AD5450YUJ [ADI]

8/10/12/14-Bit High Bandwidth Multiplying DACs with Serial Interface; 8月10日/ 12/ 14位,高带宽,乘法DAC,串行接口
AD5450YUJ
型号: AD5450YUJ
厂家: ADI    ADI
描述:

8/10/12/14-Bit High Bandwidth Multiplying DACs with Serial Interface
8月10日/ 12/ 14位,高带宽,乘法DAC,串行接口

文件: 总16页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY TECHNICAL DATA  
8/10/12/14-BitHighBandwidth  
a
MultiplyingDACs withSerialInterface  
AD5450/AD5451/AD5452/AD5453*  
Preliminary Technical Data  
FEATURES  
F U NC T IO NAL B LO C K D IAG RAM  
+2.5 V to +5.5 V Supply Operation  
50MHz Serial Interface  
10MHz Multiplying Bandw idth  
±10V Reference Input  
8-Lead TSOT & MSOP Packages  
Pin Com patible 8, 10, 12 and 14 Bit Current Output DACs  
Extended Tem perature range –40°C to +125°C  
Guaranteed Monotonic  
V
V
REF  
DD  
R
FB  
R
AD5450/  
8/10/12/14  
BIT  
R-2R DAC  
AD5451/  
AD5452/  
AD5453  
I
OUT1  
DAC REGISTER  
INPUT LATCH  
Four Quadrant Multiplication  
Pow er On Reset w ith brow n out detect  
<5µA typical Current Consum ption  
Power On  
Reset  
APPLICATIONS  
Portable Battery Pow ered Applications  
Waveform Generators  
SYNC  
SCLK  
SDIN  
CONTROL LOGIC &  
INPUT SHIFT REGISTER  
Analog Processing  
GND  
Instrum entation Applications  
Program m able Am plifiers and Attenuators  
Digitally-Controlled Calibration  
Program m able Filters and Oscillators  
Com posite Video  
Ultrasound  
Gain, offset and Voltage Trim m ing  
G E NE R AL D E S C R IP T IO N  
T he AD 5450/AD 5451/AD 5452/AD 5453 are C M OS 8,  
10, 12 and 14-bit Current Output digital-to-analog  
converters respectively.  
T he applied external reference input voltage (VREF  
)
determines the full scale output current. An integrated  
feedback resistor (RFB) provides temperature tracking and  
full scale voltage output when combined with an external  
Current to Voltage precision amplifier.  
T hese devices operate from a +2.5 V to 5.5 V power sup-  
ply, making them suited to battery powered applications  
and many other applications.  
T he AD 5450/AD 5451/AD 5452/AD 5453 D AC s are  
available in small 8-lead T SOT & MSOP packages.  
T hese DACs utilize double buffered 3-wire serial interface  
that is compatible with SPIT M, QSPIT M, MICROWIRET M  
and most DSP interface standards.  
On power-up, the internal shift register and latches are  
filled with zeros and the DAC output is at zero scale.  
As a result of manufacture on a CMOS sub micron  
process, they offer excellent four quadrant multiplication  
characteristics, with large signal multiplying bandwidths  
of 10M H z.  
*US Patent N umber 5,689,257  
SPI and QSPI are trademarks of Motorola, Inc.  
M ICROWIRE is a trademark of N ational Semiconductor Corporation.  
REV. PrD Oct, 2003  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 781/ 329-4700  
World Wide Web Site: http:/ / w w w.analog.com  
Analog Devices, Inc., 2003  
Fax: 781/ 326-8703  
PRELIMINARY TECHNICAL DATA  
1
AD5450/AD5451/AD5452/AD5453–SPECIFICATIONS  
(V = 2.5 V to 5.5 V, V = +10 V, IOUTx = O V. All specifications TMIN to TMAX unless otherwise noted. DC performance measured with  
DD  
REF  
OP1177, AC performance with AD9631 unless otherwise noted.)  
P a r a m et er  
M in  
T yp  
M a x  
U n it s  
C on d it ion s  
ST AT IC  
AD 5 4 5 0  
P ERF O RM AN C E  
Resolu tion  
8
Bits  
L S B  
L S B  
Relative Accuracy  
D ifferential N onlinearity  
AD 5 4 5 1  
± 0 . 2 5  
± ½  
G uaranteed M onotonic  
G uaranteed M onotonic  
G uaranteed M onotonic  
G uaranteed M onotonic  
Resolu tion  
1 0  
± 0 . 2 5  
± ½  
Bits  
L S B  
L S B  
Relative Accuracy  
D ifferential N onlinearity  
AD 5 4 5 2  
Resolu tion  
1 2  
± 0 . 5  
± ½  
Bits  
L S B  
L S B  
Relative Accuracy  
D ifferential N onlinearity  
AD 5 4 5 3  
Resolu tion  
1 4  
± 2  
± 1  
± 2 . 4 4  
± 1 . 2 2  
Bits  
L S B  
L S B  
m V  
m V  
ppm FSR/°C  
n A  
Relative Accuracy  
D ifferential N onlinearity  
T otal U nadjusted Error  
G ain Error  
G ain Error T emp C oefficient2  
O utput Leakage C urrent  
± 5  
± 1 0  
± 5 0  
Data = 0000H, T A = 25°C, IOUT 1  
Data = 0000H, IOUT 1  
n A  
Output Voltage Compliance Range  
1 . 23  
V
REF EREN C E IN P U T 2  
Reference Input Range  
VREF Input Resistance  
± 1 0  
9 . 3  
V
k Ω  
8
1 2  
Input resistance T C = -50ppm/°C  
D IG IT AL IN PU T S2  
Input H igh Voltage, VIH  
2 . 0  
1 . 7  
V
V
V
V
µA  
p F  
VDD = 3.6 V to 5 V  
VDD = 2.5 V to 3.6 V  
VDD = 2.7 V to 5.5 V  
VDD = 2.5 V to 2.7 V  
Input Low Voltage, VIL  
0 . 8  
0 . 7  
1
Input Leakage C urrent, IIL  
Input C apacitance  
1 0  
D YN AM IC  
P ERF O RM AN C E 2  
Reference MultiplyingBW  
Output Voltage Settling T ime  
10  
MHz  
VREF = +/-3.5V, DAC loaded all 1s  
VREF = 10V, RLOAD = 100, CLOAD = 15pF  
DAC latch alternately loaded with 0s and 1s.  
Measured to +/-16mV of FS  
Measured to +/-4mV of FS  
Measured to +/-1mV of FS  
Measured to +/-1mV of FS  
Interface delay time  
Rise and Fall time, VREF = 10V, RLOAD =  
AD5450  
AD5451  
AD5452  
AD5453  
1 0 0  
1 1 0  
1 6 0  
1 8 0  
2 0  
n s  
n s  
n s  
n s  
n s  
n s  
D igital D elay  
10% to 90% D ettling T ime  
4 0  
3 0  
1 0  
100Ω, CLOAD = 15pF  
Digital to Analog Glitch Impulse  
M ultiplying F eedthrough Error  
