AD5248BRMZ2.5-RL7 [ADI]

Dual, 256-Position, I2C-Compatible Digital Potentiometers; 双通道, 256位, I2C兼容数字电位器
AD5248BRMZ2.5-RL7
型号: AD5248BRMZ2.5-RL7
厂家: ADI    ADI
描述:

Dual, 256-Position, I2C-Compatible Digital Potentiometers
双通道, 256位, I2C兼容数字电位器

转换器 电位器 数字电位计 电阻器 光电二极管
文件: 总20页 (文件大小:803K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual, 256-Position, I2C-Compatible  
Digital Potentiometers  
Data Sheet  
AD5243/AD5248  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
A1  
W1  
B1  
A2  
W2  
B2  
2-channel, 256-position potentiometers  
End-to-end resistance: 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ  
Compact 10-lead MSOP (3 mm × 4.9 mm) package  
Fast settling time: tS = 5 µs typical on power-up  
Full read/write of wiper register  
V
DD  
Power-on preset to midscale  
WIPER  
WIPER  
REGISTER 1  
REGISTER 2  
Extra package address decode pins: AD0 and AD1 (AD5248 only)  
Computer software replaces microcontroller in factory  
programming applications  
GND  
AD5243  
Single supply: 2.7 V to 5.5 V  
Low temperature coefficient: 35 ppm/°C  
Low power: IDD = 6 µA maximum  
SDA  
SCL  
PC INTERFACE  
Wide operating temperature: −40°C to +125°C  
Evaluation board available  
Figure 1. AD5243  
W1  
B1  
W2  
B2  
APPLICATIONS  
Systems calibrations  
Electronics level settings  
V
Mechanical trimmers replacement in new designs  
Permanent factory PCB setting  
Transducer adjustment of pressure, temperature, position,  
chemical, and optical sensors  
DD  
RDAC  
REGISTER 1  
RDAC  
REGISTER 2  
GND  
RF amplifier biasing  
Automotive electronics adjustment  
Gain control and offset adjustment  
AD0  
AD1  
ADDRESS  
DECODE  
AD5248  
8
SDA  
SCL  
SERIAL INPUT  
REGISTER  
Figure 2. AD5248  
GENERAL DESCRIPTION  
The AD5243 and AD5248 provide a compact 3 mm × 4.9 mm  
packaged solution for dual, 256-position adjustment applications.  
The AD5243 performs the same electronic adjustment function as  
a 3-terminal mechanical potentiometer, and the AD5248 performs  
the same adjustment function as a 2-terminal variable resistor.  
Available in four end-to-end resistance values (2.5 kΩ, 10 kΩ,  
50 kΩ, and 100 kΩ), these low temperature coefficient devices  
are ideal for high accuracy and stability-variable resistance  
adjustments. The wiper settings are controllable through the  
I2C-compatible digital interface. The AD5248 has extra package  
address decode pins, AD0 and AD1, allowing multiple parts to  
share the same I2C, 2-wire bus on a PCB. The resistance between  
the wiper and either endpoint of the fixed resistor varies linearly  
with respect to the digital code transferred into the RDAC latch.1  
Operating from a 2.7 V to 5.5 V power supply and consuming  
less than 6 µA allows the AD5243/AD5248 to be used in portable  
battery-operated applications.  
For applications that program the AD5243/AD5258 at the factory,  
Analog Devices, Inc., offers device programming software running  
on Windows® NT/2000/XP operating systems. This software  
effectively replaces the need for external I2C controllers, which  
in turn enhances the time to market of systems. An AD5243/  
AD5248 evaluation kit and software are available. The kit includes  
a cable and instruction manual.  
1 The terms digital potentiometer, VR, and RDAC are used interchangeably.  
Rev. B  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2004–2012 Analog Devices, Inc. All rights reserved.  
 
 
 
 
AD5243/AD5248  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Test Circuits..................................................................................... 12  
Theory of Operation ...................................................................... 13  
Programming the Variable Resistor and Voltage................... 13  
Programming the Potentiometer Divider............................... 14  
ESD Protection ........................................................................... 14  
Terminal Voltage Operating Range ......................................... 14  
Power-Up Sequence ................................................................... 14  
Layout and Power Supply Bypassing ....................................... 14  
Constant Bias to Retain Resistance Setting............................. 15  
I2C Interface .................................................................................... 16  
I2C Compatible, 2-Wire Serial Bus .......................................... 16  
I2C Controller Programming.................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics: 2.5 kΩ Version................................. 3  
Electrical Characteristics: 10 kΩ, 50 kΩ, and 100 kΩ  
Versions.......................................................................................... 4  
Timing Characteristics: All Versions......................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configurations and Function Descriptions ........................... 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
4/12—Rev. A to Rev. B  
4/09—Rev. 0 to Rev. A  
Changes to Rheostat Operation Section, Table 7, and  
Changes to DC Characteristics—Rheostat Mode Parameter and  
to DC Characteristics—Potentiometer Divider Mode Parameter,  
Table 1 .................................................................................................3  
Moved Figure 3 ..................................................................................5  
Updated Outline Dimensions........................................................19  
Changes to Ordering Guide...........................................................19  
Table 8 ...............................................................................................13  
Changes to Voltage Output Operation Section ...........................14  
Deleted Evaluation Board Section and Figure 45, Renumbered  
Sequentially ......................................................................................15  
Changes to Table 13.........................................................................17  
Updated Outline Dimensions........................................................19  
Changes to Ordering Guide ...........................................................19  
1/04—Revision 0: Initial Version  
Rev. B | Page 2 of 20  
 
