  
because the output of the DAC cannot go below 0 V. It is due to  
a combination of the offset errors in the DAC and output  
amplifier. Zero-code error is expressed in millivolts. Figure 19  
shows a plot of typical zero-code error vs. temperature.  
Digital Feedthrough  
Digital feedthrough is a measure of the impulse injected into  
the analog output of a DAC from the digital input pins of the  
device, but is measured when the DAC is not being written to. It  
is specified in nV-s and measured with a full-scale change on  
the digital input pins, that is, from all 0s to all 1s or vice versa.  
Digital Crosstalk  
Gain Error  
Digital crosstalk is the glitch impulse transferred to the output  
of one DAC at midscale in response to a full-scale code change  
(all 0s to all 1s or vice versa) in the input register of another DAC.  
It is measured in standalone mode and is expressed in nV-s.  
Gain error is a measure of the span error of the DAC. It is the  
deviation in slope of the DAC transfer characteristic from the  
ideal, expressed as a percentage of the full-scale range.  
Zero-Code Error Drift  
Analog Crosstalk  
Zero-code error drift is a measure of the change in zero-code  
error with a change in temperature. It is expressed in µV/°C.  
Analog crosstalk is the glitch impulse transferred to the output  
of one DAC due to a change in the output of another DAC. It is  
measured by loading one of the input registers with a full-scale  
Gain Error Drift  
LDAC  
code change (all 0s to all 1s or vice versa) while keeping  
Gain error drift is a measure of the change in gain error with  
changes in temperature. It is expressed in (ppm of full-scale  
range)/°C.  
LDAC  
high and then pulsing  
low and monitoring the output of  
the DAC whose digital code has not changed. The area of the  
glitch is expressed in nV-s.  
Full-Scale Error  
Full-scale error is a measure of the output error when full-scale  
code (0xFFFF) is loaded into the DAC register. Ideally, the  
output should be VREF − 1 LSB. Full-scale error is expressed as  
a percentage of the full-scale range. Figure 18 shows a plot of  
typical full-scale error vs. temperature.  
Rev. E | Page 19 of 32  
 
AD5629R/AD5669R  
Data Sheet  
DAC-to-DAC Crosstalk  
Total Harmonic Distortion (THD)  
DAC-to-DAC crosstalk is the glitch impulse transferred to the  
output of one DAC due to a digital code change and subsequent  
output change of another DAC. This includes both digital and  
analog crosstalk. It is measured by loading one of the DACs  
with a full-scale code change (all 0s to all 1s or vice versa) with  
Total harmonic distortion is the difference between an ideal  
sine wave and its attenuated version using the DAC. The sine  
wave is used as the reference for the DAC, and the THD is a  
measure of the harmonics present on the DAC output. It is  
measured in decibels.  
LDAC  
low and monitoring the output of another DAC. The  
energy of the glitch is expressed in nV-s.  
Multiplying Bandwidth  
The amplifiers within the DAC have a finite bandwidth. The  
multiplying bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The multiplying bandwidth is the frequency at  
which the output amplitude falls to 3 dB below the input.  
Rev. E | Page 20 of 32  
Data Sheet  
AD5629R/AD5669R  
THEORY OF OPERATION  
DIGITAL-TO-ANALOG CONVERTER (DAC) SECTION  
RESISTOR STRING  
The AD5629R/AD5669R are fabricated on a CMOS process.  
The architecture consists of a string of DACs followed by an  
output buffer amplifier. Each part includes an internal  
1.25 V/2.5 V, 5 ppm/°C reference with an internal gain of 2.  
Figure 48 and Figure 49 show block diagrams of the DAC  
architecture.  
The resistor string section is shown in Figure 50. It is simply a  
string of resistors, each of value R. The code loaded into the  
DAC register determines at which node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it  
is guaranteed monotonic.  
V
/V  
REFIN REFOUT  
R
INTERNAL  
REFERENCE  
1
OUTPUT  
AMPLIFIER  
GAIN = ×2  
REF (+)  
R
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
REF (–)  
TO OUTPUT  
R
AMPLIFIER  
1
CAN BE OVERDRIVEN  
BY V .  
/V  
REFIN REFOUT  
GND  
Figure 48. DAC Architecture for Internal Reference Configuration  
R
R
V
/V  
REFIN REFOUT  
REF  
BUFFER  
R
R
OUTPUT  
AMPLIFIER  
GAIN = ×2  
Figure 50. Resistor String  
REF (+)  
INTERNAL REFERENCE  
RESISTOR  
STRING  
V
OUT  
The AD5629R/AD5669R have an on-chip reference with an  
internal gain of 2. The AD5629R-1/AD5669R-1 have a 1.25 V,  
5 ppm/°C reference, giving a full-scale output of 2.5 V or the  
AD5629R-2/AD5629R-3/AD5669R-2/AD5669R-3 have a 2.5 V,  
5 ppm/°C reference, working between a supply from 4.5 V to  
5.5 V giving a full-scale output of 5 V. The on-board reference  
is off at power-up, allowing the use of an external reference. The  
internal reference is enabled via a write to the control register  
(see Table 8).  
REF (–)  
GND  
Figure 49. DAC Architecture for External Reference Configuration  
Because the input coding to the DAC is straight binary, the ideal  
output voltage when using an external reference is given by  
D
VOUT VREFIN  
2N  
The internal reference associated with each part is available at  
the VREFOUT pin. A buffer is required if the reference output is  
used to drive external loads. When using the internal reference,  
it is recommended that a 100 nF capacitor be placed between  
the reference output and GND for reference stability.  
The ideal output voltage when using the internal reference is  
given by  
D
VOUT 2VREFOUT  
2N  
Individual channel power-down is not supported while using  
the internal reference.  
where:  
D = decimal equivalent of the binary code that is loaded to the  
DAC register as follows:  
0 to 4095 for AD5629R (12 bits).  
0 to 65,535 for AD5669R (16 bits).  
N = the DAC resolution.  
Rev. E | Page 21 of 32  
 
