SSM2380 [ADI]

Filterless, Stereo, Class-D Audio Amplifier;
SSM2380
型号: SSM2380
厂家: ADI    ADI
描述:

Filterless, Stereo, Class-D Audio Amplifier

文件: 总32页 (文件大小:691K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2 × 2 W, Filterless, Stereo, Class-D  
Audio Amplifier with ALC and I2C  
SSM2380  
The SSM2380 features a high efficiency, low noise modulation  
scheme that requires no external LC output filters. The modulation  
continues to provide high efficiency even at low output power.  
The SSM2380 operates with 93% efficiency at 1.4 W into 8 Ω  
or with 85% efficiency at 2 W into 4 Ω from a 5.0 V supply and  
has an SNR of >100 dB.  
FEATURES  
Filterless, stereo, Class-D amplifier with Σ-Δ modulation  
2 W into 4 Ω load and 1.4 W into 8 Ω load at 5.0 V supply  
with <1% total harmonic distortion plus noise (THD + N)  
Highly configurable I2C interface for gain adjust, automatic  
level control (ALC), and ultralow EMI emissions mode  
MODE pin can disable I2C interface for more traditional  
stereo amplifier configuration  
Stereo-to-mono mixer option via I2C control  
93% efficiency at 5.0 V, 1.4 W into 8 Ω speaker  
Signal-to-noise ratio (SNR): >100 dB  
Single-supply operation from 2.5 V to 5.5 V  
Ultralow shutdown current: 20 nA  
Short-circuit and thermal protection  
Pop-and-click suppression  
Available in 16-ball, 2.0 mm × 2.0 mm WLCSP  
Spread-spectrum pulse density modulation is used to provide  
lower EMI-radiated emissions compared with other Class-D  
architectures. An added benefit of spread-spectrum Σ-Δ modu-  
lation is that no synchronization (SYNC) is needed when using  
multiple Class-D amplifiers. For applications that require long  
speaker cables (>10 cm), the SSM2380 includes a user-selectable  
ultralow EMI emissions mode that eliminates the need for EMI  
filters at the Class-D outputs.  
The SSM2380 has a micropower shutdown mode with a typical  
shutdown current of 20 nA. Shutdown is enabled by applying  
SD  
a logic low to the  
pin or through an optional independent  
APPLICATIONS  
channel soft shutdown via I2C.  
Mobile phones  
MP3 players  
Portable electronics  
The device also includes pop-and-click suppression circuitry.  
This suppression circuitry minimizes voltage glitches at the  
output during turn-on and turn-off, reducing audible noise  
on activation and deactivation.  
GENERAL DESCRIPTION  
The SSM2380 is a fully integrated, high efficiency, stereo, Class-D  
audio amplifier. It is designed to maximize performance for mobile  
phone applications. The application circuit requires a minimum  
of external components and operates from a single 2.5 V to 5.5 V  
supply. It is capable of delivering 2 W of continuous output power  
with <1% THD + N driving a 4 Ω load from a 5.0 V supply.  
The SSM2380 features a highly flexible I2C interface with many  
useful settings. Using the I2C control interface, the gain of the  
SSM2380 can be selected from 1 dB to 24 dB (plus mute) in  
47 steps with no external components. Other features accessed  
from the I2C interface include independent left/right channel  
shutdown, variable ultralow EMI emission control mode, auto-  
matic level control (ALC) for high quality speaker protection,  
and stereo-to-mono mixing operation.  
The fully differential inputs of the SSM2380 provide excellent  
rejection of common-mode noise on the input. Input coupling  
capacitors can be omitted if the dc input common-mode voltage  
is approximately VDD/2.  
The SSM2380 is specified over the commercial temperature  
range of −40°C to +85°C. It has built-in thermal shutdown  
and output short-circuit protection. It is available in a 16-ball,  
2 mm × 2 mm wafer level chip scale package (WLCSP).  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010–2011 Analog Devices, Inc. All rights reserved.  
 
SSM2380  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Mixer Mode................................................................................. 18  
Applications Information.............................................................. 19  
Layout .......................................................................................... 19  
Input Capacitor Selection.......................................................... 19  
Power Supply Decoupling ......................................................... 20  
Typical Application Circuits ......................................................... 21  
I2C Interface .................................................................................... 24  
Register Map ................................................................................... 25  
Register Map Details ...................................................................... 26  
Register R0: Left Channel Gain Control, Address 0x00........ 26  
Register R1: Right Channel Gain Control, Address 0x01..... 26  
Register R2: Mode Control, Address 0x02.............................. 27  
Register R3: ALC Control 1, Address 0x03............................. 27  
Register R4: ALC Control 2, Address 0x04............................. 28  
Register R5: Shutdown, Address 0x05..................................... 29  
Register R6: Error, Address 0x06.............................................. 29  
Register R7: Error Clear, Address 0x07................................... 29  
Register R8: Reset, Address 0x08 ............................................. 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Functional Block Diagram .............................................................. 3  
Specifications..................................................................................... 4  
I2C Timing Characteristics.......................................................... 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 14  
Overview...................................................................................... 14  
Pop-and-Click Suppression....................................................... 14  
Output Modulation Description .............................................. 14  
Operating Modes........................................................................ 15  
ALC Mode Operation................................................................ 15  
Gain Select Mode Operation .................................................... 16  
I2C Control Mode Operation.................................................... 16  
Automatic Level Control (ALC)............................................... 16  
REVISION HISTORY  
2/11—Rev. 0 to Rev. A  
Changes to Setting the ALC Threshold Voltage Section........... 15  
10/10—Revision 0: Initial Version  
Rev. A | Page 2 of 32  
 
SSM2380  
FUNCTIONAL BLOCK DIAGRAM  
10µF  
VDD 2.5V TO 5.5V  
0.1µF  
VDD  
SSM2380  
VDD  
FET  
22nF  
INR+  
OUTR+  
OUTR–  
RIGHT IN+  
Σ-∆  
MODULATOR  
INR–  
DRIVER  
RIGHT IN–  
22nF  
SCK  
SDA  
MODE  
GAIN  
CONTROL  
(+ALC)  
EDGE  
SD  
2
I C  
INTERNAL  
EMI  
EMISSION CONTROL  
SHUTDOWN  
BIAS  
OSCILLATOR CONTROL  
22nF  
22nF  
INL+  
INL–  
OUTL+  
OUTL–  
LEFT IN+  
LEFT IN–  
Σ-∆  
FET  
DRIVER  
MODULATOR  
GND  
GND  
GAIN1  
GAIN0  
ALCTH  
GAIN = 6dB, 12dB, 18dB, OR 24dB  
Figure 1.  
Rev. A | Page 3 of 32  
 
