LTC6269 [ADI]

1nV/√Hz 420MHz GBW, 180V/μs, Low Distortion Rail-to-Rail Output Op Amps;
LTC6269
型号: LTC6269
厂家: ADI    ADI
描述:

1nV/√Hz 420MHz GBW, 180V/μs, Low Distortion Rail-to-Rail Output Op Amps

文件: 总28页 (文件大小:2264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6226/LTC6227  
Hz  
1nV/420MHz GBW, 180V/µs,  
Low Distortion Rail-to-Rail Output Op Amps  
FEATURES  
DESCRIPTION  
The LTC®6226/LTC6227 are very fast, low noise rail-to-rail  
output, unity gain stable single/dual op amps, with a gain-  
bandwidth product of 420MHz and a slew rate of 180V/μs.  
The low input referred voltage noise of only 1nV/√Hz and  
n
Ultra Low Voltage Noise: 1nV/√Hz  
n
Low Distortion: HD2/HD3<–90dB at 4V ,1MHz  
C
P-P  
into 1kΩ  
n
n
n
n
n
n
n
n
n
n
n
n
n
High Slew Rate: 180V/μs  
GBW = 420MHz  
low distortion of less than –90dB for 4V signals at  
C
P-P  
–3dB Frequency (A = +1): 330MHz  
1MHz makes them ideal for applications that require high  
dynamic range and deal with very fast signals, such as  
driving A/D converters.  
V
Input Common Mode Range Includes Negative Rail  
Output Swings Rail-to-Rail  
Supply Current: 5.5mA/Channel Typ  
Operating Supply Range: 2.8V to 11.75V  
Input Offset Voltage: 95μV Max  
Offset Drift :0.4μV/°C  
Low Power Shutdown  
Very High Open Loop Gain: 9V/μV (139dB), R = 1kΩ  
Operating Temp Range: –40°C to 125°C  
Single in 8-Lead SOIC, TSOT-23, 2mm × 2mm DFN.  
Duals in 3mm × 3mm DFN, MS8E  
The combination of low offset, low offset drift, high gain  
(139dB) and high CMRR (114dB) make these excellent  
devices for high dynamic range applications.  
The LTC6226 family maintains excellent performance for  
supply voltages of 2.8V to 11.75V and the devices are fully  
specified at supplies of 3V, 5V and 10V ( 5V).  
L
With an input range extending to the negative rail and  
rail-to-rail output stage, the operational amplifier can  
accommodate wide swinging signals, and true single  
supply operation.  
APPLICATIONS  
n
Optical Electronics: Fast AC-Coupled Transimpedance  
For space constrained applications, the amplifiers come  
in 2mm × 2mm DFN (single) and 3mm × 3mm DFN  
(dual) packages. The devices are also available in 8-lead  
SOIC,TSOT-23 and MS8E.  
Amplifiers  
n
Driving High Dynamic Range A/D Converters  
n
Active Filters  
Video Amplifiers  
n
These amplifiers can be used as replacements for many high  
speed op amps to improve speed, noise and dynamic range.  
All registered trademarks and trademarks are the property of their respective owners.  