 
 
 
 
 
 
AD5629R/AD5669R  
Data Sheet  
address corresponding to the transmitted address responds  
by pulling SDA low during the ninth clock pulse (this is  
termed the acknowledge bit). At this stage, all other devices  
on the bus remain idle while the selected device waits for  
data to be written to or read from its shift register.  
2. Data is transmitted over the serial bus in sequences of nine  
clock pulses (eight data bits followed by an acknowledge  
bit). The transitions on the SDA line must occur during  
the low period of SCL and remain stable during the high  
period of SCL.  
3. When all data bits have been read or written, a stop  
condition is established. In write mode, the master pulls  
the SDA line high during the 10th clock pulse to establish  
a stop condition. In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA  
line remains high). The master brings the SDA line low  
before the 10th clock pulse and then high during the 10th  
clock pulse to establish a stop condition.  
OUTPUT AMPLIFIER  
The output buffer amplifier can generate rail-to-rail voltages  
on its output, which gives an output range of 0 V to VDD. The  
amplifier is capable of driving a load of 2 kΩ in parallel with  
1000 pF to GND. The source and sink capabilities of the output  
amplifier can be seen in Figure 25 and Figure 26. The slew rate  
is 1.5 V/μs with a ¼ to ¾ scale settling time of 10 μs.  
SERIAL INTERFACE  
The AD5629R/AD5669R have 2-wire I2C-compatible serial  
interfaces (refer to The I2C-Bus Specification, Version 2.1,  
January 2000, available from Philips Semiconductor). The  
AD5629R/AD5669R can be connected to an I2C bus as a slave  
device under the control of a master device. See Figure 2 for a  
timing diagram of a typical write sequence.  
The AD5629R/AD5669R support standard (100 kHz) and fast  
(400 kHz) modes. High speed operation is only available on  
selected models. See the Ordering Guide for a full list of  
models. Support is not provided for 10-bit addressing and  
general call addressing.  
WRITE OPERATION  
When writing to the AD5629R/AD5669R, the user must begin  
The AD5629R/AD5669R each have a 7-bit slave address.  
The parts have a slave address whose five MSBs are 10101,  
and the two LSBs are set by the state of the A0 address pin,  
which determines the state of the A0 and A1 address bits.  
W
with a start command followed by an address byte (R/ = 0),  
after which the DAC acknowledges that it is prepared to receive  
data by pulling SDA low. The AD5629R/AD5669R require two  
bytes of data for the DAC and a command byte that controls  
various DAC functions. Three bytes of data must, therefore, be  
written to the DAC, the command byte followed by the most  
significant data byte and the least significant data byte, as shown in  
Figure 51. After these data bytes are acknowledged by the  
AD5629R/AD5669R, a stop condition follows.  
The facility to make hardwired changes to the A0 pin allows the  
user to incorporate up to three of these devices on one bus, as  
outlined in Table 7.  
Table 7. ADDR Pin Settings  
A0 Pin Connection  
A1  
0
A0  
0
READ OPERATION  
VDD  
NC  
GND  
1
1
0
1
When reading data back from the AD5629R/AD5669R, the  
user begins with a start command followed by an address byte  
W
(R/ = 1), after which the DAC acknowledges that it is prepared  
The 2-wire serial bus protocol operates as follows:  
to transmit data by pulling SDA low. Three bytes of data are then  
read from the DAC, the first two of which are both acknowledged  
by the master as shown in Figure 52. A stop condition follows.  
1. The master initiates data transfer by establishing a start  
condition when a high-to-low transition on the SDA line  
occurs while SCL is high. The following byte is the address  
byte, which consists of the 7-bit slave address. The slave  
1
9
1
9
SCL  
1
0
1
0
1
A1  
A0  
R/W  
ACK. BY  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
SDA  
ACK. BY  
START BY  
MASTER  
AD5629R/AD5669R  
AD5629R/AD5669R  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB8  
STOP BY  
MASTER  
ACK. BY  
AD5629R/AD5669R  
ACK. BY  
AD5629R/AD5669R  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 51. I2C Write Operation  
Rev. E | Page 22 of 32  
 