SSM2380  
SPECIFICATIONS  
VDD = 5.0 V, TA = 25°C, RL = 8 Ω +33 μH, gain = 6 dB, I2C control mode, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments1  
f = 1 kHz, 20 kHz bandwidth  
RL = 8 Ω, THD = 1%, VDD = 5.0 V  
RL = 8 Ω, THD = 1%, VDD = 3.6 V  
RL = 8 Ω, THD = 10%, VDD = 5.0 V  
RL = 8 Ω, THD = 10%, VDD = 3.6 V  
RL = 4 Ω, THD = 1%, VDD = 5.0 V  
RL = 4 Ω, THD = 1%, VDD = 3.6 V  
RL = 4 Ω, THD = 10%, VDD = 5.0 V  
RL = 4 Ω, THD = 10%, VDD = 3.6 V  
PO = 1.4 W into 8 Ω, VDD = 5.0 V  
Normal, low EMI mode  
Min  
Typ  
Max  
Unit  
DEVICE CHARACTERISTICS  
Output Power  
PO  
1.43  
0.73  
1.8  
0.92  
2.581  
1.3  
W
W
W
W
W
W
W
W
3.21  
1.62  
Efficiency  
η
93  
91  
0.005  
%
%
%
Ultralow EMI mode  
Total Harmonic Distortion Plus  
Noise  
THD + N PO = 1 W into 8 Ω, f = 1 kHz, VDD = 5.0 V  
PO = 0.5 W into 8 Ω, f = 1 kHz, VDD = 3.6 V  
VCM  
0.005  
%
V
Input Common-Mode Voltage  
Range  
1.0  
VDD − 1.0  
Common-Mode Rejection Ratio  
Channel Separation  
Average Switching Frequency  
Differential Output Offset  
Voltage  
CMRRGSM VCM = 2.5 V 100 mV at 217 Hz, output referred  
55  
78  
325  
2.0  
dB  
dB  
kHz  
mV  
XTALK  
fSW  
PO = 100 mW, f = 1 kHz  
VOOS  
Gain = 6 dB  
POWER SUPPLY  
Supply Voltage Range  
Power Supply Rejection Ratio  
VDD  
PSRR  
PSRRGSM  
Guaranteed from PSRR test  
VDD = 2.5 V to 5.0 V, dc input floating  
VRIPPLE = 100 mV at 217 Hz, inputs ac-grounded,  
CIN = 0.1 μF  
2.5  
70  
5.5  
V
dB  
dB  
85  
60  
Supply Current, Stereo  
ISY  
VIN = 0 V, no load, VDD = 5.0 V  
VIN = 0 V, no load, VDD = 3.6 V  
VIN = 0 V, no load, VDD = 2.5 V  
VIN = 0 V, RL = 8 Ω + 33 μH, VDD = 5.0 V  
VIN = 0 V, RL = 8 Ω + 33 μH, VDD = 3.6 V  
VIN = 0 V, RL = 8 Ω + 33 μH, VDD = 2.5 V  
SD = GND  
6.8  
6.0  
5.8  
7.0  
6.1  
5.5  
20  
mA  
mA  
mA  
mA  
mA  
mA  
nA  
Shutdown Current  
ISD  
GAIN CONTROL  
Closed-Loop Gain  
SHUTDOWN CONTROL  
Input Voltage High  
Input Voltage Low  
Turn-On Time  
Gain  
GAINx = I2C control mode  
1
24  
dB  
VIH  
VIL  
tWU  
tSD  
1.35  
V
0.35  
V
SD rising edge from GND to VDD  
SD falling edge from VDD to GND  
SD = GND  
7
ms  
μs  
kΩ  
Turn-Off Time  
5
Output Impedance  
ZOUT  
>100  
NOISE PERFORMANCE  
Output Voltage Noise  
en  
VDD = 3.6 V, f = 20 Hz to 20 kHz, inputs are  
ac-grounded, gain = 6 dB, A-weighted  
30  
μV rms  
Signal-to-Noise Ratio  
SNR  
PO = 1.4 W, RL = 8 Ω, gain = 6 dB  
PO = 1.4 W, RL = 8 Ω, gain = 24 dB  
100  
90  
dB  
dB  
1 Although the SSM2380 has good quality above 2 W, continuous output power beyond 2 W must be avoided due to device packaging limitations.  
Rev. A | Page 4 of 32  
 
 
SSM2380  
I2C TIMING CHARACTERISTICS  
Table 2.  
Limit  
Parameter  
Unit  
ns  
ns  
ns  
ꢀs  
kHz  
ns  
ns  
ns  
ns  
Description  
tMIN  
600  
600  
600  
1.3  
0
tMAX  
tSCS  
tSCH  
tPH  
tPL  
fSCK  
tDS  
tDH  
tRT  
Start condition setup time  
Start condition hold time  
SCK pulse width high  
SCK pulse width low  
SCK frequency  
Data setup time  
Data hold time  
SDA and SCK rise time  
SDA and SCK fall time  
Stop condition setup time  
526  
100  
900  
300  
300  
tFT  
tHCS  
600  
ns  
Timing Diagram  
tSCH  
tHCS  
SDA  
tDS  
tSCS  
tPH  
tPL  
SCK  
tRT  
tDH  
tFT  
Figure 2. I2C Timing  
Rev. A | Page 5 of 32  
 
SSM2380  
ABSOLUTE MAXIMUM RATINGS  
Absolute maximum ratings apply at 25°C, unless otherwise noted.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 3.  
Parameter  
Rating  
Supply Voltage  
Input Voltage  
Common-Mode Input Voltage  
ESD Susceptibility  
6 V  
VDD  
VDD  
4 kV  
Table 4. Thermal Resistance  
Package Type  
16-Lead, 2.0 mm × 2.0 mm WLCSP  
PCB  
θJA  
θJB  
Unit  
2S2P 57  
14  
°C/W  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature  
(Soldering, 60 sec)  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +165°C  
300°C  
ESD CAUTION  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. A | Page 6 of 32  
 
SSM2380  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
BALL A1  
INDICATOR  
1
2
3
4
OUTL+  
VDD  
VDD  
OUTR+  
A
B
OUTL–  
GND  
GND  
OUTR–  
SDA  
ALCTH  
GAIN1  
SCK  
EDGE  
GAIN0  
SD  
MODE  
INL–  
C
D
INL+  
INR–  
INR+  
TOP VIEW  
(BALL SIDE DOWN)  
Not to Scale  
Figure 3. Pin Configuration (Bottom View)  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
OUTL+  
VDD  
OUTR+  
OUTL−  
GND  
Description  
A1  
A2, A3  
A4  
B1  
B2, B3  
B4  
Noninverting Output for Left Channel.  
Power Supply for Output Amplifiers.  
Noninverting Output for Right Channel.  
Inverting Output for Left Channel.  
Ground for Output Amplifiers.  
OUTR−  
SD  
Inverting Output for Right Channel.  
Shutdown Input. Active low digital input.  
C1  
C2  
C3  
MODE  
SCK/EDGE/GAIN0  
Three-Mode Interface Control Pin.  
2-Wire I2C Control Interface Clock Input (SCK). MODE is connected to GND.  
Low Emissions Mode Enable Pin (EDGE). MODE is floating.  
Gain Select Pin, LSB (GAIN0). MODE is connected to VDD.  
C4  
SDA/ALCTH/GAIN1 2-Wire I2C Control Interface Data Input/Output (SDA). MODE is connected to GND.  
Variable Threshold Voltage for ALC (ALCTH). MODE is floating.  
Gain Select Pin, MSB (GAIN1). MODE is connected to VDD.  
D1  
D2  
D3  
D4  
INL+  
INL−  
INR−  
INR+  
Noninverting Input for Left Channel.  
Inverting Input for Left Channel.  
Inverting Input for Right Channel.  
Noninverting Input for Right Channel.  
Rev. A | Page 7 of 32  
 
SSM2380  
TYPICAL PERFORMANCE CHARACTERISTICS  
EDGE pin = GND, unless otherwise noted.  
100  
100  
10  
1
R
= 8+ 33µH  
R = 8+ 33µH  
L
GAIN = 24dB  
L
GAIN = 6dB  
V
= 2.5V  
V
= 2.5V  
DD  
DD  
10  
1
V
= 3.6V  
V
= 3.6V  
DD  
DD  
V
= 5V  
V
= 5V  
DD  
DD  
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 4. THD + N vs. Output Power into 8 Ω, Gain = 6 dB  
Figure 7. THD + N vs. Output Power into 8 Ω, Gain = 24 dB  
100  
10  
1
100  
10  
1
R
= 4+ 15µH  
R = 4+ 15µH  
L
GAIN = 24dB  
L
GAIN = 6dB  
V
= 2.5V  
DD  
V
= 2.5V  
DD  
V
= 3.6V  
V
= 3.6V  
DD  
DD  
V
= 5V  
V
= 5V  
DD  
DD  
0.1  
0.1  
0.01  
0.01  
0.001  
0.0001  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 5. THD + N vs. Output Power into 4 Ω, Gain = 6 dB  
Figure 8. THD + N vs. Output Power into 4 Ω, Gain = 24 dB  
100  
10  
100  
10  
1
V
R
= 5V  
= 8+ 33µH  
V
R
= 5V  
DD  
= 8+ 33µH  
L
DD  
L
GAIN = 6dB  
GAIN = 24dB  
1
1W  
0.1  
1W  
0.5W  
0.1  
0.01  
0.001  
0.0001  
0.5W  
0.01  
0.25W  
0.25W  
100  
0.001  
10  
100  
1k  
10k  
100k  
10  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. THD + N vs. Frequency, VDD = 5 V, RL = 8 Ω, Gain = 6 dB  
Figure 9. THD + N vs. Frequency, VDD = 5 V, RL = 8 Ω, Gain = 24 dB  
Rev. A | Page 8 of 32  
 
