AD5220BRM10 [ADI]

Increment/Decrement Digital Potentiometer; 递增/递减数字电位计
AD5220BRM10
型号: AD5220BRM10
厂家: ADI    ADI
描述:

Increment/Decrement Digital Potentiometer
递增/递减数字电位计

数字电位计
文件: 总10页 (文件大小:266K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Increment/Decrement  
Digital Potentiometer  
a
AD5220  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
128 Position  
Potentiometer Replacement  
10 k, 50 k, 100 k⍀  
Very Low Power: 40 A Max  
Increment/Decrement Count Control  
V
DD  
CLK  
D
E
C
O
D
E
A
CS  
EN  
UP/  
DOWN  
CNTR  
7
W
B
APPLICATIONS  
U/D  
RS  
GND  
POR  
40  
Mechanical Potentiometer Replacement  
Remote Incremental Adjustment Applications  
Instrumentation: Gain, Offset Adjustment  
Programmable Voltage-to-Current Conversion  
Programmable Filters, Delays, Time Constants  
Line Impedance Matching  
H
AD5220  
+5V  
CS  
UP/DOWN  
Power Supply Adjustment  
U/D  
CLK  
GENERAL DESCRIPTION  
The AD5220 provides a single channel, 128-position digitally  
controlled variable resistor (VR) device. This device performs  
the same electronic adjustment function as a potentiometer or  
variable resistor. These products were optimized for instrument  
and test equipment push-button applications. A choice between  
bandwidth or power dissipation are available as a result of the  
wide selection of end-to-end terminal resistance values.  
INCREMENT  
AD5220  
Figure 1. Typical Push-Button Control Application  
UPCOUNT DETAIL  
The AD5220 contains a fixed resistor with a wiper contact that  
taps the fixed resistor value at a point determined by a digitally  
controlled UP/DOWN counter. The resistance between the  
wiper and either end point of the fixed resistor provides a con-  
stant resistance step size that is equal to the end-to-end resis-  
tance divided by the number of positions (e.g., RSTEP = 10 k/  
128 = 78 ). The variable resistor offers a true adjustable value  
of resistance, between the A terminal and the wiper, or the B  
terminal and the wiper. The fixed A-to-B terminal resistance of  
10 k, 50 k, or 100 khas a nominal temperature coefficient  
of 800 ppm/°C.  
V
V
V
= 5.5V  
= 5.5V  
= 0V  
DD  
A
V
WB  
50mV/DIV  
B
f = 100kHz  
CLK  
5V/DIV  
Figure 2a. Stair-Step Increment Output  
The chip select CS, count CLK and U/D direction control  
inputs set the variable resistor position. These inputs that con-  
trol the internal UP/DOWN counter can be easily generated  
with mechanical or push button switches (or other contact closure  
devices). External debounce circuitry is required for the nega-  
tive-edge sensitive CLK pin. This simple digital interface elimi-  
nates the need for microcontrollers in front panel interface designs.  
V
V
V
= 5.5V  
= 5.5V  
= 0V  
COUNT  
DD  
00 v 3F v 00  
H
H
H
A
B
f = 60kHz  
V
WR  
The AD5220 is available in both surface mount (SO-8) and the  
8-lead plastic DIP package. For ultracompact solutions selected  
models are available in the thin µSOIC package. All parts are  
guaranteed to operate over the extended industrial temperature  
range of –40°C to +85°C. For 3-wire, SPI compatible inter-  
face applications, see the AD7376/AD8400/AD8402/AD8403  
products.  
f
= 60kHz  
CLK  
Figure 2b. Full-Scale Up/Down Count  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, nor for any infringements of patents or other rights of third parties  