 
 
 
 
 
Data Sheet  
AD5629R/AD5669R  
1
9
1
9
SCL  
1
0
1
0
1
A1  
A0  
R/W  
ACK. BY  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16  
SDA  
ACK. BY  
MASTER  
START BY  
MASTER  
AD5629R/AD5669R  
FRAME 1  
SLAVE ADDRESS  
FRAME 2  
COMMAND BYTE  
1
9
1
9
SCL  
(CONTINUED)  
SDA  
(CONTINUED)  
DB15 DB14 DB13 DB12 DB11 DB10 DB9  
DB7  
DB6 DB5 DB4  
DB3  
DB2  
DB1  
DB0  
DB8  
STOP BY  
MASTER  
ACK. BY  
MASTER  
NO ACK.  
FRAME 3  
MOST SIGNIFICANT  
DATA BYTE  
FRAME 4  
LEAST SIGNIFICANT  
DATA BYTE  
Figure 52. I2C Read Operation  
Table 8. Command Definitions  
Command  
INPUT SHIFT REGISTER  
The input shift register is 24 bits wide. Data is loaded into the  
device as a 24-bit word under the control of a serial clock input,  
SCL. The input register contents for this operation is shown in  
Figure 53 and Figure 54. The eight MSBs make up the command  
byte. DB23 to DB20 are the command bits, C3, C2, C1, and C0,  
that control the mode of operation of the device (see Table 9 for  
details). The last four bits of the first byte are the address bits,  
A3, A2, A1, and A0, (see Table 9 for details). The rest of the bits  
are the 16-/12-bit data-word.  
C3 C2 C1 C0 Description  
0
0
0
0
0
0
0
0
1
0
1
0
Write to Input Register n  
Update DAC Register n  
Write to Input Register n; update all  
(software LDAC)  
0
0
0
0
0
1
1
1
1
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
Write to and update DAC Channel n  
Power down/power up DAC  
Load clear code register  
Load LDAC register  
The AD5669R data-word comprises the 16-bit input code (see  
Figure 53) while the AD5629R data word is comprised of 12-  
bits followed by four don’t cares (see Figure 54).  
Reset (power-on reset)  
Set up internal REF register  
Enable multiple byte mode  
Reserved  
Reserved  
Reserved  
MULTIPLE BYTE OPERATION  
Multiple byte operation is supported on the AD5629R/AD5669R.  
Command 1001 is reserved for multiple byte operation (see  
Table 8) A 2-byte operation is useful for applications that  
require fast DAC updating and do not need to change the  
command byte. The S bit (DB22) in the command register  
can be set to 1 for the 2-byte mode of operation. For standard  
3-byte and 4-byte operation, the S bit (DB22) in the command  
byte should be set to 0.  
Table 9. Address Commands  
Address (n)  
A3  
0
A2  
0
A1  
0
A0  
0
Selected DAC Channel  
DAC A  
0
0
0
1
DAC B  
0
0
1
0
DAC C  
0
0
1
1
DAC D  
0
1
0
0
DAC E  
0
1
0
1
DAC F  
0
1
1
0
DAC G  
0
1
1
1
DAC H  
1
1
1
1
All DACs  
Rev. E | Page 23 of 32  
 