SSM2380  
100  
10  
1
100  
10  
1
V
R
= 5V  
= 4+ 15µH  
V
R
= 5V  
DD  
= 4+ 15µH  
L
DD  
L
GAIN = 6dB  
GAIN = 24dB  
2W  
2W  
0.1  
0.1  
1W  
1W  
0.01  
0.01  
0.5W  
0.5W  
0.001  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 10. THD + N vs. Frequency, VDD = 5 V, RL = 4 Ω, Gain = 6 dB  
Figure 13. THD + N vs. Frequency, VDD = 5 V, RL = 4 Ω, Gain = 24 dB  
100  
100  
V
= 3.6V  
V
= 3.6V  
DD  
DD  
R
= 8+ 33µH  
R
= 8+ 33µH  
L
L
GAIN = 6dB  
GAIN = 24dB  
10  
1
10  
1
0.5W  
0.5W  
0.1  
0.1  
0.25W  
0.25W  
0.01  
0.01  
0.125W  
100  
0.125W  
1k  
0.001  
0.001  
10  
100  
10k  
100k  
10  
1k  
FREQUENCY (Hz)  
10k  
100k  
FREQUENCY (Hz)  
Figure 11. THD + N vs. Frequency, VDD = 3.6 V, RL = 8 Ω, Gain = 6 dB  
Figure 14. THD + N vs. Frequency, VDD = 3.6 V, RL = 8 Ω, Gain = 24 dB  
100  
100  
V
= 3.6V  
V
= 3.6V  
DD  
DD  
R
= 4+ 15µH  
R
= 4+ 15µH  
L
L
GAIN = 6dB  
GAIN = 24dB  
10  
1
10  
1
1W  
1W  
0.1  
0.1  
0.5W  
0.5W  
0.01  
0.01  
0.25W  
1k  
0.25W  
0.001  
0.001  
10  
100  
1k  
10k  
100k  
10  
100  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. THD + N vs. Frequency, VDD = 3.6 V, RL = 4 Ω, Gain = 6 dB  
Figure 15. THD + N vs. Frequency, VDD = 3.6 V, RL = 4 Ω, Gain = 24 dB  
Rev. A | Page 9 of 32  
SSM2380  
100  
100  
10  
1
V
R
= 2.5V  
= 8+ 33µH  
V
R
= 2.5V  
DD  
= 8+ 33µH  
L
DD  
L
GAIN = 6dB  
GAIN = 24dB  
10  
1
0.25W  
0.25W  
0.1  
0.1  
0.125W  
0.125W  
0.01  
0.01  
0.0625W  
100  
0.0625W  
1k  
0.001  
0.001  
10  
100  
10k  
100k  
10  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 16. THD + N vs. Frequency, VDD = 2.5 V, RL = 8 Ω, Gain = 6 dB  
Figure 19. THD + N vs. Frequency, VDD = 2.5 V, RL = 8 Ω, Gain = 24 dB  
100  
100  
V
= 2.5V  
V
= 2.5V  
DD  
DD  
R
= 4+ 15µH  
R
= 4+ 15µH  
L
L
GAIN = 6dB  
GAIN = 24dB  
10  
1
10  
1
0.5W  
0.5W  
0.1  
0.1  
0.25W  
0.25W  
0.01  
0.01  
0.125W  
0.125W  
0.001  
0.001  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
Figure 17. THD + N vs. Frequency, VDD = 2.5 V, RL = 4 Ω, Gain = 6 dB  
Figure 20. THD + N vs. Frequency, VDD = 2.5 V, RL = 4 Ω, Gain = 24 dB  
7.5  
7.0  
BOTH CHANNELS  
BOTH CHANNELS  
GAIN = 6dB  
7.0  
GAIN = 24dB  
6.5  
R
= 4+ 15µH  
L
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
R
= 4+ 15µH  
L
6.0  
5.5  
5.0  
R
= 8+ 33µH  
L
R
= 8+ 33µH  
L
NO LOAD  
NO LOAD  
4.5  
4.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 18. Supply Current vs. Supply Voltage, Gain = 6 dB  
Figure 21. Supply Current vs. Supply Voltage, Gain = 24 dB  
Rev. A | Page 10 of 32  
SSM2380  
2.0  
1.8  
1.6  
2.0  
1.8  
1.6  
f = 1kHz  
= 8+ 33µH  
GAIN = 6dB  
f = 1kHz  
R = 8+ 33µH  
L
GAIN = 24dB  
R
L
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
THD + N = 10%  
THD + N = 10%  
THD + N = 1%  
THD + N = 1%  
0.2  
0
0.2  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 22. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, Gain = 6 dB  
Figure 25. Maximum Output Power vs. Supply Voltage, RL = 8 Ω, Gain = 24 dB  
3.5  
3.5  
f = 1kHz  
f = 1kHz  
R
= 4+ 15µH  
R = 4+ 15µH  
GAIN = 24dB  
L
L
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
GAIN = 6dB  
THD + N = 10%  
THD + N = 10%  
THD + N = 1%  
THD + N = 1%  
0
2.5  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 23. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, Gain = 6 dB  
Figure 26. Maximum Output Power vs. Supply Voltage, RL = 4 Ω, Gain = 24 dB  
100  
100  
R
= 4+ 15µH  
V
= 2.5V  
L
DD  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
V
= 3.6V  
R = 8+ 33µH  
L
DD  
V
= 5V  
DD  
V
= 3.6V  
DD  
V
= 2.5V  
DD  
V
= 5V  
DD  
20  
10  
0
20  
10  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0  
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 24. Efficiency vs. Output Power into 8 Ω  
Figure 27. Efficiency vs. Output Power into 4 Ω  
Rev. A | Page 11 of 32  
SSM2380  
0.8  
1.6  
1.4  
BOTH CHANNELS  
= 8+ 33µH  
GAIN = 6dB  
BOTH CHANNELS  
R = 4+ 15µH  
L
GAIN = 6dB  
R
L
0.7  
0.6  
0.5  
0.4  
0.3  
1.2  
1.0  
0.8  
0.6  
V
= 5V  
V
= 5V  
DD  
DD  
V
= 3.6V  
V
= 3.6V  
DD  
DD  
V
= 2.5V  
V
= 2.5V  
DD  
DD  
0.2  
0.1  
0
0.4  
0.2  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0
1
2
3
4
5
6
OUTPUT POWER (W)  
OUTPUT POWER (W)  
Figure 28. Supply Current vs. Output Power into 8 Ω  
Figure 31. Supply Current vs. Output Power into 4 Ω  
0
–10  
–20  
–30  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 29. Common-Mode Rejection Ratio (CMRR) vs. Frequency  
Figure 32. Power Supply Rejection Ratio (PSRR) vs. Frequency  
0
V
V
R
= 5V  
DD  
RIPPLE  
= 8+ 33µH  
= 500mV rms  
–20  
–40  
–60  
L
LEFT TO RIGHT  
–80  
RIGHT TO LEFT  
–100  
–120  
–140  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 30. Crosstalk vs. Frequency  
Rev. A | Page 12 of 32  
SSM2380  
6
5
6
5
OUTPUT  
OUTPUT  
SD INPUT  
4
3
4
3
2
2
1
1
0
0
SD INPUT  
–1  
–2  
–1  
–2  
–2  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
–160 –120 –80 –40  
0
40  
80  
120 160 200 240  
TIME (ms)  
TIME (µs)  
Figure 33. Turn-On Response  
Figure 34. Turn-Off Response  
Rev. A | Page 13 of 32  
SSM2380  
THEORY OF OPERATION  
The SSM2380 has a pop-and-click suppression architecture that  
reduces these output transients, resulting in noiseless activation  
and deactivation.  
OVERVIEW  
The SSM2380 stereo, Class-D audio amplifier features a filterless  
modulation scheme that greatly reduces the external component  
count, conserving board space and, thus, reducing system cost.  
The SSM2380 does not require an output filter but, instead, relies  
on the inherent inductance of the speaker coil and the natural  
filtering of the speaker and human ear to fully recover the audio  
component of the square wave output.  
OUTPUT MODULATION DESCRIPTION  
The SSM2380 uses three-level, Σ-Δ output modulation. Each  
output can swing from GND to VDD and vice versa. Ideally, when  
no input signal is present, the output differential voltage is 0 V  
because there is no need to generate a pulse. In a real-world  
situation, noise sources are always present.  
Most Class-D amplifiers use some variation of pulse-width  
modulation (PWM), but the SSM2380 uses Σ-Δ modulation to  
determine the switching pattern of the output devices, resulting  
in a number of important benefits.  
Due to the constant presence of noise, a differential pulse is  
generated, when required, in response to this stimulus. A small  
amount of current flows into the inductive load when the differ-  
ential pulse is generated.  
Σ-Δ modulators do not produce a sharp peak with many  
harmonics in the AM frequency band, as pulse-width  
modulators often do.  
Most of the time, however, the output differential voltage is 0 V,  
due to the Analog Devices, Inc., three-level, Σ-Δ output modu-  
lation. This feature ensures that the current flowing through the  
inductive load is small.  
Σ-Δ modulation provides the benefits of reducing the  
amplitude of spectral components at high frequencies,  
that is, reducing EMI emissions that might otherwise  
be radiated by speakers and long cable traces.  
When the user wants to send an input signal, an output pulse  
(OUTx+ and OUTx−) is generated to follow the input voltage.  
The differential pulse density (VOUT) is increased by raising the  
input signal level. Figure 35 depicts three-level, Σ-Δ output  
modulation with and without input stimulus.  
The SSM2380 does not require external EMI filtering for  
twisted speaker cable lengths shorter than 10 cm. If longer  
speaker cables are used, the SSM2380 has an emission sup-  
pression mode that allows significantly longer speaker cable.  
Due to the inherent spread-spectrum nature of Σ-Δ modu-  
lation, the need for modulator synchronization is eliminated  
for designs that incorporate multiple SSM2380 amplifiers.  
OUTPUT = 0V  
+5V  
OUT+  
0V  
+5V  
OUT–  
0V  
+5V  
Using the I2C control interface, the gain of the SSM2380 can  
be selected from 1 dB to 24 dB (plus mute) in 47 steps with no  
external components and fixed input impedance. Other features  
accessed from the I2C interface include the following:  
V
0V  
OUT  
–5V  
OUTPUT > 0V  
+5V  
OUT+  
OUT–  
0V  
+5V  
Independent left/right channel shutdown  
Variable ultralow EMI emission control mode  
Automatic level control (ALC) for high quality speaker  
protection  
0V  
+5V  
V
OUT  
0V  
OUTPUT < 0V  
+5V  
OUT+  
OUT–  
Stereo-to-mono mixing operation  
0V  
+5V  
The SSM2380 also offers protection circuits for overcurrent and  
overtemperature protection.  
0V  
0V  
V
OUT  
–5V  
POP-AND-CLICK SUPPRESSION  
Figure 35. Three-Level, Σ-Δ Output Modulation  
With and Without Input Stimulus  
Voltage transients at the output of audio amplifiers can occur  
when shutdown is activated or deactivated. Voltage transients  
as low as 10 mV can be heard as an audio pop in the speaker.  
Clicks and pops can also be classified as undesirable audible  
transients generated by the amplifier system and, therefore, as  
not coming from the system input signal. Such transients may  
be generated when the amplifier system changes its operating  
mode. For example, the following may be sources of audible  
transients: system power-up and power-down, mute and  
unmute, input source change, and sample rate change.  
Rev. A | Page 14 of 32  
 