n
Low Voltage Low Distortion Amplification  
16-Bit ADC Driver Performance  
Input Signal = –0.5dBFS  
TYPICAL APPLICATION  
fSMPL = 4Msps, fIN = 50kHz  
High Performance Transparent LTC6227 Based Driver for the 16-Bit AD7380  
0
ꢀꢁ0  
ꢀꢁꢂꢃꢄ  
ꢀ0ꢁꢂꢃ ꢄꢅꢆꢇꢈ ꢉꢄꢊꢅꢋꢌ  
ꢀꢁꢀ  
ꢀꢁR ꢂ ꢃꢄ ꢅꢆ  
ADR4533  
ꢇꢈꢉ ꢂ ꢊꢄ0ꢋꢌꢍ ꢅꢆ  
ꢀꢎꢉR ꢂ ꢄ0ꢍꢌꢏ ꢅꢆ  
5V  
ꢀꢁ0  
3.3V  
3.3V  
+
ꢀꢁ0  
1/2 LTC6227  
2.2µF  
3.3V  
2.5V  
0V  
ꢀꢁ0  
33Ω  
68pF  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
+
V
V
V
CC REF LOGIC  
IN  
330pF  
AD7380  
3.3V  
0V  
+
68pF  
33Ω  
1/2 LTC6227  
IN  
62267 TA01a  
0
ꢀ00  
ꢀ00  
ꢀꢁ00  
ꢀꢁ00  
ꢀ000  
–2.5V  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢂꢃꢄꢄꢅꢅ ꢁꢆ0ꢇꢈ  
Rev 0  
1
Document Feedback  
For more information www.analog.com  
LTC6226/LTC6227  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
+
Total Supply Voltage (V to V ).................................12V  
Output Current (Note 3) ..................................... 100mA  
Output Short-Circuit Duration.............Thermally Limited  
Storage Temperature Range .................. –65°C to 125°C  
Maximum Junction Temperature .......................... 150°C  
MSOP Lead Temperature (Soldering 10s).............300°C  
+
Input Voltage (–IN, +IN, SHDN)....V – 0.3V to V + 0.3V  
Input Current (–IN, +IN, SHDN) (Note 2).............. 10mA  
Operating Temperature Range  
LTC6226I/LTC6227I (Note 4)...............–40°C to 85°C  
LTC6226H/LTC6227H (Note 4) .......... –40°C to 125°C  
Specified Temperature Range  
LTC6226I/LTC6227I (Note 4)...............–40°C to 85°C  
LTC6226H/LTC6227H (Note 4) .......... –40°C to 125°C  
PIN CONFIGURATION  
ꢈꢉꢊ ꢋꢌꢍꢎ  
ꢆꢇꢈ ꢉꢊꢋꢌ  
ꢒꢓ  
ꢑꢌꢔ  
ꢏꢌꢔ  
SHDN  
ꢇꢘꢆ ꢀ  
ꢃ ꢉ  
SHDN  
ꢅ ꢖꢊꢗ  
ꢉꢐꢈ  
ꢕꢊꢗ ꢂ  
ꢍꢃ ꢈꢎꢏꢐꢎꢑꢋ  
ꢃꢒꢓꢋꢎꢔ ꢈꢓꢎꢍꢆꢊꢏ ꢆꢍꢇꢁꢂ  
ꢕꢄ ꢊꢖꢗꢘꢖꢙꢍ  
ꢄꢚꢛꢍꢖꢜ ꢊꢛꢖꢕꢈꢌꢗ ꢕꢉ  
T
= 150°C, θ = 192°C/W (NOTE 8)  
JMAX  
JA  
T
JMAX  
= 150°C, θ = 120°C/W (NOTE 8)  