 
 
 
 
AD5629R/AD5669R  
Data Sheet  
INTERNAL REFERENCE REGISTER  
POWER-ON RESET  
The internal reference is available on all versions. The on-board  
reference is off at power-up by default. The on-board reference  
can be turned off or on by a user-programmable internal REF  
register by setting Bit DB0 high or low (see Table 10). DB1  
selects the internal reference value. Command 1000 is reserved  
for setting the internal REF register (see Table 8). Table 11  
shows how the state of the bits in the input shift register  
corresponds to the mode of operation of the device.  
The AD5629R/AD5669R contain a power-on reset circuit that  
controls the output voltage during power-up. The AD5629R/  
AD5669R DAC output powers up to 0 V and the AD5669R-3  
DAC output powers up to midscale. The output remains powered  
up at this level until a valid write sequence is made to the DAC.  
This is useful in applications where it is important to know the  
state of the output of the DAC while it is in the process of powering  
up. There is also a software executable reset function that resets  
the DAC to the power-on reset code. Command 0111 is reserved  
LDAC  
for this reset function (see Table 8). Any events on  
CLR  
or  
during power-on reset are ignored.  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3 C2 C1 C0 A3 A2 A1 A0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 53. AD5669R Input Register Contents  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C3 C2 C1 C0 A3 A2 A1 A0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
X
COMMAND  
DAC ADDRESS  
DAC DATA  
DAC DATA  
COMMAND BYTE  
DATA HIGH BYTE  
DATA LOW BYTE  
Figure 54. AD5629R Input Register Contents  
Rev. E | Page 24 of 32  
 
 
 