 
SSM2380  
Maximum output power is derived from VTH using the  
following equation:  
OPERATING MODES  
The SSM2380 has three unique operating modes, controlled by  
the MODE pin. When MODE (Ball C2) is connected to GND,  
the SSM2380 operates in I2C control mode; Ball C3 and Ball C4  
function as SCK and SDA for the I2C input. In I2C control mode,  
the user has full control of all internal registers of the SSM2380  
(see Table 11).  
2
(Limit×V )/100  
DD  
2
POUT  
=
RSP  
where RSP is the speaker impedance.  
When MODE (Ball C2) is connected to VDD, the SSM2380  
operates in gain select mode; Ball C3 and Ball C4 function as  
the gain select pins, GAIN0 and GAIN1. All ALC and emission  
control features are disabled in gain select mode, and the user  
can set the gain to 6 dB, 12 dB, 18 dB, or 24 dB only.  
95  
90  
85  
80  
75  
70  
65  
60  
When MODE (Ball C2) is not connected (floating), the SSM2380  
operates in ALC mode; Ball C3 and Ball C4 function as EDGE and  
ALCTH. In ALC mode, the default gain is 18 dB. The user can  
enable or disable the emission control (EMI) feature by connect-  
ing EDGE (Ball C3) to VDD or GND. In addition to emission  
control, the ALC is activated. The user must connect a resistor  
from ALCTH (Ball C4) to GND. This resistor allows the user to  
TYPICAL CONDITION  
55  
INTERNAL RESISTOR – 20%  
INTERNAL RESISTOR + 20%  
50  
limit the output level to any setting from 45% to 90% of VDD  
.
45  
100  
1k  
10k  
100k  
1M  
RESISTOR ()  
Table 6. MODE Pin Selection Guide  
Figure 36. Output Voltage Limit (VTH) vs. RTH  
SSM2380 Ball  
Operating Mode  
Gain select mode  
I2C control mode  
Ball C2 (MODE)  
Ball C3 Ball C4  
In ALC mode, the attack, hold, and release times associated  
with ALC operation are at fixed levels, as indicated in Table 7.  
High (connected to VDD) GAIN0  
Low (connected to GND) SCK  
Open (floating)  
GAIN1  
SDA  
Table 7. Attack, Hold, and Release Times for ALC Mode  
EDGE  
ALCTH ALC mode  
Time  
Duration  
Attack Time  
Hold Time  
Release Time  
256 ꢀs (per 0.5 dB step)  
90 ms to 120 ms (nonadjustable)  
128 ms (per 0.5 dB step)  
ALC MODE OPERATION  
When MODE is not connected (floating), the SSM2380 is in ALC  
mode, disabling the I2C interface. In ALC mode, the user has  
control of only two functions: setting the ALC threshold voltage  
and activating or deactivating the emission limiting circuitry.  
Activating or Deactivating the Emission Limiting Circuitry  
To activate or deactivate the emission limiting circuitry, connect  
EDGE (Ball C3) to GND or to VDD. When EDGE is connected  
to GND, the SSM2380 is in normal operating mode, deactivating  
the emission limiting function. The device operates with maximum  
efficiency and noise level performance in this setting. The user  
can also pass FCC Class B emission testing with 10 cm twisted  
pair speaker wire for loudspeaker connection.  
Setting the ALC Threshold Voltage  
To set the ALC threshold voltage, connect ALCTH (Ball C4)  
to GND with a series resistor. Figure 36 shows the relationship  
between the RTH resistor setting and the output voltage limit as  
a percentage of the supply rail.  
To calculate the resistor value, use the following equations:  
If longer speaker wire is desired, connect the EDGE pin to VDD  
to activate the emission limiting circuitry. The trade-off is slightly  
lower efficiency and noise performance. The penalty for using the  
emission control circuitry is far less than the decreased perfor-  
mance observed when using a ferrite bead based EMI filter for  
emission limiting purposes.  
Limit (%) = 100 × (REXT + 53)/(2.2 × REXT + 58) kꢀ  
R
EXT = (53 − 58 × Limit/100)/(2.2 × (Limit/100 – 1))%  
For example, to set an 80% limit,  
EXT = (53 − 58 × 80/100)/(2.2 × (80/100 − 1) kꢀ  
Therefore, 8.7 kΩ is required.  
R
Rev. A | Page 15 of 32  
 
 
 