Data Sheet  
AD5243/AD5248  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS: 2.5 kΩ VERSION  
VDD = 5 V 10%, or 3 V 10%; VA = VDD; VB = 0 V; −40°C < TA < +125°C; unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Conditions  
Min  
Typ 1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
−2  
−14  
−20  
0.1  
2
+2  
+14  
+55  
LSB  
LSB  
%
ppm/°C  
(∆RAB/RAB )/∆T VAB = VDD, wiper = no connect  
RWB  
35  
160  
Code = 0x00, VDD = 5 V  
200  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE4  
Differential Nonlinearity5  
Integral Nonlinearity5  
DNL  
INL  
−1.5  
−2  
0.1  
0.6  
+1.5  
+2  
LSB  
LSB  
Voltage Divider Temperature Coefficient (∆VW/VW)/∆T  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
15  
−5.5  
4.5  
ppm/°C  
LSB  
LSB  
Full-Scale Error  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range6  
VWFSE  
VWZSE  
−14  
0
0
12  
VA, VB, VW  
CA, CB  
GND  
VDD  
V
pF  
Capacitance A, B7  
f = 1 MHz, measured to GND,  
code = 0x80  
f = 1 MHz, measured to GND,  
code = 0x80  
45  
60  
Capacitance W7  
CW  
pF  
Shutdown Supply Current8  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance7  
IA_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
0.6  
1
VIN = 0 V or 5 V  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
VDD RANGE  
IDD  
PDISS  
2.7  
5.5  
6
30  
V
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
VDD = 5 V 10%, code = midscale  
3.5  
µA  
µW  
%/%  
Power Dissipation9  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS10  
Bandwidth, −3 dB  
Total Harmonic Distortion  
VW Settling Time  
PSS  
0.02  
0.08  
BW  
THDW  
tS  
Code = 0x80  
4.8  
0.1  
1
MHz  
%
µs  
VA = 1 V rms, VB = 0 V, f = 1 kHz  
VA = 5 V, VB = 0 V, 1 LSB error band  
RWB = 1.25 kΩ, RS = 0  
Resistor Noise Voltage Density  
eN_WB  
3.2  
nV/√Hz  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity error, R-INL, is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from the ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VA = VDD, VB = 0 V, wiper (VW) = no connect.  
4 Specifications apply to all VRs.  
5 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output digital-to-analog converter (DAC). VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
7 Guaranteed by design, but not subject to production test.  
8 Measured at the A terminal. The A terminal is open circuited in shutdown mode.  
9 PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
10 All dynamic characteristics use VDD = 5 V.  
Rev. B | Page 3 of 20  
 
 
 
AD5243/AD5248  
Data Sheet  
ELECTRICAL CHARACTERISTICS: 10 kΩ, 50 kΩ, AND 100 kΩ VERSIONS  
VDD = 5 V 10%, or 3 V 10%; VA = VDD; VB = 0 V; −40°C < TA < 125°C; unless otherwise noted.  
Table 2.  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Unit  
DC CHARACTERISTICS—RHEOSTAT MODE  
Resistor Differential Nonlinearity2  
Resistor Integral Nonlinearity2  
Nominal Resistor Tolerance3  
Resistance Temperature Coefficient  
Wiper Resistance  
R-DNL  
R-INL  
∆RAB  
(∆RAB/RAB )/∆T  
RWB  
RWB, VA = no connect  
RWB, VA = no connect  
TA = 25°C  
VAB = VDD, wiper = no connect  
Code = 0x00, VDD = 5 V  
−1  
−2.5  
−20  
0.1  
0.25  
+1  
+2.5  
+20  
LSB  
LSB  
%
ppm/°C  
35  
160  
200  
DC CHARACTERISTICS—POTENTIOMETER  
DIVIDER MODE4  
Differential Nonlinearity5  
Integral Nonlinearity5  
Voltage Divider Temperature Coefficient  
Full-Scale Error  
DNL  
INL  
(∆VW/VW)/∆T  
VWFSE  
VWZSE  
−1  
−1  
0.1  
0.3  
15  
−1  
1
+1  
+1  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Code = 0x80  
Code = 0xFF  
Code = 0x00  
−2.5  
0
0
2.5  
Zero-Scale Error  
RESISTOR TERMINALS  
Voltage Range6  
VA, VB, VW  
CA, CB  
GND  
VDD  
V
pF  
Capacitance A, B7  
f = 1 MHz, measured to GND,  
code = 0x80  
f = 1 MHz, measured to GND,  
code = 0x80  
45  
60  
Capacitance W7  
CW  
pF  
Shutdown Supply Current8  
Common-Mode Leakage  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
Input Logic High  
Input Logic Low  
Input Current  
Input Capacitance  
IA_SD  
ICM  
VDD = 5.5 V  
VA = VB = VDD/2  
0.01  
1
1
µA  
nA  
VIH  
VIL  
VIH  
VIL  
IIL  
VDD = 5 V  
VDD = 5 V  
VDD = 3 V  
VDD = 3 V  
2.4  
2.1  
V
V
V
V
µA  
pF  
0.8  
0.6  
1
VIN = 0 V or 5 V  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
Power Dissipation  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS  
Bandwidth, −3 dB  
VDD RANGE  
IDD  
PDISS  
2.7  
5.5  
6
30  
V
µA  
µW  
VIH = 5 V or VIL = 0 V  
VIH = 5 V or VIL = 0 V, VDD = 5 V  
VDD = 5 V 10%, code = midscale  
3.5  
PSS  
0.02  
0.08 %/%  
BW  
THDW  
RAB = 10 kΩ/50 kΩ/100 kΩ, code = 0x80  
VA = 1 V rms, VB = 0 V, f = 1 kHz,  
RAB = 10 kΩ  
600/100/40  
0.1  
kHz  
%
Total Harmonic Distortion  
VW Settling Time  
Resistor Noise Voltage Density  
tS  
eN_WB  
VA = 5 V, VB = 0 V, 1 LSB error band  
RWB = 5 kΩ, RS = 0  
2
9
µs  
nV/√Hz  
1 Typical specifications represent average readings at 25°C and VDD = 5 V.  
2 Resistor position nonlinearity error, R-INL, is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from the ideal between successive tap positions. Parts are guaranteed monotonic.  
3 VA = VDD, VB = 0 V, wiper (VW) = no connect.  
4 Specifications apply to all VRs.  
5 INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output DAC. VA = VDD and VB = 0 V.  
DNL specification limits of 1 LSB maximum are guaranteed monotonic operating conditions.  
6 Resistor Terminal A, Resistor Terminal B, and Resistor Terminal W have no limitations on polarity with respect to each other.  
7 Guaranteed by design, but not subject to production test.  
8 Measured at the A terminal. The A terminal is open circuited in shutdown mode.  
Rev. B | Page 4 of 20  
 