3
n V-s  
d B  
1 LSB change around M ajor C arry, VREF=0V  
D AC latch loaded with all 0s.  
Reference = 1M H z.  
- 7 5  
Reference = 10M H z.  
O utput C apacitance  
IOU T 1  
5
p F  
p F  
p F  
p F  
D AC Latches Loaded with all 0s  
D AC Latches Loaded with all 1s  
D AC Latches Loaded with all 0s  
D AC Latches Loaded with all 1s  
Feedthrough to D AC output with C S high  
and Alternate Loading of all 0s and all 1s.  
1 0  
1 0  
5
IOU T 2  
D igital F eed throu gh  
0 . 1  
n V-s  
–2–  
REV. PrD  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
(V = 2.5 V to 5.5 V, V = +10 V, IOUTx = O V. All specifications TMIN to TMAX unless otherwise noted. DC performance measured with  
DD  
REF  
OP1177, AC performance with AD9631 unless otherwise noted.)  
P a r a m e t e r  
M in  
T yp  
M a x  
U n it s  
C on d it ion s  
T otal H arm onic D istortion  
D igital T H D , C lock = 1M H z  
50kHz fOUT  
Output N oise Spectral D ensity  
SF D R perform ance (Wideband)  
U pdate = 1M H z  
50kH z Fout  
20kH z Fout  
SF D R perform ance (N arrowBand)  
50kH z Fout  
20kH z Fout  
- 8 0  
d B  
VREF = 3.5 V pk-pk, All 1s loaded, f = 1kH z  
7 5  
2 5  
d B  
n V/H z  
@ 1kH z  
U pdate = 1M H z, VREF = 3.5V  
U pdate = 1M H z, VREF = 3.5V  
7 8  
7 8  
d B  
d B  
8 7  
8 7  
7 8  
d B  
d B  
d B  
Interm odulation D istortion  
f1 = 20kH z, f2 = 25kH z, U pdate= 1M H z,  
VREF = 3.5V  
P O WER  
Power Supply Range  
IDD  
Power Supply Sensitivity2  
REQ U IREM EN T S  
2 . 5  
5 . 5  
1
0.001  
V
µA  
% / %  
Logic Inputs = 0 V or VDD  
VDD = ± 5%  
N O T E S  
1T emperature range is as follows:  
Y Version: –40°C to + 125°C .  
2Guaranteed by design and characterisation, not subject to production test.  
Specifications subject to change without notice.  
1
TIMINGCHARACTERISTICS  
(V = +5 V, IOUT2 = O V. All specifications TMIN to TMAX unless otherwise noted.)  
REF  
P ar am eter  
VD D = 4.5 V to 5.5 V VD D = 2.5 V to 5.5 V Units  
C onditions/C om m ents  
fSC LK  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
50  
20  
8
8
8
5
4.5  
5
M H z max M ax Clock frequency  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
SCLK Cycle time  
SCLK H igh T ime  
SCLK Low T ime  
SYNC falling edge to SCLK active edge setup time  
Data Setup T ime  
Data H old T ime  
SYNC rising edge to SCLK active edge  
M inimum SYN C high time  
30  
N O T E S  
1See Figures 1. T emperature range is as follows:  
Y Version: –40°C to + 125°C . G uaranteed by design and characterisation, not subject to  
production test. All input signals are specified with tr =tf = 5ns (10% to 90% of VDD  
) and timed from a voltage level of (VIL + VIH )/2.  
Specifications subject to change without notice.  
t
1
SCLK  
t
t
2
3
t
8
t
7
t
4
SYNC  
DIN  
t
6
t
5
DB15  
DB0  
Figure 1. Tim ing Diagram .  
REV. PrD  
–3–  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
2
ABSO LUT E MAXIMUM RAT INGS1,  
(T A = +25°C unless otherwise noted)  
VDD to GND  
VREF, RFB to GND  
–0.3 V to +7 V  
–12 V to +12 V  
–0.3 V to +7 V  
±10 mA  
I
OUT 1 to GND  
Input Current to any pin except supplies  
Logic Inputs & Output3  
-0.3V to VDD +0.3 V  
Operating T emperature Range  
Industrial (Y Version)  
Storage T emperature Range  
Junction T emperature  
–40°C to +125°C  
–65°C to +150°C  
+ 150°C  
8 lead MSOP θJA T hermal Impedance  
8 lead T SOT θJA T hermal Impedance  
206°C /W  
211°C /W  
Lead T emperature, Soldering (10seconds)  
IR Reflow, Peak T emperature (<20 seconds)  
300°C  
+ 235°C  
NOTES  
1Stressesabove those listed under “Absolute Maximum Ratings” maycause permanent  
damage to the device. Thisisa stressratingonlyand functionaloperation ofthe device  
at these or any other conditions above those listed in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating conditions for  
extended periodsmayaffect device reliability. Onlyone absolute maximum ratingmay  
be applied at any one time.  
2 T ransient currents of up to 100mA will not cause SCR latchup.  
3Overvoltages at SCLK, SYNC, DIN, will be clamped by internal diodes. Current  
should be limited to the maximum ratings given.  
O R D E R ING G U ID E  
Tem perature Range P ackage D escription Br an din g P ackage O ption  
Model  
Resolution  
INL  
AD 5450YU J  
8
±0.25  
±0.25  
±0.5  
±0.5  
±2  
-40 oC to +125 oC  
-40 oC to +125 oC  
-40 oC to +125 oC  
-40 oC to +125 oC  
-40 oC to +125 oC  
-40 oC to +125 oC  
T S O T  
T S O T  
T S O T  
M S O P  
T S O T  
M S O P  
U J-8  
U J-8  
U J-8  
RM -8  
U J-8  
RM -8  
AD 5451YU J 10  
AD 5452YU J 12  
AD 5452YRM 12  
AD 5453YU J 14  
AD 5453YRM 14  
±2  
C AUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD5450/AD5451/AD5452/AD5453 features proprietary ESD protection circuitry,  
permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore,  
proper ESD precautions are recommended to avoid performance degradation or loss of functionality.  
4–  
REV. PrD  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
P IN F U NC T IO N D E SC R IP T IO N  
M SO P  
T SO T  
Mn em on ic F u n ction  
IO U T 1 DAC Current Output.  
1
2
3
8
7
6
G N D  
Ground Pin.  
SC L K  
Serial Clock Input. By default, data is clocked into the input shift register on the  