which may result from its use. No license is granted by implication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
World Wide Web Site: http://www.analog.com  
© Analog Devices, Inc., 1998  
AD5220–SPECIFICATIONS  
(VDD = +3 V ؎ 10% or +5 V ؎ 10%, VA = +VDD, VB = 0 V, –40؇C < TA < +85؇C unless  
otherwise noted)  
ELECTRICAL CHARACTERISTICS  
Parameter  
Symbol  
Conditions  
Min  
Typ1  
Max  
Units  
DC CHARACTERISTICS RHEOSTAT MODE Specifications Apply to All VRs  
Resistor Differential NL2  
R-DNL  
RWB, VA = NC, RAB = 10 kΩ  
RWB, VA = NC, RAB = 50 kor 100 kΩ  
RWB, VA = NC, RAB = 10 kΩ  
RWB, VA = NC, RAB = 50 kor 100 kΩ  
TA = +25°C  
–1  
–0.5  
–1  
–0.5  
–30  
±0.4  
±0.1  
±0.5  
±0.1  
+1  
+0.5  
+1  
+0.5  
+30  
LSB  
LSB  
LSB  
LSB  
%
Resistor Nonlinearity2  
R-INL  
Nominal Resistor Tolerance  
Resistance Temperature Coefficient  
Wiper Resistance  
R  
RAB/T  
RW  
VAB = VDD, Wiper = No Connect  
IW = VDD/R, VDD = +3 V or +5 V  
800  
40  
ppm/°C  
100  
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE Specifications Apply to All VRs  
Resolution  
N
INL  
7
–1  
–0.5  
–1  
–0.5  
Bits  
Integral Nonlinearity3  
RAB = 10 kΩ  
RAB = 50 k, 100 kΩ  
RAB = 10 kΩ  
RAB = 50 k, 100 kΩ  
Code = 40H  
Code = 7FH  
±0.5  
±0.2  
±0.4  
±0.1  
20  
+1  
+0.5  
+1  
LSB  
LSB  
LSB  
LSB  
ppm/°C  
LSB  
LSB  
Differential Nonlinearity Error3  
DNL  
+0.5  
Voltage Divider Temperature Coefficient VW/T  
Full-Scale Error  
Zero-Scale Error  
VWFSE  
VWZSE  
–2  
0
–0.5  
+0.5  
0
+1  
Code = 00H  
RESISTOR TERMINALS  
Voltage Range4  
VA, VB, VW  
CA, CB  
CW  
0
VDD  
V
Capacitance5 A, B  
f = 1 MHz, Measured to GND, Code = 40H  
f = 1 MHz, Measured to GND, Code = 40H  
VA = VB = VW  
10  
48  
7.5  
pF  
pF  
nA  
Capacitance5 W  
Common-Mode Leakage  
ICM  
DIGITAL INPUTS AND OUTPUTS  
Input Logic High  
Input Logic Low  
VIH  
VIL  
IIL  
VDD = +5 V/+3 V  
VDD = +5 V/+3 V  
VIN = 0 V or +5 V  
2.4/2.1  
2.7  
V
V
µA  
pF  
0.8/0.6  
±1  
Input Current  
Input Capacitance5  
CIL  
5
POWER SUPPLIES  
Power Supply Range  
Supply Current  
VDD  
IDD  
PDISS  
PSS  
5.5  
40  
200  
0.015  
V
µA  
µW  
%/%  
VIH = +5 V or VIL = 0 V, VDD = +5 V  
VIH = +5 V or VIL = 0 V, VDD = +5 V  
15  
75  
0.004  
Power Dissipation6  
Power Supply Sensitivity  
DYNAMIC CHARACTERISTICS5, 7, 8  
Bandwidth –3 dB  
BW_10K  
BW_50K  
RAB = 10 k, Code = 40H  
RAB = 50 k, Code = 40H  
650  
142  
69  
kHz  
kHz  
kHz  
%
BW_100K RAB = 100 k, Code = 40H  
THDW  
tS  
Total Harmonic Distortion  
VW Settling Time  
VA =1 V rms + 2.5 V dc, VB = 2.5 V dc, f = 1 kHz  
VA = VDD, VB = 0 V, 50% of Final Value,  
10K/50K/100K  
0.002  
0.6/3/6  
14  
µs  
nV/Hz  
Resistor Noise Voltage  
eNWB  
RWB = 5 k, f = 1 kHz  
INTERFACE TIMING CHARACTERISTICS Applies to All Parts5, 9  
Input Clock Pulsewidth  
CS to CLK Setup Time  
CS Rise to Clock Hold Time  
U/D to Clock Fall Setup Time  
tCH, tCL  
tCSS  
tCSH  
Clock Level High or Low  
25  
20  
20  
10  
ns  
ns  
ns  
ns  
tUDS  
NOTES  
1Typicals represent average readings at +25°C and VDD = +5 V.  
2Resistor position nonlinearity error R-INL is the deviation from an ideal value measured between the maximum resistance and the minimum resistance wiper  