 
 
Data Sheet  
AD5243/AD5248  
TIMING CHARACTERISTICS: ALL VERSIONS  
VDD = 5 V ꢀ1%, or 3 V ꢀ1%ꢁ VA = VDDꢁ VB = 1 Vꢁ −41°C < TA < +ꢀ25°Cꢁ unless otherwise noted.  
Table 3.  
Parameter  
I2C INTERFACE TIMING CHARACTERISTICS1  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
SCL Clock Frequency  
Bus-Free Time Between Stop and Start, tBUF  
Hold Time (Repeated Start), tHD;STA  
fSCL  
t1  
t2  
0
1.3  
0.6  
400  
kHz  
μs  
μs  
After this period, the first clock pulse is  
generated.  
Low Period of SCL Clock, tLOW  
High Period of SCL Clock, tHIGH  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
1.3  
0.6  
0.6  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
Setup Time for Repeated Start Condition, tSU;STA  
2
Data Hold Time, tHD;DAT  
0.9  
Data Setup Time, tSU;DAT  
100  
0.6  
Fall Time of Both SDA and SCL Signals, tF  
Rise Time of Both SDA and SCL Signals, tR  
Setup Time for Stop Condition, tSU;STO  
300  
300  
1 See the timing diagrams for the locations of measured values (that is, see Figure 3 and Figure 45 to Figure 48).  
2 The maximum tHD:DAT must be met only if the device does not stretch the low period (tLOW) of the SCL signal.  
t2  
t8  
t6  
t9  
SCL  
SDA  
t10  
t4  
t7  
t5  
t2  
t3  
t9  
t8  
t1  
P
S
S
P
Figure 3. I2C Interface Detailed Timing Diagram  
Rev. B | Page 5 of 20  
 
 
AD5243/AD5248  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
VDD to GND  
VA, VB, VW to GND  
Terminal Current, Ax to Bx, Ax to Wx, Bx to Wx1  
Pulsed  
Continuous  
Digital Inputs and Output Voltage to GND  
Operating Temperature Range  
Maximum Junction Temperature (TJMAX  
−0.3 V to +7 V  
VDD  
20 mA  
5 mA  
0 V to 7 V  
−40°C to +125°C  
150°C  
−65°C to +150°C  
300°C  
)
ESD CAUTION  
Storage Temperature  
Lead Temperature (Soldering, 10 sec)  
Thermal Resistance, θJA for 10-Lead MSOP2  
230°C/W  
1The maximum terminal current is bound by the maximum current handling  
of the switches, the maximum power dissipation of the package, and the  
maximum applied voltage across any two of the A, B, and W terminals at a  
given resistance.  
2The package power dissipation is (TJMAX − TA)/θJA  
.
Rev. B | Page 6 of 20  
 
 
 
Data Sheet  
AD5243/AD5248  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
1
2
3
4
5
10  
9
10  
9
W1  
B2  
W1  
B1  
A1  
B1  
AD0  
W2  
B2  
8
8
W2  
AD5243  
TOP VIEW  
A2  
AD5248  
TOP VIEW  
AD1  
SDA  
SCL  
7
7
GND  
SDA  
SCL  
GND  
6
6
V
V
DD  
DD  
Figure 4. AD5243 Pin Configuration  
Figure 5. AD5248 Pin Configuration  
Table 5. AD5243 Pin Function Descriptions  
Table 6. AD5248 Pin Function Descriptions  
Pin  
No.  
Pin  
No.  
Mnemonic Description  
Mnemonic Description  
1
B1  
B1 Terminal.  
1
B1  
B1 Terminal.  
2
3
4
5
A1  
A1 Terminal.  
W2 Terminal.  
Digital Ground.  
Positive Power Supply.  
Serial Clock Input. Positive-edge  
triggered.  
Serial Data Input/Output.  
A2 Terminal.  
B2 Terminal.  
2
AD0  
Programmable Address Bit 0 for Multiple  
Package Decoding.  
W2 Terminal.  
Digital Ground.  
Positive Power Supply.  
Serial Clock Input. Positive-edge  
triggered.  
Serial Data Input/Output.  
Programmable Address Bit 1 for Multiple  
Package Decoding.  
B2 Terminal.  
W1 Terminal.  
W2  
GND  
VDD  
SCL  
3
4
5
6
W2  
GND  
VDD  
6
SCL  
7
8
9
10  
SDA  
A2  
B2  
7
8
SDA  
AD1  
W1  
W1 Terminal.  
9
10  
B2  
W1  
Rev. B | Page 7 of 20  
 