JA  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢆꢄꢒ ꢌꢉꢓꢔ  
ꢁꢇꢀ  
ꢈꢄꢉ  
ꢄꢅꢆꢇ  
ꢈꢉꢊꢇ  
ꢋꢉꢊꢇ  
ꢍ ꢌ  
ꢎ ꢄꢅꢆꢑ  
ꢏ ꢈꢉꢊꢑ  
ꢐ ꢋꢉꢊꢑ  
ꢊꢄꢉ  
SHDN  
ꢕꢖꢓ ꢒꢇꢗꢘꢇꢙꢓ  
ꢍꢚꢛꢓꢇꢜ ꢒꢛꢇꢖꢆꢉꢗ ꢕꢖꢄꢒ  
ꢋꢌ ꢂꢍꢌꢎꢍꢏꢅ  
ꢐꢑꢒꢅꢍꢋ ꢓꢔꢕꢕ × ꢔꢕꢕꢖ ꢂꢒꢍꢗꢀꢄꢌ ꢋꢘꢉ  
T
= 150°C, θ = 35°C/W (NOTE 8)  
JMAX  
JA  
EXPOSED PAD (PIN 9) IS V , MUST BE SOLDERED TO PCB  
T
= 150°C, θ = 80°C/W (NOTE 8)  
JMAX  
JA  
EXPOSED PAD (PIN 7) IS V , MUST BE SOLDERED TO PCB  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢇꢇ  
ꢁꢟꢀꢊ  
ꢇ0  
ꢈꢄꢖꢊ  
ꢁꢟꢀꢠ  
ꢈꢄꢖꢠ  
ꢞꢄꢖꢊ  
ꢞꢄꢖꢠ  
SHDNA  
SHDNB  
ꢉꢉ ꢂꢊꢋꢌꢊꢍꢅ  
ꢇ0ꢎꢏꢅꢊꢉ ꢐꢑꢒꢒ × ꢑꢒꢒꢓ ꢂꢏꢊꢔꢀꢄꢋ ꢉꢕꢖ  
T
= 125°C, θ = 43°C/W (NOTE 8)  
JMAX  
JA  
EXPOSED PAD (PIN 11) IS V , MUST BE SOLDERED TO PCB  
Rev 0  
2
For more information www.analog.com  
LTC6226/LTC6227  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6226IS6#TRMPBF  
LTC6226HS6#TRMPBF  
LTC6226IDC#TRMPBF  
LTC6226HDC#TRMPBF  
LTC6226IS8#PBF  
TAPE AND REEL  
PART MARKING  
LTHGY  
LTHGY  
LHGZ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
–40ºC to 125°C  
–40°C to 85°C  
–40ºC to 125°C  
–40°C to 85°C  
–40ºC to 125°C  
–40°C to 85°C  
–40ºC to 125°C  
–40°C to 85°C  
–40ºC to 125°C  
LTC6226IS6#TRPBF  
LTC6226HS6#TRPBF  
LTC6226IDC#TRPBF  
LTC6226HDC#TRPBF  
LTC6226IS8#TRPBF  
LTC6226HS8#TRPBF  
LTC6227IMS8E#TRPBF  
LTC6227HMS8E#TRPBF  
LTC6227IDD#TRPBF  
LTC6227HDD#TRPBF  
6-Lead TSOT-23  
6-Lead TSOT-23  
6-Lead 2mm × 2mm DFN  
6-Lead 2mm × 2mm DFN  
8-Lead SOIC-8  
LHGZ  
6226  
LTC6226HS8#PBF  
6226  
8-Lead SOIC-8  
LTC6227IMS8E#PBF  
LTC6227HMS8E#PBF  
LTC6227IDD#PBF  
LTHHB  
LTHHB  
LHHC  
8-Lead MSOP, Exposed Pad  
8-Lead MSOP, Exposed Pad  
10-Lead 3mm × 3mm DFN  
10-Lead 3mm × 3mm DFN  
LTC6227HDD#PBF  
LHHC  
Contact the factory for parts specified with wider operating temperature ranges.  
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with #TRMPBF suffix.  