 
Data Sheet  
AD5629R/AD5669R  
The bias generator of the selected DAC(s), output amplifier,  
resistor string, and other associated linear circuitry is shut down  
when the power-down mode is activated. The internal reference  
is powered down only when all channels are powered down.  
However, the contents of the DAC register are unaffected when  
in power-down. The time to exit power-down is typically 4 μs  
for VDD = 5 V and for VDD = 3 V.  
POWER-DOWN MODES  
The AD5629R/AD5669R contain four separate modes of  
operation. Command 0100 is reserved for the power-down  
function (see Table 8). These modes are software-programmable  
by setting two bits, Bit DB9 and Bit DB8, in the control register.  
Table 12 shows how the state of the bits corresponds to the  
mode of operation of the device. Any or all DACs (DAC H to  
DAC A) can be powered down to the selected mode by setting  
the corresponding eight bits (DB7 to DB0) to 1. See Table 13 for  
the contents of the input shift register during power-down/power-  
up operation.  
Any combination of DACs can be powered up by setting PD1  
and PD0 to 0 (normal operation). The output powers up to the  
LDAC  
value in the input register (  
low) or to the value in the  
LDAC  
DAC register before powering down (  
high).  
CLEAR CODE REGISTER  
When both bits are set to 0, the part works normally with its  
normal power consumption of 1.3 mA at 5 V. However, for the  
three power-down modes, the supply current falls to 0.4 μA at  
5 V (0.2 μA at 3 V). Not only does the supply current fall, but  
the output stage is also internally switched from the output of  
the amplifier to a resistor network of known values. This has the  
advantage that the output impedance of the part is known while  
the part is in power-down mode. There are three different  
options. The output is connected internally to GND through  
either a 1 kΩ or a 100 kΩ resistor, or it is left open-circuited  
(three-state). The output stage is illustrated in Figure 55.  
CLR  
The AD5629R/AD5669R have a hardware  
pin that  
input is falling edge  
line low clears the contents of the  
input register and the DAC registers to the data contained in  
CLR  
CLR  
is an asynchronous clear input. The  
CLR  
sensitive. Bringing the  
the user-configurable  
register and sets the analog outputs  
accordingly. This function can be used in system calibration to load  
zero scale, midscale, or full scale to all channels together. These  
clear code values are user-programmable by setting two bits, Bit  
CLR  
DB1 and Bit DB0, in the  
control register (see Table 15).  
The default setting clears the outputs to 0 V. Command 0101  
is reserved for loading the clear code register (see Table 8).  
RESISTOR  
AMPLIFIER  
V
OUT  
The part exits clear code mode at the end of the next valid write  
STRING DAC  
CLR  
to the part. If  
is aborted.  
is activated during a write sequence, the write  
POWER-DOWN  
CIRCUITRY  
CLR  
CLR  
to when  
The  
pulse activation time (the falling edge of  
RESISTOR  
NETWORK  
the output starts to change) is typically 280 ns. However, if  
outside the DAC linear region, it typically takes 520 ns after  
executing  
Figure 55. Output Stage During Power-Down  
CLR  
for the output to start changing (see Figure 44).  
See Table 14 for the contents of the input shift register during  
the loading clear code register operation.  
Table 10. Internal Reference Register  
Internal REF Register (DB0)  
Action  
0
1
Reference off (default)  
Reference on  
Table 11. 32-Bit Input Shift Register Contents for Reference Set-Up Command  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB1  
X
DB0  
1
0
0
0
X
X
X
X
1/0  
Command bits (C3 to C0)  
Address bits (A3 to A0)—don’t cares  
Don’t cares  
Internal REF on/off  
Rev. E | Page 25 of 32  
 
 
 
 
 
AD5629R/AD5669R  
Data Sheet  
Table 12. Power-Down Modes of Operation  
DB9  
DB8  
Operating Mode  
Normal operation  
Power-down modes  
1 kΩ to GND  
100 kΩ to GND  
Three-state  
0
0
0
1
1
1
0
1
Table 13. 32-Bit Input Shift Register Contents for Power-Down/Power-Up Function  
MSB  
LSB  
DB23 DB22 DB21 DB20 DB19 to DB16  
DB15 to DB10 DB9 DB8 DB7 to DB1  
PD1 PD0 DAC H to DAC B  
DB0  
0
1
0
0
X
X
DAC A  
Command bits (C3 to C0)  
Address bits (A3 to A0)—  
don’t cares  
Don’t cares  
Power-  
down mode  
Power-down/power-up channel selection—  
set bit to 1 to select  
Table 14. 32-Bit Input Shift Register Contents for Clear Code Function  
MSB  
LSB  
DB23  
DB22  
DB21  
DB20  
DB19  
DB18  
DB17  
DB16  
DB15 to DB2  
X
DB1  
DB0  
0
1
0
1
X
X
X
X
CR1  
CR0  
Command bits (C3 to C0)  
Address bits (A3 to A0)—don’t cares  
Don’t cares  
Clear code register  
Table 15. Clear Code Register  
Clear Code Register  
DB1  
CR1  
0
DB0  
CR0  
0
Clears to Code  
0x0000  
0
1
0xꢀ000  
1
0
0xFFFF  
1
1
No operation  
Rev. E | Page 26 of 32  
 
 
 