falling edge of the serial clock input. Alternatively, by means of the serial control  
bits, the device may be configured such that data is clocked into the shift register on  
the rising edge of SCLK.  
4
5
SD IN  
Serial Data Input. Data is clocked into the 16-bit input register on the active edge of  
the serial clock input. By default, on power up, data is clocked into the shift register  
on the falling edge of SCLK. T he control bits allow the user to change the active  
edge to rising edge.  
5
6
4
3
S Y N C  
Active Low Control Input. T his is the frame synchronization signal for the input  
data. Data is loaded to the shift register on the active edge of the  
following clocks.  
VD D  
Positive power supply input. T hese parts can operate from a supply of +2.5 V to  
+5.5 V.  
7
8
2
1
VRE F  
RF B  
DAC reference voltage input pin.  
DAC feedback resistor pin. Establish voltage output for the DAC by connecting to  
external amplifier output.  
P IN C O NF IG U R AT IO N  
TSO T (UJ-8)  
MSO P (RM-8)  
IOUT1  
GND  
RFB  
8
IOUT1  
GND  
RFB  
8
7
6
5
1
2
1
2
3
4
AD5450/  
AD5451/  
AD5452/  
AD5453  
(Not to Scale)  
AD5452/  
AD5453  
(Not to Scale)  
VREF  
7
VREF  
SCLK  
SDIN  
V
V
SCLK  
SDIN  
3
4
6
5
DD  
DD  
SYNC  
SYNC  
REV. PrD  
5–  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
T E R M I N O L O G Y  
Rela tive Accu r a cy  
Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is normally expressed in  
LSBs or as a percentage of full scale reading.  
D iffer en t ia l Non lin ea r it y  
Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adja-  
cent codes. A specified differential nonlinearity of -1 LSB max over the operating temperature range ensures monotonic-  
ity.  
G a in E r r or  
Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For  
these DACs, ideal maximum output is VREF – 1 LSB. Gain error of the DACs is adjustable to zero with external resis-  
tance.  
O u tp u t Lea ka ge C u r r en t  
Output leakage current is current which flows in the DAC ladder switches when these are turned off. For the IOUT 1 termi-  
nal, it can be measured by loading all 0s to the DAC and measuring the IOUT 1 current. Minimum current will flow in the  
IOUT 2 line when the DAC is loaded with all 1s  
O u t p u t C a p a cit a n ce  
Capacitance from IOUT 1 or IOUT 2 to AGND.  
O u tp u t C u r r en t Settlin g T im e  
T his is the amount of time it takes for the output to settle to a specified level for a full scale input change. For these de-  
vices, it is specifed with a 100 resistor to ground. T he settling time specification includes the digital delay from SYNC  
rising edge to the full scale output change.  
D igital to Analog Glitch lm pulse  
T he amount of charge injected from the digital inputs to the analog output when the inputs change state. T his is normally  
specified as the area of the glitch in either pA-secs or nV-secs depending upon whether the glitch is measured as a current  
or voltage signal.  
D igit a l F eed t h r ou gh  
When the device is not selected, high frequency logic activity on the device digital inputs may be capacitivelly coupled  
through the device to show up as noise on the IOUT pins and subsequently into the following circuitry. T his noise is digital  
feedthrough.  
M u ltip lyin g F eed th r ou gh E r r or  
T his is the error due to capacitive feedthrough from the DAC reference input to the DAC IOUT 1 terminal, when all 0s are  
loaded to the DAC.  
T ota l H a r m on ic D istor tion (T H D )  
T he DAC is driven by an ac reference. T he ratio of the rms sum of the harmonics of the DAC output to the fundamental  
value is the T HD. Usually only the lower order harmonices are included, such as second to fifth.  
2
2
2
2
T HD = 20log  
(V2 + V3 + V4 + V5  
)
V1  
D igita l In ter m od u la tion D istor tion  
Second order intermodulation (IMD) measurements are the relative magnitudes of the fa and fb tones generated digitally  
by the DAC and the second order products at 2fa-fb and 2fb-fa.  
C om p lia n ce Volta ge Ra n ge  
T he maximum range of (output) terminal voltage for which the device will provide the specified characteristics.  
Sp u r iou s- F r ee D yn a m ic Ra n ge(SF D R)  
It is the usable dynamic range of a DAC before spurious noise interferes or distorts the fundamental signal. SFDR is the  
measure of difference in amplitude between the fundamental and the largest harmonically or nonharmonically related spur  
from dc to full Nyquist bandwidth (half the DAC sampling rate or fs/2). Narrow band SFDR is a measure of SFDR over  
an arbitrary window size, in this case 50% of hte fundamental. Digital SFDR is a measure of the usable dymanic range of  
the DAC when the signal is a digitally generated sine wave.  
6–  
REV. PrD  
PRELIMINARY TECHNICAL DATA  
Typical Performance Characteristics  
AD5450/AD5451/AD5452/AD5453  
TPC 2. INL vs. Code (10-Bit DAC)  
TPC 5. DNL vs. Code (8-Bit DAC)  
TPC 8. DNL vs. Code (14-Bit DAC)  
TPC 3. INL vs. Code (12-Bit DAC)  
TPC 6. DNL vs. Code (10-Bit DAC)  
TPC 9. INL vs Reference Voltage  
TPC 1. INL vs. Code (8-Bit DAC)  
TPC 4. INL vs. Code (14-Bit DAC)  
TPC 7. DNL vs. Code (12-Bit DAC)  
REV. PrD  
7–  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