positions. R-DNL measures the relative step change from ideal between successive tap positions. Parts are guaranteed monotonic. See Figure 29 test circuit.  
3INL and DNL are measured at VW with the RDAC configured as a potentiometer divider similar to a voltage output D/A converter. VA = VDD and VB = 0 V.  
DNL specification limits of ±1 LSB maximum are guaranteed monotonic operating conditions. See Figure 28 test circuit.  
4Resistor terminals A, B, W have no limitations on polarity with respect to each other.  
5Guaranteed by design and not subject to production test.  
6PDISS is calculated from (IDD × VDD). CMOS logic level inputs result in minimum power dissipation.  
7Bandwidth, noise and settling time are dependent on the terminal resistance value chosen. The lowest R value results in the fastest settling time and highest band-  
width. The highest R value results in the minimum overall power consumption.  
8All dynamic characteristics use VDD = +5 V.  
9See timing diagrams for location of measured values. All input control voltages are specified with tR = tF = 1 ns (10% to 90% of VDD) and timed from a voltage level  
of 1.6 V. Switching characteristics are measured using both VDD = +3 V or +5 V.  
Specifications subject to change without notice.  
–2–  
REV. 0  
AD5220  
ABSOLUTE MAXIMUM RATINGS*  
(TA = +25°C, unless otherwise noted)  
PIN CONFIGURATION  
VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V, +7 V  
VA, VB, VW to GND . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V, VDD  
AX–BX, AX–WX, BX–WX . . . . . . . . . . . . . . . . . . . . . . ±20 mA  
Digital Input Voltage to GND . . . . . . . . . . . 0 V, VDD + 0.3 V  
Operating Temperature Range . . . . . . . . . . . –40°C to +85°C  
Maximum Junction Temperature (TJ MAX) . . . . . . . .+150°C  
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead Temperature (Soldering, 10 sec) . . . . . . . . . . . .+300°C  
Package Power Dissipation . . . . . . . . . . . . . . (TJ max–TA)/θJA  
Thermal Resistance θJA  
1
2
3
4
8
7
6
5
V
CLK  
DD  
AD5220  
TOP VIEW  
(Not to Scale)  
U/D  
A1  
CS  
B1  
W1  
GND  
P-DIP (N-8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103°C/W  
SOIC (SO-8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158°C/W  
µSOIC (RM-8) . . . . . . . . . . . . . . . . . . . . . . . . . . . 206°C/W  
*Stresses above those listed under Absolute Maximum Ratings may cause  
permanent damage to the device. This is a stress rating only; functional operation  
of the device at these or any other conditions above those indicated in the  
operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PIN FUNCTION DESCRIPTIONS  
Description  
Pin  
No. Name  
1
2
3
4
5
6
7
8
CLK  
U/D  
A1  
Serial Clock Input, Negative Edge Triggered  
UP/DOWN Direction Increment Control  
Terminal A1  
Table I. Truth Table  
CS  
CLK U/D  
Operation  
L
L
H
t
t
H
L
Wiper Increment Toward Terminal A  
Wiper Decrement Toward Terminal B  
Wiper Position Fixed  
GND  
W1  
Ground  
Wiper Terminal  
X
X
B1  
Terminal B1  
CS  
Chip Select Input, Active Low  
Positive Power Supply  
VDD  
1
0
CS  
tCSS  
tCL  
tCH  
tCSH  
1
0
CLK  
tUDS  
1
0
U/D  
Figure 3. Detail Timing Diagram  
ORDERING GUIDE  
Package Descriptions  
Model  
k  
Temperature Range  
