AD5342BRUZ [ADI]

2.5 V to 5.5 V, 230 muA, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs; 2.5 V至5.5 V , 230 ? MUA ,并行接口双电压输出8位/ 10位/ 12位DAC
AD5342BRUZ
型号: AD5342BRUZ
厂家: ADI    ADI
描述:

2.5 V to 5.5 V, 230 muA, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs
2.5 V至5.5 V , 230 ? MUA ,并行接口双电压输出8位/ 10位/ 12位DAC

文件: 总20页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V to 5.5 V, 230 A, Parallel Interface  
Dual Voltage-Output 8-/10-/12-Bit DACs  
a
AD5332/AD5333/AD5342/AD5343*  
FEATURES  
GENERAL DESCRIPTION  
AD5332: Dual 8-Bit DAC in 20-Lead TSSOP  
AD5333: Dual 10-Bit DAC in 24-Lead TSSOP  
AD5342: Dual 12-Bit DAC in 28-Lead TSSOP  
AD5343: Dual 12-Bit DAC in 20-Lead TSSOP  
Low Power Operation: 230 A @ 3 V, 300 A @ 5 V  
via PD Pin  
Power-Down to 80 nA @ 3 V, 200 nA @ 5 V  
2.5 V to 5.5 V Power Supply  
Double-Buffered Input Logic  
Guaranteed Monotonic by Design Over All Codes  
Buffered/Unbuffered Reference Input Options  
Output Range: 0–VREF or 0–2 VREF  
The AD5332/AD5333/AD5342/AD5343 are dual 8-, 10-, and  
12-bit DACs. They operate from a 2.5 V to 5.5 V supply con-  
suming just 230 µA at 3 V, and feature a power-down pin, PD  
that further reduces the current to 80 nA. These devices incor-  
porate an on-chip output buffer that can drive the output to  
both supply rails, while the AD5333 and AD5342 allow a choice  
of buffered or unbuffered reference input.  
The AD5332/AD5333/AD5342/AD5343 have a parallel interface.  
CS selects the device and data is loaded into the input registers  
on the rising edge of WR.  
The GAIN pin on the AD5333 and AD5342 allows the output  
range to be set at 0 V to VREF or 0 V to 2 × VREF  
.
Power-On Reset to Zero Volts  
Simultaneous Update of DAC Outputs via LDAC Pin  
Asynchronous CLR Facility  
Low Power Parallel Data Interface  
On-Chip Rail-to-Rail Output Buffer Amplifiers  
Temperature Range: –40؇C to +105؇C  
Input data to the DACs is double-buffered, allowing simultaneous  
update of multiple DACs in a system using the LDAC pin.  
An asynchronous CLR input is also provided, which resets the  
contents of the Input Register and the DAC Register to all zeros.  
These devices also incorporate a power-on reset circuit that ensures  
that the DAC output powers on to 0 V and remains there until  
valid data is written to the device.  
APPLICATIONS  
Portable Battery-Powered Instruments  
Digital Gain and Offset Adjustment  
Programmable Voltage and Current Sources  
Programmable Attenuators  
The AD5332/AD5333/AD5342/AD5343 are available in Thin  
Shrink Small Outline Packages (TSSOP).  
Industrial Process Control  
AD5332 FUNCTIONAL BLOCK DIAGRAM  
(Other Diagrams Inside)  
V
A
V
DD  
REF  
POWER-ON  
RESET  
AD5332  
DAC  
INPUT  
DB  
8-BIT  
DAC  
7
.
.
.
V
V
A
B
BUFFER  
REGISTER  
OUT  
REGISTER  
DB  
0
INTER-  
FACE  
LOGIC  
CS  
WR  
A0  
DAC  
REGISTER  
INPUT  
REGISTER  
8-BIT  
DAC  
BUFFER  
OUT  
RESET  
POWER-DOWN  
LOGIC  
CLR  
LDAC  
V
B
GND  
PD  
REF  
*Protected by U.S. Patent Number 5,969,657  
.
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 2000  
AD5332/AD5333/AD5342/AD5343–SPECIFICATIONS  
(VDD = 2.5 V to 5.5 V, VREF = 2 V. RL = 2 kto GND; CL =200 pF to GND; all specifications TMIN to TMAX unless otherwise noted.)  
B Version2  
Typ  
Parameter1  
Min  
Max  
Unit  
Conditions/Comments  
DC PERFORMANCE3, 4  
AD5332  
Resolution  
8
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5333  
0.15  
0.02  
1
0.25  
Guaranteed Monotonic By Design Over All Codes  
Guaranteed Monotonic By Design Over All Codes  
Guaranteed Monotonic By Design Over All Codes  
Resolution  
10  
0.5  
0.05  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
AD5342/AD5343  
Resolution  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
4
0.5  
12  
2
0.2  
0.4  
0.15  
Bits  
LSB  
LSB  
% of FSR  
16  
1
3
Gain Error  
1
% of FSR  
Lower Deadband5  
Upper Deadband  
Offset Error Drift6  
Gain Error Drift6  
DC Power Supply Rejection Ratio6  
DC Crosstalk6  
10  
10  
–12  
–5  
–60  
200  
60  
60  
mV  
mV  
Lower Deadband Exists Only if Offset Error Is Negative  
VDD = 5 V. Upper Deadband Exists Only if VREF = VDD  
ppm of FSR/°C  
ppm of FSR/°C  
dB  
µV  
VDD = 10%  
RL = 2 kto GND, 2 kto VDD; CL = 200 pF to GND;  
Gain = 0  
DAC REFERENCE INPUT6  
VREF Input Range  
1
0.25  
VDD  
VDD  
V
V
Buffered Reference (AD5333 and AD5342)  
Unbuffered Reference  
VREF Input Impedance  
>10  
180  
90  
–90  
–90  
MΩ  
kΩ  
kΩ  
dB  
dB  
Buffered Reference (AD5333 and AD5342)  
Unbuffered Reference. Gain = 1, Input Impedance = RDAC  
Unbuffered Reference. Gain = 2, Input Impedance = RDAC  
Frequency = 10 kHz  
Reference Feedthrough  
Channel-to-Channel Isolation  
Frequency = 10 kHz (AD5332, AD5333, and AD5342)  
OUTPUT CHARACTERISTICS6  
7
Minimum Output Voltage4,  
0.001  
VDD – 0.001  
V min  
V max  
Rail-to-Rail Operation  
Maximum Output Voltage4, 7  
DC Output Impedance  
Short Circuit Current  
0.5  
25  
16  
2.5  
5
mA  
mA  
µs  
VDD = 5 V  
VDD = 3 V  
Power-Up Time  
Coming Out of Power-Down Mode. VDD = 5 V  
Coming Out of Power-Down Mode. VDD = 3 V  
µs  
LOGIC INPUTS6  
Input Current  
VIL, Input Low Voltage  
1
µA  
V
0.8  
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
0.6  
0.5  
V
V
VIH, Input High Voltage  
Pin Capacitance  
2.4  
2.1  
2.0  
V
V
V
pF  
VDD = 5 V 10%  
VDD = 3 V 10%  
VDD = 2.5 V  
3.5  
POWER REQUIREMENTS  
VDD  
2.5  
5.5  
V
IDD (Normal Mode)  
VDD = 4.5 V to 5.5 V  
All DACs active and excluding load currents  
Unbuffered Reference. VIH = VDD, VIL = GND.  
IDD increases by 50 µA at VREF > VDD – 100 mV.  
In Buffered Mode extra current is (5 +VREF/RDAC) µA.  
300  
230  
450  
350  
µA  
µA  
V
DD = 2.5 V to 3.6 V  
IDD (Power-Down Mode)  
VDD = 4.5 V to 5.5 V  
VDD = 2.5 V to 3.6 V  
0.2  
0.08  
1
1
µA  
µA  
NOTES  
1See Terminology section.  
2Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.  
3Linearity is tested using a reduced code range: AD5332 (Code 8 to 255); AD5333 (Code 28 to 1023); AD5342/AD5343 (Code 115 to 4095).  
4DC specifications tested with outputs unloaded.  
5This corresponds to x codes. x = Deadband voltage/LSB size.  
6Guaranteed by design and characterization, not production tested.  
7In order for the amplifier output to reach its minimum voltage, Offset Error must be negative. In order for the amplifier output to reach its maximum voltage, VREF = VDD and  
“Offset plus Gain” Error must be positive.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
(VDD = 2.5 V to 5.5 V. RL = 2 kto GND; CL = 200 pF to GND; all specifications TMIN to TMAX unless  
otherwise noted.)  
AC CHARACTERISTICS1  
B Version3  
Parameter2  
Min  
Typ  
Max  
Unit  
Conditions/Comments  
Output Voltage Settling Time  
AD5332  
VREF = 2 V. See Figure 20  
6
8
µs  
1/4 Scale to 3/4 Scale Change (40 H to C0 H)  
1/4 Scale to 3/4 Scale Change (100 H to 300 H)  
1/4 Scale to 3/4 Scale Change (400 H to C00 H)  
1/4 Scale to 3/4 Scale Change (400 H to C00 H)  
AD5333  
7
9
µs  
AD5342  
AD5343  
Slew Rate  
Major Code Transition Glitch Energy  
Digital Feedthrough  
Digital Crosstalk  
Analog Crosstalk  
DAC-to-DAC Crosstalk  
Multiplying Bandwidth  
Total Harmonic Distortion  
8
8
0.7  
6
0.5  
3
0.5  
3.5  
200  
–70  
10  
10  
µs  
µs  
V/µs  
nV-s  
nV-s  
nV-s  
nV-s  
nV-s  
kHz  
dB  
1 LSB Change Around Major Carry  
VREF = 2 V 0.1 V p-p. Unbuffered Mode  
VREF = 2.5 V 0.1 V p-p. Frequency = 10 kHz  
NOTES  
1Guaranteed by design and characterization, not production tested.  
2See Terminology section.  
3Temperature range: B Version: –40°C to +105°C; typical specifications are at 25°C.  
Specifications subject to change without notice.  
TIMING CHARACTERISTICS1, 2, 3  
(VDD = 2.5 V to 5.5 V, All specifications TMIN to TMAX unless otherwise noted.)  
Parameter  
Limit at TMIN, TMAX  
Unit  
Condition/Comments  
t1  
0
0
20  
5
4.5  
5
5
4.5  
5
4.5  
20  
20  
50  
20  
0
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
ns min  
CS to WR Setup Time  
CS to WR Hold Time  
WR Pulsewidth  
t2  
t3  
t4  
Data, GAIN, BUF, HBEN Setup Time  
Data, GAIN, BUF, HBEN Hold Time  
Synchronous Mode. WR Falling to LDAC Falling  
Synchronous Mode. LDAC Falling to WR Rising  
Synchronous Mode. WR Rising to LDAC Rising  
Asynchronous Mode. LDAC Rising to WR Rising  
Asynchronous Mode. WR Rising to LDAC Falling  
LDAC Pulsewidth  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
CLR Pulsewidth  
Time Between WR Cycles  
A0 Setup Time  
A0 Hold Time  
NOTES  
1Guaranteed by design and characterization, not production tested.  
2All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and  
timed from a voltage level of (VIL + VIH)/2.  
3See Figure 1.  
t1  
t2  
CS  
t13  
t3  
Specifications subject to change without notice.  
WR  
t5  
t4  
DATA,  
GAIN,  
BUF,  
HBEN  
t8  
t6  
t7  
1
LDAC  
t9  
t10  
t11  
2
LDAC  
t12  
t14  
t15  
CLR  
A0  
1
2
SYNCHRONOUS LDAC UPDATE MODE  
ASYNCHRONOUS LDAC UPDATE MODE  
Figure 1. Parallel Interface Timing Diagram  
–3–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C unless otherwise noted)  
θJA Thermal Impedance (24-Lead TSSOP) . . . . . 128°C/W  
θ
θ
θ
θ
JA Thermal Impedance (28-Lead TSSOP) . . . . 97.9°C/W  
JC Thermal Impedance (20-Lead TSSOP) . . . . . . 45°C/W  
JC Thermal Impedance (24-Lead TSSOP) . . . . . . 42°C/W  
JC Thermal Impedance (28-Lead TSSOP) . . . . . . 14°C/W  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V  
Digital Input Voltage to GND . . . . . . . –0.3 V to VDD + 0.3 V  
Digital Output Voltage to GND . . . . . –0.3 V to VDD + 0.3 V  
Reference Input Voltage to GND . . . . –0.3 V to VDD + 0.3 V  
Reflow Soldering  
Peak Temperature . . . . . . . . . . . . . . . . . . . . . 220 +5/–0°C  
Time at Peak Temperature . . . . . . . . . . . . 10 sec to 40 sec  
VOUT to GND . . . . . . . . . . . . . . . . . . . –0.3 V to VDD + 0.3 V  
Operating Temperature Range  
Industrial (B Version) . . . . . . . . . . . . . . . –40°C to +105°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
TSSOP Package  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Power Dissipation . . . . . . . . . . . . . . . (TJ max – TA)/θJA mW  
θJA Thermal Impedance (20-Lead TSSOP) . . . . . 143°C/W  
ORDERING GUIDE  
Package  
Option  
Model  
Temperature Range  
Package Description  
AD5332BRU  
AD5333BRU  
AD5342BRU  
AD5343BRU  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
–40°C to +105°C  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
TSSOP (Thin Shrink Small Outline Package)  
RU-20  
RU-24  
RU-28  
RU-20  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the AD5332/AD5333/AD5342/AD5343 features proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
4–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
AD5332 FUNCTIONAL BLOCK DIAGRAM  
AD5332 PIN CONFIGURATION  
V
A
V
DD  
REF  
1
2
20  
19  
18  
17  
DB  
V
V
V
B
A
A
B
7
REF  
DB  
DB  
DB  
REF  
6
POWER-ON  
RESET  
AD5332  
3
OUT  
5
4
3
V
4
OUT  
8-BIT  
DAC  
REGISTER  
INPUT  
REGISTER  
DB  
8-BIT  
DAC  
7
.
.
.
5
16 DB  
15  
V
A
B
GND  
BUFFER  
OUT  
OUT  
AD5332  
TOP VIEW  
DB  
6
DB  
CS  
WR  
A0  
2
1
0
0
(Not to Scale)  
7
14 DB  
INTER-  
FACE  
8
13  
12  
11  
DB  
V
LOGIC  
CS  
WR  
A0  
DAC  
REGISTER  
INPUT  
REGISTER  
8-BIT  
DAC  
9
CLR  
BUFFER  
V
DD  
10  
PD  
LDAC  
RESET  
POWER-DOWN  
LOGIC  
CLR  
LDAC  
V
B
GND  
PD  
REF  
AD5332 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
VREF  
Function  
1
B
Unbuffered reference input for DAC B.  
2
3
4
5
6
7
8
V
V
V
GND  
CS  
REFA  
OUTA  
OUTB  
Unbuffered reference input for DAC A.  
Output of DAC A. Buffered output with rail-to-rail operation.  
Output of DAC B. Buffered output with rail-to-rail operation.  
Ground reference point for all circuitry on the part.  
Active low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
Address pin for selecting which DAC A and DAC B.  
WR  
A0  
9
10  
CLR  
LDAC  
Asynchronous active low control input that clears all input registers and DAC registers to zeros.  
Active low control input that updates the DAC registers with the contents of the input registers. This  
allows all DAC outputs to be simultaneously updated.  
11  
12  
PD  
Power-Down Pin. This active low control pin puts all DACs into power-down mode.  
Power Supply Pin. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
10 F capacitor in parallel with a 0.1 F capacitor to GND.  
VDD  
13–20  
DB0–DB7  
Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.  
5–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
AD5333 FUNCTIONAL BLOCK DIAGRAM  
AD5333 PIN CONFIGURATION  
V
V
A
DD  
REF  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
GAIN  
BUF  
9
8
7
6
5
4
3
2
1
0
AD5333  
V
B
A
A
B
REF  
REF  
OUT  
OUT  
POWER-ON  
RESET  
DAC  
V
REGISTER  
10-BIT  
BUF  
GAIN  
DB  
V
V
AD5333  
TOP VIEW  
(Not to Scale)  
INPUT  
REGISTER  
10-BIT  
DAC  
BUFFER  
V
V
A
B
OUT  
9
.
GND  
CS  
.
.
17 DB  
16 DB  
15 DB  
DB  
0
INTER-  
FACE  
LOGIC  
WR  
CS  
WR  
A0  
A0 10  
INPUT  
REGISTER  
10-BIT  
DAC  
BUFFER  
OUT  
11  
12  
14  
13  
CLR  
LDAC  
V
DD  
DAC  
REGISTER  
PD  
RESET  
POWER-DOWN  
LOGIC  
CLR  
LDAC  
V
B
GND  
PD  
REF  
AD5333 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
Gain Control Pin. This controls whether the output range from the DAC is 0–VREF or 0–2 VREF.  
Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.  
Reference input for DAC B.  
Reference input for DAC A.  
Output of DAC A. Buffered output with rail-to-rail operation.  
1
2
3
4
5
6
GAIN  
BUF  
V
V
V
V
REFB  
REFA  
OUTA  
OUTB  
Output of DAC B. Buffered output with rail-to-rail operation.  
7
8
9
10  
11  
12  
GND  
CS  
Ground reference point for all circuitry on the part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
Address pin for selecting between DAC A and DAC B.  
Asynchronous active-low control input that clears all input registers and DAC registers to zeros.  
Active-low control input that updates the DAC registers with the contents of the input registers. This  
allows all DAC outputs to be simultaneously updated.  
WR  
A0  
CLR  
LDAC  
13  
14  
PD  
Power-Down Pin. This active low control pin puts all DACs into power-down mode.  
Power Supply Pin. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
VDD  
10 F capacitor in parallel with a 0.1 F capacitor to GND.  
15–24  
DB0–DB9  
10 Parallel Data Inputs. DB9 is the MSB of these 10 bits.  
6–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
AD5342 FUNCTIONAL BLOCK DIAGRAM  
AD5342 PIN CONFIGURATION  
V
A
V
REF  
DD  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DB  
DB  
GAIN  
BUF  
11  
10  
AD5342  
3
V
B
A
A
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
DB  
V
REF  
REF  
9
POWER-ON  
RESET  
DAC  
REGISTER  
4
V
V
8
5
OUT  
7
6
5
4
3
2
1
0
12-BIT  
INPUT  
REGISTER  
6
12-BIT  
DAC  
V
B
OUT  
BUFFER  
V
V
A
B
OUT  
AD5342  
DB  
11  
.
7
NC  
NC  
.
TOP VIEW  
.
(Not to Scale)  
DB  
8
0
INTER-  
FACE  
9
GND  
CS  
LOGIC  
CS  
WR  
A0  
10  
11  
12  
13  
14  
INPUT  
REGISTER  
12-BIT  
DAC  
BUFFER  
OUT  
WR  
A0  
DAC  
REGISTER  
CLR  
DD  
LDAC  
PD  
RESET  
POWER-DOWN  
LOGIC  
CLR  
NC = NO CONNECT  
LDAC  
V
B
REF  
GND  
PD  
AD5342 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
Gain Control Pin. This controls whether the output range from the DAC is 0-VREF or 0-2 VREF.  
Buffer Control Pin. This pin controls whether the reference input to the DAC is buffered or unbuffered.  
Reference Input for DAC B.  
1
2
3
4
5
6
7, 8  
9
10  
11  
12  
13  
14  
GAIN  
BUF  
V
V
V
V
REFB  
REFA  
OUTA  
OUTB  
Reference Input for DAC A.  
Output of DAC A. Buffered output with rail-to-rail operation.  
Output of DAC B. Buffered output with rail-to-rail operation.  
No Connect.  
NC  
GND  
CS  
Ground reference point for all circuitry on the part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
Address pin for selecting between DAC A and DAC B.  
Asynchronous active low control input that clears all input registers and DAC registers to zeros.  
Active low control input that updates the DAC registers with the contents of the input registers. This  
allows all DAC outputs to be simultaneously updated.  
WR  
A0  
CLR  
LDAC  
15  
16  
PD  
Power-Down Pin. This active low control pin puts all DACs into power-down mode.  
Power Supply Pin. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
VDD  
10 F capacitor in parallel with a 0.1 F capacitor to GND.  
17–28  
DB0–DB11  
12 Parallel Data Inputs. DB11 is the MSB of these 12 bits.  
7–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
AD5343 FUNCTIONAL BLOCK DIAGRAM  
AD5343 PIN CONFIGURATION  
V
V
DD  
REF  
HBEN  
1
2
20  
19  
18  
17  
DB  
7
DB  
DB  
DB  
V
6
5
4
3
2
1
0
REF  
POWER-ON  
RESET  
V
A
B
3
OUT  
AD5343  
V
4
HIGH BYTE  
REGISTER  
OUT  
12-BIT  
5
16 DB  
15  
GND  
AD5343  
DB  
7
.
.
.
.
.
.
TOP VIEW  
6
DB  
14 DB  
CS  
WR  
A0  
(Not to Scale)  
DAC  
REGISTER  
LOW BYTE  
REGISTER  
12-BIT  
DAC  
7
BUFFER  
BUFFER  
V
A
DB  
OUT  
0
8
13  
12  
11  
DB  
V
HBEN  
CS  
9
CLR  
DD  
INTER-  
FACE  
LOGIC  
HIGH BYTE  
REGISTER  
10  
PD  
LDAC  
WR  
A0  
DAC  
REGISTER  
LOW BYTE  
REGISTER  
12-BIT  
DAC  
V
B
OUT  
RESET  
CLR  
LDAC  
POWER-DOWN  
LOGIC  
GND  
PD  
AD5343 PIN FUNCTION DESCRIPTIONS  
Pin  
No.  
Mnemonic  
Function  
1
HBEN  
This pin is used when writing to the device to determine if data is written to the high byte register or the  
low byte register.  
2
VREF  
Unbuffered reference input for both DACs.  
3
4
V
V
OUTA  
OUTB  
Output of DAC A. Buffered output with rail-to-rail operation.  
Output of DAC B. Buffered output with rail-to-rail operation.  
5
6
7
8
GND  
CS  
Ground reference point for all circuitry on the part.  
Active Low Chip Select Input. This is used in conjunction with WR to write data to the parallel interface.  
Active Low Write Input. This is used in conjunction with CS to write data to the parallel interface.  
Address pin for selecting between DAC A and DAC B.  
WR  
A0  
9
10  
CLR  
LDAC  
Asynchronous active low control input that clears all input registers and DAC registers to zeros.  
Active low control input that updates the DAC registers with the contents of the input registers. This allows  
all DAC outputs to be simultaneously updated.  
11  
12  
PD  
Power-Down Pin. This active low control pin puts all DACs into power-down mode.  
Power Supply Pin. These parts can operate from 2.5 V to 5.5 V and the supply should be decoupled with a  
VDD  
10 F capacitor in parallel with a 0.1 F capacitor to GND.  
13–20  
DB0–DB7  
Eight Parallel Data Inputs. DB7 is the MSB of these eight bits.  
8–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
TERMINOLOGY  
RELATIVE ACCURACY  
For the DAC, Relative Accuracy or Integral Nonlinearity (INL)  
is a measure of the maximum deviation, in LSBs, from a straight  
line passing through the actual endpoints of the DAC transfer  
function. Typical INL versus Code plot can be seen in Figures  
5, 6, and 7.  
GAIN ERROR  
AND  
OFFSET  
ERROR  
ACTUAL  
OUTPUT  
VOLTAGE  
DIFFERENTIAL NONLINEARITY  
IDEAL  
Differential Nonlinearity (DNL) is the difference between the  
measured change and the ideal 1 LSB change between any two  
adjacent codes. A specified differential nonlinearity of 1 LSB  
maximum ensures monotonicity. This DAC is guaranteed mono-  
tonic by design. Typical DNL versus Code plot can be seen in  
Figures 8, 9, and 10.  
POSITIVE  
OFFSET  
DAC CODE  
OFFSET ERROR  
This is a measure of the offset error of the DAC and the output  
amplifier. It is expressed as a percentage of the full-scale range.  
Figure 3. Positive Offset Error and Gain Error  
If the offset voltage is positive, the output voltage will still be  
positive at zero input code. This is shown in Figure 3. Because  
the DACs operate from a single supply, a negative offset cannot  
appear at the output of the buffer amplifier. Instead, there will  
be a code close to zero at which the amplifier output saturates  
(amplifier footroom). Below this code there will be a deadband  
over which the output voltage will not change. This is illustrated  
in Figure 4.  
GAIN ERROR  
AND  
OFFSET  
ERROR  
IDEAL  
OUTPUT  
VOLTAGE  
GAIN ERROR  
ACTUAL  
This is a measure of the span error of the DAC (including any  
error in the gain of the buffer amplifier). It is the deviation in  
slope of the actual DAC transfer characteristic from the ideal  
expressed as a percentage of the full-scale range. This is illus-  
trated in Figure 2.  
NEGATIVE  
OFFSET  
DAC CODE  
POSITIVE  
GAIN ERROR  
NEGATIVE  
GAIN ERROR  
ACTUAL  
DEADBAND CODES  
AMPLIFIER  
FOOTROOM  
(~1mV)  
OUTPUT  
VOLTAGE  
IDEAL  
NEGATIVE  
OFFSET  
DAC CODE  
Figure 4. Negative Offset Error and Gain Error  
Figure 2. Gain Error  
9–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
OFFSET ERROR DRIFT  
DIGITAL CROSSTALK  
This is a measure of the change in Offset Error with changes in  
temperature. It is expressed in (ppm of full-scale range)/°C.  
This is the glitch impulse transferred to the output of one DAC  
at midscale in response to a full-scale code change (all 0s to all  
1s and vice versa) in the input register of the other DAC. It is  
expressed in nV-secs.  
GAIN ERROR DRIFT  
This is a measure of the change in Gain Error with changes in tem-  
perature. It is expressed in (ppm of full-scale range)/°C.  
ANALOG CROSSTALK  
This is the glitch impulse transferred to the output of one DAC  
due to a change in the output of the other DAC. It is measured  
by loading one of the input registers with a full-scale code change  
(all 0s to all 1s and vice versa) while keeping LDAC high. Then  
pulse LDAC low and monitor the output of the DAC whose  
digital code was not changed. The area of the glitch is expressed  
in nV-secs.  
POWER-SUPPLY REJECTION RATIO (PSRR)  
This indicates how the output of the DAC is affected by changes in  
the supply voltage. PSRR is the ratio of the change in VOUT to a  
change in VDD for full-scale output of the DAC. It is measured  
in dBs. VREF is held at 2 V and VDD is varied 10%.  
DC CROSSTALK  
This is the dc change in the output level of one DAC at mid-  
scale in response to a full-scale code change (all 0s to all 1s and  
vice versa) and output change of the other DAC. It is expressed  
in µV.  
DAC-TO-DAC CROSSTALK  
This is the glitch impulse transferred to the output of one DAC  
due to a digital code change and subsequent output change of  
the other DAC. This includes both digital and analog crosstalk.  
It is measured by loading one of the DACs with a full-scale code  
change (all 0s to all 1s and vice versa) with the LDAC pin set  
low and monitoring the output of the other DAC. The energy of  
the glitch is expressed in nV-secs.  
REFERENCE FEEDTHROUGH  
This is the ratio of the amplitude of the signal at the DAC output  