TPC11. Linearity Errors vs. VDD  
TPC12. INL vs Code - Biased Mode  
TPC10. DNL vs. Reference Voltage  
TPC 14. INL Error vs. Reference -  
Biased Mode  
TPC 15. DNL Error vs. Reference -  
Biased Mode  
TPC 13. DNL vs Code - Biased Mode  
TPC 17. Supply Current vs. Clock Freq  
TPC 18. Logic Threshold vs Supply  
Voltage  
TPC 16. TUE vs Code  
8–  
REV. PrD  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
TPC 20. Reference Multiplying  
Bandwidth - sm all signal  
TPC 21. Reference Multiplying  
Bandwidth - large signal  
TPC 19. Supply Current vs Logic Input  
Voltage  
TPC 24. Settling Tim e  
TPC 23. Reference Multiplying  
Bandwidth - large signal  
TPC 22. Reference Multiplying  
Bandwidth - sm all signal  
TPC 26. Power Supply Rejection vs  
Frequency  
TPC 27. Noise Spectral Density vs  
Frequency  
TPC 25. Midscale Transition and  
Digital Feedthrough  
REV. PrD  
9–  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
TPC 28. TBD  
TPC 29. TBD  
TPC 30. TBD  
10–  
REV. PrD  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
similarly the AD5451 uses ten bits and ignores the four  
LSBs, while the AD5450 uses eight bits and ignores the  
last six bits.  
G E NE R AL D E S C R IP T IO N  
D AC S E C T IO N  
T he AD5450, AD5451, AD5452 and AD5453 are 8, 10,  
12 and 14 bit current output DACs consisting of a  
segmented (4-Bits) inverting R-2R ladder configuration.  
T he feedback resistor RFB has a value of R. T he value of R  
is typically 9.3k(minimum 8kand maximum 12k).  
If IOUT 1 is kept at the same potential as GND, a constant  
current flows in each ladder leg, regardless of digital input  
code. T herefore, the input resistance presented at VREF is  
always constant and nominally of value R. T he DAC  
output (IOUT ) is code-dependent, producing various  
resistances and capacitances. External amplifier choice  
should take into account the variation in impedance  
generated by the DAC on the amplifiers inverting input  
node.  
D AC C ontr ol Bits C 1, C 0  
Control bits C1 and C0 the user to load and update the  
new DAC code and to change the active clock edge. By  
default the shift register clocks data in on the falling edge,  
this can be changed via the control bits. In this case, the  
DAC core is inoperative until the next data frame. A  
power cycle resets this back to default condition.  
On chip power on reset circuitry ensures the device  
powers on with zeroscale loaded to the DAC register and  
IOU T line.  
TABLE III. D AC CO NTRO L BITS  
C 1 C 0 Funtion Im plem ented  
Access is provided to the VREF, RFB, and IOUT 1 terminals  
of the DAC, making the device extremely versatile and  
allowing it to be configured in several different operating  
modes, for example, to provide a unipolar output and in  
four quadrant multiplication in bipolar mode. Note that a  
matching switch is used in series with the internal RFB  
feedback resistor. If users attempt to measure RFB, power  
must be applied to VDD to achieve continuity.  
0
0
1
1
0
1
0
1
Load and Update(Power On Default)  
Reserved  
Reserved  
Clock Data to shift register On Rising Edge  
SYN C F u n c t io n  
SYNC is an edge-triggered input that acts as a frame  
synchronization signal and chip enable. Data can only be  
transferred into the device while SYNC is low. T o start  
the serial data transfer, SYNC should be taken low ob-  
serving the minimum SYNC falling to SCLK falling  
edge setup time, t4.  
After the falling edge of the 16th SCLK pulse, bring  
SYNC high to transfer data from the input shift register to  
the DAC register.  
SE RIAL INT E RF AC E  
T he AD5450/AD5451/AD5452/AD5453 have an easy to  
use 3-wire interface which is compatible with SPI/QSPI/  
MicroWire and DSP interface standards. Data is written  
to the device in 16 bit words. T his 16-bit word consists of  
2 control bits and either 8, 10 12, or 14 data bits as shown  
in Figure 2. T he AD5453 uses all 14 bits of DAC data.  
T he AD5452 uses twelve bits and ignores the two LSBs,  
DB15 (MSB)  
DB0 (LSB)  
C1  
C0 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
X
X
X
X
X
DATA BITS  
CONTROL BITS  
Figure 2a. AD5450 8 bit Input Shift Register Contents  
DB15 (MSB)  
DB0 (LSB)  
C1  
C0 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
X
X
X
X
DATA BITS  
CONTROL BITS  
Figure 2b. AD5451 10 bit Input Shift Register Contents  
DB15 (MSB)  
C1 C0  
DB0 (LSB)  
DB9 DB8 DB7 DB6 DB5 DB4  
DATA BITS  
DB1 DB0  
DB3 DB2  
X
DB11 DB10  
X
CONTROL BITS  
Figure 2c. AD5452 12 bit Input Shift Register Contents  
DB15 (MSB)  
DB0 (LSB)  
C1 C0  
DB11 DB10 DB9 DB8 DB7 DB6  
DATA BITS  
DB3 DB2 DB1 DB0  
DB5 DB4  
DB13 DB12  
CONTROL BITS  
Figure 2c. AD5453 14 bit Input Shift Register Contents  
REV. PrD  
11–  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
With a fixed 10 V reference, the circuit shown above will  
give an unipolar 0V to -10V output voltage swing. When  
VIN is an ac signal, the circuit performs two-quadrant  
multiplication.  
C IR C U IT O P E R AT IO N  
Un ipolar M ode  
Using a single op amp, these devices can easily be  
configured to provide 2 quadrant multiplying operation or  
a unipolar output voltage swing as shown in Figure 3.  