Package Options  
AD5220BN10  
AD5220BR10  
AD5220BRM10  
AD5220BN50  
AD5220BR50  
AD5220BRM50  
AD5220BN100  
AD5220BR100  
AD5220BRM100  
10  
10  
10  
50  
50  
50  
100  
100  
100  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
8-Lead Plastic DIP  
8-Lead (SOIC)  
8-Lead µSOIC  
8-Lead Plastic DIP  
8-Lead (SOIC)  
8-Lead µSOIC  
8-Lead Plastic DIP  
8-Lead (SOIC)  
8-Lead µSOIC  
N-8  
SO-8  
RM-8  
N-8  
SO-8  
RM-8  
N-8  
SO-8  
RM-8  
NOTE  
The AD5220 die size is 37 mil × 54 mil, 1998 sq mil; 0.938 mm × 1.372 mm, 1.289 sq mm. Contains 754 transistors. Patent Number 5495245 applies.  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the AD5220 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD  
WARNING!  
ESD SENSITIVE DEVICE  
precautions are recommended to avoid performance degradation or loss of functionality.  
REV. 0  
–3–  
–Typical Performance Characteristics  
AD5220  
48  
40  
32  
24  
16  
6
100  
SS = 300 UNITS  
V
R
= 5.5V  
= 50k⍀  
DD  
V
= +2.7V  
DD  
AB  
T
= +25؇C  
5
4
3
2
1
0
A
75  
50  
7F  
H
25  
40  
H
08  
H
01  
8
0
20  
H
02  
H
H
04  
H
10  
R
R
H
WB  
WA  
0
0
0
20  
40  
60  
80  
100  
A  
120  
20  
28  
36  
44  
52  
60  
32  
64  
96  
128  
CONDUCTION CURRENT, I  
WIPER RESISTANCE – ⍀  
WB  
CODE – Decimal  
Figure 4. Wiper to End Terminal  
Resistance vs. Code  
Figure 5. Resistance Linearity vs.  
Conduction Current  
Figure 6. Wiper Contact Resistance  
0.5  
0.5  
0.5  
0.4  
T
V
= +25؇C  
T
V
= +25؇C  
A
A
0.4  
0.3  
0.4  
0.3  
= +5.5V  
= +5.5V  
DD  
DD  
0.3  
0.2  
10kVERSION  
100kVERSION  
50kVERSION  
0.2  
50kVERSION  
0.2  
100kVERSION  
50kVERSION  
0.1  
0.1  
0.1  
0.0  
0.0  
0.0  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
T
= +25؇C  
A
V
V
V
= +5.5V  
DD  
10kVERSION  
= +5.5V  
= 0V  
100kVERSION  
A
B
10kVERSION  
0
0
16  
32  
48  
64  
80 96 112 128  
0
16  
32  
48  
64  
80 96 112 128  
16  
32  
48  
64  
80 96 112 128  
CODE – Decimal  
CODE – Decimal  
CODE – Decimal  
Figure 7. R-DNL Relative Resistance  
Step Position Nonlinearity Error vs.  
Code  
Figure 8. R-INL Resistance Non-  
linearity Error vs. Supply Voltage  
Figure 9. Potentiometer Divider INL  
Error vs. Code  
100  
0.5  
0.600  
T
= +25؇C  
CODE = 40  
H
A
0.4  
0.3  
V
V
V
= +5.5V  
R
= 50k⍀  
DD  
AB  
A
0.525  
0.450  
0.375  
0.300  
0.255  
0.150  
100kVERSION  
= +5.5V  
= 0V  
V
= V  
A
B
DD  
80  
0.2  
100kVERSION  
50kVERSION  
60  
0.1  
0.0  
50kVERSION  
40  
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
20  
10kVERSION  
0.075  
0.000  
10kVERSION  
0
–40  
–15  
10  
35  
60  
85  
0
16  
32  
48  
64  
80 96 112 128  
2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00  
TEMPERATURE – ؇C  
CODE – Decimal  
SUPPLY VOLTAGE – V  
Figure 10. Potentiometer Divider  
DNL Error vs. Code  
Figure 11. Potentiometer Divider  
INL Error vs. Supply Voltage  
Figure 12. Nominal Resistance vs.  
Temperature  
–4–  
REV. 0  
AD5220  
6
0
60  
53  
46  
39  
32  
25  
18  
11  
4
60  
53  
46  
39  
32  
25  
18  
11  
4
00  
H
–55؇C < T < +85؇C  
–55؇C < T < +85؇C  
A
A
V
= +5.5V  
V
= +5.5V  
DD  
DD  
R
MEASURED  
40  
H
WB  
–6  
–12  
–18  
–24  
–30  
–36  
–42  
V
= NO CONNECT  
A
20  
10  
08  
04  
H
H
H
10kVERSION  
10kVERSION  
H
50kAND 100kVERSION  
50kAND 100kVERSION  
02  
01  
H
H
DATA = 40H  
VDD = +5V  
+
A
B
W
OP42  
VIN = V = 100mV rms  
–3  
–10  
–3  
–10  
–48  
–54  
A
+
2.5V  
VB = +2.5V  
0
0
16  
32  
48  
64  
80 96 112 128  
16  
32  
48  
64  
80 96 112 128  
1k  
10k  
100k  
1M  
FREQUENCY – Hz  
CODE – Decimal  
CODE – Decimal  
Figure 15. 10 kGain vs. Frequency  
vs. Code  
Figure 13. VWB/T Potentiometer  
Mode Tempco (10 kand 50 k)  
Figure 14. RWB/T Rheostat  
6
6
00  
H
00  
H
0
0
40  
20  
10  
08  
H
H
H
H
40  
–6  
–12  
–18  
–24  
–30  
–36  
–42  
H
–6  
–12  
–18  
–24  
–30  
–36  
–42  
20  
H
H
H
10  
08  
04  
02  
01  
04  
02  
01  
H
H
H
H
H
H
20mV/  
DIV  
V
WB  
V
V
= +5.5V  
DD  
DATA = 40  
DATA = 40  
H
H
+
+
= V = 0V  
A
B
A
B
A
B
V
V
V
= +5V  
W
V
V
V
= +5V  
W
DD  
DD  
OP42  
OP42  
f = 100kHz  
–48  
–54  
–48  
–54  
= V = 100mV rms  
A
= V = 100mV rms  
A
IN  
B
+
IN  
B
+
2.5V  
2.5V  
= +2.5V  
= +2.5V  
1k  
10k  
100k  
FREQUENCY – Hz  
1M  
1k  
10k  
100k  
1M  
TIME 2s / DIV  
FREQUENCY – Hz  
Figure 18. Digital Feedthrough  
Figure 16. 50 kGain vs. Frequency  
Figure 17. 100 kGain vs. Fre-  
vs. Code  
quency vs. Code  
1.00  
–5.8  
–5.9  
T
V
= +25؇C  
A
10k⍀  
50k⍀  
= +5.0V  
DD  
OFFSET GND = +2.5V  
= 10k⍀  
–6.0  
–6.1  
0.10  
0.01  
R
AB  
100k⍀  
DATA = 40  
H
150mV  
–6.2  
–6.3  
V
V
V
= +5V  
DD  
NONINVERTING  
TEST CKT 32  
= V = 50mV rms  
IN  
B
100mV  
A
V
WB  
= +2.5V  
50mV  
0mV  
–6.4  
–6.5  
A
W
+
V
V
V
= +5.5V DATA  
DD  
OP42  
B
0.001  
0.0001  
40 v 3F  
+
= +5.5V  
= 0V  
H
H
A
B
2.5V  
–6.6  
INVERTING  
TEST CKT 31  
5V  
0V  
f = 100kHz  
–6.7  
–6.8  
CLK  
100k  
10  
100  
1k  
FREQUENCY – Hz  
10k  
10  
100  
1k  
10k  
100k  
1M  
TIME 500ns / DIV  
FREQUENCY – Hz  
Figure 20. Total Harmonic Distortion  
Plus Noise vs. Frequency  
Figure 19. Midscale Transition Glitch  
Figure 21. Normalized Gain Flatness  
vs. Frequency  
REV. 0  
–5–  
AD5220  
80  
60  
40  
20  
0
80  
400  
350  
300  
T
= +25؇C  
A
DATA = 3F  
H
SEE FIGURE 34  
FOR TEST CIRCUIT  
V
T
= 0V  
= +25؇C  
B
A
60  
40  
V
= +2.7V  
DD  
250  
200  
V
V
= +5.5V  
= +5.5V  
DD  
A
V
= +5.5V  
DD  
150  
100  
V
V
= +2.7V  
DD  
V
T
= +5V DC ؎1V p-p AC  
DD  
= +25؇C  
A
= +2.7V  
A
20  
0
CODE = 40  
H
C
= 10pF  
L
50  
0
V
= 4V, V = 0V  
A
B
0
1
2
3
4
5
6
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
V
– Volts  
B
FREQUENCY – Hz  
CLOCK FREQUENCY – Hz  
Figure 24. Incremental Wiper  
Contact Resistance vs. VB  
Figure 22. Power Supply Rejection  
vs. Frequency  
Figure 23. IDD Supply Current vs.  
Clock Frequency  
0.10  
10  
T
= +25؇C  
LOGIC = 0V OR V  
DD  
A
ALL LOGIC INPUT  
PINS TIED TOGETHER  
V
= +5.5V  
D
1
0.1  
V
= +5V  
DD  
0.01  
V
= +3V  
DD  
V
= +3.3V  
DD  
0.001  
0.01  
0.001  
0.0001  
0
1.0  
2.0  
3.0  
4.0  
5.0  
–40  
–15  
10  
35  
60  
85  
DIGITAL INPUT VOLTAGE – V  
TEMPERATURE – ؇C  
Figure 25. Supply Current vs. Tem-  
perature IDD  
Figure 26. Supply Current vs. Input  
Logic Voltage  
–6–  
REV. 0  
Parametric Test Circuits–  
AD5220  
A
B
DUT  
+5V  
V+ = V  
W
DUT  
A
DD  
V
~
IN  
1LSB = V+/128  
V
W
OP279  
OUT  
V+  
OFFSET  
GND  
B
V
2.5V DC  
MS  
Figure 27. Potentiometer Divider Nonlinearity Error Test  
Circuit (INL, DNL)  
Figure 31. Inverting Programmable Gain Test Circuit  
+5V  
NO CONNECT  
DUT  
V
OP279  
OUT  
W
I
V
W
~
IN  
A
W
OFFSET  
GND  
B
DUT  
A
B
2.5V  
V
MS  
Figure 28. Resistor Position Nonlinearity Error (Rheostat  
Operation; R-INL, R-DNL)  
Figure 32. Noninverting Programmable Gain Test Circuit  
+15V  
A
W
I
=
V
/R  
DD  
NOMINAL  
DUT  
W
V
DUT  
~
IN  
A
V
W
W
V
OP42  
OUT  
V
B
OFFSET  
GND  
MS2  
B
2.5V  
R
= [V  
– V  
]/I  
MS2  
V
MS1  
W
W
MS1  
–15V  
Figure 29. Wiper Resistance Test Circuit  
Figure 33. Gain vs. Frequency Test Circuit  
0.1V  
V
A
R
=
SW  
I
DUT  
SW  
V+ = V ± 10%  
DD  
CODE = ØØ  
H
V  
W
MS  
A
B
V
DD  
PSRR (dB) = 20 LOG  
V  
PSS (%/%) = –––––––  
V  
(
–––––  
)
W
V  
V+  
~
B
DD  
0.1V  
I
%
SW  
MS  
V
MS  
%
DD  
0 TO V  
DD  
Figure 30. Power Supply Sensitivity Test Circuit (PSS,  
PSRR)  
Figure 34. Incremental ON Resistance Test Circuit  
REV. 0  
–7–  
AD5220  
OPERATION  
Ax  
R
R
The AD5220 provides a 128-position digitally controlled vari-  
able resistor (VR) device. Changing the VR settings is accom-  
plished by pulsing the CLK pin while CS is active low. The  
direction of the increment is controlled by the U/D (UP/DOWN)  
control input pin. When the wiper hits the end of the resistor  
(Terminals A or B) additional CLK pulses no longer change  
the wiper setting. The wiper position is immediately decoded  
by the wiper decode logic changing the wiper resistance. Ap-  
propriate debounce circuitry is required when push button  
switches are used to control the count sequence and direction  
of count. The exact timing requirements are shown in Figure 3.  
The AD5220 powers ON in a centered wiper position exhibit-  
S
D0  
D1  
D2  
D3  
D4  
D5  
D6  
S
Wx  
RDAC  
UP/DOWN  
CNTR  
&
DECODE  
R
R
S
Bx  
ing nearly equal resistances of RWA and RWB  
.
= R  
/128  
S
NOMINAL  
Figure 38. AD5220 Equivalent RDAC Circuit  
V
DD  
CLK  
D
A
EN  
PROGRAMMING THE VARIABLE RESISTOR  
CS  
E
C
O
D
E
UP/  
DOWN  
CNTR  
7
W
Rheostat Operation  
The nominal resistance of the RDAC between terminals A and  
B is available with values of 10 k, 50 k, and 100 k. The  
final three characters of the part number determine the nominal  
resistance value, e.g., 10 k=10; 50 k= 50; 100 k= 100.  
The nominal resistance (RAB) of the VR has 128 contact points  
accessed by the wiper terminal, plus the B terminal contact. At  
power ON the resistance from the wiper to either end Terminal  
A or B is approximately equal. Clocking the CLK pin will in-  
crease the resistance from the Wiper W to Terminal B by one  
unit of RS resistance (see Figure 38). The resistance RWB is  
determined by the number of pulses applied to the clock pin.  
Each segment of the internal resistor string has a nominal resis-  
tance value of RS = RAB/128, which becomes 78 in the case of  
the 10 kAD5220BN10 product. Care should be taken to limit  
the current flow between W and B in the direct contact state to  
a maximum value of 5 mA to avoid degradation or possible de-  
struction of the internal switch contact.  
B
U/D  
RS  
GND  
POR  
40  
H
AD5220  
Figure 35. Block Diagram  
DIGITAL INTERFACING OPERATION  
The AD5220 contains a three-wire serial input interface. The  
three inputs are clock (CLK), CS and UP/DOWN (U/D). The  
negative-edge sensitive CLK input requires clean transitions to  
