OP482GPZ [ADI]

Dual/Quad, Low Power, High Speed JFET Operational Amplifiers; 双/四路,低功耗,高速JFET运算放大器
OP482GPZ
型号: OP482GPZ
厂家: ADI    ADI
描述:

Dual/Quad, Low Power, High Speed JFET Operational Amplifiers
双/四路,低功耗,高速JFET运算放大器

运算放大器 放大器电路 光电二极管
文件: 总16页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Dual/Quad, Low Power, High Speed  
JFET Operational Amplifiers  
Data Sheet  
OP282/OP482  
FEATURES  
PIN CONNECTIONS  
High slew rate: 9 V/µs  
Wide bandwidth: 4 MHz  
Low supply current: 250 µA/amplifier maximum  
Low offset voltage: 3 mV maximum  
Low bias current: 100 pA maximum  
Fast settling time  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OUT B  
–IN B  
OP282  
+IN B  
Figure 1. 8-Lead, Narrow-Body SOIC (S-Suffix) [R-8]  
Common-mode range includes V+  
Unity-gain stable  
14-ball wafer level chip scale for quad  
OUT A  
–IN A  
+IN A  
V–  
1
2
3
4
8
7
6
5
V+  
OP282  
OUT B  
–IN B  
+IN B  
TOP VIEW  
(Not to Scale)  
APPLICATIONS  
Figure 2. 8-Lead MSOP [RM-8]  
Active filters  
Fast amplifiers  
Integrators  
Supply current monitoring  
1
2
3
4
5
6
7
14 OUT D  
OUT A  
–IN A  
+IN A  
V+  
–IN D  
+IN D  
13  
12  
– +  
+
GENERAL DESCRIPTION  
OP482  
11 V–  
The OP282/OP482 dual and quad operational amplifiers feature  
excellent speed at exceptionally low supply currents. The slew  
rate is typically 9 V/µs with a supply current of less than 250 µA  
per amplifier. These unity-gain stable amplifiers have a typical  
gain bandwidth of 4 MHz.  
+IN C  
+IN B  
10  
9
– +  
+
–IN C  
–IN B  
OUT B  
OUT C  
8
Figure 3. 14-Lead PDIP (P-Suffix) [N-14]  
The JFET input stage of the OP282/OP482 ensures that the bias  
current is typically a few picoamps and is less than 500 pA over  
the full temperature range. The offset voltage is less than 3 mV  
for the dual amplifier and less than 4 mV for the quad amplifier.  
OUT A  
–IN A  
+IN A  
V+  
OUT D  
–IN D  
+IN D  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V–  
OP482  
With a wide output swing (within 1.5 V of each supply), low  
power consumption, and high slew rate, the OP282/OP482 are  
ideal for battery-powered systems or power-restricted applica-  
tions. An input common-mode range that includes the positive  
supply makes the OP282/OP482 an excellent choice for high-  
side signal conditioning.  
+IN C  
+IN B  
–IN B  
OUT B  
–IN C  
OUT C  
8
Figure 4. 14-Lead, Narrow-Body SOIC (S-Suffix) [R-14]  
BALL A1 CORNER  
1
2
3
The OP282/OP482 are specified over the extended industrial  
temperature range. The OP282 is available in the standard  
8-lead, narrow SOIC and MSOP packages. The OP482 is  
available in the PDIP and narrow SOIC packages, as well as  
a 14-ball WLCSP.  
OUT D  
OUT A  
–IN D  
A
B
C
D
E
F
+IN D  
V–  
–IN A  
V+  
+IN A  
+IN B  
–IN C  
+IN C  
OUT C  
–IN B  
OUT B  
G
H
J
TOP VIEW (BALL SIDE DOWN)  
Not to Scale  
Figure 5. 14-Ball WLCSP [CB-14-2]  
Rev. I  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©1991–2013 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
OP282/OP482  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
ESD Caution...................................................................................4  
Typical Performance Characteristics ..............................................5  
Applications Information.............................................................. 12  
High-Side Signal Conditioning ................................................ 12  
Phase Inversion........................................................................... 12  
Active Filters ............................................................................... 12  
Programmable State Variable Filter ......................................... 13  
Outline Dimensions....................................................................... 14  
Ordering Guide .......................................................................... 16  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Pin Connections ............................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics............................................................. 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
REVISION HISTORY  
9/13—Rev. H to Rev. I  
Added Figure 5 through Figure 20; Renumbered  
Successive Figures..............................................................................5  
Updated Figure 21 and Figure 22....................................................7  
Updated Figure 23 and Figure 27....................................................8  
Updated Figure 29 .............................................................................9  
Updated Figure 35 and Figure 36................................................. 10  
Updated Figure 43 .......................................................................... 11  
Changes to Applications Information ......................................... 12  
Changes to Figure 44...................................................................... 12  
Deleted OP282/OP482 Spice Macro Model Section ....................9  
Deleted Figure 4.................................................................................9  
Deleted OP282 Spice Marco Model............................................. 10  
Updated Outline Dimensions....................................................... 14  
Changes to Ordering Guide.......................................................... 14  
Changes to Figure 5.......................................................................... 1  
Updated Outline Dimensions ....................................................... 14  
Changes to Ordering Guide .......................................................... 16  
9/10—Rev. G to Rev. H  
Added WLCSP....................................................................Universal  
Changes to Features Section............................................................ 1  
Changes to General Description Section ...................................... 1  
Added Figure 5; Renumbered Sequentially .................................. 1  
Changes to Large-Signal Voltage Gain Parameter, Table 1 ......... 3  
Changes to Table 2, Thermal Resistance Section, and Table 3 ... 4  
Change to Figure 30 ......................................................................... 9  
Added Figure 53.............................................................................. 16  
Changes to Ordering Guide .......................................................... 16  
10/02—Rev. D to Rev. E  
7/08—Rev. F to Rev. G  
Edits to 8-Lead Epoxy DIP (P-Suffix) Pin......................................1  
Edits to Ordering Guide ...................................................................3  
Edits to Outline Dimensions......................................................... 11  
Changes to Phase Inversion Section ............................................ 12  
Deleted Figure 45............................................................................ 12  
Added Figure 45 and Figure 46..................................................... 12  
Updated Outline Dimensions ....................................................... 14  
Changes to Ordering Guide .......................................................... 16  
9/02—Rev. C to Rev. D  
Edits to 14-Lead SOIC (S-Suffix) Pin .............................................1  
Replaced 8-Lead SOIC (S-Suffix)................................................. 11  
10/04—Rev. E to Rev. F  
4/02—Rev. B to Rev. C  
Deleted 8-Lead PDIP .........................................................Universal  
Added 8-Lead MSOP .........................................................Universal  
Changes to Format and Layout.........................................Universal  
Changes to Features.......................................................................... 1  
Changes to Pin Configurations....................................................... 1  
Changes to General Description .................................................... 1  
Changes to Specifications................................................................ 3  
Changes to Absolute Maximum Ratings ....................................... 4  
Changes to Table 3............................................................................ 4  
Wafer Test Limits Deleted ................................................................2  
Edits to Absolute Maximum Ratings..............................................3  
Dice Characteristics Deleted............................................................3  
Edits to Ordering Guide ...................................................................3  
Edits to Figure 1.................................................................................7  
Edits to Figure 3.................................................................................8  
20-Position Chip Carrier (RC Suffix) Deleted ........................... 11  
Rev. I | Page 2 of 16  
 