ELECTRICAL CHARACTERISTICS (VS = 5V) The ldenotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±5V,VCM = 0V, VSHDN = floating unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
–95  
–225  
20  
95  
225  
μV  
μV  
l
ΔV  
Input Offset Voltage Match (Channel to  
Channel, LTC6227, Note 5)  
–140  
–400  
18  
140  
400  
μV  
μV  
OS  
l
l
T
Input Offset Voltage Drift  
Input Bias Current (Note 6)  
0.4  
μV/°C  
CVOS  
I
B
–20  
–25  
–8.4  
μA  
μA  
l
l
l
l
ΔI  
Input Bias Current Match  
(Channel to Channel,LTC6227, Note 5)  
–2  
–3  
0.3  
0.2  
2
3
µA  
µA  
B
I
Input Offset Current  
–0.35  
–0.5  
0.35  
0.5  
μA  
µA  
OS  
ΔI  
Input OffsetCurrent Match  
(Channel to Channel, LTC6227, Note 5)  
–0.7  
–1  
0.15  
0.7  
1
µA  
µA  
OS  
e
Input Noise Voltage Spectral Density  
Integrated 1/f Noise  
f = 1MHz  
1
nV/√Hz  
n
0.1Hz to 10Hz  
f = 1MHz  
0.77  
2.4  
μV  
P-P  
i
n
Input Noise Current Spectral Density  
Input Capacitance  
pA/√Hz  
C
Differential Mode  
Common Mode  
3
1
pF  
pF  
IN  
R
IN  
Input Resistance  
Differential Mode  
Common Mode  
4.7  
6
kΩ  
MΩ  
A
Large Signal Voltage Gain  
R = 1kΩ to Half Supply V = 4V  
OUT  
114  
110  
139  
110  
114  
dB  
dB  
VOL  
L
l
l
R = 100Ω to Half Supply V  
= 2.5V  
93  
88  
dB  
dB  
L
OUT  
+
CMRR  
Common Mode Rejection Ratio  
V
= V – 0.1V to V – 1.2V  
100  
95  
dB  
dB  
CM  
l
l
+
V
Input Common Mode Range (Note 10)  
Positive Power Supply Rejection Ratio  
V – 0.1  
V – 1.2  
V
CMR  
+
+
PSRR  
V = –1V, V = 1.8V to 10.75V  
100  
95  
115  
dB  
dB  
l
Rev 0  
3
For more information www.analog.com  
LTC6226/LTC6227  
ELECTRICAL CHARACTERISTICS (VS = 5V) The ldenotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±5V,VCM = 0V, VSHDN = floating unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
PSRR  
Negative Power Supply Rejection Ratio  
V = 1.5V, V = –1.3V to –10.25V  
103  
108  
127  
dB  
dB  
l
l
+
Supply Voltage Range (V – V ) (Note 7)  
Output Swing Low (V – V  
2.8  
11.75  
V
V
)
EE  
No Load  
19  
100  
330  
14  
21  
26  
mV  
mV  
OL  
OH  
OUT  
l
l
l
l
l
l
l
l
l
I
I
= 5mA  
45  
120  
mV  
mV  
SINK  
SINK  
= 25mA  
427  
670  
mV  
mV  
V
Output Swing High (V – V  
)
OUT  
No Load  
20  
26  
mV  
mV  
CC  
I
I
= 5mA  
140  
600  
–64  
60  
180  
200  
mV  
mV  
SINK  
= 25mA  
1000  
1370  
mV  
mV  
SOURCE  
I
SC  
Output Short-Circuit Current  
Supply Current per Channel  
Sourcing  
Sinking  
–42  
–35  
mA  
mA  
45  
32  
mA  
mA  
I
I
5.5  
350  
5.8  
7.4  
mA  
mA  
S
+
Disable Supply Current Per Channel, Amplifier  
Off  
V
SHDN  
= V – 2.75V  
450  
520  
μA  
μA  
SD  
l
l
l
l
l
+
V
V
SHDN Pin Input Voltage Low, Disable Amplifier  
SHDN Pin Input Voltage High, Enable Amplifier  