SSM2380  
Figure 37 shows the input vs. output and gain characteristics  
of the ALC that is implemented in the SSM2380.  
GAIN SELECT MODE OPERATION  
When MODE is connected to VDD, the SSM2380 is in gain  
select mode, disabling the I2C interface. The ALC and emission  
limiting functions are also disabled. Ball C3 and Ball C4 function  
as the gain select pins, GAIN0 and GAIN1. Table 8 shows the  
user-selectable gain settings for the SSM2380.  
5.6  
5.2  
4.8  
4.4  
4.0  
3.6  
Table 8. Gain Settings in Gain Select Mode  
3.2  
2.8  
2.4  
GAIN0 (Ball C3)  
GAIN1 (Ball C4)  
Gain Setting (dB)  
GND  
VDD  
GND  
VDD  
GND  
GND  
VDD  
VDD  
6
2.0  
12  
18  
24  
INPUT  
GAIN = 6dB  
GAIN = 12dB  
GAIN = 18dB  
GAIN = 24dB  
1.6  
1.2  
0.8  
0.4  
0
I2C CONTROL MODE OPERATION  
0
20  
40  
60  
80  
100 120 140 160 180 200  
TIME (ms)  
When MODE is connected to GND, the SSM2380 operates in  
I2C control mode, enabling Ball C3 and Ball C4 to act as SCK  
and SDA for the I2C input. In I2C control mode, the user has  
full control of all features of the SSM2380 (see Table 11).  
Figure 37. Input vs. Output and Gain Characteristics  
When the input level is small and below the ALC threshold value,  
the gain of the amplifier stays at the preset gain setting. When  
the input exceeds the ALC threshold value, the ALC gradually  
reduces the gain from the preset gain setting down to 1 dB.  
Gain control: 48-step, left/right independent control  
(ALC is off)  
ALC Compression and Limiting Modes  
ALC control (limiter/compressor): configurable attack  
and release times; configurable threshold voltage (16 level  
settings, 64% to 96% of VDD); optional fixed-power mode  
(does not track rail)  
The ALC implemented on the SSM2380 has two operation  
modes: compression and limiting. When the ALC is triggered  
for medium-level input signals, the ALC is in compression mode.  
In this mode, an increase of the output signal is one-third the  
increase of the input signal. For example, if the input signal  
increases by 3 dB, the ALC reduces the amplifier gain by 2 dB  
and thus the output signal increases by only 1 dB.  
Output stage: active emissions edge rate control  
(four settings)  
Mixer: option to send left channel input to both left and  
right channel outputs or to send right channel input to  
both outputs  
As the input signal becomes very large, the ALC transitions to  
limiting mode. In this mode, the output stays at a given threshold  
level, VTH, even if the input signal grows larger. As an example of  
limiting mode operation, when a large input signal increases by  
3 dB, the ALC reduces the amplifier gain by 3 dB and thus the  
output increases by 0 dB. When the amplifier gain is reduced to  
1 dB, the ALC cannot reduce the gain further, and the output  
increases again. This is because the total range of the ALC opera-  
tion has bottomed out due to extreme input voltage at high gain. To  
avoid potential speaker damage, the maximum input amplitude  
should not be large enough to exceed the maximum attenuation  
(to a level of 1 dB) of the limiting mode.  
AUTOMATIC LEVEL CONTROL (ALC)  
Automatic level control (ALC) is a function that automatically  
adjusts amplifier gain to generate the desired output amplitude  
with reference to a particular input stimulus. The primary use for  
the ALC is to protect an audio power amplifier or speaker load  
from the damaging effects of clipping or current overloading.  
This is accomplished by limiting the output amplitude of the  
amplifier upon reaching a preset threshold voltage. Another  
benefit of the ALC is that it makes sound sources with a wide  
dynamic range more intelligible by boosting low level signals,  
while in turn limiting very high level signals.  
Before activating the ALC by setting the ALC_EN bit (Bit 7 in  
Register R4), the user has full control of the left and right channel  
PGA gain (programmable in Register R0 and Register R1). After  
the ALC is activated (ALC_EN = 1), the user has no control over  
the gain settings in Register R0 and Register R1; the left channel  
PGA gain is locked into the device and controls the gain for both  
the left and right channels. To change the gain, the user must  
reset the ALC_EN bit to 0 and then load the new gain settings.  
Rev. A | Page 16 of 32  
 
 
 
SSM2380  
3.5  
3.0  
Attack Time, Hold Time, and Release Time  
When the amplifier input signal exceeds a preset threshold,  
the ALC reduces amplifier gain rapidly until the output voltage  
settles to a target level. This target level is maintained for a certain  
period. If the input voltage does not exceed the threshold again,  
the ALC increases the gain gradually.  
2.5  
2.0  
1.5  
1.0  
The attack time is the time taken to reduce the gain from maxi-  
mum to minimum. The hold time is the time that the reduced  
gain is maintained. The release time is the time taken to increase  
the gain from minimum to maximum. These times are shown  
in Table 9.  
00 (LIMITER MODE)  
01 (COMPRESSION MODE 1)  
10 (COMPRESSION MODE 2)  
11 (COMPRESSION MODE 3)  
3.6V × 0.77 = 2.772V  
0.5  
0
Table 9. Attack, Hold, and Release Times for I2C Control Mode  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9 1.0  
INPUT VOLTAGE (V)  
Time1  
Duration  
Figure 39. Adjustable Compression Settings, VDD = 3.6 V,  
ALC Threshold Level = 77%  
Attack Time  
Hold Time  
Release Time  
32 ꢀs to 4 ms (per 0.5 dB step)  
90 ms to 120 ms  
4 ms to 512 ms (per 0.5 dB step)  
4.5  
4.0  
1 The attack time and release time can be adjusted using the I2C interface.  
The hold time cannot be adjusted.  
3.5  
3.0  
2.5  
2.0  
1.5  
Soft-Knee Compression  
Often performed using sophisticated DSP algorithms, soft-knee  
compression provides maximum sound quality with effective  
speaker protection. Instead of using a fixed compression setting  
prior to limiting, the SSM2380 allows for a much more subtle  
transition into limiting mode, preserving the original sound  
quality of the source audio. Figure 38 to Figure 40 show the  
various soft-knee compression settings. If desired, compression  
can be disabled. When compression is disabled, the part operates  
in limiter-only mode.  
00 (LIMITER MODE)  
1.0  
01 (COMPRESSION MODE 1)  
10 (COMPRESSION MODE 2)  
11 (COMPRESSION MODE 3)  
5.0V × 0.77 = 3.85V  
0.5  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8 2.0  
INPUT VOLTAGE (V)  
Figure 40. Adjustable Compression Setting, VDD = 5.0 V,  
ALC Threshold Level = 77%  
2.5  
ALC Soft Transition  
The ALC operation of the SSM2380 incorporates techniques to  
reduce the audible artifacts associated with gain change transi-  
tions. First, the gain is changed in small increments of 0.5 dB.  
In addition to this small step size, the rate of gain change is  
reduced, proportional to the attack time setting. This feature  
drastically reduces and virtually eliminates the presence of zipper  
noise and other artifacts associated with gain transitions during  
ALC operation. Figure 41 shows the soft transition operation.  
2.0  
1.5  
1.0  
00 (LIMITER MODE)  
01 (COMPRESSION MODE 1)  
10 (COMPRESSION MODE 2)  
0.5  
11 (COMPRESSION MODE 3)  
2.5V × 0.77 = 1.925V  
NORMAL TRANSITION  
0
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
INPUT VOLTAGE (V)  
0.5dB  
Figure 38. Adjustable Compression Settings, VDD = 2.5 V,  
ALC Threshold Level = 77%  
SOFT TRANSITION (32µs TO 256µs)  
0.5dB  
Figure 41. Soft Transition  
Rev. A | Page 17 of 32  
 
 
 
 
SSM2380  
When the ALC is active, the following options are acceptable:  
MIXER MODE  
When I2C control mode is activated, the user can send left  
channel input to both left and right channel outputs or send  
right channel input to both outputs. This is achieved by  
selecting Register R2, Bit 0 or Bit 1.  
Left output = left input; right output = right input  
Left output = left input; right output = left input  
Left output = right input; right output = right input  
To use the following options, the ALC must be disabled:  
Using Mixer Mode with the ALC  
Left output = left input + right input; right output = right  
input  
Left output = left input; right output = left input + right  
input  
Left output = left input + right input; right output = left  
input + right input  
If the ALC is enabled and the user also wishes to use the mixer  
operation, follow the guidelines in this section. Left channel  
gain controls the ALC; therefore, sending left channel input  
to the left and right channel outputs poses no problem for the  
ALC. However, to source the right channel input to the left and  
right channel outputs when using the ALC, the user must first  
load the left channel gain (Register R0, Bit 7).  
With the ALC disabled, the user can also use the full mixer  
capability; that is, if the user wishes to mix the right and left  
inputs for both the right and left outputs, the ALC must be  
disabled. If the user needs both the mixing and ALC functions,  
the left or right channel must be muted to avoid problems.  
Rev. A | Page 18 of 32  
 