Data Sheet  
OP282/OP482  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
At VS = 15.0 V, TA = 25°C, unless otherwise noted; applies to both A and G grades.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
0.2  
0.2  
3
Max  
Unit  
INPUT CHARACTERISTICS  
Offset Voltage  
VOS  
OP282  
3
4.5  
4
mV  
mV  
mV  
mV  
pA  
pA  
pA  
pA  
V
OP282, −40°C ≤ TA ≤ +85°C  
OP482  
OP482, −40°C ≤ TA ≤ +85°C  
VCM = 0 V  
VCM = 0 V1  
6
Input Bias Current  
IB  
100  
500  
50  
250  
+15  
Input Offset Current  
IOS  
VCM = 0 V  
VCM = 0 V1  
1
Input Voltage Range  
Common-Mode Rejection Ratio  
Large-Signal Voltage Gain  
−11  
70  
20  
CMRR  
AVO  
−11 V ≤ VCM ≤ +15 V, −40°C ≤ TA ≤ +85°C  
RL = 10 kΩ, VO = 13.5 V  
RL = 10 kΩ, −40°C ≤ TA ≤ +85°C  
90  
dB  
V/mV  
V/mV  
µV/°C  
pA/°C  
15  
Offset Voltage Drift  
Bias Current Drift  
ΔVOS/ΔT  
ΔIB/ΔT  
10  
8
OUTPUT CHARACTERISTICS  
Output Voltage High  
Output Voltage Low  
Short-Circuit Limit  
VOH  
VOL  
ISC  
RL = 10 kΩ  
RL = 10 kΩ  
Source  
Sink  
f = 1 MHz  
13.5  
3
13.9  
−13.9  
10  
−12  
200  
V
V
mA  
mA  
−13.5  
−8  
Open-Loop Output Impedance  
POWER SUPPLY  
ZOUT  
Power Supply Rejection Ratio  
Supply Current/Amplifier  
Supply Voltage Range  
DYNAMIC PERFORMANCE  
Slew Rate  
Full-Power Bandwidth  
Settling Time  
Gain Bandwidth Product  
Phase Margin  
PSRR  
ISY  
VS  
VS = 4.5 V to 18 V, −40°C ≤ TA ≤ +85°C  
VO = 0 V, −40°C ≤ TA ≤ 85°C  
25  
210  
316  
250  
18  
µV/V  
µA  
V
4.5  
7
SR  
BWP  
tS  
GBP  
ØM  
RL = 10 kΩ  
1% distortion  
To 0.01%  
9
V/µs  
kHz  
µs  
MHz  
Degrees  
125  
1.6  
4
55  
NOISE PERFORMANCE  
Voltage Noise  
Voltage Noise Density  
Current Noise Density  
en p-p  
en  
in  
0.1 Hz to 10 Hz  
f = 1 kHz  
1.3  
36  
0.01  
µV p-p  
nV/√Hz  
pA/√Hz  
1 The input bias and offset currents are characterized at TA = TJ = 85°C. Bias and offset currents are guaranteed but not tested at −40°C.  
Rev. I | Page 3 of 16  
 