AD5243/AD5248  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.0  
0.5  
0.4  
T
= 25°C  
R
= 10k  
A
AB  
R
= 10kΩ  
AB  
1.5  
1.0  
0.3  
V
= 2.7V  
DD  
0.2  
0.5  
0.1  
V
= 2.7V; T = –40°C, +25°C, +85°C, +125°C  
A
DD  
0
0
V
= 5.5V  
DD  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.5  
–1.0  
–1.5  
–2.0  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 9. DNL vs. Code vs. Temperature  
Figure 6. R-INL vs. Code vs. Supply Voltages  
0.5  
0.4  
1.0  
0.8  
T
R
= 25°C  
T
R
= 25°C  
A
A
= 10kΩ  
= 10kΩ  
AB  
AB  
0.3  
0.6  
0.2  
0.4  
V
= 2.7V  
DD  
V = 5.5V  
DD  
0.1  
0.2  
0
0
V
= 2.7V  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
DD  
V
= 5.5V  
DD  
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 7. R-DNL vs. Code vs. Supply Voltages  
Figure 10. INL vs. Code vs. Supply Voltages  
0.5  
0.4  
0.5  
0.4  
= 10kΩ  
T
R
= 25°C  
R
A
AB  
= 10kΩ  
AB  
0.3  
0.3  
V
= 5.5V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
0.2  
0.2  
0.1  
0.1  
V
= 2.7V  
DD  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
V
= 5.5V  
DD  
V
= 2.7V  
DD  
T
= –40°C, +25°C, +85°C, +125°C  
A
0
32  
64  
96  
128  
160  
192  
224  
256  
0
32  
64  
96  
128  
160  
192  
224  
256  
CODE (DECIMAL)  
CODE (DECIMAL)  
Figure 8. INL vs. Code vs. Temperature  
Figure 11. DNL vs. Code vs. Supply Voltages  
Rev. B | Page 8 of 20  
 
 
Data Sheet  
AD5243/AD5248  
2.0  
4.50  
3.75  
3.00  
2.25  
1.50  
0.75  
0
R
= 10kΩ  
R
= 10kΩ  
AB  
AB  
1.5  
1.0  
V
= 2.7V  
DD  
= –40°C, +25°C, +85°C, +125°C  
T
A
0.5  
0
V
= 2.7V, V = 2.7V  
A
DD  
V
= 5.5V  
DD  
= –40°C, +25°C, +85°C, +125°C  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
V
= 5.5V, V = 5.0V  
A
DD  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CODE (DECIMAL)  
TEMPERATURE (°C)  
Figure 12. R-INL vs. Code vs. Temperature  
Figure 15. Zero-Scale Error vs. Temperature  
10  
0.5  
0.4  
R
= 10kΩ  
AB  
0.3  
V
V
= 5V  
DD  
0.2  
V
= 2.7V, 5.5V; T = –40°C, +25°C, +85°C, +125°C  
A
DD  
0.1  
1
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
= 3V  
DD  
0.1  
–40  
0
32  
64  
96  
128  
160  
192  
224  
256  
–7  
26  
59  
92  
125  
TEMPERATURE (°C)  
CODE (DECIMAL)  
Figure 13. R-DNL vs. Code vs. Temperature  
Figure 16. Supply Current vs. Temperature  
120  
100  
80  
2.0  
1.5  
R
= 10kΩ  
R
= 10kΩ  
AB  
AB  
1.0  
0.5  
60  
V
= 2.7V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
T
A
0
V
= 5.5V, V = 5.0V  
A
DD  
40  
V
= 5.5V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
–0.5  
–1.0  
–1.5  
–2.0  
T
A
20  
V
= 2.7V, V = 2.7V  
A
DD  
0
–20  
0
32  
64  
96  
128  
160  
192  
224  
256  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95 110 125  
CODE (DECIMAL)  
TEMPERATURE (°C)  
Figure 17. Rheostat Mode Tempco ΔRWB/ΔT vs. Code  
Figure 14. Full-Scale Error vs. Temperature  
Rev. B | Page 9 of 20  
AD5243/AD5248  
Data Sheet  
50  
40  
30  
0
–6  
R
= 10kΩ  
AB  
0x80  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
V
T
= 2.7V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
20  
10  
A
0x08  
0x04  
0x02  
0x01  
0
–10  
–20  
–30  
V
= 5.5V  
DD  
= –40°C TO +85°C, –40°C TO +125°C  
T
A
0
32  
64  
96  
128  
160  
192  
224  
256  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
CODE (DECIMAL)  
Figure 18. Potentiometer Mode Tempco ΔVWB/ΔT vs. Code  
Figure 21. Gain vs. Frequency vs. Code, RAB = 50 kΩ  
0
–6  
0
–6  
0x80  
0x80  
0x40  
0x20  
0x40  
0x20  
0x10  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
0x10  
0x08  
0x04  
0x02  
0x01  
0x08  
0x04  
0x02 0x01  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
Figure 19. Gain vs. Frequency vs. Code, RAB = 2.5 kΩ  
Figure 22. Gain vs. Frequency vs. Code, RAB = 100 kΩ  
0
–6  
0
–6  
0x80  
0x40  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
–12  
–18  
–24  
–30  
–36  
–42  
–48  
–54  
–60  
100kΩ  
60kHz  
50kΩ  
0x20  
0x10  
0x08  
0x04  
120kHz  
10kΩ  
570kHz  
2.5kΩ  
2.2MHz  
0x02  
0x01  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 20. Gain vs. Frequency vs. Code, RAB = 10 kΩ  
Figure 23. –3 dB Bandwidth at Code = 0x80  
Rev. B | Page 10 of 20  
Data Sheet  
AD5243/AD5248  
10  
T
= 25°C  
A
1
V
= 5.5V  
DD  
V
V
W2  
0.1  
V
= 2.7V  
DD  
W1  
0.01  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DIGITAL INPUT VOLTAGE (V)  
Figure 24. Supply Current vs. Digital Input Voltage  
Figure 27. Analog Crosstalk  
V
V
W
W
SCL  
Figure 25. Digital Feedthrough  
Figure 28. Midscale Glitch, Code 0x80 to Code 0x7F  
V
W
V
V
W2  
SCL  
W1  
Figure 26. Digital Crosstalk  
Figure 29. Large-Signal Settling Time  
Rev. B | Page 11 of 20  
AD5243/AD5248  
TEST CIRCUITS  
Data Sheet  
Figure 30 through Figure 36 illustrate the test circuits that define the test conditions used in the product specification tables (see Table 1  
and Table 2).  
DUT  
+15V  
A
V+ = V  
DD  
1LSB = V+/2  
DUT  
W
W
N
V
IN  
A
B
AD8610  
–15V  
V
B
OUT  
V+  
OFFSET  
GND  
V
MS  
2.5V  
Figure 30. Test Circuit for Potentiometer Divider Nonlinearity Error  
(INL, DNL)  
Figure 34. Test Circuit for Gain vs. Frequency  
0.1V  
R
=
SW  
NO CONNECT  
DUT  
I
SW  
CODE = 0x00  
DUT  
W
I
W
A
W
I
SW  
0.1V  
B
B
V
MS  
V
TO V  
DD  
SS  
Figure 31. Test Circuit for Resistor Position Nonlinearity Error  
(Rheostat Operation: R-INL, R-DNL)  
Figure 35. Test Circuit for Incremental On Resistance  
NC  
DUT  
DUT  
I
= V /R  
DD NOMINAL  
W
A
B
I
CM  
A
B
V
DD  
V
W
W
W
V
MS2  
GND  
V
R
= [V  
MS1  
– V ]/I  
MS2 W  
CM  
W
V
MS1  
NC NC = NO CONNECT  
Figure 32. Test Circuit for Wiper Resistance  
Figure 36. Test Circuit for Common-Mode Leakage Current  
V
A
V+ = V ± 10%  
DD  
V  
V  
MS  
DUT  
W
PSRR (dB) = 20 LOG  
(
)
DD  
V  
V  
%
%
A
B
MS  
DD  
V  
DD  
PSS (%/%) =  
V+  
V
MS  
Figure 33. Test Circuit for Power Supply Sensitivity (PSS, PSSR)  
Rev. B | Page 12 of 20  
 