 
Data Sheet  
AD5629R/AD5669R  
POWER SUPPLY BYPASSING AND GROUNDING  
LDAC FUNCTION  
When accuracy is important in a circuit, it is helpful to carefully  
consider the power supply and ground return layout on the board.  
The printed circuit board containing the AD5629R/AD5669R  
should have separate analog and digital sections. If the AD5629R/  
AD5669R are in a system where other devices require an  
AGND-to-DGND connection, the connection should be made  
at one point only. This ground point should be as close as  
possible to the AD5629R/AD5669R.  
The outputs of all DACs can be updated simultaneously using  
LDAC  
the hardware  
pin.  
Synchronous  
LDAC  
LDAC  
The DAC registers are updated after new data is read in.  
can be permanently low or pulsed as in Figure 2.  
LDAC  
Asynchronous  
The outputs are not updated at the same time that the input  
LDAC  
The power supply to the AD5629R/AD5669R should be  
bypassed with 10 µF and 0.1 µF capacitors. The capacitors  
should be as physically close as possible to the device, with the  
0.1 µF capacitor ideally right up against the device. The 10 µF  
capacitors are the tantalum bead type. It is important that the  
0.1 µF capacitor have low effective series resistance (ESR) and  
low effective series inductance (ESI), such as is typical of  
common ceramic types of capacitors. This 0.1 µF capacitor  
provides a low impedance path to ground for high frequencies  
caused by transient currents due to internal logic switching.  
registers are written to. When  
goes low, the DAC  
registers are updated with the contents of the input register.  
Alternatively, the outputs of all DACs can be updated simulta-  
LDAC  
neously using the software  
function by writing to Input  
Register n and updating all DAC registers. Command 0011 is  
LDAC  
reserved for this software  
function.  
register gives the user extra flexibility and control  
LDAC LDAC  
LDAC  
An  
over the hardware  
to 0 for a DAC channel means that this channel’s update is  
controlled by the pin. If this bit is set to 1, this channel  
pin. Setting the  
bit register  
The power supply line should have as large a trace as possible to  
provide a low impedance path and reduce glitch effects on the  
supply line. Clocks and other fast switching digital signals should  
be shielded from other parts of the board by digital ground. Avoid  
crossover of digital and analog signals if possible. When traces  
cross on opposite sides of the board, ensure that they run at right  
angles to each other to reduce feedthrough effects through the  
board. The best board layout technique is the microstrip technique,  
where the component side of the board is dedicated to the ground  
plane only and the signal traces are placed on the solder side.  
However, this is not always possible with a 2-layer board.  
LDAC  
updates synchronously; that is, the DAC register is updated  
LDAC  
after new data is read, regardless of the state of the  
pin.  
pin as being tied low. See Table 16  
register mode of operation.  
LDAC  
It effectively sees the  
LDAC  
for the  
This flexibility is useful in applications where the user wants  
to simultaneously update select channels while the rest of the  
channels are synchronously updating. Writing to the DAC  
LDAC  
using command 0110 loads the 8-bit  
DB0). The default for each channel is 0, that is, the  
works normally. Setting the bits to 1 means the DAC channel  
LDAC  
register (DB7 to  
LDAC  
pin  
is updated regardless of the state of the  
pin. See Table 17  
LDAC  
for the contents of the input shift register during the load  
register mode of operation.  
LDAC  
Table 16.  
Register  
Load DAC Register  
Bits (DB7 to DB0)  
Pin  
Operation  
LDAC  
LDAC  
LDAC  
1/0  
X—don’t care  
0
1
Determined by LDAC pin.  
DAC channels update, overriding the LDAC pin. DAC channels see LDAC as 0.  
Table 17. 32-Bit Input Shift Register Contents for  
Register Function  
LDAC  
MSB  
LSB  
DB15  
DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 to DB8 DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
0
1
1
0
X
X
X
X
X
DAC H DAC G DAC F DAC E DAC D DAC C DAC B DAC A  
LDAC LDAC  
Command bits (C3 to C0)  
Address bits (A3 to A0)—  
don’t cares  
Don’t  
cares  
Setting  
bit to 1 overrides  
pin  
Rev. E | Page 27 of 32  
 
 
 
 
AD5629R/AD5669R  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
PIN 1  
INDICATOR  
INDICATOR  
13  
16  
0.65  
BSC  
12  
1
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 56. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 57. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
Rev. E | Page 2ꢀ of 32  
 