T he following table shows the relationship between digital  
code and expected output voltage for unipolar operation.  
(AD 5450, 8-Bit device).  
When an output amplifier is connected in unipolar mode,  
the output voltage is given by:  
VOUT = -D/2n x VREF  
Table I. Unipolar Code Table  
Where D is the fractional representation of the digital  
word loaded to the DAC, and n is the number of bits.  
D igital Input Analog O utput (V)  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
-VREF (255/256)  
-VREF (128/256) = -VREF/2  
-VREF (1/256)  
D = 0 to 255 (8-Bit AD5450)  
= 0 to 1023 (10-Bit AD5451)  
= 0 to 4095 (12-Bit AD5452)  
= 0 to 16383 (14-Bit AD5453)  
-VREF (0/256) = 0  
Note that the output voltage polarity is opposite to the  
VREF polarity for dc reference voltages.  
B ip ola r O p er a tion  
In some applications, it may be necessary to generate full  
4-Quadrant multplying operation or a bipolar output  
swing. T his can be easily accomplished by using another  
external amplifier and some external resistors as shown in  
Figure 4. In this circuit, the second amplifier A2 provides  
a gain of 2. Biasing the external amplifier with an offset  
from the reference voltage results in full 4-quadrant  
multiplying operation. T he transfer function of this circuit  
shows that both negative and positive output voltages are  
created as the input data (D) is incremented from code  
zero (VOUT = - VREF) to midscale (VOUT - 0V ) to full  
scale (VOUT = + VREF).  
V
DD  
R
2
C
1
RFB  
IOUT1  
GND  
V
DD  
V
A1  
REF  
V
REF AD5450/1/2/3  
SYNC SCLK SDIN  
R
1
V
= 0 to -V  
REF  
OUT  
AGND  
uController  
VOUT  
=
(VREF x D / 2n-1  
)
VREF  
-
NOTES:  
1
R1 AND R2 USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
Where D is the fractional representation of the digital  
word loaded to the DAC and n is the resolution of the  
D AC .  
2
C1 PHASE COMPENSATION (1pF - 5pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 3. Unipolar Operation  
D = 0 to 255 (8-Bit AD5450)  
= 0 to 1023 (10-Bit AD5451)  
= 0 to 4095 (12-Bit AD5452)  
= 0 to 16383 (14-Bit AD5453)  
T hese DACs are designed to operate with either negative  
or positive reference voltages. T he VDD power pin is only  
used by the internal digital logic to drive the DAC  
switches’ ON and OFF states.  
When VIN is an ac signal, the circuit performs four-  
quadrant multiplication.  
T hese DACs are also designed to accommodate ac refer-  
ence input signals in the range of -10V to +10V.  
T able II. shows the relationship between digital code and  
the expected output voltage for bipolar operation  
(AD 5450, 8-Bit device).  
R3  
20kΩ  
R2  
C1  
V
DD  
R5  
20kΩ  
RFB  
IOUT1  
GND  
V
DD  
R4  
10kΩ  
R1  
V
AD5450/1/2/3  
A1  
REF  
± 10V  
V
REF  
A2  
V
= -V  
to +V  
REF  
OUT  
REF  
SYNC SCLK SDIN  
uController  
AGND  
R1 AND R2 ARE USED ONLY IF GAIN ADJUSTMENT IS REQUIRED.  
ADJUST R1 FOR V = 0V WITH CODE 10000000 LOADED TO DAC.  
NOTES:  
1
OUT  
2
MATCHING AND TRACKING IS ESSENTIAL FOR RESISTOR PAIRS  
R3 AND R4.  
3
C1 PHASE COMPENSATION (1pF-5pF) MAY BE REQUIRED  
IF A1/A2 IS A HIGH SPEED AMPLIFIER.  
Figure 4. Bipolar Operation (4 Quadrant Multiplication)  
12–  
REV. PrD  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
ratings of the device. In this type of application, the full  
range of multiplying capability of the DAC is lost.  
Table II. Bipolar Code Table  
D igital Input Analog O utput (V)  
P O SIT IVE O U T P U T VO LT AG E  
1111 1111  
1000 0000  
0000 0001  
0000 0000  
+ VREF (127/128)  
0
-VREF (127/128)  
-VREF (128/128)  
Note that the output voltage polarity is opposite to the  
VREF polarity for dc reference voltages. In order to achieve  
a positive voltage output, an applied negative reference to  
the input of the DAC is preferred over the output  
inversion through an inverting amplifier because of the  
resistors tolerance errors. T o generate a negative  
reference, the reference can be level shifted by an op amp  
such that the VOUT and GND pins of the reference  
become the virtual ground and -2.5V respectively as  
shown in Figure 6.  
S t a b ilit y  
In the I-to-V configuration, the IOUT of the DAC and the  
inverting node of the op amp must be connected as close  
as possible, and proper PCB layout techniques must be  
employed. Since every code change corresponds to a step  
function, gain peaking may occur if the op amp has  
limited GBP and there is excessive parasitic capacitance at  
the inverting node. T his parasitic capacitance introduces a  
pole into the open loop response which can cause ringing  
or instability in the closed loop applications circuit.  
V
= 5V  
DD  
ADR03  
V
V
OUT IN  
GND  
An optional compensation capacitor, C1 can be added in  
parallel with RFB for stability as shown in figures 3 and 4.  
T oo small a value of C1 can produce ringing at the  
output, while too large a value can adversely affect the  
settling time. C1 should be found empirically but 1-2pF is  
generally adequate for the compensation.  
+
5V  
C
1
RFB  
IOUT1  
IOUT2  
V
DD  
-2.5V  
V
REF  
V
1/2 AD8552  
OUT = 0 to +2.5V  
GND  
1/2 AD8552  
-
5V  
SING LE SU P P LY AP P LIC AT IO NS  
NOTES:  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