 
Data Sheet  
AD5243/AD5248  
THEORY OF OPERATION  
The general equation determining the digitally programmed  
output resistance between W and B is  
The AD5243/AD5248 are 256-position, digitally controlled  
variable resistor (VR) devices.  
D
256  
An internal power-on preset places the wiper at midscale  
during power-on, which simplifies the fault condition recovery  
at power-up.  
R
WB(D)   
RAB 2RW  
(1)  
where:  
D is the decimal equivalent of the binary code loaded in the  
8-bit RDAC register.  
PROGRAMMING THE VARIABLE RESISTOR AND  
VOLTAGE  
Rheostat Operation  
R
AB is the end-to-end resistance.  
RW is the wiper resistance contributed by the on resistance of  
The nominal resistance of the RDAC between Terminal A and  
Terminal B is available in 2.5 kΩ, 10 kΩ, 50 kΩ, and 100 kΩ.  
The nominal resistance (RAB) of the VR has 256 contact points  
accessed by the wiper terminal and the B terminal contact. The  
8-bit data in the RDAC latch is decoded to select one of the 256  
possible settings.  
the internal switch.  
In summary, if RAB is 10 kΩ and the A terminal is open circuited,  
the following output resistance, RWB, is set for the indicated  
RDAC latch codes.  
Table 7. Codes and Corresponding RWB Resistance  
D (Dec)  
RWB (Ω)  
10,281  
5380  
359  
Output State  
A
A
A
255  
128  
1
Full scale (RAB − 1 LSB + 2 × RW)  
Midscale  
1 LSB + 2 × RW  
W
W
W
B
B
B
0
320  
Zero scale (wiper contact resistance)  
Figure 37. Rheostat Mode Configuration  
Assuming that a 10 kΩ part is used, the first connection of the  
wiper starts at the B terminal for Data 0x00. Because there is  
a 160 Ω wiper contact resistance, such a connection yields a  
minimum of 320 Ω (2 × 160 Ω) resistance between Terminal W  
and Terminal B. The second connection is the first tap point,  
which corresponds to 359 Ω (RWB = RAB/256 + 2 × RW = 39 Ω +  
2 × 160 Ω) for Data 0x01. The third connection is the next tap  
point, representing 398 Ω (2 × 39 Ω + 2 × 160 Ω) for Data 0x02,  
and so on. Each LSB data value increase moves the wiper up the  
resistor ladder until the last tap point is reached at 10,281 Ω  
(RAB + 2 × RW).  
Note that in the zero-scale condition, a finite wiper resistance of  
320 Ω is present. Care should be taken to limit the current flow  
between W and B in this state to a maximum pulse current of no  
more than 20 mA. Otherwise, degradation or possible destruction  
of the internal switch contact may occur.  
Similar to the mechanical potentiometer, the resistance of the  
RDAC between Wiper W and Terminal A also produces a  
digitally controlled complementary resistance, RWA. When these  
terminals are used, the B terminal can be opened. Setting the  
resistance value for RWA starts at a maximum value of resistance  
and decreases as the data loaded in the latch increases in value.  
The general equation for this operation is  
A
R
S
256 D  
256  
RWA(D)   
RAB 2RW  
(2)  
R
R
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S
When RAB is 10 kΩ and the B terminal is open circuited, the  
output resistance, RWA, is set according to the RDAC latch  
codes, as listed in Table 8.  
S
W
Table 8. Codes and Corresponding RWA Resistance  
D (Dec)  
RWA (Ω)  
Output State  
255  
128  
1
359  
5320  
10,280  
10,320  
Full scale  
Midscale  
1 LSB + 2 × RW  
Zero scale  
R
RDAC  
S
LATCH  
AND  
DECODER  
0
B
Typical device-to-device matching is process-lot dependent and  
may vary by up to 30ꢀ. Because the resistance element is pro-  
cessed in thin-film technology, the change in RAB with temperature  
has a very low temperature coefficient of 35 ppm/°C.  
Figure 38. AD5243 Equivalent RDAC Circuit  
Rev. B | Page 13 of 20  
 