SHDN Pin Input Current, Disable Amplifier  
SHDN Pin Input Current, Enable Amplifier  
Output Leakage Current in Shutdown  
–3dB Closed Loop Bandwidth  
V – 2.75  
V
V
L_SHDN  
H_SHDN  
L_SHDN  
H_SHDN  
OSD  
+
V – 1.6  
–10  
+
I
I
I
V
V
= V – 2.75V  
–2.5  
–0.3  
100  
330  
420  
10  
10  
μA  
SHDN  
+
= V – 1.6V  
–10  
μA  
SHDN  
nA  
BW  
A = 1, R = 1kΩ to Half Supply  
V
MHz  
L
GBW  
Gain-Bandwidth Product  
f = 5MHz, R = 1kΩ to Half Supply  
350  
300  
MHz  
MHz  
L
l
+
+
t
t
t
Turn-On Time  
V
V
= V – 2.75V to V – 1.6V  
2100  
800  
58  
ns  
ns  
ns  
ns  
ns  
ON  
SHDN  
+
+
Turn-Off Time  
= V – 1.6V to V – 2.75V  
OFF  
SHDN  
Settling Time to 0.1%  
A = 1, 2V Output Step, R = 1kΩ  
V L  
S_0.1  
A = 1, 4V Output Step, R = 1kΩ  
61  
V
L
t
Settling Time to 0.01%  
A = 1, 6V Output Step, R = 1kΩ  
150  
S_0.01  
V
L
Rev 0  
4
For more information www.analog.com  
LTC6226/LTC6227  
ELECTRICAL CHARACTERISTICS (VS = 5V) The ldenotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. VS = ±5V,VCM = 0V, VSHDN = floating unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
A = +4, 8V Output Step (Note 9)  
MIN  
TYP  
MAX  
UNITS  
SR  
Slew Rate  
115  
90  
180  
V/μS  
V/μS  
V
l
FPBW  
Full Power Bandwidth  
V
= 8V , A = +2, THD < –40dBc  
5.5  
MHz  
OUT  
P-P  
V
HD2/HD3 Harmonic Distortion, R = 1kΩ to Half Supply, f = 100kHz, V = 4V  
P-P  
–128/–136  
–99/–91  
–104/–95  
–89/–79  
–91/–80  
dBc  
dBc  
dBc  
dBc  
dBc  
L
C
O
A = +1  
f = 1MHz, V = 4V  
V
C O P-P  
f = 1MHz, V = 2V  
C
O
P-P  
P-P  
P-P  
f = 2MHz, V = 4V  
C
O
f = 2MHz, V = 2V  
C
O
Harmonic Distortion, R = 100Ω to Half Supply, f = 100kHz, V = 4V  
–111/–123  
–93/–77  
–96/–80  
–89/–70  
–90/–70  
dBc  
dBc  
dBc  
dBc  
dBc  
L
C
O
P-P  
P-P  
A = +1  
f = 1MHz, V = 4V  
V
C O  
f = 1MHz, V = 2V  
C
O
P-P  
P-P  
P-P  
f = 2MHz, V = 4V  
C
O
f = 2MHz, V = 2V  
C
O
ΔG  
Differential Gain  
Differential Phase  
A = 2, R = 150Ω  
0.4  
%
%
V
L
A = +1, R = 1kΩ  
0.08  
V
L
Δθ  
A = 2, R = 150Ω  
0.025  
0.13  
Deg  
Deg  
V
L
A = +1, R = 1kΩ  
V
L
ELECTRICAL CHARACTERISTICS (VS = 5V, 0V) The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V,VCM = VOUT = 2.5V, VSHDN = floating  
unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
–100  
–235  
20  
100  
235  
μV  
μV  
l
ΔV  
Input Offset Voltage Match  
–140  
–400  
18  
140  
400  
µV  
µV  
OS  
l
l
(Channel to Channel, LTC6227, Note 5)  
T
Input Offset Voltage Drift  
Input Bias Current (Note 5)  
0.4  
μV/°C  
CVOS  
I
B
–20  
–25  
–8.4  
μA  
μA  
l
l
ΔI  
Input Bias Current Match  
(Channel to Channel, LTC6227, Note 5)  
–2  
–3  
0.3  
0.2  
2
3
µA  
µA  
B
I
Input Offset Current  
–0.35  
–0.5  
0.35  
0.5  
μA  
µA  