Data Sheet  
AD5629R/AD5669R  
2.645  
2.605 SQ  
2.565  
4
3
2
1
A
B
C
D
BALL A1  
IDENTIFIER  
1.50  
REF  
0.50  
REF  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.650  
0.595  
0.540  
SIDE VIEW  
COPLANARITY  
0.05  
0.340  
0.320  
0.300  
SEATING  
PLANE  
0.270  
0.240  
0.210  
Figure 58. 16-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-16-16)  
Dimensions shown in millimeters  
Rev. E | Page 29 of 32  
AD5629R/AD5669R  
Data Sheet  
ORDERING GUIDE  
Package  
Option  
Power-On  
Reset to Code  
Internal  
ModelFF1  
Temperature Range  
Package Description  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead WLCSP  
Accuracy  
Reference  
1.25 V  
1.25 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
1.25 V  
2.5 V  
AD5629RARUZ-1  
AD5629RARUZ-1-RL7  
AD5629RBRUZ-2  
AD5629RBRUZ-2-RL7  
AD5629RACPZ-2-RL7  
AD5629RACPZ-3-RL7  
AD5629RBCPZ-1-RL7  
AD5629RBCPZ-2-RL7  
AD5629RBCBZ-1-RL7  
AD5669RARUZ-1  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
−±0°C to +105°C  
RU-16  
RU-16  
RU-16  
RU-16  
CP-16-17  
CP-16-17  
CP-16-17  
CP-16-17  
CB-16-16  
RU-16  
Zero  
Zero  
Zero  
Zero  
Zero  
Midscale  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
Midscale  
Zero  
Zero  
Zero  
Zero  
Zero  
Zero  
±± LSB INL  
±± LSB INL  
±1 LSB INL  
±1 LSB INL  
±± LSB INL  
±± LSB INL  
±1 LSB INL  
±1 LSB INL  
±1 LSB INL  
1.25 V  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead TSSOP  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead LFCSP_WQ  
16-Lead WLCSP  
±32 LSB INL 1.25 V  
±32 LSB INL 1.25 V  
±16 LSB INL 2.5 V  
±16 LSB INL 2.5 V  
±32 LSB INL 2.5 V  
±32 LSB INL 2.5 V  
±16 LSB INL 1.25 V  
±16 LSB INL 2.5 V  
±16 LSB INL 1.25 V  
±16 LSB INL 2.5 V  
±16 LSB INL 1.25 V  
±16 LSB INL 1.25 V  
AD5669RARUZ-1-RL7  
AD5669RBRUZ-2  
RU-16  
RU-16  
RU-16  
AD5669RBRUZ-2-RL7  
AD5669RACPZ-2-RL7  
AD5669RACPZ-3-RL7  
AD5669RBCPZ-1-RL7  
AD5669RBCPZ-2-RL7  
AD5669RBCPZ-1500R7  
AD5669RBCPZ-2500R7  
AD5669RBCBZ-1-RL7  
AD5669RBCBZ-1-R5  
EVAL-AD5629RSDZ  
EVAL-AD5669RSDZ  
CP-16-17  
CP-16-17  
CP-16-17  
CP-16-17  
CP-16-17  
CP-16-17  
CB-16-16  
CB-16-16  
16-Lead WLCSP  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. E | Page 30 of 32  
 
Data Sheet  
NOTES  
AD5629R/AD5669R  
Rev. E | Page 31 of 32  
AD5629R/AD5669R  
NOTES  
Data Sheet  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2010–2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08819-0-9/16(E)  
Rev. E | Page 32 of 32  

相关型号:

AD566A

High Speed 12-Bit Monolithic D/A Converters
ADI

AD566A*

High Speed 12-Bit Monolithic D/A Converters
ADI

AD566AJCWG

12-Bit Digital-to-Analog Converter
ETC

AD566AJD

High Speed 12-Bit Monolithic D/A Converters
ADI

AD566AJD/+

IC,D/A CONVERTER,SINGLE,12-BIT,BIPOLAR,DIP,24PIN
ADI

AD566AJD/BIN

AD566AJD/BIN
ADI

AD566AJN

12-Bit Digital-to-Analog Converter
ETC

AD566AJN/BIN

AD566AJN/BIN
ADI

AD566AJQ

12-Bit Digital-to-Analog Converter
ETC

AD566AJR

IC PARALLEL, WORD INPUT LOADING, 0.25 us SETTLING TIME, 12-BIT DAC, PDSO28, PLASTIC, SOIC-28, Digital to Analog Converter
ADI

AD566AKCWG

12-Bit Digital-to-Analog Converter
ETC

AD566AKD

High Speed 12-Bit Monolithic D/A Converters
ADI