 
 
AD5243/AD5248  
Data Sheet  
PROGRAMMING THE POTENTIOMETER DIVIDER  
TERMINAL VOLTAGE OPERATING RANGE  
Voltage Output Operation  
The AD5243/AD5248 VDD and GND power supply defines the  
boundary conditions for proper 3-terminal digital potentiometer  
operation. Supply signals present on the A, B, and W terminals  
that exceed VDD or GND are clamped by the internal forward-  
biased diodes (see Figure 42).  
The digital potentiometer easily generates a voltage divider at  
wiper to B and wiper to A, proportional to the input voltage at  
A to B. Unlike the polarity of VDD to GND, which must be  
positive, voltage across A to B, W to A, and W to B can be at  
either polarity.  
V
DD  
V
I
A
A
W
B
W
V
O
B
GND  
Figure 39. Potentiometer Mode Configuration  
Figure 42. Maximum Terminal Voltages Set by VDD and GND  
If ignoring the effect of the wiper resistance for approximation,  
connecting the A terminal to 5 V and the B terminal to ground  
produces an output voltage at the wiper to B, starting at 0 V up  
to 1 LSB less than 5 V. Each LSB of voltage is equal to the voltage  
applied across Terminal A and Terminal B divided by the  
256 positions of the potentiometer divider. The general equation  
defining the output voltage at VW with respect to ground for any  
valid input voltage applied to Terminal A and Terminal B is  
POWER-UP SEQUENCE  
Because the ESD protection diodes limit the voltage compliance  
at the A, B, and W terminals (see Figure 42), it is important to  
power VDD/GND before applying voltage to the A, B, and W  
terminals; otherwise, the diode is forward-biased such that VDD  
is powered unintentionally and may affect the rest of the users  
circuit. The ideal power-up sequence is in the following order:  
GND, VDD, digital inputs, and then VA, VB, and VW. The relative  
order of powering VA, VB, VW, and the digital inputs is not  
important, as long as they are powered after VDD/GND.  
D
256 D  
VW (D) =  
VA +  
VB  
(3)  
256  
256  
Operation of the digital potentiometer in the divider mode  
results in more accurate operation over temperature. Unlike in  
the rheostat mode, the output voltage is dependent mainly on  
the ratio of the internal resistors, RWA and RWB, not on the  
absolute values. Therefore, the temperature drift reduces to  
15 ppm/°C.  
LAYOUT AND POWER SUPPLY BYPASSING  
It is a good practice to employ compact, minimum lead length  
layout design. The leads to the inputs should be as direct as  
possible with a minimum conductor length. Ground paths  
should have low resistance and low inductance.  
Similarly, it is also good practice to bypass the power supplies with  
quality capacitors for optimum stability. Supply leads to the device  
should be bypassed with disc or chip ceramic capacitors of 0.01 µF  
to 0.1 µF. Low ESR 1 µF to 10 µF tantalum or electrolytic capacitors  
should also be applied at the supplies to minimize any transient  
disturbance and low frequency ripple (see Figure 43). In addition,  
note that the digital ground should be joined remotely to the  
analog ground at one point to minimize the ground bounce.  
ESD PROTECTION  
All digital inputs are protected with a series of input resistors  
and parallel Zener ESD structures, as shown in Figure 40 and  
Figure 41. This applies to the SDA, SCL, AD0, and AD1 digital  
input pins (AD5248 only).  
340  
LOGIC  
GND  
Figure 40. ESD Protection of Digital Pins  
V
V
DD  
DD  
+
C3  
10µF  
C1  
0.1µF  
A, B, W  
AD5243  
GND  
GND  
Figure 41. ESD Protection of Resistor Terminals  
Figure 43. Power Supply Bypassing  
Rev. B | Page 14 of 20  
 
 
 
 
 
 
 
 
 
Data Sheet  
AD5243/AD5248  
This demonstrates that constantly biasing the potentiometer  
can be a practical approach. Most portable devices do not  
require the removal of batteries for the purpose of charging.  
Although the resistance setting of the AD5243/AD5248 is lost  
when the battery needs replacement, such events occur rather  
infrequently such that this inconvenience is justified by the  
lower cost and smaller size offered by the AD5243/AD5248. If  
total power is lost, the user should be provided with a means to  
adjust the setting accordingly.  
CONSTANT BIAS TO RETAIN RESISTANCE SETTING  
For users who desire nonvolatility but cannot justify the addi-  
tional cost of an EEMEM, the AD5243/AD5248 can be considered  
low cost alternatives by maintaining a constant bias to retain the  
wiper setting. The AD5243/AD5248 are designed specifically for  
low power applications, allowing low power consumption even  
in battery-operated systems. The graph in Figure 44 demonstrates  
the power consumption from a 3.4 V, 450 mAhr Li-Ion cell phone  
battery connected to the AD5243/AD5248. The measurement  
over time shows that the device draws approximately 1.3 µA  
and consumes negligible power. Over a course of 30 days, the  
battery is depleted by less than 2%, the majority of which is due  
to the intrinsic leakage current of the battery itself.  
110  
108  
T
= 25°C  
A
106  
104  
102  
100  
98  
96  
94  
92  
90  
0
5
10  
15  
20  
25  
30  
DAYS  
Figure 44. Battery Operating Life Depletion  
Rev. B | Page 15 of 20  
 