avoid clocking multiple pulses into the internal UP/DOWN  
counter register, see Figure 35. Standard logic families work  
well. If mechanical switches are used for product evaluation  
they should be debounced by a flip-flop or other suitable  
means. When CS is taken active low the clock begins to incre-  
ment or decrement the internal UP/DOWN counter dependent  
upon the state of the U/D control pin. The UP/DOWN counter  
value (D) starts at 40H at system power ON. Each new CLK  
pulse will increment the value of the internal counter by one  
LSB until the full scale value of 3FH is reached as long as the  
U/D pin is logic high. If the U/D pin is taken to logic low the  
counter will count down stopping at code 00H (zero-scale).  
Additional clock pulses on the CLK pin are ignored when the  
wiper is at either the 00H position or the 3FH position.  
Like the mechanical potentiometer the RDAC replaces, it is  
totally symmetrical (see Figure 38). The resistance between the  
Wiper W and Terminal A also produces a digitally controlled  
resistance RWA. When these terminals are used the B–terminal  
should be tied to the wiper.  
The typical part-to-part distribution of RBA is process lot depen-  
dent having a ±30% variation. The change in RBA with tempera-  
ture has a 800 ppm/°C temperature coefficient.  
All digital inputs (CS, U/D, CLK) are protected with a series  
input resistor and parallel Zener ESD structure shown in  
Figure 36.  
The RBA temperature coefficient increases as the wiper is pro-  
grammed near the B-terminal due to the larger percentage con-  
tribution of the wiper contact switch resistance, which has a  
0.5%/°C temperature coefficient. Figure 14 shows the effect of  
the wiper contact resistance as a function of code setting. An-  
other performance factor influenced by the switch contact resis-  
tance is the relative linearity error performance between the  
10 k, and the 50 kor 100 kversions. The same switch  
contact resistance is used in all three versions. Thus the perfor-  
mance of the 50 kand 100 kdevices which have the least  
impact on wiper switch resistance exhibits the best linearity  
error, see Figures 7 and 8.  
1k⍀  
LOGIC  
Figure 36. Equivalent ESD Protection Digital Pins  
20⍀  
A, B, W  
GND  
Figure 37. Equivalent ESD Protection Analog Pins  
–8–  
REV. 0  
AD5220  
PROGRAMMING THE POTENTIOMETER DIVIDER  
Voltage Output Operation  
APPLICATIONS INFORMATION  
The negative-edge sensitive CLK pin does not contain any  
internal debounce circuitry. This standard CMOS logic input  
responds to fast negative edges and needs to be debounced  
externally with an appropriate circuit designed for the type of  
switch closure device being used. Good performance results at  
the CLK input pin when the negative logic transition has a  
minimum slew rate of 1 V/µs. A wide variety of standard circuits  
can be used such as a one-shot multivibrator, Schmitt Triggered  
gates, cross coupled flip-flops, or RC filters to drive the CLK  
pin with uniform negative edges. This will prevent the digital  
potentiometer from skipping output codes while counting due to  
switch contact bounce.  
The digital potentiometer easily generates an output voltage  
proportional to the input voltage applied to a given terminal.  