SSM2380  
APPLICATIONS INFORMATION  
Table 10. Input Impedance for I2C Control Mode  
LAYOUT  
LGAIN[5:0],  
RGAIN[5:0]  
As output power increases, care must be taken to lay out printed  
circuit board (PCB) traces and wires properly among the amplifier,  
load, and power supply. A good practice is to use short, wide  
PCB tracks to decrease voltage drops and minimize inductance.  
Ensure that track widths are at least 200 mil for every inch of  
track length for lowest DCR, and use 1 oz or 2 oz copper PCB  
traces to further reduce IR drops and inductance. A poor layout  
increases voltage drops, consequently affecting efficiency. Use  
large traces for the power supply inputs and amplifier outputs  
to minimize losses due to parasitic trace resistance.  
Gain (dB)  
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
RIN (kΩ)  
7.3  
7.7  
8.1  
8.5  
101110  
101101  
101100  
101011  
101010  
101001  
101000  
100111  
100110  
100101  
100100  
100011  
100010  
100001  
100000  
011111  
011110  
011101  
011100  
011011  
011010  
011001  
011000  
010111  
010110  
010101  
010100  
010011  
010010  
010001  
010000  
001111  
001110  
001101  
001100  
001011  
001010  
001001  
001000  
000111  
000110  
000101  
000100  
000011  
000010  
000001  
000000  
9.0  
9.5  
10.0  
10.5  
11.1  
11.7  
12.3  
12.9  
13.6  
14.3  
15.0  
15.8  
16.6  
17.4  
18.3  
19.2  
20.1  
21.1  
22.1  
23.1  
24.2  
25.3  
26.4  
27.6  
28.8  
30.0  
31.3  
32.6  
34.0  
35.3  
36.7  
38.1  
39.6  
41.1  
42.6  
44.1  
45.6  
47.1  
48.7  
50.3  
51.8  
53.4  
55.0  
Proper grounding guidelines help to improve audio performance,  
minimize crosstalk between channels, and prevent switching  
noise from coupling into the audio signal. To maintain high  
output swing and high peak output power, the PCB traces that  
connect the output pins to the load, as well as the PCB traces to  
the supply pins, should be as wide as possible to maintain the  
minimum trace resistances. It is also recommended that a large  
ground plane be used for minimum impedances.  
In addition, good PCB layout isolates critical analog paths from  
sources of high interference. High frequency circuits (analog and  
digital) should be separated from low frequency circuits. Properly  
designed multilayer PCBs can reduce EMI emissions and increase  
immunity to the RF field by a factor of 10 or more compared with  
double-sided boards. A multilayer board allows a complete layer  
to be used for the ground plane, whereas the ground plane side  
of a double-sided board is often disrupted by signal crossover.  
If the system has separate analog and digital ground and power  
planes, the analog ground plane should be directly beneath the  
analog power plane, and, similarly, the digital ground plane should  
be directly beneath the digital power plane. There should be no  
overlap between analog and digital ground planes or between  
analog and digital power planes.  
INPUT CAPACITOR SELECTION  
The SSM2380 does not require input coupling capacitors if the  
input signal is biased from 1.0 V to VDD − 1.0 V. Input capacitors  
are required if the input signal is not biased within this recom-  
mended input dc common-mode voltage range, if high-pass  
filtering is needed, or if a single-ended source is used. If high-  
pass filtering is needed at the input, the input capacitor and the  
input resistor of the SSM2380 form a high-pass filter whose  
corner frequency is determined by the following equation:  
fC = 1/(2π × RIN × CIN)  
The input capacitor can significantly affect the performance of  
the circuit. Not using input capacitors degrades both the output  
offset of the amplifier and the dc PSRR performance.  
In I2C control mode, the input impedance changes depending on  
the gain setting from Register R0 and Register R1 (LGAIN[5:0]  
and RGAIN[5:0] bits). Table 10 shows the RIN value for each  
PGA gain setting.  
1.0  
Rev. A | Page 19 of 32  
 
 
SSM2380  
The power supply inputs must be decoupled with a good  
quality, low ESL, low ESR capacitor, usually of approximately  
4.7 μF. This capacitor bypasses low frequency noises to the  
ground plane.  
POWER SUPPLY DECOUPLING  
To ensure high efficiency, low total harmonic distortion (THD),  
and high PSRR, proper power supply decoupling is necessary.  
Noise transients on the power supply lines are short-duration  
voltage spikes. Although the actual switching frequency is typi-  
cally 325 kHz, these spikes can contain frequency components  
that extend into the hundreds of megahertz.  
For high frequency transient noises, use a 0.1 μF capacitor  
as close as possible to the VDD pins of the device. Placing the  
decoupling capacitors as close as possible to the SSM2380 helps  
to maintain efficient performance.  
Rev. A | Page 20 of 32  
 
SSM2380  
TYPICAL APPLICATION CIRCUITS  
GAIN  
MODULATOR  
MODULATOR  
INL  
OUTL  
ALC  
GAIN  
INR  
OUTR  
Figure 42. SSM2380 Mixer Operation Block Diagram  
VDD  
B1  
C26  
MPZ1608S121A  
OUT_L+  
10µF  
C27  
0.1µF  
C33  
510pF  
GND  
A1  
GND  
H6  
HDR1X2  
C34  
510pF  
C22  
R14  
R15  
0  
0Ω  
D1  
D2  
B2  
L INPUT +  
L INPUT–  
INL+  
OUTL+  
OUTL–  
0.22µF  
C23  
MPZ1608S121A  
OUT_L–  
B1  
INL–  
0.22µF  
U8  
B3  
SSM2380  
MPZ1608S121A  
C24  
OUT_R+  
R16  
R17  
0Ω  
0Ω  
D4  
D3  
A4  
B4  
R INPUT +  
R INPUT–  
INR+  
INR–  
OUTR+  
OUTR–  
0.22µF  
C25  
C35  
510pF  
0.22µF  
C2  
C4  
C3  
MODE  
SDA  
H7  
HDR1X2  
C1  
GND  
STDN  
SD  
C36  
GND  
SCK  
510pF  
B4  
MPZ1608S121A  
OUT_R–  
GND  
I2C[0..1]  
SDA  
SCK  
I2CVDD  
R20  
2.5kΩ  
R21  
2.5kΩ  
Figure 43. SSM2380 Typical Schematic, I2C Control Mode  
10µF  
VDD 2.5V TO 5.5V  
0.1µF  
SSM2380  
VDD  
VDD  
FET  
22nF  
22nF  
INR+  
INR–  
OUTR+  
OUTR–  
RIGHT IN+  
RIGHT IN–  
Σ-∆  
MODULATOR  
DRIVER  
SCK  
SDA  
GAIN  
CONTROL  
(+ALC)  
2
INTERNAL  
EMI  
I C  
BIAS  
OSCILLATOR CONTROL  
MODE = GND  
SD  
SHUTDOWN  
22nF  
22nF  
INL+  
INL–  
OUTL+  
OUTL–  
LEFT IN+  
LEFT IN–  
Σ-∆  
FET  
DRIVER  
MODULATOR  
GND  
GND  
2
I C OPERATION (MODE PIN = GND)  
Figure 44. SSM2380 I2C Control Mode Configuration (MODE Pin = GND)  
Rev. A | Page 21 of 32  
 
SSM2380  
VDD  
B1  
C26  
MPZ1608S121A  
OUT_L+  
10µF  
C27  
0.1µF  
C33  
510pF  
GND  
H6  
HDR1X2  
GND  
C34  
510pF  
C22  
D1  
D2  
A1  
B1  
B2  
L INPUT +  
L INPUT–  
INL+  
INL–  
OUTL+  
OUTL–  
0.22µF  
C23  
MPZ1608S121A  
OUT_L–  
0.22µF  
U8  
SSM2380  
B3  
MPZ1608S121A  
C24  
OUT_R+  
D4  
D3  
A4  
B4  
R INPUT +  
R INPUT –  
INR+  
INR–  
OUTR+  
OUTR–  
0.22µF  
C25  
C35  
510pF  
0.22µF  
C2  
C3  
C4  
MODE  
EDGE  
H7  
HDR1X2  
C1  
GND  
STDN  
SD  
C36  
ALCTH  
510pF  
B4  
MPZ1608S121A  
OUT_R–  
FLOAT  
EMI CTRL  
GND  
R20  
12kΩ  
ALC THRESHOLD RESISTOR  
GND  
Figure 45. SSM2380 Typical Schematic, ALC Mode  
10µF  
VDD 2.5V TO 5.5V  
0.1µF  
SSM2380  
VDD  
VDD  
FET  
22nF  
22nF  
INR+  
INR–  
OUTR+  
OUTR–  
RIGHT IN+  
Σ-∆  
MODULATOR  
DRIVER  
RIGHT IN–  
18dB  
GAIN  
(+ALC)  
2
I C  
DISABLED  
EDGE  
SD  
INTERNAL  
EMI  
MODE = OPEN  
EMISSION CONTROL  
SHUTDOWN  
BIAS  
OSCILLATOR CONTROL  
22nF  
22nF  
INL+  
INL–  
OUTL+  
OUTL–  
LEFT IN+  
LEFT IN–  
Σ-∆  
FET  
DRIVER  
MODULATOR  
GND  
GND  
ALCTH  
ALC OPERATION (MODE PIN = OPEN)  
R
TH  
Figure 46. SSM2380 ALC Mode Configuration (MODE Pin = Open (Floating))  
Rev. A | Page 22 of 32  
SSM2380  
VDD  
B1  
C26  
MPZ1608S121A  
OUT_L+  
10µF  
C27  
0.1µF  
C33  
510pF  
GND  
H6  
HDR1X2  
GND  
C34  
510pF  
C22  
R14  
R15  
0Ω  
0Ω  
D1  
D2  
A1  
B1  
B2  
L INPUT +  
L INPUT–  
INL+  
INL–  
OUTL+  
OUTL–  
0.22µF  
C23  
MPZ1608S121A  
OUT_L–  
0.22µF  
U8  
SSM2380  
B3  
MPZ1608S121A  
C24  
OUT_R+  
R16  
R17  
0Ω  
0Ω  
D4  
D3  
A4  
B4  
R INPUT +  
R INPUT –  
INR+  
INR–  
OUTR+  
OUTR–  
0.22µF  
C25  
C35  
510pF  
0.22µF  
I2CVDD  
C2  
C4  
C3  
MODE  
GAIN1  
GAIN0  
H7  
HDR1X2  
C1  
STDN  
GND  
SD  
C36  
510pF  
B4  
MPZ1608S121A  
OUT_R–  
GND  
GAIN SELECT G1  
GAIN SELECT G0  
Figure 47. SSM2380 Typical Schematic, Gain Select Mode  
10µF  
VDD 2.5V TO 5.5V  
0.1µF  
VDD  
SSM2380  
VDD  
FET  
22nF  
INR+  
INR–  
OUTR+  
OUTR–  
RIGHT IN+  
RIGHT IN–  
Σ-∆  
MODULATOR  
DRIVER  
22nF  
2
I C  
GAIN  
CONTROL  
INTERNAL  
EMI  
MODE = VDD  
BIAS  
DISABLED  
OSCILLATOR CONTROL  
SD  
SHUTDOWN  
22nF  
22nF  
INL+  
INL–  
OUTL+  
OUTL–  
LEFT IN+  
LEFT IN–  
Σ-∆  
FET  
DRIVER  
MODULATOR  
GND  
GND  
GAIN1  
GAIN0  
GAIN = 6dB, 12dB,  
18dB, OR 24dB  
GAIN OPERATION (MODE PIN = VDD)  
Figure 48. SSM2380 Gain Select Mode Configuration (MODE Pin = VDD)  
Rev. A | Page 23 of 32  
SSM2380  
I2C INTERFACE  
The I2C interface provides access to the user-selectable control  
registers and operates with a 2-wire interface.  
SDA generates the serial control data-word, and SCK clocks the  
serial data. The I2C bus address (Bits[A7:A1]) is 0x31 (01100010  
for write and 01100011 for read). Bit A0 is the designated  
read/write bit.  
Each control register consists of 16 bits, MSB first. Bits[B15:B9]  
are the register map address, and Bits[B8:B0] are the register data  
for the associated register map.  
SDA  
SCK  
S
P
8
9
8
9
8
9
1 TO 7  
1 TO 7  
1 TO 7  
DATA  
START ADDR  
R/W  
ACK  
SUBADDRESS  
ACK  
ACK  
STOP  
Figure 49. SSM2380 2-Wire I2C Generalized Clocking Diagram  
WRITE  
S
S
A7 ... A1 A0 A(S) B15 ... B9 B8 A(S) B7 ... B0 A(S)  
0
P
SEQUENCE  
DEVICE  
ADDRESS  
REGISTER  
ADDRESS  
REGISTER  
DATA  
READ  
SEQUENCE  
A7 ... A1 A0 A(S)  
0
B15 ... B9  
0
A(S)  
S
A7 ... A1 A0 A(S)  
1
B7 ... B0 A(M)  
...  
0
B8 A(M)  
0
P
DEVICE  
ADDRESS  
REGISTER  
ADDRESS  
DEVICE  
ADDRESS  
REGISTER  
DATA  
(SLAVE DRIVE)  
S = START BIT.  
P = STOP BIT.  
2
A0 = I C R/W BIT.  
A(S) = ACKNOWLEDGE BY SLAVE.  
A(M) = ACKNOWLEDGE BY MASTER.  
A(M) = ACKNOWLEDGE BY MASTER (INVERSION).  
Figure 50. I2C Write and Read Sequences  
Rev. A | Page 24 of 32  
 
SSM2380  
REGISTER MAP  
Table 11. Register Map  
Reg Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
LGAIN[5:0]  
Bit 1  
Bit 0  
Default  
R0  
0x00  
Left channel  
gain control  
LTOR  
LMUTE  
00100010  
R1  
0x01  
Right channel RTOL  
gain control  
RMUTE  
RGAIN[5:0]  
00100010  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
Mode control  
ALC Control 1  
0
0
0
0
EDGE[1:0]  
OCREC  
OTREC  
R2L  
L2R  
00001100  
00101011  
01001011  
00000011  
00000000  
00000000  
00000000  
RTIME[2:0]  
LTIME[2:0]  
ALC Control 2 ALC_EN  
COMP[1:0]  
ALC_VFIX  
ALCLV[3:0]  
Shutdown  
Error  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
STDNR  
STDNL  
OCR  
0
OCL  
0
OTW  
OTP  
0
Error clear  
Reset  
0
0
0
0
0
Rev. A | Page 25 of 32  
 
 
SSM2380  
REGISTER MAP DETAILS  
REGISTER R0: LEFT CHANNEL GAIN CONTROL, ADDRESS 0x00  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LTOR  
LMUTE  
LGAIN[5:0]  
Table 12. Left Channel Gain Control Register Bit Descriptions  
Bits  
Bit Name  
Description  
7
LTOR  
Left-to-right channel gain data load control.  
0 = disable simultaneous loading of left channel gain data to left and right channel registers (default).  
1 = enable simultaneous loading of left channel gain data to left and right channel registers.  
6
LMUTE  
Left channel input mute.  
0 = disable mute (default).  
1 = enable mute on left channel amplifier.  
[5:0]  
LGAIN[5:0]  
Left channel gain control. Each step represents a 0.5 dB increase in gain. For ALC operation, these bits control  
the gain setting for both the left and right channels. If the ALC_EN bit in Register R4 is set to 1, these bits cannot  
be changed.  
Setting  
000000  
Gain  
1 dB  
100010  
18 dB (default)  
101101  
101110 to 111111  
23.5 dB  
24 dB  
REGISTER R1: RIGHT CHANNEL GAIN CONTROL, ADDRESS 0x01  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RTOL  
RMUTE  
RGAIN[5:0]  
Table 13. Right Channel Gain Control Register Bit Descriptions  
Bits  
Bit Name  
Description  
7
RTOL  
Right-to-left channel gain data load control.  
0 = disable simultaneous loading of right channel gain data to left and right channel registers (default).  
1 = enable simultaneous loading of right channel gain data to left and right channel registers.  
6
RMUTE  
Right channel input mute.  
0 = disable mute (default).  
1 = enable mute on right channel amplifier.  
[5:0]  
RGAIN[5:0]  
Right channel gain control. Each step represents a 0.5 dB increase in gain. If the ALC_EN bit in Register R4 is set  
to 1, these bits cannot be changed.  
Setting  
000000  
Gain  
1 dB  
100010  
18 dB (default)  
101101  
101110 to 111111  
23.5 dB  
24 dB  
Rev. A | Page 26 of 32  
 