 
AD5243/AD5248  
Data Sheet  
I2C INTERFACE  
I2C COMPATIBLE, 2-WIRE SERIAL BUS  
The 2-wire, I2C-compatible serial bus protocol operates as follows:  
SDA line must occur during the low period of SCL and  
remain stable during the high period of SCL (see Figure 45  
and Figure 46).  
1. The master initiates data transfer by establishing a start  
condition, which is when a high-to-low transition on the  
SDA line occurs while SCL is high (see Figure 45). The  
following byte is the slave address byte, which consists of  
3. In the read mode, the data byte follows immediately after the  
acknowledgment of the slave address byte. Data is transmitted  
over the serial bus in sequences of nine clock pulses (a slight  
difference with the write mode, where there are eight data bits  
followed by an acknowledge bit). Similarly, the transitions  
on the SDA line must occur during the low period of SCL and  
remain stable during the high period of SCL (see Figure 47  
and Figure 48).  
the slave address followed by an R/ bit (this bit deter-  
W
mines whether data is read from or written to the slave  
device). The AD5243 has a fixed slave address byte,  
whereas the AD5248 has two configurable address bits,  
AD0 and AD1 (see Figure 10).  
Note that the channel of interest is the one that is previously  
selected in write mode. If users need to read the RDAC  
values of both channels, they need to program the first  
channel in write mode and then change to read mode to  
read the first channel value. After that, the user must return  
the device to write mode with the second channel selected  
and read the second channel value in read mode. It is not  
necessary for users to issue the Frame 3 data byte in write  
mode for subsequent readback operation. Users should refer  
to Figure 47 and Figure 48 for the programming format.  
The slave whose address corresponds to the transmitted  
address responds by pulling the SDA line low during the  
ninth clock pulse (this is called the acknowledge bit). At  
this stage, all other devices on the bus remain idle while the  
selected device waits for data to be written to or read from  
its serial register. If the R/ bit is high, the master reads  
W
from the slave device. On the other hand, if the R/ bit is  
W
low, the master writes to the slave device.  
2. In the write mode, the second byte is the instruction byte.  
The first bit (MSB) of the instruction byte is the RDAC  
subaddress select bit. A logic low selects Channel 1 and a  
logic high selects Channel 2.  
4. After all data bits have been read or written, a stop condition  
is established by the master. A stop condition is defined as  
a low-to-high transition on the SDA line while SCL is high.  
In write mode, the master pulls the SDA line high during  
The second MSB, SD, is a shutdown bit. A logic high causes  
an open circuit at Terminal A while shorting the wiper to  
Terminal B. This operation yields almost 0 Ω in rheostat  
mode or 0 V in potentiometer mode. It is important to  
note that the shutdown operation does not disturb the  
contents of the register. When the AD5243 or AD5248 is  
brought out of shutdown, the previous setting is applied to  
the RDAC. In addition, during shutdown, new settings can  
be programmed. When the part is returned from shutdown,  
the corresponding VR setting is applied to the RDAC.  
th clock pulse to establish a stop condition (see Figure  
the 10  
45 and Figure 46). In read mode, the master issues a no  
acknowledge for the ninth clock pulse (that is, the SDA line  
remains high). The master then brings the SDA line low  
before the 10th clock pulse, which goes high to establish a  
stop condition (see Figure 47 and Figure 48).  
A repeated write function provides the user with the flexibility  
of updating the RDAC output multiple times after addressing  
and instructing the part only once. For example, after the  
RDAC has acknowledged its slave address and instruction  
bytes in write mode, the RDAC output updates on each  
successive byte. If different instructions are needed, however,  
the write/read mode must restart with a new slave address,  
instruction, and data byte. Similarly, a repeated read function  
of the RDAC is also allowed.  
The remainder of the bits in the instruction byte are don’t  
care bits (see Figure 10).  
After acknowledging the instruction byte, the last byte in  
write mode is the data byte. Data is transmitted over the  
serial bus in sequences of nine clock pulses (eight data bits  
followed by an acknowledge bit). The transitions on the  
Rev. B | Page 16 of 20  
 