2
Voltage Switch in g Mode of O per ation  
C1 PHASE COMPENSATION (1pF-5pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 5 shows these DACs operating in the voltage-  
switching mode. T he reference voltage, VIN is applied to  
the IOUT 1 pin, IOUT 2 is connected to AGND and the  
output voltage is available at the VREF terminal. In this  
configuration, a positive reference voltage results in a  
positive output voltage making single supply operation  
possible. T he output from the DAC is voltage at a  
constant impedance (the DAC ladder resistance). T hus an  
op-amp is necessary to buffer the output voltage. T he  
reference input no longer sees a constant input impedance,  
but one that varies with code. So, the voltage input should  
be driven from a low impedance source.  
Figure 6. Positive Voltage output with m inim um of  
com ponents.  
AD D ING G AIN  
In applications where the output voltage is required to be  
greater than VIN, gain can be added with an additional  
external amplifier or it can also be achieved in a single  
stage. It is important to take into consideration the effect  
of temperature coefficients of the thin film resistors of the  
DAC. Simply placing a resistor in series with the RFB  
resistor will causing mis-matches in the T emperature  
coefficients resulting in larger gain temperature coefficient  
errors. Instead, the circuit of Figure 7 is a recommended  
method of increasing the gain of the circuit. R1, R2 and  
R3 should all have similar temperature coefficients, but  
they need not match the temperature coefficients of the  
DAC. T his approach is recommended in circuits where  
gains of great than 1 are required.  
V
DD  
R
R
1
2
RFB  
V
DD  
V
V
OUT  
IOUT1  
IN  
V
REF  
GND  
NOTES:  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
2
C1 PHASE COMPENSATION (1pF-5pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
Figure 5. Single Supply Voltage Switching Mode Operation.  
It is important to note that VIN is limited to low voltages  
because the switches in the DAC ladder no longer have  
the same source-drain drive voltage. As a result their on  
resistance differs and this degrades the integral linearity of  
the DAC. Also, VIN must not go negative by more than  
0.3V or an internal diode will turn on, exceeding the max  
REV. PrD  
13–  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
op amp through the DAC. Since only a fraction D of the  
current into the VREF terminal is routed to the IOUT 1 ter-  
minal, the output voltage has to change as follows:  
V
DD  
Output Error Voltage Due to Dac Leakage  
C
1
RFB  
IOUT1  
IOUT2  
V
DD  
= (Leakage x R)/D  
R
2
V
IN  
V
REF  
V
OUT  
where R is the DAC resistance at the VREF terminal. For a  
DAC leakage current of 10nA, R = 10 kilohm and a gain  
(i.e., 1/D) of 16 the error voltage is 1.6mV.  
R
3
GND  
GAIN = R2 + R3  
R2  
R
2
NOTES:  
1
R1 = R2R3  
R2 + R3  
R E F E R E NC E S E LE C T IO N  
ADDITIONAL PINS OMITTED FOR CLARITY  
2
C1 PHASE COMPENSATION (1pF-5pF) MAY BE REQUIRED  
IF A1 IS A HIGH SPEED AMPLIFIER.  
When selecting a reference for use with the AD5426 series  
of current output DACs, pay attention to the references  
output voltage temperature coefficient specification. T his  
parameter not only affects the full scale error, but can also  
affect the linearity (INL and DNL) performance. T he  
reference temperature coefficient should be consistent with  
the system accuracy specifications. For example, an 8-bit  
system required to hold its overall specification to within  
1LSB over the temperature range 0-50oC dictates that the  
maximum system drift with temperature should be less than  
78ppm/oC. A 14-Bit system with the same temperature  
range to overall specification within 2LSBs requires a  
maximum drift of 10ppm/oC. By choosing a precision  
reference with low output temperature coefficient this  
error source can be minimized. T able IV. suggests some  
of the suitable dc references available from Analog  
Devices that are suitable for use with this range of current  
output DACs.  
Figure 7. Increasing Gain of Current Output DAC  
USE D AS A D IVID E R O R P RO GRAMMABLE GAIN  
E L E M E N T  
Current Steering DACs are very flexible and lend  
themselves to many different applications. If this type of  
DAC is connected as the feedback element of an op-amp  
and RFB is used as the input resistor as shown in Figure 8,  
then the output voltage is inversely proportional to the  
digital input fraction D. For D = 1-2n the output voltage  
is  
VOUT = -VIN /D = -VIN /(1-2-n)  
V
DD  
V
IN  
RFB  
V
DD  
AM P LIF IE R S E LE C T IO N  
T he primary requirement for the current-steering mode is  
an amplifier with low input bias currents and low input  
offset voltage. T he input offset voltage of an op amp is  
multiplied by the variable gain (due to the code dependent  
output resistance of the DAC) of the circuit. A change in  
this noise gain between two adjacent digital fractions  
produces a step change in the output voltage due to the  
amplifier’s input offset voltage. T his output voltage  
change is superimposed upon the desired change in output  
between the two codes and gives rise to a differential  
linearity error, which if large enough could cause the  
DAC to be non-monotonic.  
V
IOUT1  
REF  
GND  
V
OUT  
NOTES:  
1
ADDITIONAL PINS OMITTED FOR CLARITY  
Figure 8. Current Steering DAC used as a divider or  
Program m able Gain Elem ent  
T he input bias curent of an op amp also generates an  
offset at the voltage output as a result of the bias current  
flowing in the feedback resistor RFB. Most op amps have  
input bias currents low enough to prevent any significant  
errors in 12-Bit applications, however for 14-Bit  
applications some consideration should be given to  
selecting an appropriate amplifier.  
As D is reduced, the output voltage increases. For small  
values of the digital fraction D, it is important to ensure  
that the arnplifier does not saturate and also that the  
required accuracy is met. For example, an eight bit DAC  
driven with the binary code 10H (00010000), i.e., 16  
decimal, in the circuit of Figure 8 should cause the output  
voltage to be sixteen times VIN. However, if the DAC has  
a linearity specification of +/- 0.5LSB then D  
can in fact have the weight anywhere in the range 15.5/256  
to 16.5/256 so that the possible output voltage will be in  
the range 15.5VIN to 16.5VIN—an error of + 3% even  
though the DAC itself has a maximum error of 0.2%.  
Common mode rejection of the op amp is important in  
voltage switching circuits, since it produces a code  
dependent error at the voltage output of the circuit. Most  
op amps have adequate common mode rejection for use at  
8-, 10- and 12-Bit resolution.  
Provided the DAC switches are driven from true wideband  
low impedance sources (VIN and AGND) they settle  
quickly. Consequently, the slew rate and settling time of a  
voltage switching DAC circuit is determined largely by  
the output op amp. T o obtain minimum settling time in  
this configuration, it is important to minimize capacitance  
DAC leakage current is also a potential error source in  
divider circuits. T he leakage current must be  
counterbalanced by an opposite current supplied from the  
14–  
REV. PrD  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
Table IV. Listing of suitable AD I P r ecision Refer ences r ecom m ended for use with AD 5450/1/2/3 D ACs.  
Refer en ce O u tp u t Volta ge In itia l T oler a n ce  
T em p er a tu r e D r ift  
0.1H z to 10H z noise P a cka ge  
AD R01  
AD R02  
AD R03  
10 V  
5 V  
2.5 V  
0.1%  
0.1%  
0.2%  
0.04%  
3ppm /oC  
3ppm /oC  
3ppm /oC  
3ppm /oC  
20µVp-p  
10µVp-p  
10µVp-p  
3.4µVp-p  
SC 70, T SOT , SOIC  
SC 70, T SOT , SOIC  
SC 70, T SOT , SOIC  
M SO P, SO IC  
AD R425 5V  
Table V. Listing of som e pr ecision AD I O p Am ps suitable for use with AD 5450/1/2/3 D ACs.  
P ar t #  
Max Supply Voltage V  
VO S ( m a x ) µV IB(m a x) n A  
GBP MH z  
Slew Rate V/µs  
tSE T T LE with AD 5453  
O P 97  
O P 1177  
AD 8551 ± 6  
±
±
20  
18  
25  
60  
5
0.1  
2
0.05  
0.9  
1.3  
1.5  
0.2  
0.7  
0.4  
Table VI. Listing of som e H igh Speed AD I O p Am ps suitable for use with AD 5450/1/2/3 D ACs.  
Max Supply Voltage V BW @ ACL MH z Slew Rate V/µs tSE T T LE with AD 5453 VO S ( m a x ) µV IB(m a x) n A  
P ar t #  
AD 8065 ± 12  
AD 8021 ± 12  
AD 8038 ± 5  
AD 9631 ± 5  
145  
200  
350  
320  
180  
100  
425  
1300  
1500  
1000  
3000  
10000  
0.01  
1000  
0.75  
7000  
Avoid crossover of digital and analog signals. T races on  
opposite sides of the board should run at right angles to  
each other. T his reduces the effects of feedthrough  
through the board. A microstrip technique is by far the  
best, but not always possible with a doublesided board. In  
this technique, the component side of the board is  
dedicated to ground plane while signal traces are placed  
on the solder side.  
at the VREF node (voltage output node in this application)  
of the DAC. T his is done by using low inputs capacitance  
buffer amplifiers and careful board design.  
Most single supply circuits include ground as part of the  
analog signal range, which in turns requires an  
ampliferthat can handle rail to rail signals, there is a large  
range of single supply amplifiers available from Analog  
D evices.  
It is good practice to employ compact, minimum lead  
length PCB layout design. Leads to the input should be as  
short as possible to minimize IR drops and stray  
inductance.  
P C B LAYO UT AND P O WE R SUP P LY D E C O UP LING  
In any circuit where accuracy is important, careful  
consideration of the power supply and ground return  
layout helps to ensure the rated performance. T he printed  
circuit board on which the AD5426/AD5432/AD5443 is  
mounted should be designed so that the analog and digital  
sections are separated, and cofined to certain areas of the  
board. If the DAC is in a system where multiple devices  
require an AGN D -to-D GN D connection, the connection  
should be made at one point only. T he star ground point  
should be established as close as possible to the device.  
T he PCB metal traces between VREF and RFB should also  
be matched to minimize gain error. T o maximize on high  
frequency performance, the I-to-V amplifier should be  
located as close to the device as possible.  