For example connecting A Terminal to +5 V and B Terminal to  
ground produces an output voltage at the wiper which can be  
any value starting at zero volts up to 1 LSB less than +5 V. Each  
LSB of voltage is equal to the voltage applied across terminals  
AB divided by the 128-position resolution of the potentiometer  
divider. The general equation defining the output voltage with  
respect to ground for any given input voltage applied to termi-  
nals AB is:  
VW(D) = D/128 × VAB + VB  
(1)  
D represents the current contents of the internal UP/DOWN  
counter.  
Operation of the digital potentiometer in the divider mode re-  
sults in more accurate operation over temperature. Here the  
output voltage is dependent on the ratio of the internal resistors,  
not the absolute value, therefore, the drift improves to 20 ppm/°C.  
REV. 0  
–9–  
AD5220  
OUTLINE DIMENSIONS  
Dimensions shown in inches and (mm).  
8-Lead Plastic DIP  
(N-8)  
0.430 (10.92)  
0.348 (8.84)  
8
5
0.280 (7.11)  
0.240 (6.10)  
1
4
0.325 (8.25)  
0.300 (7.62)  
0.060 (1.52)  
0.015 (0.38)  
PIN 1  
0.195 (4.95)  
0.115 (2.93)  
0.210 (5.33)  
MAX  
0.130  
(3.30)  
MIN  
0.160 (4.06)  
0.115 (2.93)  
0.015 (0.381)  
0.008 (0.204)  
SEATING  
PLANE  
0.100  
(2.54)  
BSC  
0.022 (0.558)  
0.014 (0.356)  
0.070 (1.77)  
0.045 (1.15)  
8-Lead SOIC  
(SO-8)  
0.1968 (5.00)  
0.1890 (4.80)  
8
1
5
4
0.1574 (4.00)  
0.1497 (3.80)  
0.2440 (6.20)  
0.2284 (5.80)  
PIN 1  
0.0688 (1.75)  
0.0532 (1.35)  
0.0196 (0.50)  
؋
 45؇  
0.0098 (0.25)  
0.0040 (0.10)  
0.0099 (0.25)  
8؇  
0؇  
0.0500  
(1.27)  
BSC  
0.0192 (0.49)  
0.0138 (0.35)  
SEATING  
PLANE  
0.0098 (0.25)  
0.0075 (0.19)  
0.0500 (1.27)  
0.0160 (0.41)  
8-Lead SOIC  
(RM-8)  
0.122 (3.10)  
0.114 (2.90)  
8
5
4
0.122 (3.10)  
0.114 (2.90)  
0.199 (5.05)  
0.187 (4.75)  
1
PIN 1  
0.0256 (0.65) BSC  
0.120 (3.05)  
0.112 (2.84)  
0.120 (3.05)  
0.112 (2.84)  
0.043 (1.09)  
0.037 (0.94)  
0.006 (0.15)  
0.002 (0.05)  
33؇  
27؇  
0.018 (0.46)  
0.008 (0.20)  
0.028 (0.71)  
0.016 (0.41)  
0.011 (0.28)  
0.003 (0.08)  
SEATING  
PLANE  
–10–  
REV. 0  

相关型号:

AD5220BRM10-REEL7

10K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MICRO, SOIC-8
ROCHESTER

AD5220BRM100

Increment/Decrement Digital Potentiometer
ADI

AD5220BRM100

100K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MO-187AA, MSOP-8
ROCHESTER

AD5220BRM100-REEL

IC 100K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MICRO, SOIC-8, Digital Potentiometer
ADI

AD5220BRM100-REEL

100K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MICRO, SOIC-8
ROCHESTER

AD5220BRM100-REEL7

Increment/Decrement Digital Potentiometer
ADI

AD5220BRM100-REEL7

100K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MO-187AA, MSOP-8
ROCHESTER

AD5220BRM50

Increment/Decrement Digital Potentiometer
ADI

AD5220BRM50

50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MICRO, SOIC-8
ROCHESTER

AD5220BRM50-REEL

IC 50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MICRO, SOIC-8, Digital Potentiometer
ADI

AD5220BRM50-REEL

50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MICRO, SOIC-8
ROCHESTER

AD5220BRM50-REEL7

50K DIGITAL POTENTIOMETER, INCREMENT/DECREMENT CONTROL INTERFACE, 128 POSITIONS, PDSO8, MICRO, SOIC-8
ROCHESTER