 
Data Sheet  
AD5243/AD5248  
Write Mode  
Table 9. AD5243 Write Mode  
S
0
1
0
1
1
1
1
W
A
A0 SD  
X
X
X
X
X
X
A
D7 D6 D5 D4 D3 D2 D1 D0  
A
A
P
P
Slave address byte  
Instruction byte  
Data byte  
Table 10. AD5248 Write Mode  
S
0
1
0
1
1
AD1 AD0  
W
A
A0 SD  
X
X
X
X
X
X
A
D7 D6 D5 D4 D3 D2 D1 D0  
Slave address byte  
Instruction byte  
Data byte  
Read Mode  
Table 11. AD5243 Read Mode  
S
0
1
0
1
1
1
1
R
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Slave address byte  
Data byte  
Table 12. AD5248 Read Mode  
S
0
1
0
1
1
AD1  
AD0  
R
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Slave address byte  
Data byte  
Table 13. SDA Bits Descriptions  
Bit  
Description  
S
P
A
Start condition.  
Stop condition.  
Acknowledge.  
AD0, AD1  
Package pin-programmable address bits.  
X
Don’t care.  
W
R
Write.  
Read.  
A0  
SD  
RDAC subaddress select bit.  
Shutdown connects wiper to B terminal and open circuits the A terminal. It does not change the  
contents of the wiper register.  
D7, D6, D5, D4, D3, D2, D1, D0  
Data bits.  
Rev. B | Page 17 of 20  
AD5243/AD5248  
Data Sheet  
I2C CONTROLLER PROGRAMMING  
Write Bit Patterns  
1
9
1
9
1
9
SCL  
0
1
0
1
1
1
1
R/W  
A0 SD  
X
X
X
X
X
X
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
ACK BY  
AD5243  
ACK BY  
AD5243  
ACK BY  
AD5243  
START BY  
MASTER  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
DATA BYTE  
STOP BY  
MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
Figure 45. Writing to the RDAC Register—AD5243  
1
0
9
1
9
1
9
SCL  
SDA  
1
0
1
1
AD1 AD0 R/W  
A0 SD  
X
X
X
X
X
X
D7 D6 D5 D4 D3 D2 D1 D0  
ACK BY  
AD5248  
ACK BY  
AD5248  
ACK BY  
AD5248  
START BY  
MASTER  
STOP BY  
MASTER  
FRAME 2  
INSTRUCTION BYTE  
FRAME 3  
DATA BYTE  
FRAME 1  
SLAVE ADDRESS BYTE  
Figure 46. Writing to the RDAC Register—AD5248  
Read Bit Patterns  
1
9
1
9
SCL  
0
1
0
1
1
1
1
R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
SDA  
ACK BY  
AD5243  
NO ACK  
BY MASTER  
START BY  
MASTER  
FRAME 2  
RDAC REGISTER  
FRAME 1  
SLAVE ADDRESS BYTE  
STOP BY  
MASTER  
Figure 47. Reading Data from a Previously Selected RDAC Register in Write Mode—AD5243  
1
0
9
1
9
SCL  
SDA  
1
0
1
1
AD1 AD0 R/W  
D7 D6 D5 D4 D3 D2 D1 D0  
NO ACK  
BY MASTER  
ACK BY  
AD5248  
START BY  
MASTER  
FRAME 2  
RDAC REGISTER  
STOP BY  
MASTER  
FRAME 1  
SLAVE ADDRESS BYTE  
Figure 48. Reading Data from a Previously Selected RDAC Register in Write Mode—AD5248  
5V  
Multiple Devices on One Bus (Applies Only to AD5248)  
R
R
P
P
Figure 49 shows four AD5248 devices on the same serial bus.  
Each has a different slave address because the states of their  
AD0 and AD1 pins are different. This allows each device on the  
bus to be written to or read from independently. The master  
device output bus line drivers are open-drain pull-downs in a  
fully I2C-compatible interface.  
SDA  
SCL  
MASTER  
5V  
5V  
5V  
SDA SCL  
AD1  
SDA SCL  
AD1  
SDA SCL  
AD1  
SDA SCL  
AD1  
AD0  
AD0  
AD0  
AD0  
AD5248  
AD5248  
AD5248  
AD5248  
Figure 49. Multiple AD5248 Devices on One I2C Bus  
Rev. B | Page 18 of 20  
 
 
 
 
Data Sheet  
AD5243/AD5248  
OUTLINE DIMENSIONS  
3.10  
3.00  
2.90  
10  
1
6
5
5.15  
4.90  
4.65  
3.10  
3.00  
2.90  
PIN 1  
IDENTIFIER  
0.50 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.70  
0.55  
0.40  
0.15  
0.05  
0.23  
0.13  
6°  
0°  
0.30  
0.15  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-BA  
Figure 50. 10-Lead Mini Small Outline Package [MSOP]  
(RM-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1, 2  
RAB  
Temperature  
Package Description  
Package Option  
Branding  
D0L  
AD5243BRM2.5  
AD5243BRM10  
AD5243BRM10-RL7  
AD5243BRM50  
AD5243BRM50-RL7  
AD5243BRM100  
AD5243BRM100-RL7  
AD5243BRMZ2.5  
AD5243BRMZ2.5-RL7  
AD5243BRMZ10  
AD5243BRMZ10-RL7  
AD5243BRMZ50  
AD5243BRMZ50-RL7  
AD5243BRMZ100  
AD5243BRMZ100-RL7  
EVAL-AD5243SDZ  
AD5248BRM2.5  
AD5248BRM2.5-RL7  
AD5248BRM10  
AD5248BRM10-RL7  
AD5248BRM50  
AD5248BRM50-RL7  
AD5248BRM100  
AD5248BRM100-RL7  
AD5248BRMZ2.5  
AD5248BRMZ2.5-RL7  
AD5248BRMZ10  
AD5248BRMZ10-RL7  
AD5248BRMZ50  
AD5248BRMZ50-RL7  
AD5248BRMZ100  
AD5248BRMZ100-RL7  
2.5 kΩ  
10 kΩ  
10 kΩ  
50 kΩ  
50 kΩ  
100 kΩ  
100 kΩ  
2.5 kΩ  
2.5 kΩ  
10 kΩ  
10 kΩ  
50 kΩ  
50 kΩ  
100 kΩ  
100 kΩ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
Evaluation Board  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
10-Lead MSOP  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
D0M  
D0M  
D0N  
D0N  
D0P  
D0P  
D9X  
D9X  
D0M  
D0M  
D0N  
D0N  
D0P  
D0P  
2.5 kΩ  
2.5 kΩ  
10 kΩ  
10 kΩ  
50 kΩ  
50 kΩ  
100 kΩ  
100 kΩ  
2.5 kΩ  
2.5 kΩ  
10 kΩ  
10 kΩ  
50 kΩ  
50 kΩ  
100 kΩ  
100 kΩ  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
RM-10  
D1F  
D1F  
D1G  
D1G  
D1H  
D1H  
D1J  
D1J  
D1F  
D1F  
D8Z  
D8Z  
D90  
D90  
D91  
D91  
1 Z = RoHS Compliant Part.  
2 The evaluation board is shipped with the 10 kΩ RAB resistor option; however, the board is compatible with all available resistor value options.  
Rev. B | Page 19 of 20  
 
 
 
AD5243/AD5248  
NOTES  
Data Sheet  
Purchase of licensed I2C components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips I2C  
Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips.  
©2004–2012 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04109-0-4/12(B)  
Rev. B | Page 20 of 20  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY