OPZ249GPZ [ADI]

DUAL OP-AMP, 3600uV OFFSET-MAX, 4.7MHz BAND WIDTH, PDIP8, PLASTIC, MS-001, DIP-8;
OPZ249GPZ
型号: OPZ249GPZ
厂家: ADI    ADI
描述:

DUAL OP-AMP, 3600uV OFFSET-MAX, 4.7MHz BAND WIDTH, PDIP8, PLASTIC, MS-001, DIP-8

放大器 光电二极管
文件: 总20页 (文件大小:431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision JFET, High Speed,  
Dual Operational Amplifier  
Data Sheet  
OP249  
FEATURES  
PIN CONFIGURATIONS  
Fast slew rate: 22 V/µs typical  
Settling time (0.01%): 1.2 µs maximum  
Offset voltage: 200 µV typical  
High open-loop gain: 1000 V/mV minimum  
Low total harmonic distortion: 0.002% typical  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP249  
A
OUT B  
–IN B  
+IN B  
B
Figure 1. 8-Lead CERDIP (Q-8) and  
8-Lead PDIP (N-8)  
APPLICATIONS  
1
2
3
4
8
7
6
5
+IN A  
V–  
–IN A  
OUT A  
V+  
Output amplifier for fast DACs  
Signal processing  
Instrumentation amplifiers  
Fast sample-and-holds  
Active filters  
Low distortion audio amplifiers  
Input buffer for ADCs  
Servo controllers  
A
+IN B  
–IN B  
OP249  
B
OUT B  
Figure 2. 8-Lead SOIC (R-8)  
GENERAL DESCRIPTION  
The OP249 is a high speed, precision dual JFET op amp, similar  
to the popular single op amp. The OP249 outperforms available  
dual amplifiers by providing superior speed with excellent dc  
performance. Ultrahigh open-loop gain (1 kV/mV minimum),  
low offset voltage, and superb gain linearity makes the OP249  
the industrys first true precision, dual high speed amplifier.  
Symmetrical slew rate, even when driving large load, such as,  
600 Ω or 200 pF of capacitance and ultralow distortion, make  
the OP249 ideal for professional audio applications, active filters,  
high speed integrators, servo systems, and buffer amplifiers.  
With a slew rate of 22 V/µs typical and a fast settling time of less  
than 1.2 µs maximum to 0.01%, the OP249 is an ideal choice for  
high speed bipolar DAC and ADC applications. The excellent  
dc performance of the OP249 allows the full accuracy of high  
resolution CMOS DACs to be realized.  
0.01  
T
V
V
R
= 25°C  
= ±15V  
= 10V p-p  
= 10kΩ  
= 1  
870ns  
A
S
100  
90  
100  
90  
O
L
V
A
10  
10  
0%  
0%  
10mV  
500ns  
5V  
1µs  
0.001  
20  
100  
1k  
10k 20k  
Figure 3. Fast Settling (0.01%)  
Figure 4. Low Distortion, AV = 1, RL = 10 kΩ  
Figure 5. Excellent Output Drive, RL = 600 Ω  
Rev. H  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©1989–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
OP249  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................7  
Applications Information.............................................................. 13  
Open-Loop Gain Linearity ....................................................... 14  
Offset Voltage Adjustment........................................................ 14  
Settling Time............................................................................... 14  
DAC Output Amplifier.............................................................. 15  
Discussion on Driving ADCs ................................................... 16  
Outline Dimensions....................................................................... 17  
Ordering Guide .......................................................................... 18  
Applications....................................................................................... 1  
Pin Configurations ........................................................................... 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
REVISION HISTORY  
11/13—Rev. G to Rev. H  
Changes to Figure 39 and Figure 41............................................. 13  
9/01—Rev. D to Rev. E  
Edits to Features and Pin Connections ..........................................1  
Edits to Electrical Characteristics .............................................. 2, 3  
Edits to Absolute Maximum Ratings, Package Type, and  
Ordering Guide..................................................................................4  
Deleted Wafer Test Limits and Dice Characteristics Section ......5  
Edits to Typical Performance Characteristics................................8  
Edits to Macro-Model Figure........................................................ 15  
Edits to Outline Dimensions......................................................... 17  
4/10—Rev. F to Rev. G  
Changes to Features Section and General Description Section. 1  
Changes to Offset Voltage Parameter, Table 1 .............................. 3  
Deleted Long Term Offset Voltage Parameter and  
Note 1, Table 1................................................................................... 3  
Changes to Offset Voltage Parameter, Offset Voltage  
Temperature Coefficient Parameter, and Note 1, Table 3 ........... 5  
Delete OP249F Columns, Table 3................................................... 5  
Changes to Offset Voltage Parameter and Offset Voltage  
Temperature Coefficient Parameter, Table 4................................. 5  
Inserted OP249F Columns, Table 4 ............................................... 5  
Changes to Discussion on Driving ADCs Section..................... 16  
Deleted Figure 52 and Figure 53................................................... 17  
5/07—Rev. E to Rev. F  
Updated Format..................................................................Universal  
Changes to Table 1 ............................................................................ 3  
Changes to Table 2............................................................................ 4  
Changes to Table 3 and Table 4....................................................... 5  
Changes to Table 5............................................................................ 6  
Changes to Figure 31...................................................................... 11  
Changes to Figure 37 and Figure 38............................................. 12  
Deleted OP249 SPICE Macro-Model Section ............................ 14  
Deleted Figure 18; Renumbered Sequentially ............................ 14  
Deleted Table I ................................................................................ 15  
Changes to Discussion on Driving ADCs Section..................... 17  
Updated Outline Dimensions ....................................................... 18  
Changes to Ordering Guide .......................................................... 19  
Rev. H | Page 2 of 20  
 
Data Sheet  
OP249  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
VS = 15 V, TA = 25°C, unless otherwise noted.  
Table 1.  
OP249A  
Typ  
0.2  
OP249F  
Typ  
0.2  
Parameter  
Symbol Conditions  
Min  
Max Min  
Max Unit  
Offset Voltage  
VOS  
VCM = 0 V  
0.75  
0.9  
mV  
Offset Stability  
1.5  
1.5  
µV/month  
Input Bias Current  
Input Offset Current  
Input Voltage Range1  
IB  
IOS  
IVR  
VCM = 0 V, TA = 25°C  
VCM = 0 V, TA = 25°C  
30  
6
12.5  
75  
25  
30  
6
12.5  
75  
25  
pA  
pA  
V
11  
80  
11  
V
V
−12.5  
90  
12  
1400  
12.5  
–12.5  
90  
12  
1200  
12.5  
Common-Mode Rejection  
Power-Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Swing  
CMR  
PSRR  
AVO  
VCM  
=
11 V  
80  
31.6  
dB  
µV/V  
V/mV  
V
VS = 4.5 V to 18 V  
VO = 10 V, RL = 2 kΩ  
RL = 2 kΩ  
50  
1000  
12.0  
500  
VO  
12.0  
V
−12.5  
36  
–12.5  
36  
V
mA  
Short-Circuit Current Limit  
ISC  
Output shorted to  
ground  
20  
50  
7.0  
20  
50 mA  
−33  
5.6  
22  
4.7  
0.9  
55  
–33  
5.6  
22  
4.7  
0.9  
55  
mA  
Supply Current  
ISY  
No load, VO = 0 V  
7.0  
1.2  
mA  
V/µs  
MHz  
µs  
Slew Rate  
SR  
GBW  
tS  
ΘM  
ZIN  
RO  
RL = 2 kΩ, CL = 50 pF  
18  
3.5  
18  
3.5  
Gain Bandwidth Product2  
Settling Time  
Phase Margin  
Differential Input Impedance  
Open-Loop Output Resistance  
Voltage Noise  
10 V step 0.01%3  
0 dB gain  
1.2  
Degrees  
Ω||pF  
1012||6  
35  
1012||6  
35  
en p-p  
en  
0.1 Hz to 10 Hz  
fO = 10 Hz  
2
75  
26  
17  
16  
0.003  
15  
2
75  
26  
17  
16  
0.003  
15  
µV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
pA/√Hz  
V
Voltage Noise Density  
fO = 100 Hz  
fO = 1 kHz  
fO = 10 kHz  
fO = 1 kHz  
Current Noise Density  
Voltage Supply Range  
in  
VS  
4.5  
18  
4.5  
18  
1 Guaranteed by CMR test.  
2 Guaranteed by design.  
3 Settling time is sample tested.  
Rev. H | Page 3 of 20  
 
 
 
OP249  
Data Sheet  
VS = 15 V, TA = 25°C, unless otherwise noted.  
Table 2.  
OP249G  
Typ  
Parameter  
Symbol  
VOS  
Conditions  
Min  
Max  
2.0  
75  
Unit  
mV  
Offset Voltage  
VCM = 0 V  
0.4  
40  
10  
Input Bias Current  
Input Offset Current  
Input Voltage Range1  
IB  
IOS  
IVR  
VCM = 0 V, TA = 25°C  
VCM = 0 V TA = 25°C  
pA  
pA  
V
25  
12.5  
11  
76  
V
V
dB  
µV/V  
V/mV  
V
−12.0  
90  
12  
1100  
12.5  
Common-Mode Rejection  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Swing  
CMR  
PSRR  
AVO  
VCM  
=
11 V  
VS = 4.5 V to 18 V  
VO = 10 V; RL = 2 kΩ  
RL = 2 kΩ  
50  
500  
VO  
12.0  
V
−12.5  
36  
V
mA  
Short-Circuit Current Limit  
ISC  
Output shorted to ground  
20  
50  
mA  
−33  
5.6  
22  
4.7  
0.9  
55  
mA  
mA  
Supply Current  
Slew Rate  
Gain Bandwidth Product2  
Settling Time  
ISY  
SR  
GBW  
tS  
ΘM  
ZIN  
No load; VO = 0 V  
RL = 2 kΩ, CL = 50 pF  
7.0  
18  
V/µs  
MHz  
µs  
Degree  
Ω||pF  
μV p-p  
nV/√Hz  
nV/√Hz  
nV/√Hz  
nV/√Hz  
pA/√Hz  
V
10 V step 0.01%  
0 dB gain  
1.2  
Phase Margin  
Differential Input Impedance  
Open-Loop Output Resistance  
Voltage Noise  
1012||6  
RO  
en p-p  
en  
35  
2
75  
26  
17  
16  
0.003  
15  
0.1 Hz to 10 Hz  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
fO = 10 kHz  
fO = 1 kHz  
Voltage Noise Density  
Current Noise Density  
Voltage Supply Range  
in  
VS  
4.5  
18  
1 Guaranteed by CMR test.  
2 Guaranteed by design.  
Rev. H | Page 4 of 20  
 
Data Sheet  
OP249  
VS = ±±1 V, 11°C ≤ TA ≤ +±21°C for A grade, unless otherwise noted.  
Table 3.  
OP249A  
Min Typ  
Max  
Parameter  
Symbol  
Conditions  
VCM = 0 V  
Unit  
Offset Voltage  
VOS  
0.12  
1.0  
mV  
Offset Voltage Temperature Coefficient  
Input Bias Current1  
TCVOS  
IB  
IOS  
VCM = 0 V  
1
4
0.04  
12.5  
10  
20  
4
μV/°C  
nA  
nA  
V
Input Offset Current1  
Input Voltage Range2  
IVR  
11  
76  
V
V
−12.5  
110  
5
1400  
12.5  
Common-Mode Rejection  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Swing  
CMR  
PSRR  
AVO  
VCM = 11 V  
dB  
μV/V  
V/mV  
V
VS = 4.5 V to 18 V  
RL = 2 kΩ; VO = 10 V  
RL = 2 kΩ  
50  
500  
12  
VO  
V
−12.5  
5.6  
V
mA  
Supply Current  
ISY  
No load, VO = 0 V  
7.0  
1 TA = 125°C.  
2 Guaranteed by CMR test.  
VS = ±±1 V, 40°C ≤ TA ≤ +81°C, unless otherwise noted.  
Table 4.  
OP249F  
Typ  
0.5  
2.2  
0.3  
OP249G  
Typ  
1.0  
6
0.5  
Min  
Max Min  
Max  
Parameter  
Symbol  
VOS  
TCVOS  
IB  
IOS  
IVR  
Conditions  
VCM = 0 V  
VCM = 0 V  
Unit  
mV  
μV/°C  
nA  
nA  
V
Offset Voltage  
Offset Voltage Temperature Coefficient  
Input Bias Current1  
Input Offset Current1  
Input Voltage Range2  
1.1  
12  
4.0  
1.2  
3.6  
25  
4.5  
1.5  
0.02  
12.5  
0.04  
12.5  
11  
80  
11  
V
V
−12.5  
90  
7
1200  
12.5  
−12.5  
95  
10  
1200  
12.5  
Common-Mode Rejection  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
Output Voltage Swing  
CMR  
PSRR  
AVO  
VCM = 11 V  
76  
100  
dB  
μV/V  
V/mV  
V
V
V
VS = 4.5 V to 18 V  
RL = 2 kΩ; VO = 10 V  
RL = 2 kΩ  
100  
7.0  
250  
12  
250  
VO  
12.0  
−12.5  
5.6  
−12.5  
5.6  
Supply Current  
ISY  
No load, VO = 0 V  
7.0  
mA  
1 TA = 85°C.  
2 Guaranteed by CMR test.  
Rev. H | Page 5 of 20  
 
 
 
 
OP249  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 5.  
Parameter1  
Supply Voltage  
Input Voltage2  
Differential Input Voltage2  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
OP249A (Q)  
OP249F (Q)  
OP249G (N, R)  
Junction Temperature Range  
OP249A (Q), OP249F (Q)  
OP249G (N, R)  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
18 V  
18 V  
36 V  
Indefinite  
−65°C to +175°C  
−55°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
Table 6. Thermal Resistance  
1
Package Type  
8-Lead CERDIP (Q)  
8-Lead PDIP (N)  
8-Lead SOIC (R)  
θJA  
134  
96  
θJC  
12  
37  
41  
Unit  
°C/W  
°C/W  
°C/W  
−65°C to +175°C  
−65°C to +150°C  
300°C  
150  
1 θJA is specified for worst-case mounting conditions, that is, θJA is specified for  
device in socket for CERDIP and PDIP packages; θJA is specified for device  
soldered to printed circuit board for SOIC package.  
Lead Temperature (Soldering, 60 sec)  
1 Absolute maximum ratings apply to packaged parts, unless otherwise noted.  
2 For supply voltages less than 18 V, the absolute maximum input voltage is  
equal to the supply voltage.  
ESD CAUTION  
Rev. H | Page 6 of 20  
 
 
 
 
 
 
Data Sheet  
OP249  
TYPICAL PERFORMANCE CHARACTERISTICS  
120  
120  
100  
80  
60  
40  
20  
0
T
= 25°C  
T
V
R
= 25°C  
= ±15V  
= 2kΩ  
A
A
V
= ±15V  
S
S
100  
80  
60  
40  
20  
0
L
0
GAIN  
45  
+PSRR  
90  
–PSRR  
PHASE  
Θm = 55  
135  
180  
225  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
10  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. Open-Loop Gain, Phase vs. Frequency  
Figure 9. Power Supply Rejection vs. Frequency  
28  
26  
24  
22  
20  
18  
16  
65  
60  
55  
50  
45  
10  
8
V
= ±15V  
V
R
C
= ±15V  
= 2kΩ  
= 50pF  
S
S
L
L
–SR  
Θm  
6
+SR  
GBW  
4
2
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Phase Margin, Gain Bandwidth Product vs. Temperature  
Figure 10. Slew Rate vs. Temperature  
28  
26  
24  
22  
20  
18  
16  
140  
T
V
= 25°C  
= ±15V  
T
V
R
= 25°C  
= ±15V  
= 2kΩ  
A
A
S
S
120  
100  
80  
60  
40  
20  
0
L
0
0.2  
0.4  
0.6  
0.8  
1.0  
100  
1k  
10k  
100k  
1M  
10M  
DIFFERENTIAL INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 8. Common-Mode Rejection vs. Frequency  
Figure 11. Slew Rate vs. Differential Input Voltage  
Rev. H | Page 7 of 20  
 
OP249  
Data Sheet  
35  
30  
25  
20  
15  
10  
5
0.01  
T
V
V
R
A
= 25°C  
= ±15V  
= 10V p-p  
= 10kΩ  
= 1  
T
V
= 25°C  
= ±15V  
A
A
S
S
O
L
V
NEGATIVE  
POSITIVE  
0.001  
0
100  
200  
300  
400  
500  
20  
100  
1k  
10k 20k  
CAPACITIVE LOAD (pF)  
Figure 12. Slew Rate vs. Capacitive Load  
Figure 15. Distortion vs. Frequency  
10  
8
0.01  
T
V
A
= 25°C  
= ±15V  
T
V
V
R
A
= 25°C  
= ±15V  
= 10V p-p  
= 2kΩ  
= 1  
A
A
S
S
= 1  
VCL  
O
6
L
V
0.1%  
4
0.01%  
0.01%  
2
0
–2  
–4  
–6  
–8  
–10  
0.1%  
400  
0.001  
0
200  
600  
800  
1000  
20  
100  
1k  
10k 20k  
SETTLING TIME (ns)  
Figure 13. Step Size vs. Settling Time  
Figure 16. Distortion vs. Frequency  
100  
80  
60  
40  
20  
0
T
V
= 25°C  
= ±15V  
A
0.01  
S
T
V
V
R
= 25°C  
= ±15V  
= 10V p-p  
= 600Ω  
= 1  
A
S
O
L
V
A
0
100  
FREQUENCY (Hz)  
1k  
10k  
0.001  
20  
100  
1k  
10k 20k  
Figure 17. Distortion vs. Frequency  
Figure 14. Voltage Noise Density vs. Frequency  
Rev. H | Page 8 of 20  
Data Sheet  
OP249  
500mV  
1s  
0.1  
T
V
V
R
= 25°C  
= ±15V  
= 10V p-p  
= 10kΩ  
= 1  
A
S
O
L
V
A
+1µV  
–1µV  
BANDWIDTH (0.1Hz TO 10Hz)  
= 25°C, V = ±15V  
0.01  
20  
T
100  
1k  
10k 20k  
A
S
Figure 21. Low Frequency Noise  
Figure 18. Distortion vs. Frequency  
60  
50  
40  
30  
20  
10  
0
T
V
= 25°C  
= ±15V  
A
0.1  
S
T
V
V
R
A
= 25°C  
= ±15V  
= 10V p-p  
= 2kΩ  
A
S
A
= 100  
VCL  
O
L
V
= 10  
A
= 10  
= 5  
VCL  
A
VCL  
A
= 1  
VCL  
–10  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
0.01  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
Figure 19. Distortion vs. Frequency  
Figure 22. Closed-Loop Gain vs. Frequency  
50  
40  
30  
20  
10  
0
T
V
= 25°C  
= ±15V  
0.1  
A
T
V
V
R
= 25°C  
= ±15V  
= 10V p-p  
= 600kΩ  
= 10  
S
A
S
O
L
V
A
A
= 1  
VCL  
A
= 10  
VCL  
A
= 100  
10k  
VCL  
100  
1k  
100k  
1M  
10M  
0.01  
20  
100  
1k  
10k 20k  
FREQUENCY (Hz)  
Figure 20. Distortion vs. Frequency  
Figure 23. Closed-Loop Output Impedance vs. Frequency  
Rev. H | Page 9 of 20  
OP249  
Data Sheet  
30  
25  
20  
15  
10  
5
20  
15  
T
R
= 25°C  
= 2kΩ  
A
L
10  
5
0
AD8512  
–5  
–10  
–15  
–20  
OP249  
AD712  
0
1k  
1M  
10M  
500  
10k  
0
±5  
±10  
±15  
±20  
125  
20  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
Figure 24. Output Voltage vs. Frequency  
Figure 27. Output Voltage Swing vs. Supply Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.0  
5.8  
5.6  
5.4  
5.2  
V
R
V
= ±15V  
= 2kΩ  
V
= ±15V  
S
S
NO LOAD  
L
= 100mV p-p  
IN  
A
= 1  
VCL  
NEGATIVE EDGE  
A
= 1  
VCL  
POSITIVE EDGE  
A
= 5  
VCL  
0
100  
200  
300  
400  
–75  
–50  
–25  
0
25  
50  
75  
100  
LOAD CAPACITANCE (pF)  
TEMPERATURE (°C)  
Figure 25. Small Overshoot vs. Load Capacitance  
Figure 28. Supply Current vs. Temperature  
16  
14  
12  
10  
8
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
T
= 25°C  
= ±15V  
A
V
S
+V  
= |–V |  
OHM  
OHM  
T
= +25°C  
A
T
= +125°C  
= –55°C  
A
6
T
4
A
2
0
100  
1k  
LOAD RESISTANCE (Ω)  
0
5
10  
SUPPLY VOLTAGE (V)  
15  
Figure 29. Supply Current vs. Supply Voltage  
Figure 26. Maximum Output Voltage Swing vs. Load Resistance  
Rev. H | Page 10 of 20  
Data Sheet  
OP249  
180  
10k  
1k  
100  
10  
1
T
V
= 25°C  
= ±15V  
A
V
V
= ±15V  
S
160  
140  
120  
100  
80  
S
= 0V  
CM  
415 × OP249  
(830 OP AMPS)  
60  
40  
20  
0
–1000 –800 –600 –400 –200  
0
200 400 600 800 1000  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
V
(µV)  
TEMPERATURE (°C)  
OS  
Figure 30. VOS Distribution (N-8)  
Figure 33. Input Bias Current vs. Temperature  
300  
270  
240  
210  
180  
150  
120  
90  
4
3
2
1
10  
10  
10  
10  
10  
T
V
= 25°C  
= ±15V  
A
V
= ±15V  
S
S
–40°C TO +85°C  
(830 OP AMPS)  
60  
30  
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24  
TCV (µV/°C)  
–15  
–10  
–5  
0
5
10  
15  
OS  
COMMON-MODE VOLTAGE (V)  
Figure 31. TCVOS Distribution (N-8)  
Figure 34. Bias Current vs. Common-Mode Voltage  
50  
40  
30  
20  
10  
0
50  
T
V
= 25°C  
= ±15V  
A
V
= ±15V  
S
S
40  
30  
20  
10  
0
0
1
2
3
4
5
0
2
4
6
8
10  
TIME AFTER POWER APPLIED (Minutes)  
TIME AFTER POWER APPLIED (Minutes)  
Figure 32. Offset Voltage Warm-Up Drift  
Figure 35. Bias Current Warm-Up Drift  
Rev. H | Page 11 of 20  
OP249  
Data Sheet  
80  
80  
60  
40  
20  
0
T
V
= 25°C  
V
= ±15V  
A
S
= 0V  
CM  
SOURCE  
60  
40  
20  
0
SINK  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 36. Input Offset Current vs. Temperature  
Figure 38. Short-Circuit Output Current vs. Junction Temperature  
12000  
10000  
8000  
6000  
4000  
2000  
0
V
= ±15V  
S
R
R
= 10kΩ  
= 2kΩ  
L
L
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
Figure 37. Open-Loop Gain vs. Temperature  
Rev. H | Page 12 of 20  
Data Sheet  
OP249  
APPLICATIONS INFORMATION  
V+  
+IN  
100  
90  
V
OUT  
–IN  
10  
0%  
5V  
1µs  
A) OP249  
100  
90  
V–  
Figure 39. Simplified Schematic (1/2 OP249)  
10  
0%  
2
5V  
1µs  
1/2  
OP249  
1
B) LT1057  
3
+3V  
5kΩ  
Figure 41. Large-Signal Transient Response,  
AV = 1, VIN = 20 V p-p, ZL = 2 kΩ//200 pF, VS = 15 V  
The OP249 was carefully designed to provide symmetrically  
matched slew characteristics in both the negative and positive  
directions, even when driving a large output load.  
+18V  
6
5
8
1/2  
OP249  
7
The slewing limitation of the amplifier determines the maximum  
frequency at which a sinusoidal output can be obtained without  
significant distortion. However, it is important to note that the  
nonsymmetric slewing typical of previously available JFET  
amplifiers adds a higher series of harmonic energy content to  
the resulting response—and an additional dc output component.  
Examples of potential problems of nonsymmetric slewing behavior  
can be in audio amplifier applications, where a natural low dis-  
tortion sound quality is desired and in servo or signal processing  
systems where a net dc offset cannot be tolerated. The linear  
and symmetric slewing feature of the OP249 makes it an ideal  
choice for applications that exceed the full power bandwidth  
range of the amplifier.  
4
+3V  
5kΩ  
–18V  
Figure 40. Burn-In Circuit  
The OP249 represents a reliable JFET amplifier design,  
featuring an excellent combination of dc precision and high  
speed. A rugged output stage provides the ability to drive a  
600 Ω load and still maintain a clean ac response. The OP249  
features a large signal response that is more linear and symmetric  
than previously available JFET input amplifiers. Figure 41  
compares the large signal response of the OP249 to other  
industry-standard dual JFET amplifiers.  
Typically, the slewing performance of the JFET amplifier is  
specified as a number of V/µs. There is no discussion on the  
quality, that is, linearity and symmetry of the slewing response.  
Rev. H | Page 13 of 20  
 
 
OP249  
Data Sheet  
R4  
+V  
R3  
V
IN  
100  
90  
1/2  
OP249  
V
OUT  
R1  
200kΩ  
R5  
50kΩ  
R2  
31Ω  
R2  
R1  
V
ADJUST RANGE = ±V  
OS  
–V  
Figure 44. Offset Adjustment for Inverting Amplifier Configuration  
+V  
10  
R5  
0%  
R1  
200kΩ  
R4  
R3  
50kΩ  
50mV  
1µs  
1/2  
V
R2  
33Ω  
OUT  
OP249  
Figure 42. Small-Signal Transient Response,  
AV = 1, ZL = 2 kΩ||100 pF, No Compensation, VS = 15 V  
–V  
R2  
R1  
V
ADJUST RANGE = ±V  
OS  
GAIN =  
R5  
V
IN  
As with most JFET input amplifiers, the output of the OP249  
can undergo phase inversion if either input exceeds the specified  
input voltage range. Phase inversion does not damage the  
amplifier, nor does it cause an internal latch-up condition.  
V
OUT  
R5  
R4 + R2  
= 1 +  
V
IN  
1 +  
IF R2 << R4  
=
R4  
Figure 45. Offset Adjustment for Noninverting Amplifier Configuration  
Supply decoupling should be used to overcome inductance and  
resistance associated with supply lines to the amplifier. A 0.1 µF  
and a 10 µF capacitor should be placed between each supply pin  
and ground.  
In Figure 44, the offset adjustment is made by supplying a small  
voltage at the noninverting input of the amplifier. Resistors R1  
and R2 attenuate the potentiometer voltage, providing a 2.5 mV  
(with VS = 15 V) adjustment range, referred to the input.  
Figure 45 shows the offset adjustment for the noninverting  
amplifier configuration, also providing a 2.5 mV adjustment  
range. As shown in the equations in Figure 45, if R4 is not much  
greater than R2, a resulting closed-loop gain error must be  
accounted for.  
OPEN-LOOP GAIN LINEARITY  
The OP249 has both an extremely high open-loop gain of  
1 kV/mV minimum and constant gain linearity, which enhances its  
dc precision and provides superb accuracy in high closed-loop  
gain applications. Figure 43 illustrates the typical open-loop  
gain linearity—high gain accuracy is assured, even when  
driving a 600 Ω load.  
SETTLING TIME  
The settling time is the time between when the input signal begins  
to change and when the output permanently enters a prescribed  
error band. The error bands on the output are 5 mV and 0.5 m V,  
respectively, for 0.1% and 0.01% accuracy.  
OFFSET VOLTAGE ADJUSTMENT  
The inherent low offset voltage of the OP249 makes offset  
adjustments unnecessary in most applications. However, where  
a lower offset error is required, balancing can be performed  
with simple external circuitry, as shown in Figure 44 and Figure 45.  
Figure 46 shows the settling time of the OP249, which is typically  
870 ns. Moreover, problems in settling response, such as thermal  
tails and long-term ringing, are nonexistent.  
VERTICAL 50µV/DIV  
INPUT VARIATION  
870ns  
100  
90  
10  
0%  
10mV  
500ns  
HORIZONTAL 5V/DIV  
OUTPUT CHARGE  
Figure 46. Settling Characteristics of the OP249 to 0.01%  
Figure 43. Open-Loop Gain Linearity; Variation in Open-Loop Gain Results in  
Errors in High Closed-Loop Gain Circuits; RL = 600 Ω, VS = 15 V  
Rev. H | Page 14 of 20  
 
 
 
 
 
 
 
Data Sheet  
OP249  
Because the DAC output capacitance appears at the inputs of  
DAC OUTPUT AMPLIFIER  
the op amp, it is essential that the amplifier be adequately  
compensated. Compensation increases the phase margin and  
ensures an optimal overall settling response. The required lead  
compensation is achieved with Capacitor C in Figure 48.  
Unity-gain stability, a low offset voltage of 300 μV typical, and a  
fast settling time of 870 ns to 0.01%, makes the OP249 an ideal  
amplifier for fast DACs.  
For CMOS DAC applications, the low offset voltage of the OP249  
results in excellent linearity performance. CMOS DACs, such as  
the PM7545, typically have a code-dependent output resistance  
variation between 11 kΩ and 33 kΩ. The change in output  
resistance, in conjunction with the 11 kΩ feedback resistor, results  
in a noise gain change, which causes variations in the offset  
error, increasing linearity errors. The OP249 features low offset  
voltage error, minimizing this effect and maintaining 12-bit  
linearity performance over the full-scale range of the converter.  
V
DD  
75  
0.1µF  
C
+15V  
33pF  
0.1µF  
18  
20  
V
R
DD  
FB  
OUT  
1
2
2
8
1
REFERENCE  
1/2  
19  
V
V
PM7545  
1
REF  
OUT  
OR V  
OP249  
IN  
500Ω  
3
AGND  
4
0.1µF  
DGND  
3
DB TO DB  
11  
0
–15V  
12  
DATA INPUT  
Figure 47. Fast Settling and Low Offset Error of the OP249 Enhances CMOS DAC Performance—Unipolar Operation  
R4  
20k  
1%  
V
DD  
R5  
10kΩ  
1%  
75Ω  
0.1µF  
C
+15V  
33pF  
18  
20  
0.1µF  
1
V
R
DD  
R3  
10kΩ  
1%  
FB  
8
1
2
2
OUT  
1
1/2  
OP249  
REFERENCE  
19  
V
5
6
PM7545  
REF  
OR V  
IN  
500Ω  
1/2  
OP249  
3
AGND  
V
7
OUT  
DGND  
DB TO DB  
0.1µF  
4
11  
0
3
12  
DATA INPUT  
–15V  
Figure 48. Fast Settling and Low Offset Error of the OP249 Enhances CMOS DAC Performance—Bipolar Operation  
Rev. H | Page 15 of 20  
 
 
 
OP249  
Data Sheet  
A
B
4µs  
4µs  
100  
90  
100  
90  
10  
10  
0%  
0%  
500mV  
1µs  
C = 5pF  
500mV  
1µs  
C = 15pF  
RESPONSE IS GROSSLY UNDERDAMPED,  
AND EXHIBITS RINGING  
FAST RISE TIME CHARACTERISTICS, BUT AT EXPENSE  
OF SLIGHT PEAKING IN RESPONSE  
Figure 49. Effect of Altering Compensation from Circuit in Figure 47—PM7545 CMOS DAC with 1/2 OP249, Unipolar Operation;  
Critically Damped Response Is Obtained with C ≈ 33 pF  
+15V  
0.1µF  
Figure 49 illustrates the effect of altering the compensation on  
the output response of the circuit in Figure 47. Compensation is  
required to address the combined effect of the output capacitance  
of the DAC, the input capacitance of the op amp, and any stray  
capacitance. Slight adjustments to the compensation capacitor may  
be required to optimize settling response for any given application.  
8
3
2
1/2  
1
7A13 PLUG-IN  
7A13 PLUG-IN  
OP249  
4
0.1µF  
*
–15V  
The settling time of the combination of the current output DAC  
and the op amp can be approximated by  
1kΩ  
300pF  
|V  
REF  
1kΩ  
|
ΔI  
=
OUT  
+15V  
2
2
tS TOTAL =  
(
tS DAC  
)
+
(
tS AMP  
)
1.5kΩ  
2N3904  
10µF  
TTL INPUT  
The actual overall settling time is affected by the noise gain of  
the amplifier, the applied compensation, and the equivalent  
input capacitance at the input of the amplifier.  
1N4148  
2N2907  
1kΩ  
1.8kΩ  
+15V  
220Ω  
0.47µF  
0.01µF  
DISCUSSION ON DRIVING ADCs  
0.1µF  
*
Settling characteristics of op amps also include the ability of the  
amplifier to recover, that is, settle, from a transient current output  
load condition. An example of this includes an op amp driving  
the input from a SAR-type ADC. Although the comparison  
point of the converter is usually diode clamped, the input swing  
of plus-and-minus a diode drop still gives rise to a significant  
modulation of input current. If the closed-loop output impedance  
is low enough and bandwidth of the amplifier is sufficiently  
large, the output settles before the converter makes a comparison  
decision, which prevents linearity errors or missing codes.  
V
REF  
*DECOUPLE CLOSE TOGETHER ON GROUND  
PLANE WITH SHORT LEAD LENGTHS.  
Figure 50. Transient Output Impedance Test Fixture  
As seen in Figure 51, the OP249 has an extremely fast recovery  
of 247 ns (to 0.01%) for a 1 mA load transient. The performance  
makes it an ideal amplifier for data acquisition systems.  
247.4ns  
100  
90  
Figure 50 shows a settling measurement circuit for evaluating  
recovery from an output current transient. An output disturbing  
current generator provides the transient change in output load  
current of 1 mA.  
10  
0%  
2mV  
2V  
100ns  
Figure 51. Transient Recovery Time of the OP249 from  
a 1 mA Load Transient to 0.01%  
Rev. H | Page 16 of 20  
 
 
 
 
Data Sheet  
OP249  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 52. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body  
(N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 53. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
(R-8)  
Dimensions shown in millimeters and (inches)  
Rev. H | Page 17 of 20  
 
OP249  
Data Sheet  
0.005 (0.13)  
MIN  
0.055 (1.40)  
MAX  
8
5
0.310 (7.87)  
0.220 (5.59)  
1
4
0.100 (2.54) BSC  
0.405 (10.29) MAX  
0.320 (8.13)  
0.290 (7.37)  
0.060 (1.52)  
0.015 (0.38)  
0.200 (5.08)  
MAX  
0.150 (3.81)  
MIN  
0.200 (5.08)  
0.125 (3.18)  
0.015 (0.38)  
0.008 (0.20)  
SEATING  
PLANE  
0.023 (0.58)  
0.014 (0.36)  
15°  
0°  
0.070 (1.78)  
0.030 (0.76)  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 54. 8-Lead Ceramic Dual In-Line Package [CERDIP]  
(Q-8)  
Dimensions shown in inches and (millimeters)  
ORDERING GUIDE  
Model1  
OP249AZ  
OP249FZ  
OP249GP  
Temperature Range  
Package Description  
8-Lead CERDIP  
8-Lead CERDIP  
8-Lead PDIP  
Package Option  
−55°C to +125°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Q-8  
Q-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
OP249GPZ  
OP249GS  
8-Lead PDIP  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
OP249GS-REEL  
OP249GS-REEL7  
OP249GSZ  
OP249GSZ-REEL  
OP249GSZ-REEL7  
1 Z = RoHS Compliant Part.  
For military processed devices, see the standard microcircuit drawings (SMD) available at www.dscc.dla.mil/programs/milspec/default.asp.  
Table 7.  
SMD Part Number  
5962-9151901M2A  
5962-9151901MPA  
Analog Devices, Inc. Equivalent  
OP249ARCMDA  
OP249AZMDA  
Rev. H | Page 18 of 20  
 
 
Data Sheet  
NOTES  
OP249  
Rev. H | Page 19 of 20  
OP249  
NOTES  
Data Sheet  
©1989–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00296-0-11/13(H)  
Rev. H | Page 20 of 20  

相关型号:

OPZ275GPZ

IC DUAL OP-AMP, 1250 uV OFFSET-MAX, 9 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ27EPZ

OP-AMP, 50uV OFFSET-MAX, 8MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ290GPZ

IC DUAL OP-AMP, 750 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ297FPZ

DUAL OP-AMP, 300uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ297GPZ

DUAL OP-AMP, 400uV OFFSET-MAX, 0.5MHz BAND WIDTH, PDIP8, PLASTIC, MS-001BA, DIP-8
ADI

OPZ37GPZ

OP-AMP, 220uV OFFSET-MAX, 63MHz BAND WIDTH, PDIP8, PLASTIC, MO-095AA, DIP-8
ADI

OPZ467GPZ

IC QUAD OP-AMP, 1000 uV OFFSET-MAX, 22 MHz BAND WIDTH, PDIP14, PLASTIC, MS-001, DIP-14, Operational Amplifier
ADI

OPZ90GPZ

IC OP-AMP, 675 uV OFFSET-MAX, 0.02 MHz BAND WIDTH, PDIP8, PLASTIC, DIP-8, Operational Amplifier
ADI

OPZ97EPZ

OP-AMP, 60uV OFFSET-MAX, 0.9MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8
ADI

OPZ97FPZ

OP-AMP, 200uV OFFSET-MAX, 0.9MHz BAND WIDTH, PDIP8, MO-095AA, PLASTIC, DIP-8
ADI

OQ02125100J0G

Strip Terminal Block
AMPHENOL

OQ02125103J0G

Strip Terminal Block
AMPHENOL