to the reference input when the DAC output is not being updated  
(i.e., LDAC is high). It is expressed in dBs.  
MULTIPLYING BANDWIDTH  
CHANNEL-TO-CHANNEL ISOLATION  
The amplifiers within the DAC have a finite bandwidth. The  
Multiplying Bandwidth is a measure of this. A sine wave on the  
reference (with full-scale code loaded to the DAC) appears on  
the output. The Multiplying Bandwidth is the frequency at which  
the output amplitude falls to 3 dB below the input.  
This is a ratio of the amplitude of the signal at the output of one  
DAC to a sine wave on the reference input of the other DAC. It  
is measured by grounding one VREF pin and applying a 10 kHz,  
4 V peak-to-peak sine wave to the other VREF pin. It is expressed  
in dBs.  
TOTAL HARMONIC DISTORTION  
MAJOR-CODE TRANSITION GLITCH ENERGY  
Major-Code Transition Glitch Energy is the energy of the  
impulse injected into the analog output when the DAC changes  
state. It is normally specified as the area of the glitch in nV secs  
and is measured when the digital code is changed by 1 LSB at  
the major carry transition (011 . . . 11 to 100 . . . 00 or 100 . . . 00  
to 011 . . . 11).  
This is the difference between an ideal sine wave and its attenuated  
version using the DAC. The sine wave is used as the reference  
for the DAC and the THD is a measure of the harmonics present  
on the DAC output. It is measured in dBs.  
DIGITAL FEEDTHROUGH  
Digital Feedthrough is a measure of the impulse injected into  
the analog output of the DAC from the digital input pins of the  
device but is measured when the DAC is not being written to  
(CS held high). It is specified in nV secs and is measured with a  
full-scale change on the digital input pins, i.e. from all 0s to all  
1s and vice versa.  
10–  
REV. 0  
Typical Performance CharacteristicsAD5332/AD5333/AD5342/AD5343  
12  
1.0  
0.5  
3
T
V
= 25؇C  
A
T
V
= 25؇C  
A
T
= 25؇C  
A
= 5V  
DD  
= 5V  
DD  
V
= 5V  
8
DD  
2
1
4
0
0
–0.5  
–1.0  
0
4  
8  
1  
2  
3  
12  
50  
100  
150  
CODE  
200  
250  
0
4000  
0
0
1000  
2000  
3000  
200  
400  
CODE  
600  
800  
1000  
CODE  
Figure 7. AD5342 Typical INL Plot  
Figure 5. AD5332 Typical INL Plot  
Figure 6. AD5333 Typical INL Plot  
0.3  
0.6  
1.0  
T
= 25؇C  
T
= 25؇C  
A
A
T
V
= 25؇C  
A
V
= 5V  
V
= 5V  
DD  
DD  
= 5V  
DD  
0.2  
0.1  
0.4  
0.2  
0.5  
0
0
0.1  
0.2  
0.3  
0
0.2  
0.4  
0.6  
0.5  
1  
0
50  
100  
150  
200  
250  
0
200  
400  
600  
800  
1000  
0
1000  
2000  
3000  
4000  
CODE  
CODE  
CODE  
Figure 10. AD5342 Typical DNL Plot  
Figure 8. AD5332 Typical DNL Plot  
Figure 9. AD5333 Typical DNL Plot  
1.0  
1.00  
1.00  
V
= 5V  
= 25؇C  
V
V
= 5V  
DD  
DD  
V
V
= 5V  
DD  
0.75  
0.50  
T
0.75  
0.50  
0.25  
0
= 2V  
A
REF  
= 2V  
REF  
0.5  
0.0  
MAX DNL MAX INL  
GAIN ERROR  
0.25  
MAX INL  
MAX DNL  
0.00  
MIN DNL  
MIN INL  
0.25  
0.50  
0.75  
0.25  
0.50  
0.75  
1.00  
OFFSET ERROR  
MIN INL MIN DNL  
0.5  
1.0  
1.00  
40  
0
40  
80  
120  
2
3
4
5
40  
0
40  
80  
120  
V
V  
TEMPERATURE ؇C  
REF  
TEMPERATURE ؇C  
Figure 11. AD5332 INL and DNL  
Error vs. VREF  
Figure 13. AD5332 Offset Error  
and Gain Error vs. Temperature  
Figure 12. AD5332 INL Error and  
DNL Error vs. Temperature  
11–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
400  
350  
300  
250  
200  
150  
100  
50  
5
0.2  
T
V
= 25؇C  
A
ؠ
T
V
= 25 C  
= 2V  
A
REF  
0.1  
V
V
= 5.5V  
= 3.6V  
5V SOURCE  
3V SOURCE  
DD  
= 2V  
REF  
4
GAIN ERROR  
0
DD  
0.1  
0.2  
0.3  
0.4  
3
2
1
0
OFFSET ERROR  
3V SINK  
5V SINK  
0.5  
0.6  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
6
ZERO-SCALE  
FULL-SCALE  
SINK/SOURCE CURRENT mA  
DAC CODE  
V
Volts  
DD  
Figure 16. Supply Current vs. DAC  
Code  
Figure 15. VOUT Source and Sink  
Current Capability  
Figure 14. Offset Error and Gain  
Error vs. VDD  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
0.5  
400  
T
= 25؇C  
A
T
= 25؇C  
T
= 25؇C  
A
A
0.4  
0.3  
0.2  
0.1  
0
300  
200  
V
= 5V  
DD  
100  
0
V
= 3V  
DD  
0
1
2
3
V  
4
5
2.5  
3.0  
3.5  
4.0  
V  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
V  
4.5  
5.0  
5.5  
V
V
LOGIC  
DD  
V
DD  
Figure 19. Supply Current vs. Logic  
Input Voltage  
Figure 18. Power-Down Current vs.  
Supply Voltage  
Figure 17. Supply Current vs. Supply  
Voltage  
ؠ
ؠ
V
T
= 5V  
= 25؇C  
T
V
V
= 25 C  
= 5V  
T
V
V
= 25 C  
= 5V  
DD  
A
A
A
DD  
DD  
CH2  
CH1  
= 2V  
= 2V  
LDAC  
REF  
REF  
CH1  
CH2  
V
CH1  
CH2  
DD  
V
A
OUT  
V
OUT  
V
A
PD  
OUT  
CH1 2V, CH2 200mV, TIME BASE = 200s/DIV  
CH1 500mV, CH2 5V, TIME BASE = 1s/DIV  
CH1 1V, CH2 5V, TIME BASE = 5s/DIV  
Figure 21. Power-On Reset to 0 V  
Figure 20. Half-Scale Settling (1/4 to  
3/4 Scale Code Change)  
Figure 22. Exiting Power-Down to  
Midscale  
12–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
0.939  
0.938  
0.937  
0.936  
0.935  
0.934  
0.933  
0.932  
0.931  
0.930  
0.929  
10  
0
V
= +5V  
DD  
V
= +3V  
10  
20  
30  
DD  
40  
50  
60  
0
100  
150  
200  
250  
A  
300  
350  
400  
0.01  
0.1  
1
10  
100  
1k  
10k  
500 ns/DIV  
I
DD  
FREQUENCY kHz  
Figure 25. Multiplying Bandwidth  
(Small-Signal Frequency Response)  
Figure 24. AD5342 Major-Code Tran-  
sition Glitch Energy  
Figure 23. IDD Histogram with VDD = 3  
V and VDD = 5 V  
0.2  
T
V
= 25؇C  
A
= 2V  
REF  
0
0.2  
0.4  
0
1
2
3
4
5
6
750ns/DIV  
V
V  
REF  
Figure 26. Full-Scale Error vs. VREF  
Figure 27. DAC-DAC Crosstalk  
FUNCTIONAL DESCRIPTION  
where:  
The AD5332/AD5333/AD5342/AD5343 are dual DACs fabri-  
cated on a CMOS process with resolutions of 8, 10, 12, and  
12 bits, respectively. They are written to using a parallel inter-  
face. They operate from single supplies of 2.5 V to 5.5 V and  
the output buffer amplifiers offer rail-to-rail output swing. The  
AD5333 and AD5342 have reference inputs that may be buff-  
ered to draw virtually no current from the reference source.  
Their output voltage range may be configured to be 0 to VREF  
or 0 to 2 VREF. The reference inputs of the AD5332 and AD5343  
are unbuffered and their output range is 0 to VREF. The devices  
have a power-down feature that reduces current consumption to  
only 80 nA @ 3 V.  
D = decimal equivalent of the binary code which is loaded to  
the DAC register:  
0–255 for AD5332 (8 Bits)  
0–1023 for AD5333 (10 Bits)  
0–4095 for AD5342/AD5343 (12 Bits)  
N = DAC resolution  
Gain = Output Amplifier Gain (1 or 2)  
V
REF  
REFERENCE  
BUFFER  
BUF  
Digital-to-Analog Section  
The architecture of one DAC channel consists of a reference  
buffer and a resistor-string DAC followed by an output buffer  
amplifier. The voltage at the VREF pin provides the reference  
voltage for the DAC. Figure 28 shows a block diagram of the  
DAC architecture. Since the input coding to the DAC is straight  
binary, the ideal output voltage is given by:  
GAIN  
INPUT  
REGISTER  
DAC  
REGISTER  
RESISTOR  
STRING  
V
OUT  
OUTPUT  
BUFFER AMPLIFIER  
D
2N  
Figure 28. Single DAC Channel Architecture  
VOUT = VREF  
×
× Gain  
13–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
Resistor String  
PARALLEL INTERFACE  
The resistor string section is shown in Figure 29. It is simply a  
string of resistors, each of value R. The digital code loaded to  
the DAC register determines at what node on the string the  
voltage is tapped off to be fed into the output amplifier. The  
voltage is tapped off by closing one of the switches connecting  
the string to the amplifier. Because it is a string of resistors, it  
is guaranteed monotonic.  
The AD5332, AD5333, and AD5342 load their data as a single  
8-, 10-, or 12-bit word, while the AD5343 loads data as a low  
byte of 8 bits and a high byte containing 4 bits.  
Double-Buffered Interface  
The AD5332/AD5333/AD5342/AD5343 DACs all have double-  
buffered interfaces consisting of an input register and a DAC  
register. DAC data, BUF, and GAIN inputs are written to the  
input register under control of the Chip Select (CS) and Write  
(WR).  
V
REF  
R
R
Access to the DAC register is controlled by the LDAC function.  
When LDAC is high, the DAC register is latched and the input  
register may change state without affecting the contents of the  
DAC register. However, when LDAC is brought low, the DAC  
register becomes transparent and the contents of the input  
register are transferred to it. The gain and buffer control signals  
are also double-buffered and are only updated when LDAC is  
taken low.  
TO OUTPUT  
AMPLIFIER  
R
R
R
This is useful if the user requires simultaneous updating of all  
DACs and peripherals. The user may write to both input regis-  
ters individually and then, by pulsing the LDAC input low, both  
outputs will update simultaneously.  
Figure 29. Resistor String  
Double-buffering is also useful where the DAC data is loaded in  
two bytes, as in the AD5343, because it allows the whole data  
word to be assembled in parallel before updating the DAC register.  
This prevents spurious outputs that could occur if the DAC  
register were updated with only the high byte or the low byte.  
DAC Reference Input  
The DACs operate with an external reference. The AD5332,  
AD5333, and AD5342 have separate reference inputs for each  
DAC, while the AD5343 has a single reference input for both  
DACs. The reference inputs on the AD5333 and AD5342 may  
be configured as buffered or unbuffered. The reference inputs  
of the AD5332 and AD5343 are unbuffered. The buffered/  
unbuffered option is controlled by the BUF pin.  
These parts contain an extra feature whereby the DAC register  
is not updated unless its input register has been updated since  
the last time that LDAC was brought low. Normally, when  
LDAC is brought low, the DAC registers are filled with the  
contents of the input registers. In the case of the AD5332/  
AD5333/AD5342/AD5343, the part will only update the DAC  
register if the input register has been changed since the last  
time the DAC register was updated. This removes unnecessary  
crosstalk.  
In buffered mode (BUF = 1) the current drawn from an exter-  
nal reference voltage is virtually zero, as the impedance is at  
least 10 M. The reference input range is 1 V to VDD  
.
In unbuffered mode (BUF = 0) the user can have a reference  
voltage as low as 0.25 V and as high as VDD since there is no  
restriction due to headroom and footroom of the reference ampli-  
fier. The impedance is still large at typically 180 kfor 0–VREF  
mode and 90 kfor 0–2 VREF mode.  
Clear Input (CLR)  
CLR is an active low, asynchronous clear that resets the input and  
DAC registers.  
Chip Select Input (CS)  
CS is an active low input that selects the device.  
If using an external buffered reference (e.g., REF192) there is  
no need to use the on-chip buffer.  
Write Input (WR)  
Output Amplifier  
WR is an active low input that controls writing of data to the  
device. Data is latched into the input register on the rising edge  
of WR.  
The output buffer amplifier is capable of generating output volt-  
ages to within 1 mV of either rail. Its actual range depends on  
V
REF, GAIN, the load on VOUT and offset error.  
If a gain of 1 is selected (GAIN = 0), the output range is 0.001 V  
to VREF  
If a gain of 2 is selected (GAIN = 1), on the AD5333 and AD5342  
the output range is 0.001 V to 2 VREF  
Load DAC Input (LDAC)  
LDAC transfers data from the input register to the DAC register  
(and hence updates the outputs). Use of the LDAC function enables  
double buffering of the DAC data, GAIN and BUF. There are  
two LDAC modes:  
.
.
The output amplifier is capable of driving a load of 2 kto  
GND or VDD, in parallel with 500 pF to GND or VDD. The  
source and sink capabilities of the output amplifier can be seen  
in Figure 15.  
Synchronous Mode: In this mode the DAC register is updated  
after new data is read in on the rising edge of the WR input.  
LDAC can be tied permanently low or pulsed as in Figure 1.  
Asynchronous Mode: In this mode the outputs are not updated  
at the same time that the input register is written to. When LDAC  
goes low the DAC register is updated with the contents of the  
input register.  
The slew rate is 0.7 V/µs with a half-scale settling time to 0.5 LSB  
(at 8 bits) of 6 µs with the output unloaded. See Figure 20.  
14–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
High-Byte Enable Input (HBEN)  
POWER-DOWN MODE  
High-Byte Enable is a control input on the AD5343 only that  
determines if data is written to the high-byte input register or  
the low-byte input register.  
The AD5332/AD5333/AD5342/AD5343 have low power con-  
sumption, dissipating typically 0.69 mW with a 3 V supply and  
1.5 mW with a 5 V supply. Power consumption can be further  
reduced when the DACs are not in use by putting them into  
power-down mode, which is selected by taking pin PD low.  
The low data byte of the AD5343 consists of data bits 0 to 7 at  
data inputs DB0 to DB7, while the high byte consists of data  
bits 8 to 11 at data inputs DB0 to DB3. DB4 to DB7 are ignored  
during a high byte write, but they may be used for data to  
set up the reference input as buffered/unbuffered, and buffer  
amplifier gain. See Figure 32.  
When the PD pin is high, the DACs work normally with a typical  
power consumption of 300 µA at 5 V (230 µA at 3 V). In power-  
down mode, however, the supply current falls to 200 nA at 5 V  
(80 nA at 3 V) when both DACs are powered down. Not only  
does the supply current drop, but the output stage is also internally  
switched from the output of the amplifier, making it open-circuit.  
This has the advantage that the outputs are three-state while  
the part is in power-down mode, and provides a defined input  
condition for whatever is connected to the outputs of the DAC  
amplifiers. The output stage is illustrated in Figure 31.  
HIGH BYTE  
X
X
X
X
DB11 DB10 DB9 DB8  
LOW BYTE  
DB5 DB4  
DB2  
DB1 DB0  
DB7 DB6  
X = UNUSED BIT  
DB3  
Figure 30. Data Format for AD5343  
RESISTOR  
STRING DAC  
POWER-ON RESET  
AMPLIFIER  
VOUT  
The AD5332/AD5333/AD5342/AD5343 are provided with a  
power-on reset function, so that they power up in a defined state.  
The power-on state is:  
POWER-DOWN  
CIRCUITRY  
• Normal operation  
Figure 31. Output Stage During Power-Down  
• Reference input unbuffered  
• 0 – VREF output range  
• Output voltage set to 0 V  
The bias generator, the output amplifier, the resistor string, and  
all other associated linear circuitry are all shut down when the  
power-down mode is activated. However, the contents of the  
registers are unaffected when in power-down. The time to exit  
power-down is typically 2.5 µs for VDD = 5 V and 5 µs when  
DD = 3 V. This is the time from a rising edge on the PD pin to  
when the output voltage deviates from its power-down voltage.  
See Figure 22.  
Both input and DAC registers are filled with zeros and remain  
so until a valid write sequence is made to the device. This is  
particularly useful in applications where it is important to know  
the state of the DAC outputs while the device is powering up.  
V
Table I. AD5332/AD5333/AD5342 Truth Table  
WR A0 Function  
CLR  
LDAC  
CS  
1
1
0
1
1
1
1
1
X
1
1
0
1
X
1
X
01  
01  
X
X
No Data Transfer  
No Data Transfer  
Clear All Registers  
Load DAC A Input Register  
Load DAC B Input Register  
Update DAC Registers  
X
X
0
0
X
X
X
0
1
X
X = don’t care.  
Table II. AD5343 Truth Table  
CLR  
LDAC  
CS  
WR  
A0  
HBEN  
Function  
1
1
0
1
1
1
1
1
1
1
X
1
1
1
1
0
1
X
1
X
01  
01  
01  
01  
X
X
X
X
0
0
1
X
X
X
0
1
0
No Data Transfer  
No Data Transfer  
Clear All Registers  
Load DAC A Low Byte Input Register  
Load DAC A High Byte Input Register  
Load DAC B Low Byte Input Register  
Load DAC B High Byte Input Register  
Update DAC Registers  
X
X
0
0
0
0
X
1
X
1
X
X = don’t care.  
15–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
SUGGESTED DATABUS FORMATS  
Driving VDD from the Reference Voltage  
In most applications GAIN and BUF are hard-wired. However,  
if more flexibility is required, they can be included in a databus.  
This enables you to software program GAIN, giving the option  
of doubling the resolution in the lower half of the DAC range.  
In a bused system GAIN and BUF may be treated as data inputs  
since they are written to the device during a write operation and  
take effect when LDAC is taken low. This means that the refer-  
ence buffers and the output amplifier gain of multiple DAC  
devices can be controlled using common GAIN and BUF lines.  
If an output range of zero to VDD is required when the reference  
inputs are configured as unbuffered, the simplest solution is to  
connect the reference inputs to VDD. As this supply may not be  
very accurate, and may be noisy, the devices may be powered  
from the reference voltage, for example using a 5 V reference  
such as the ADM663 or ADM666, as shown in Figure 34.  
6V TO 16V  
10F  
0.1F  
The AD5333 and AD5342 databuses must be at least 10, and  
12 bits wide respectively, and are best suited to a 16-bit data-  
bus system.  
V
IN  
AD5332/AD5333/  
AD5342/AD5343  
Examples of data formats for putting GAIN and BUF on a 16-  
bit databus are shown in Figure 32. Note that any unused bits  
above the actual DAC data may be used for BUF and GAIN.  
ADM663/ADM666  
SENSE  
V
DD  
V
V
*
OUT(2)  
REF  
V
OUT  
*
VSET GND SHDN  
0.1F  
AD5333  
GND  
DB9 DB8  
DB6  
DB6  
DB4  
DB4  
DB7  
DB5  
DB5  
DB3 DB2 DB1  
X
BUF GAIN  
DB0  
DB0  
X
X
X
AD5342  
*ONLY ONE CHANNEL OF V  
AND V  
SHOWN  
REF  
OUT  
X
X
DB11 DB10 DB9 DB8  
DB2 DB1  
DB3  
DB7  
BUF GAIN  
Figure 34. Using an ADM663/ADM666 as Power and Refer-  
ence to AD5332/AD5333/AD5342/AD5343  
X = UNUSED BIT  
Figure 32. GAIN and BUF Data on a 16-Bit Bus  
Bipolar Operation Using the AD5332/AD5333/AD5342/AD5343  
The AD5332/AD5333/AD5342/AD5343 have been designed  
for single supply operation, but bipolar operation is achievable  
using the circuit shown in Figure 35. The circuit shown has been  
configured to achieve an output voltage range of –5 V < VO <  
+5 V. Rail-to-rail operation at the amplifier output is achievable  
using an AD820 or OP295 as the output amplifier.  
APPLICATIONS INFORMATION  
Typical Application Circuits  
The AD5332/AD5333/AD5342/AD5343 can be used with a  
wide range of reference voltages, especially if the reference inputs  
are configured to be unbuffered, in which case the devices offer  
full, one-quadrant multiplying capability over a reference range  
of 0.25 V to VDD. More typically, these devices may be used with a  
fixed, precision reference voltage. Figure 33 shows a typical  
setup for the devices when using an external reference connected to  
the unbuffered reference inputs. If the reference inputs are unbuf-  
fered, the reference input range is from 0.25 V to VDD, but if the  
on-chip reference buffers are used, the reference range is reduced.  
Suitable references for 5 V operation are the AD780 and REF192.  
For 2.5 V operation, a suitable external reference would be the  
AD589, a 1.23 V bandgap reference.  
The output voltage for any input code can be calculated as  
follows:  
VO = [(1 + R4/R3) × (R2/(R1 + R2) × (2 × VREF × D/2N)] – R4 × VREF/R3  
where:  
D is the decimal equivalent of the code loaded to the DAC, N is  
DAC resolution and VREF is the reference voltage input.  
With:  
V
REF = 2.5 V  
V
= 2.5V TO 5.5V  
DD  
R1 = R3 = 10 kΩ  
R2 = R4 = 20 kand VDD = 5 V.  
V
OUT = (10 × D/2N) – 5  
10F  
0.1F  
V
= 5V  
DD  
R4  
20k  
V
IN  
V
DD  
EXT  
REF  
V
*
V
REF  
OUT  
10F  
0.1F  
+5V  
V
*
OUT  
R3  
10k⍀  
GND  
AD5332/AD5333/  
AD5342/AD5343  
V
؎5V  
IN  
V
DD  
AD780/REF192  
WITH V = 5V  
EXT  
REF  
V
*
V
REF  
OUT  
DD  
OR  
5V  
0.1F  
GND  
AD5332/AD5333/  
AD5342/AD5343  
GND  
AD589 WITH V = 2.5V  
DD  
R1  
10k⍀  
*ONLY ONE CHANNEL OF V  
AND V  
SHOWN  
V
*
REF  
OUT  
OUT  
AD780/REF192  
R2  
20k⍀  
GND  
WITH V = 5V  
DD  
Figure 33. AD5332/AD5333/AD5342/AD5343 Using  
External Reference  
OR  
AD589 WITH V = 2.5V  
DD  
*ONLY ONE CHANNEL OF V  
AND V  
SHOWN  
OUT  
REF  
Figure 35. Bipolar Operation using the AD5332/AD5333/  
AD5342/AD5343  
16–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
Decoding Multiple AD5332/AD5333/AD5342/AD5343  
The CS pin on these devices can be used in applications to decode  
a number of DACs. In this application, all DACs in the system  
receive the same data and WR pulses, but only the CS to one of  
the DACs will be active at any one time, so data will only be  
written to the DAC whose CS is low. If multiple AD5343s are  
being used, a common HBEN line will also be required to  
determine if the data is written to the high-byte or low-byte  
register of the selected DAC.  
Note that the AD5343 has only a single reference input. If using  
the AD5332, AD5333, or AD5342, both reference inputs must  
be connected.  
5V  
10F  
0.1F  
1k⍀  
1k⍀  
V
IN  
FAIL  
PASS  
V
DD  
V
V
V
A*  
B*  
REF  
REF  
V
OUT  
REF  
PASS/  
FAIL  
The 74HC139 is used as a 2- to 4-line decoder to address any  
of the DACs in the system. To prevent timing errors from  
occurring, the enable input should be brought to its inactive  
state while the coded address inputs are changing state. Figure 36  
shows a diagram of a typical setup for decoding multiple devices  
in a system. Once data has been written sequentially to all DACs in  
a system, all the DACs can be updated simultaneously using a  
common LDAC line. A common CLR line can also be used to  
reset all DAC outputs to zero.  
1/2  
CMP04  
AD5332/AD5333/  
AD5342  
V
B
OUT  
1/6 74HC05  
GND  
*NOT AD5343  
Figure 37. Programmable Window Detector  
Programmable Current Source  
Figure 38 shows the AD5332/AD5333/AD5342/AD5343 used  
as the control element of a programmable current source. In this  
example, the full-scale current is set to 1 mA. The output volt-  
age from the DAC is applied across the current setting resistor  
of 4.7 kin series with the 470 adjustment potentiometer,  
which gives an adjustment of about 5%. Suitable transistors to  
place in the feedback loop of the amplifier include the BC107  
and the 2N3904, which enable the current source to operate  
from a minimum VSOURCE of 6 V. The operating range is deter-  
mined by the operating characteristics of the transistor. Suitable  
amplifiers include the AD820 and the OP295, both having rail-  
to-rail operation on their outputs. The current for any digital  
input code and resistor value can be calculated as follows:  
AD5332/AD5333/  
AD5342/AD5343  
A0  
A1  
HBEN  
WR  
LDAC  
CLR  
HBEN*  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
AD5332/AD5333/  
AD5342/AD5343  
A0  
HBEN*  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
V
DD  
V
CC  
D
1G  
1A  
1B  
I = G × VREF  
×
mA  
AD5332/AD5333/  
AD5342/AD5343  
A0  
ENABLE  
1Y0  
1Y1  
1Y2  
(2N × R)  
CODED  
ADDRESS  
Where:  
74HC139  
DGND  
HBEN*  
WR  
G is the gain of the buffer amplifier (1 or 2)  
D is the digital equivalent of the digital input code  
N is the DAC resolution (8, 10, or 12 bits)  
DATA  
INPUTS  
LDAC  
CLR  
CS  
1Y3  
R is the sum of the resistor plus adjustment potentiometer in kΩ  
AD5332/AD5333/  
AD5342/AD5343  
A0  
V
= 5V  
DD  
HBEN*  
*AD5343 ONLY  
WR  
DATA  
INPUTS  
LDAC  
CLR  
CS  
10F  
0.1F  
V
SOURCE  
V
5V  
IN  
LOAD  
V
Figure 36. Decoding Multiple DAC Devices  
DD  
EXT  
REF  
V
*
V
V
*
REF  
OUT  
OUT  
0.1F  
GND  
AD5332/AD5333/  
AD5342/AD5343  
AD5332/AD5333/AD5342/AD5343 as a Digitally Program-  
mable Window Detector  
AD780/REF192  
A digitally programmable upper/lower limit detector using the  
two DACs in the AD5332/AD5333/AD5342 is shown in Figure  
37. The upper and lower limits for the test are loaded to DACs  
A and B which, in turn, set the limits on the CMP04. If a signal  
at the VIN input is not within the programmed window, an LED  
will indicate the fail condition.  
WITH V = 5V  
4.7k⍀  
470⍀  
DD  
GND  
*ONLY ONE CHANNEL OF V  
AND V  
SHOWN  
REF  
OUT  
Figure 38. Programmable Current Source  
17–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
Coarse and Fine Adjustment Using the AD5332/AD5333/  
AD5342/AD5343  
Power Supply Bypassing and Grounding  
In any circuit where accuracy is important, careful consideration  
of the power supply and ground return layout helps to ensure  
the rated performance. The printed circuit board on which the  
AD5332/AD5333/AD5342/AD5343 is mounted should be  
designed so that the analog and digital sections are separated,  
and confined to certain areas of the board. If the device is in a  
system where multiple devices require an AGND-to-DGND  
connection, the connection should be made at one point only.  
The star ground point should be established as closely as pos-  
sible to the device. The AD5332/AD5333/AD5342/AD5343  
should have ample supply bypassing of 10 µF in parallel with  
0.1 µF on the supply located as close to the package as pos-  
sible, ideally right up against the device. The 10 µF capacitors  
are the tantalum bead type. The 0.1 µF capacitor should have  
low Effective Series Resistance (ESR) and Effective Series Induc-  
tance (ESI), like the common ceramic types that provide a low  
impedance path to ground at high frequencies to handle tran-  
sient currents due to internal logic switching.  
The DACs in the AD5332/AD5333/AD5342/AD5343 can be  
paired together to form a coarse and fine adjustment function,  
as shown in Figure 39. DAC A is used to provide the coarse  
adjustment while DAC B provides the fine adjustment. Varying  
the ratio of R1 and R2 will change the relative effect of the coarse  
and fine adjustments. With the resistor values shown the output  
amplifier has unity gain for the DAC A output, so the output  
range is 0 V to 2.5 V – 1 LSB. For DAC B the amplifier has a gain  
of 7.6 × 10–3, giving DAC B a range equal to 2 LSBs of DAC A.  
The circuit is shown with a 2.5 V reference, but reference volt-  
ages up to VDD may be used. The op amps indicated will allow a  
rail-to-rail output swing.  
Note that the AD5343 has only a single reference input. If using  
the AD5332, AD5333, or AD5342, both reference inputs must  
be connected.  
V
= 5V  
DD  
R3  
51.2k  
R4  
390⍀  
The power supply lines of the device should use as large a trace  
as possible to provide low impedance paths and reduce the effects  
of glitches on the power supply line. Fast switching signals such  
as clocks should be shielded with digital ground to avoid radiat-  
ing noise to other parts of the board, and should never be run  
near the reference inputs. Avoid crossover of digital and ana-  
log signals. Traces on opposite sides of the board should run  
at right angles to each other. This reduces the effects of feed-  
through through the board. A microstrip technique is by far  
the best, but not always possible with a double-sided board. In  
this technique, the component side of the board is dedicated to  
ground plane while signal traces are placed on the solder side.  
0.1F  
10F  
+5V  
V
IN  
R1  
V
DD  
V
390⍀  
OUT  
EXT  
REF  
V
V
A*  
V
V
A
B
REF  
OUT  
OUT  
0.1F  
AD5332/AD5333/  
AD5342/AD5343  
GND  
R2  
51.2k⍀  
V
OUT  
AD780/REF192  
WITH V = 5V  
B*  
REF  
DD  
GND  
*NOT AD5343  
Figure 39. Coarse and Fine Adjustment  
18–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
Table III. Overview of AD53xx Parallel Devices  
Part No.  
Resolution DNL  
VREF Pins  
Settling Time  
Additional Pin Functions  
Package  
Pins  
SINGLES  
AD5330  
AD5331  
AD5340  
AD5341  
BUF  
GAIN  
HBEN  
CLR  
8
0.25  
0.5  
1.0  
1.0  
1
1
1
1
6 µs  
7 µs  
8 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
20  
24  
20  
10  
12  
12  
DUALS  
AD5332  
AD5333  
AD5342  
AD5343  
8
0.25  
0.5  
1.0  
1.0  
2
2
2
1
6 µs  
7 µs  
8 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
20  
24  
28  
20  
10  
12  
12  
QUADS  
AD5334  
AD5335  
AD5336  
AD5344  
8
0.25  
0.5  
0.5  
1.0  
2
2
4
4
6 µs  
7 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
24  
24  
28  
28  
10  
10  
12  
Table IV. Overview of AD53xx Serial Devices  
Part No.  
Resolution  
No. of DACS  
DNL  
Interface  
Settling Time  
Package  
Pins  
SINGLES  
AD5300  
AD5310  
AD5320  
8
10  
12  
1
1
1
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
4 µs  
6 µs  
8 µs  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
6, 8  
6, 8  
6, 8  
AD5301  
AD5311  
AD5321  
8
10  
12  
1
1
1
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
SOT-23, MicroSOIC  
6, 8  
6, 8  
6, 8  
DUALS  
AD5302  
AD5312  
AD5322  
8
10  
12  
2
2
2
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
8
8
8
AD5303  
AD5313  
AD5323  
8
10  
12  
2
2
2
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
QUADS  
AD5304  
AD5314  
AD5324  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
10  
10  
10  
AD5305  
AD5315  
AD5325  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
MicroSOIC  
MicroSOIC  
MicroSOIC  
10  
10  
10  
AD5306  
AD5316  
AD5326  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
2-Wire  
2-Wire  
2-Wire  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
AD5307  
AD5317  
AD5327  
8
10  
12  
4
4
4
0.25  
0.5  
1.0  
SPI  
SPI  
SPI  
6 µs  
7 µs  
8 µs  
TSSOP  
TSSOP  
TSSOP  
16  
16  
16  
Visit our web-page at http://www.analog.com/support/standard_linear/selection_guides/AD53xx.html  
19–  
REV. 0  
AD5332/AD5333/AD5342/AD5343  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
20-Lead Thin Shrink Small Outline Package TSSOP  
(RU-20)  
0.260 (6.60)  
0.252 (6.40)  
20  
11  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
10  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65)  
BSC  
0.0118 (0.30)  
0.0075 (0.19)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
24-Lead Thin Shrink Small Outline Package TSSOP  
(RU-24)  
0.311 (7.90)  
0.303 (7.70)  
24  
13  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
12  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
BSC  
0.0075 (0.19)  
28-Lead Thin Shrink Small Outline Package TSSOP  
(RU-28)  
0.386 (9.80)  
0.378 (9.60)  
28  
15  
0.177 (4.50)  
0.169 (4.30)  
0.256 (6.50)  
0.246 (6.25)  
1
14  
PIN 1  
0.006 (0.15)  
0.002 (0.05)  
0.0433 (1.10)  
MAX  
8؇  
0؇  
0.0256 (0.65) 0.0118 (0.30)  
0.028 (0.70)  
0.020 (0.50)  
SEATING  
PLANE  
0.0079 (0.20)  
0.0035 (0.090)  
BSC  
0.0075 (0.19)  
20–  
REV. 0  