T hese DACs should have ample supply bypassing of 10  
µF in parallel with 0.1 µF on the supply located as close  
to the package as possible, ideally right up against the  
device. T he 0.1 µF capacitor should have low Effective  
Series Resistance (ESR) and Effective Series Inductance  
(ESI), like the common ceramic types that provide a low  
impedance path to ground at high frequencies, to handle  
transient currents due to internal logic switching. Low  
ESR 1 µF to 10 µF tantalum or electrolytic capacitors  
should also be applied at the supplies to minimize  
transient disturbance and filter out low frequency ripple.  
Fast switching signals such as clocks should be shielded  
with digital ground to avoid radiating noise to other parts  
of the board, and should never be run near the reference  
inputs.  
REV. PrD  
15–  
PRELIMINARY TECHNICAL DATA  
AD5450/AD5451/AD5452/AD5453  
O ver view of AD 54xx devices  
P art #  
Resolu tion # D AC s I N L  
t S  
In ter fa ce  
P a cka ge  
F ea tu r es  
AD 54031  
8
8
8
2
1
2
±0.25 20n s  
±0.25 20n s  
±0.25 20n s  
±0.25 60n s  
±0.25 100ns Serial  
±0.25 100ns Serial  
±0.25 60n s  
P arallel  
C P -40  
10 MHz BW, 17 ns CS Pulse Width, 4-  
Quadrant M ultiplying Resistors  
10 MH z BW, 50 MH z Serial, 4- Quadrant  
M ultiplying Resistors  
10 MH z BW, 50 MH z Serial, 4- Quadrant  
M ultiplying Resistors  
AD 54101  
AD 54131  
Serial  
RU -16  
RU -24  
Serial  
AD 5424  
AD 5425  
AD 5426  
AD 54282  
AD 54292  
AD 54502  
AD 54041  
8
8
8
8
8
8
1 0  
1
1
1
2
2
1
2
P arallel  
RU -16, C P-20 10 MHz BW, 17 ns CS Pulse Width  
R M -1 0  
R M -1 0  
RU -20  
RU -10  
R J-8  
Byte Load,10 M H z BW, 50 M H z Serial  
10 M H z BW, 50 M H z Serial  
10 MHz BW, 17 ns CS Pulse Width  
10 M H z BW, 50 M H z Serial  
P arallel  
±0.25 100ns Serial  
±0.25 100ns Serial  
10 M H z BW, 50 M H z Serial  
± 0.5  
± 0.5  
± 0.5  
25n s  
25n s  
25n s  
P arallel  
C P -40  
10 MHz BW, 17 ns CS Pulse Width, 4-  
Quadrant M ultiplying Resistors  
10 MH z BW, 50 MH z Serial, 4- Quadrant  
M ultiplying Resistors  
10 MH z BW, 50 MH z Serial, 4- Quadrant  
M ultiplying Resistors  
AD 54111  
AD 54141  
1 0  
1 0  
1
2
Serial  
RU -16  
RU -24  
R M -1 0  
Serial  
AD 5432  
AD 5433  
AD 54392  
AD 54402  
AD 54512  
AD 54052  
1 0  
1 0  
1 0  
1 0  
1 0  
1 2  
1
1
2
2
1
2
± 0.5  
± 0.5  
± 0.5  
± 0.5  
110ns Serial  
70n s P arallel  
110ns Serial  
70n s P arallel  
10 M H z BW, 50 M H z Serial  
RU -20, C P-20 10 MHz BW, 17 ns CS Pulse Width  
RU -16  
RU -24  
R J-8  
10 M H z BW, 50 M H z Serial  
10 MHz BW, 17 ns CS Pulse Width  
10 M H z BW, 50 M H z Serial  
10 MHz BW, 17 ns CS Pulse Width, 4-  
Quadrant M ultiplying Resistors  
10 MH z BW, 50 MH z Serial, 4- Quadrant  
M ultiplying Resistors  
10 MH z BW, 50 MH z Serial, 4- Quadrant  
M ultiplying Resistors  
10 M H z BW, 50 M H z Serial  
±0.25 110ns Serial  
± 1  
± 1  
± 1  
120ns P arallel  
160ns Serial  
160ns Serial  
C P -40  
AD 54121  
AD 54152  
1 2  
1 2  
1
2
RU -16  
RU -24  
R M -1 0  
AD 5443  
AD 5445  
AD 54472  
AD 54492  
AD 54522  
AD 54532  
1 2  
1 2  
1 2  
1 2  
1 2  
1 4  
1
1
2
2
1
1
± 1  
± 1  
± 1  
± 1  
± 0.5  
± 2  
160ns Serial  
120ns P arallel  
120ns P arallel  
160ns Serial  
160ns Serial  
180ns Serial  
RU -20, C P-20 10 MHz BW, 17 ns CS Pulse Width  
RU -24  
RU -16  
RJ-8, RM -8  
RJ-8, RM -8  
10 MHz BW, 17 ns CS Pulse Width  
10 M H z BW, 50 M H z Serial  
10 M H z BW, 50 M H z Serial  
10 M H z BW, 50 M H z Serial  
1F uture parts, contact factory for availability  
2In development, contact factory for availability  
O U T LINE D IM E NS IO NS  
D imensions shown in inches and (mm).  
8 Lead TSO T  
(UJ- 8)  
8 Lead MSO P  
(RM - 8)  
0.122 (3.10)  
0.114 (2.90)  
2.90 BSC  
5
4
8
8
1
7
2
6
3
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1.60 BSC  
PIN 1  
2.80 BSC  
1
PIN 1  
0.65 BSC  
0.0256 (0.65) BSC  
1.95 BSC  
1.00  
0.90  
0.70  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.20  
0.08  
0.043 (1.09)  
0.037 (0.94)  
1.10 MAX  
0.006 (0.15)  
0.002 (0.05)  
0.60  
0.45  
0.30  
O
O
O
33  
27  
8
4
0
0.38  
0.22  
0.018 (0.46)  
0.10 MAX  
SEATING  
PLANE  
SEATING  
PLANE  
0.011 (0.28)  
0.003 (0.08)  
0.028 (0.71)  
0.008 (0.20)  
0.016 (0.41)  
REV. PrD  
16–  

相关型号:

AD5450YUJ-REEL7

IC SERIAL INPUT LOADING, 0.016 us SETTLING TIME, 8-BIT DAC, PDSO8, MO-193BA, TSOT-8, Digital to Analog Converter
ADI

AD5450YUJZ-REEL

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5450YUJZ-REEL7

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5450_15

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5451

8/10/12/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5451YUJ

8/10/12/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5451YUJ-REEL

IC SERIAL INPUT LOADING, 0.016 us SETTLING TIME, 10-BIT DAC, PDSO8, MO-193BA, TSOT-8, Digital to Analog Converter
ADI

AD5451YUJZ-REEL

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5451YUJZ-REEL7

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5451_15

8-/10-/12-/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5452

8/10/12/14-Bit High Bandwidth Multiplying DACs with Serial Interface
ADI

AD5452W

12-Bit High Bandwidth Multiplying DAC with Serial Interface
ADI