 
 
OP282/OP482  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
THERMAL RESISTANCE  
Parameter  
Rating  
θJA is specified for the worst-case conditions, that is, a device in  
socket for PDIP. θJA is specified for a device soldered in the circuit  
board for SOIC_N, MSOP, and WLCSP packages. This was  
measured using a standard 4-layer board.  
Supply Voltage  
Input Voltage  
18 V  
18 V  
36 V  
Indefinite  
−65°C to +150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
Differential Input Voltage1  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Junction Temperature Range  
Lead Temperature (Soldering 60 sec)  
Table 3.  
Package Type  
θJA  
142  
120  
83  
112  
70  
θJC  
45  
45  
39  
35  
16  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
8-Lead MSOP [RM]  
8-Lead SOIC_N (S-Suffix) [R]  
14-Lead PDIP (P-Suffix) [N]  
14-Lead SOIC_N (S-Suffix) [R]  
14-Ball WLCSP [CB]1, 2  
1 For supply voltages less than 18 V, the absolute maximum input voltage is  
equal to the supply voltage.  
1 Simulated thermal numbers per JESD51-9.  
2 Junction-to-board thermal resistance.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ESD CAUTION  
Rev. I | Page 4 of 16  
 
 
 
 
 
Data Sheet  
OP282/OP482  
TYPICAL PERFORMANCE CHARACTERISTICS  
80  
60  
70  
60  
180  
135  
90  
V
= ±15V  
= 25°C  
V
= ±15V  
T = 25°C  
A
S
S
T
A
50  
A
A
= 100  
VCL  
40  
40  
30  
= 10  
VCL  
20  
45  
20  
10  
A
= 1  
VCL  
0
0
0
–10  
–20  
–30  
–45  
–20  
–90  
10M  
–40  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 6. OP282 Open-Loop Gain and Phase vs. Frequency  
Figure 9. OP282 Closed-Loop Gain vs. Frequency  
45  
30  
25  
20  
15  
10  
5
V
R
= ±15V  
= 10k  
V
= ±15V  
= 10kΩ  
= 50pF  
S
L
S
R
L
40  
35  
30  
25  
20  
15  
10  
5
C
L
–SR  
+SR  
0
0
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. OP282 Open-Loop Gain vs. Temperature  
Figure 10. OP282 Slew Rate vs. Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
V
V
= ±15V  
= 0V  
V
R
V
A
= ±15V  
= 2kΩ  
S
S
CM  
L
= 100mV p-p  
IN  
= 1  
VCL  
= 25°C  
T
A
+OS  
–OS  
1
0.1  
0
100  
200  
300  
400  
500  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
LOAD CAPACITANCE (pF)  
TEMPERATURE (°C)  
Figure 8. OP282 Small-Signal Overshoot vs. Load Capacitance  
Figure 11. OP282 Input Bias Current vs. Temperature  
Rev. I | Page 5 of 16  
 
OP282/OP482  
Data Sheet  
1000  
20  
15  
T
R
= 25°C  
= 10kΩ  
V
T
= ±15V  
= 25°C  
A
S
L
A
V
OH  
10  
100  
10  
5
0
–5  
–10  
–15  
–20  
V
OL  
1
10  
0
±5  
±10  
SUPPLY VOLTAGE (V)  
±15  
±20  
100  
FREQUENCY (Hz)  
1k  
10k  
Figure 12. OP282 Voltage Noise Density vs. Frequency  
Figure 15. OP282 Output Voltage Swing vs. Supply Voltage  
1000  
100  
10  
1000  
100  
10  
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
S
A
A
A
= 100  
VCL  
VCL  
A
= 10  
= 1  
1
1
A
VCL  
0.1  
0.1  
100  
–15  
–10  
–5  
0
5
10  
15  
1k  
10k  
100k  
1M  
COMMON-MODE VOLTAGE (V)  
FREQUENCY (Hz)  
Figure 13. OP282 Input Bias Current vs. Common-Mode Voltage  
Figure 16. OP282 Closed-Loop Output Impedance vs. Frequency  
480  
480  
475  
470  
465  
460  
455  
450  
T
= 25°C  
A
475  
470  
465  
460  
455  
450  
0
±5  
±10  
±15  
±20  
–50  
–25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 14. OP282 Supply Current vs. Supply Voltage  
Figure 17. OP282 Supply Current vs. Temperature  
Rev. I | Page 6 of 16  
Data Sheet  
OP282/OP482  
16  
30  
25  
20  
15  
10  
5
V
T
= ±15V  
= 25°C  
V
T
R
= ±15V  
= 25°C  
= 10k  
= 1  
S
S
A
A
14  
12  
10  
8
L
V
A
OL  
VCL  
V
OH  
6
4
2
0
100  
0
100  
1k  
LOAD RESISTANCE ()  
10k  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 18. OP282 Absolute Output Voltage vs. Load Resistance  
Figure 21. OP282 Maximum Output Swing vs. Frequency  
140  
140  
V
T
= ±15V  
= 25°C  
V
= ±15V  
T = 25°C  
A
S
S
A
120  
100  
80  
120  
100  
80  
+PSRR  
60  
60  
40  
40  
20  
20  
–PSRR  
0
0
–20  
–40  
–60  
–20  
–40  
–60  
100  
1k  
10k  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. OP282 PSRR vs. Frequency  
Figure 22. OP282 CMRR vs. Frequency  
14  
12  
10  
8
200  
160  
120  
80  
V
T
= ±15V  
= 25°C  
V
S
= ±15V  
= 25°C  
S
T
A
A
300 × OP282  
(600 OP AMPS)  
SINK  
SOURCE  
6
4
40  
2
0
0
–50  
–25  
0
25  
50  
75  
100  
125  
–2000  
–1200  
–400  
0
400  
(µV)  
1200  
2000  
TEMPERATURE (°C)  
V
OS  
Figure 20. OP282 Short-Circuit Current vs. Temperature  
Figure 23. OP282 VOS Distribution, SOIC_N Package  
Rev. I | Page 7 of 16  
OP282/OP482  
Data Sheet  
70  
60  
50  
40  
30  
20  
10  
0
400  
360  
320  
280  
240  
200  
160  
120  
80  
A
= 1  
V
= ±15V  
VCL  
NEGATIVE EDGE  
S
V
R
= ±15V  
= 2k  
= 100mV p-p  
S
300 × OP282  
(600 OP AMPS)  
L
V
IN  
A
= 1  
VCL  
POSITIVE EDGE  
40  
0
0
4
8
12  
16  
20  
24  
28  
32  
36  
300  
LOAD CAPACITANCE (pF)  
0
100  
200  
400  
500  
TCV (µV/°C)  
OS  
Figure 24. OP282 TCVOS Distribution, SOIC_N Package  
Figure 27. OP482 Small-Signal Overshoot vs. Load Capacitance  
80  
60  
40  
20  
0
60  
0
V
T
= ±15V  
= 25°C  
V
T
= ±15V  
= 25°C  
S
S
A
A
50  
40  
A
VCL  
= 100  
= 10  
= 1  
45  
30  
90  
A
VCL  
20  
135  
180  
10  
A
VCL  
0
–10  
–20  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. OP482 Open-Loop Gain and Phase vs. Frequency  
Figure 28. OP482 Closed-Loop Gain vs. Frequency  
35  
25  
20  
15  
10  
5
–SR  
V
R
= ±15V  
= 10kΩ  
S
L
30  
25  
20  
15  
10  
5
V
R
C
= ±15V  
= 10k  
= 50pF  
S
L
L
+SR  
0
–75  
0
–75  
–50  
–25  
0
25  
50  
C)  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (  
°
TEMPERATURE (°C)  
Figure 26. OP482 Open-Loop Gain vs. Temperature  
Figure 29. OP482 Slew Rate vs. Temperature  
Rev. I | Page 8 of 16  
Data Sheet  
OP282/OP482  
1000  
1000  
100  
10  
V
T
= ±15V  
= 25°C  
V
V
= ±15V  
S
S
= 0V  
A
CM  
100  
10  
1.0  
0.1  
1
0.1  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
–15  
–10  
–5  
0
5
10  
15  
TEMPERATURE (°C)  
COMMON-MODE VOLTAGE (V)  
Figure 33. OP482 Input Bias Current vs. Common-Mode Voltage  
Figure 30. OP482 Input Bias Current vs. Temperature  
1.15  
60  
55  
50  
45  
40  
5.0  
4.5  
4.0  
3.5  
3.0  
T
= 25°C  
V
R
= ±15V  
= 10k  
A
S
L
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
GBW  
Ø
M
0
±5  
±10  
±15  
±20  
–75  
–50  
–25  
0
25  
50  
75  
100  
125  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 31. OP482 Phase Margin and Gain Bandwidth Product vs.  
Temperature  
Figure 34. OP482 Relative Supply Current vs. Supply Voltage  
80  
20  
R
T
= 10k  
= 25°C  
V
T
= ±15V  
= 25°C  
L
S
A
A
70  
60  
50  
40  
30  
20  
10  
0
15  
10  
5
0
–5  
–10  
–15  
–20  
10  
100  
FREQUENCY (Hz)  
1k  
10k  
0
±5  
±10  
±15  
±20  
SUPPLY VOLTAGE (V)  
Figure 32. OP482 Voltage Noise Density vs. Frequency  
Figure 35. OP482 Output Voltage Swing vs. Supply Voltage  
Rev. I | Page 9 of 16  
OP282/OP482  
Data Sheet  
600  
500  
400  
300  
200  
100  
0
100  
80  
60  
40  
20  
0
V
T
= ±15V  
= 25°C  
V = ±15V  
S
V = 100mV  
S
+PSRR  
–PSRR  
Δ
A
T
= 25°C  
A
A
= 100  
VCL  
A
= 10  
VCL  
A
= 1  
VCL  
20  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
1M  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 39. OP482 Power Supply Rejection Ratio (PSRR) vs. Frequency  
Figure 36. OP482 Closed-Loop Output Impedance vs. Frequency  
20  
1.20  
V
= ±15V  
V
= ±15V  
S
S
SINK  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
15  
10  
5
SOURCE  
0
–75  
–50  
–25  
0
25  
50  
C)  
75  
100  
125  
–75  
–50  
–25  
0
25  
50  
C)  
75  
100  
125  
TEMPERATURE (  
°
TEMPERATURE (  
°
Figure 37. OP482 Relative Supply Current vs. Temperature  
Figure 40. OP482 Short-Circuit Current vs. Temperature  
16  
14  
12  
10  
8
30  
V
T
= ±15V  
= 25°C  
V
T
A
= ±15V  
= 25°C  
S
S
A
A
= 1  
VCL  
= 10k  
25  
R
L
POSITIVE  
SWING  
20  
15  
10  
5
NEGATIVE  
SWING  
6
4
2
0
100  
0
1k  
10k  
10k  
100k  
FREQUENCY (Hz)  
1M  
1k  
LOAD RESISTANCE ()  
Figure 41. OP482 Maximum Output Swing vs. Frequency  
Figure 38. OP482 Maximum Output Voltage vs. Load Resistance  
Rev. I | Page 10 of 16  
Data Sheet  
OP282/OP482  
100  
80  
60  
40  
20  
0
320  
280  
240  
200  
160  
120  
80  
V
= ±15V  
= 25°C  
S
40  
T
A
V
= 100mV  
CM  
0
–20  
100  
1k  
10k  
100k  
1M  
0
4
8
12  
16  
OS  
20  
24  
28  
32  
TCV (µV/°C)  
FREQUENCY (Hz)  
Figure 42. OP482 Common-Mode Rejection Ratio (CMRR) vs. Frequency  
Figure 44. OP482 TCVOS Distribution, PDIP Package  
700  
V
= ±15V  
= 25°C  
S
T
A
600  
500  
400  
300  
200  
100  
0
300 × OP482  
(1200 OP AMPS)  
–2000 –1600 –1200 –800 –400  
0
400 800 1200 1600 2000  
V
(µV)  
OS  
Figure 43. OP482 VOS Distribution, PDIP Package  
Rev. I | Page 11 of 16  
OP282/OP482  
Data Sheet  
APPLICATIONS INFORMATION  
The OP282 and OP482 are dual and quad JFET op amps that  
are optimized for high speed at low power. This combination  
makes these amplifiers excellent choices for battery-powered or  
low power applications that require above average performance.  
Applications benefiting from this performance combination  
include telecommunications, geophysical exploration, portable  
medical equipment, and navigational instrumentation.  
amp against phase reversal. R1, D2, and D3 limit the input  
current when the input exceeds the supply rail. The resistor  
should be selected to limit the amount of input current below  
the absolute maximum rating.  
V+  
D2  
R1  
OP282/  
OP482  
IN5711  
10kΩ  
V
IN  
D1  
IN5711  
V+  
V–  
HIGH-SIDE SIGNAL CONDITIONING  
V
OUT  
D3  
IN5711  
Many applications require the sensing of signals near the positive  
rail. OP282 and OP482 were tested and are guaranteed over a  
common-mode range (−11 V ≤ VCM ≤ +15 V) that includes the  
positive supply.  
V–  
Figure 46. Phase Reversal Solution Circuit  
One application where such sensing is commonly used is in the  
sensing of power supply currents. Therefore, the OP282/OP482  
can be used in current sensing applications, such as the partial  
circuit shown in Figure 45. In this circuit, the voltage drop across  
a low value resistor, such as the 0.1 Ω shown here, is amplified  
and compared to 7.5 V. The output can then be used for current  
limiting.  
V
= ±15V  
S
15V  
0.1  
2
500k  
100k  
R
L
V
OUT  
100k  
500k  
1/2  
OP282  
V
IN  
TIME (200µs/DIV)  
Figure 47. No Phase Reversal  
ACTIVE FILTERS  
Figure 45. High-Side Signal Conditioning  
The wide bandwidth and high slew rates of the OP282/OP482  
make either one an excellent choice for many filter applications.  
PHASE INVERSION  
Most JFET input amplifiers invert the phase of the input signal  
if either input exceeds the input common-mode range. For the  
OP282/OP482, a negative signal in excess of 11 V causes phase  
inversion. This is caused by saturation of the input stage, leading  
to the forward-biasing of a gate-drain diode. Phase reversal in  
the OP282/OP482 can be prevented by using Schottky diodes to  
clamp the input terminals to each other and to the supplies. In  
the simple buffer circuit shown in Figure 46, D1 protects the op  
There are many active filter configurations, but the four most  
popular configurations are Butterworth, elliptic, Bessel, and  
Chebyshev. Each type has a response that is optimized for a  
given characteristic, as shown in Table 4.  
Table 4. Active Filter Configurations  
Type  
Selectivity  
Moderate  
Good  
Best  
Poor  
Overshoot  
Good  
Moderate  
Poor  
Phase  
Amplitude (Pass Band)  
Maximum flat  
Equal ripple  
Amplitude (Stop Band)  
Butterworth  
Chebyshev  
Elliptic  
Nonlinear  
Linear  
Equal ripple  
Equal ripple  
Bessel (Thompson)  
Best  
Rev. I | Page 12 of 16  
 
 
 
 
 
 
 
Data Sheet  
OP282/OP482  
This cutoff frequency can now be expressed as  
PROGRAMMABLE STATE VARIABLE FILTER  
1
D1  
The circuit shown in Figure 48 can be used to accurately  
program the Q, the cutoff frequency (fC), and the gain of a two-  
pole state variable filter. OP482 devices have been used in this  
design because of their high bandwidths, low power, and low  
noise. This circuit takes only three packages to build because of  
the quad configuration of the op amps and DACs.  
fC  
=
R1C1 256  
where D1 is the digital code for the DAC.  
The gain of this circuit is set by adjusting D3. The gain equation is  
R4 D3  
R5 256  
Gain =  
The DACs shown are used in the voltage mode; therefore, many  
values are dependent on the accuracy of the DAC only and not  
on the absolute values of the DAC’s resistive ladders. This  
makes this circuit unusually accurate for a programmable filter.  
DAC 2 is used to set the Q of the circuit. Adjusting this DAC  
controls the amount of feedback from the band-pass node to  
the input summing node. Note that the digital value of the  
DAC is in the numerator; therefore, zero code is not a valid  
operating point.  
Adjusting DAC 1 changes the signal amplitude across R1; therefore,  
the DAC attenuation times R1 determines the amount of signal  
current that charges the integrating capacitor, C1.  
R2 256  
Q =  
R3 D2  
R7  
2k  
R4  
2k  
V
IN  
C1  
1000pF  
R5  
2k  
1/4  
1/4  
DAC8408  
OP482  
1/4  
C1  
1000pF  
R1  
2k  
OP482  
1/4  
1/4  
DAC8408  
OP482  
1/4  
R1  
2k  
OP482  
1/4  
1/4  
DAC8408  
OP482  
1/4  
OP482  
HIGH PASS  
LOW  
PASS  
BAND PASS  
R6  
2k  
R3  
2k  
R2  
2k  
1/4  
1/4  
DAC8408  
OP482  
1/4  
OP482  
Figure 48. Programmable State Variable Filter  
Rev. I | Page 13 of 16  
 
 
OP282/OP482  
Data Sheet  
OUTLINE DIMENSIONS  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
IDENTIFIER  
0.65 BSC  
0.95  
0.85  
0.75  
15° MAX  
1.10 MAX  
0.80  
0.55  
0.40  
0.15  
0.05  
0.23  
0.09  
6°  
0°  
0.40  
0.25  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 49. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 50. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
S-Suffix (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. I | Page 14 of 16  
 
Data Sheet  
OP282/OP482  
0.775 (19.69)  
0.750 (19.05)  
0.735 (18.67)  
14  
1
8
7
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.110 (2.79)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.050 (1.27)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 51. 14-Lead Plastic Dual In-Line Package [PDIP]  
P-Suffix (N-14)  
Dimension shown in inches and (millimeters)  
8.75 (0.3445)  
8.55 (0.3366)  
8
7
14  
1
6.20 (0.2441)  
5.80 (0.2283)  
4.00 (0.1575)  
3.80 (0.1496)  
1.27 (0.0500)  
0.50 (0.0197)  
0.25 (0.0098)  
45°  
BSC  
1.75 (0.0689)  
1.35 (0.0531)  
0.25 (0.0098)  
0.10 (0.0039)  
8°  
0°  
COPLANARITY  
0.10  
SEATING  
PLANE  
1.27 (0.0500)  
0.40 (0.0157)  
0.51 (0.0201)  
0.31 (0.0122)  
0.25 (0.0098)  
0.17 (0.0067)  
COMPLIANT TO JEDEC STANDARDS MS-012-AB  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 52. 14-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body  
S-Suffix (R-14)  
Dimensions shown in millimeters and (inches)  
Rev. I | Page 15 of 16  
OP282/OP482  
Data Sheet  
1.165  
1.128  
1.090  
0.347  
BSC  
0.347  
BSC  
3
2
1
A
B
BALL A1  
IDENTIFIER  
0.20  
BSC  
C
D
2.160  
2.123  
2.085  
1.60  
REF  
E
F
G
H
J
0.40  
BSC  
TOP VIEW  
(BALL SIDE DOWN)  
BOTTOM VIEW  
(BALL SIDE UP)  
0.694  
REF  
0.415  
0.400  
0.385  
0.645  
0.600  
0.555  
END VIEW  
COPLANARITY  
0.05  
0.230  
0.200  
0.170  
SEATING  
PLANE  
0.287  
0.267  
0.247  
Figure 53. 14-Ball Wafer Level Chip Scale Package [WLCSP]  
CB-14-2  
Controlling dimensions are millimeters  
ORDERING GUIDE  
Model1  
OP282ARMZ  
OP282ARMZ-REEL  
OP282GS  
OP282GS-REEL  
OP282GS-REEL7  
OP282GSZ  
OP282GSZ-REEL  
OP282GSZ-REEL7  
OP482ACBZ-RL  
OP482ACBZ-R7  
OP482GPZ  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
8-Lead MSOP  
8-Lead MSOP  
Package Option  
RM-8  
RM-8  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
S-Suffix (R-8)  
CB-14-2  
Branding  
A0B  
A0B  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
8-Lead SOIC_N  
14-Ball WLCSP  
14-Ball WLCSP  
14-Lead PDIP  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
14-Lead SOIC_N  
A2J  
A2J  
CB-14-2  
P-Suffix (N-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
S-Suffix (R-14)  
OP482GS  
OP482GS-REEL  
OP482GS-REEL7  
OP482GSZ  
OP482GSZ-REEL  
OP482GSZ-REEL7  
1 Z = RoHS Compliant Part.  
©1991–2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00301-0-9/13(I)  
Rev. I | Page 16 of 16  
 
 

相关型号:

OP482GS

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP482GS-REEL

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP482GS-REEL7

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP482GSZ

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP482GSZ-REEL

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP482GSZ-REEL7

Dual/Quad Low Power, High Speed JFET Operational Amplifiers
ADI

OP484

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP484EP

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP484ES

Precision Rail-to-Rail Input & Output Operational Amplifiers
ADI

OP484ES-REEL

Precision Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP484ESZ

Precision Rail-to-Rail Input and Output Operational Amplifiers
ADI

OP484ESZ-REEL

Precision Rail-to-Rail Input and Output Operational Amplifiers
ADI