相关型号:

AD5342BRUZ-REEL7

+2.5V to 5.5V, 230 &#181;A Dual Rail-to-Rail Voltage Output 12-Bit DAC with Parallel Interface in 28-lead TSSOP
ADI

AD5342_15

2.5 V to 5.5 V, 230A, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5343

2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5343*

2.5 V to 5.5 V. 230 uA. Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5343BRU

2.5 V to 5.5 V, 230uA, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5343BRU-REEL

DUAL, PARALLEL, WORD INPUT LOADING, 8us SETTLING TIME, 12-BIT DAC, PDSO20, TSSOP-20
ADI

AD5343BRU-REEL7

IC DUAL, PARALLEL, WORD INPUT LOADING, 8 us SETTLING TIME, 12-BIT DAC, PDSO20, TSSOP-20, Digital to Analog Converter
ADI

AD5343BRUZ-REEL

+2.5V to 5.5V, 230&#181;A Dual Rail-to-Rail Voltage Output 12-Bit DAC with Byte-Load Parallel Interface in 20-lead TSSOP
ADI

AD5343_15

2.5 V to 5.5 V, 230A, Parallel Interface Dual Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5344

2.5 V to 5.5 V, 115 uA, Parallel Interface Single Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5344*

2.5 V to 5.5 V. 500 uA. Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs
ADI

AD5344BRU

2.5 V to 5.5 V, 500 uA, Parallel Interface Quad Voltage-Output 8-/10-/12-Bit DACs
ADI