SSM2380  
REGISTER R2: MODE CONTROL, ADDRESS 0x02  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
EDGE[1:0]  
OCREC  
OTREC  
R2L  
L2R  
Table 14. Mode Control Register Bit Descriptions  
Bits  
Bit Name  
Description  
[5:4]  
EDGE[1:0]  
Edge rate control.  
Setting  
00  
01  
Rate Control  
Normal mode (default)  
Slow edge  
10  
11  
Slow edge (VDD > 3.0 V recommended)  
Slow edge (VDD > 4.0 V recommended)  
3
2
1
0
OCREC  
OTREC  
R2L  
Overcurrent autorecovery enable.  
0 = disabled.  
1 = enabled (default).  
Overtemperature autorecovery enable.  
0 = disabled.  
1 = enabled (default).  
Right channel signal mix enable (send right channel input to left and right channel outputs).  
0 = mix disabled (default).  
1 = mix enabled.  
L2R  
Left channel signal mix enable (send left channel input to left and right channel outputs).  
0 = mix disabled (default).  
1 = mix enabled.  
REGISTER R3: ALC CONTROL 1, ADDRESS 0x03  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
LTIME[2:0]  
Bit 0  
0
0
RTIME[2:0]  
Table 15. ALC Control 1 Register Bit Descriptions  
Bits  
Bit Name  
Description  
[5:3]  
RTIME[2:0]  
Release time setting (0.5 dB step).  
Setting  
Release Time  
000  
001  
4 ms/step (6 dB/48 ms)  
8 ms/step  
010  
16 ms/step  
011  
32 ms/step  
100  
64 ms/step  
101  
110  
128 ms/step (default)  
256 ms/step  
111  
512 ms/step  
[2:0]  
LTIME[2:0]  
Attack time setting (0.5 dB step).  
Setting  
000  
001  
Attack Time  
32 ꢀs/step (6 dB/384 ꢀs)  
64 ꢀs/step  
010  
128 ꢀs/step  
011  
100  
256 ꢀs/step (default)  
512 ꢀs/step  
101  
1 ms/step  
110  
2 ms/step  
111  
4 ms/step  
Rev. A | Page 27 of 32  
 
SSM2380  
REGISTER R4: ALC CONTROL 2, ADDRESS 0x04  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALC_EN  
COMP[1:0]  
ALC_VFIX  
ALCLV[3:0]  
Table 16. ALC Control 2 Register Bit Descriptions  
Bits  
Bit Name  
Description  
7
ALC_EN  
ALC enable (gain setting loaded to ALC control).  
0 = disabled (default).  
1 = enabled.  
[6:5]  
COMP[1:0]  
Compressor setting.  
Setting  
00  
Compression  
Limiter mode (1:∞)  
01  
Compression Mode 1 (1:4 to 1:∞)  
10  
11  
Compression Mode 2 (1:1.7 to 1:4 to 1:∞) (default)  
Compression Mode 3 (1:2 to 1:2.5 to 1:∞)  
4
ALC_VFIX  
ALC threshold mode setting.  
0 = supply tracking (default).  
1 = fixed power.  
[3:0]  
ALCLV[3:0]  
ALC threshold level setting. See Table 17 for a complete list of the settings (default value is 1011).  
Table 17. ALC Threshold Level Settings  
Supply Tracking Mode  
(ALC_VFIX = 0)  
ALCLV[3:0]  
Value  
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
Fixed Power Mode (ALC_VFIX = 1)  
% of VDD  
96  
93  
90  
88  
85  
83  
80  
78  
76  
74  
72  
70  
69  
67  
66  
64  
Voltage Limit (V)  
4.36  
4.25  
4.13  
4.01  
3.89  
3.77  
3.65  
3.54  
3.42  
3.30  
3.18  
3.06  
2.95  
2.83  
2.71  
2.59  
Power, 8 Ω Load (W)  
Power, 4 Ω Load (W)  
1.19  
1.13  
1.06  
1.0  
2.38  
2.25  
2.13  
2.01  
1.89  
1.78  
1.67  
1.56  
1.46  
1.36  
1.27  
1.17  
1.09  
1.00  
0.92  
0.84  
0.95  
0.89  
0.83  
0.78  
0.73  
0.68  
0.63  
0.59  
0.54  
0.50  
0.46  
0.42  
Rev. A | Page 28 of 32  
 
 
SSM2380  
REGISTER R5: SHUTDOWN, ADDRESS 0x05  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
STDNR  
STDNL  
Table 18. Shutdown Register Bit Descriptions  
Bits  
Bit Name  
Description  
1
STDNR  
Right channel shutdown control.  
0 = power up right channel.  
1 = power down right channel (default).  
0
STDNL  
Left channel shutdown control.  
0 = power up left channel.  
1 = power down left channel (default).  
REGISTER R6: ERROR, ADDRESS 0x06  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
OCR  
OCL  
OTW  
OTP  
Table 19. Error Register Bit Descriptions (Read-Only Register)  
Bits  
Bit Name  
Description  
3
OCR  
Overcurrent error bit, right channel.  
0 = no error detected (default).  
1 = error state flagged (if OCREC bit in the mode control register is set to 1).  
2
1
0
OCL  
OTW  
OTP  
Overcurrent error bit, left channel.  
0 = no error detected (default).  
1 = error state flagged (if OCREC bit in the mode control register is set to 1).  
Overtemperature warning bit.  
0 = no error detected (default).  
1 = warning state flagged (if OTREC bit in the mode control register is set to 1).  
Overtemperature error bit.  
0 = no error detected (default).  
1 = error state flagged (if OTREC bit in the mode control register is set to 1).  
REGISTER R7: ERROR CLEAR, ADDRESS 0x07  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
0
0
Table 20. Error Clear Register Bit Descriptions  
Bits  
Bit Name  
Description  
[7:0]  
Error clear  
Recovery from error condition. Used when autorecovery is disabled.  
REGISTER R8: RESET, ADDRESS 0x08  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0
0
0
0
0
0
0
0
Table 21. Reset Register Bit Descriptions  
Bits  
Bit Name  
Description  
[7:0]  
Reset  
Clear all registers to their default values. Used when autorecovery is disabled.  
Rev. A | Page 29 of 32  
 
SSM2380  
OUTLINE DIMENSIONS  
0.640  
0.595  
0.550  
2.000  
1.960 SQ  
1.920  
SEATING  
PLANE  
3
2
1
4
A
BALL 1  
IDENTIFIER  
B
C
D
0.340  
0.320  
0.300  
0.50  
REF  
0.05 MAX  
0.345  
0.330  
0.315  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
COPLANARITY  
0.270  
0.240  
0.210  
Figure 51. 16-Ball Wafer Level Chip Scale Package [WLCSP]  
(CB-16-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
CB-16-3  
CB-16-3  
SSM2380CBZ-REEL  
SSM2380CBZ-REEL7  
EVAL-SSM2380Z  
−40°C to +85°C  
−40°C to +85°C  
16-Ball Wafer Level Chip Scale Package [WLCSP]  
16-Ball Wafer Level Chip Scale Package [WLCSP]  
Evaluation Board  
1 Z = RoHS Compliant Part.  
Rev. A | Page 30 of 32  
 
SSM2380  
NOTES  
Rev. A | Page 31 of 32  
SSM2380  
NOTES  
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).  
©2010–2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08752-0-2/11(A)  
Rev. A | Page 32 of 32  

相关型号:

SSM2380CBZ-REEL

2 x 2 W, Filterless, Stereo, Class-D Audio Amplifier with ALC + I2C
ADI

SSM2380CBZ-REEL7

2 x 2 W, Filterless, Stereo, Class-D Audio Amplifier with ALC + I2C
ADI

SSM23LPT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM23PT

SCHOTTKY BARRIER RECTIFIER
CHENMKO

SSM24-10

Alarm Bells
SYSTEMSENSOR

SSM24-6

Alarm Bells
SYSTEMSENSOR

SSM24-8

Alarm Bells
SYSTEMSENSOR

SSM2402

Dual Audio Analog Switches
ADI

SSM2402P

Dual Audio Analog Switches
ADI

SSM2402P

DUAL 1-CHANNEL, AUDIO/VIDEO SWITCH, PDIP14, PLASTIC, DIP-14
ROCHESTER

SSM2402PZ

DUAL 1-CHANNEL, AUDIO/VIDEO SWITCH, PDIP14, PLASTIC, DIP-14
ROCHESTER

SSM2402PZ

Dual Audio Analog Switch
ADI