OS  
ΔI  
Input Offset Current Match  
(Channel to Channel, LTC6227, Note 5)  
–0.7  
–1  
0.15  
0.7  
1
µA  
µA  
OS  
l
e
Input Noise Voltage Spectral Density  
Integrated 1/f Noise  
f = 1MHz  
1
nV/√Hz  
n
0.1Hz to 10Hz  
f = 1MHz  
0.77  
2.4  
μV  
P-P  
i
n
Input Noise Current Spectral Density  
Input Capacitance  
pA/√Hz  
C
Differential Mode  
Common Mode  
3
1
pF  
pF  
IN  
R
IN  
Input Resistance  
Differential Mode  
Common Mode  
4.7  
6
kΩ  
MΩ  
A
Large Signal Voltage Gain  
R = 1kΩ to Half Supply  
OUT  
114  
110  
135  
120  
114  
dB  
dB  
VOL  
L
l
l
V
= 0.5V to 4.5V  
R = 100Ω to Half Supply  
105  
93  
dB  
dB  
L
OUT  
V
= 0.9V to 4.1V  
+
CMRR  
Common Mode Rejection Ratio  
V
= V – 0.1V to V – 1.2V  
99  
95  
dB  
dB  
CM  
Rev 0  
5
For more information www.analog.com  
LTC6226/LTC6227  
ELECTRICAL CHARACTERISTICS (VS = 5V, 0V) The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V,VCM = VOUT = 2.5V, VSHDN = floating  
unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
l
V
Input Common Mode Range (Note 10)  
Positive Power Supply Rejection Ratio  
V – 0.1  
V – 1.2  
V
CMR  
+
+
PSRR  
V = –1V, V = 1.8V to 10.75V  
100  
95  
115  
127  
dB  
dB  
+
PSRR  
Negative Power Supply Rejection Ratio  
V = 1.5V, V = –1.3V to –10.25V  
103  
100  
dB  
dB  
l
l
+
Supply Voltage Range (V – V ) (Note 7)  
Output Swing Low (V – V  
2.8  
11.75  
V
V
V
)
EE  
No Load  
16  
90  
21  
23  
mV  
mV  
OL  
OUT  
l
l
l
l
l
l
l
l
l
I
I
= 5mA  
110  
155  
mV  
mV  
SINK  
= 15mA  
220  
11  
270  
370  
mV  
mV  
SINK  
Output Swing High (V – V  
)
No Load  
15  
20  
mV  
mV  
OH  
CC  
OUT  
I
I
= 5mA  
150  
331  
–52  
57  
180  
200  
mV  
mV  
SINK  
= 15mA  
500  
650  
mV  
mV  
SOURCE  
I
SC  
Output Short-Circuit Current  
Supply Current per Channel  
Sourcing  
Sinking  
–34  
–30  
mA  
mA  
42  
30  
mA  
mA  
I
I
5.8  
245  
6.3  
7.6  
mA  
mA  
S
+
Disable Supply Current Per Amplifier, Amplifier  
Off  
V
SHDN  
= V – 2.65V  
310  
330  
μA  
μA  
SD  
l
l
l
l
l
+
V
V
SHDN Pin Input Voltage Low, Disable Amplifier  
SHDN Pin Input Voltage High, Enable Amplifier  
SHDN Pin Input Current, Disable Amplifier  
SHDN Pin Input Current, Enable Amplifier  
Output Leakage Current in Shutdown  
–3dB Closed Loop Bandwidth  
V – 2.65  
V
V
L_SHDN  
H_SHDN  
L_SHDN  
H_SHDN  
OSD  
+
V – 1.6  
+
I
I
I
V
V
= V – 2.65V  
–10  
–10  
–2.9  
–0.3  
100  
490  
430  
10  
10  
μA  
SHDN  
+
= V – 1.6V  
μA  
SHDN  
nA  
BW  
A = 1, R = 1kΩ to Half Supply  
V
MHz  
L
GBW  
Gain-Bandwidth Product  
f = 5MHz, R = 1kΩ to Half Supply  
350  
290  
MHz  
MHz  
L
l
+
+
t
t
t
Turn-On Time  
V
V
= V – 2.65V to V – 1.6V  
2100  
800  
59  
ns  
ns  
ns  
ON  
SHDN  
+
+
Turn-Off Time  
= V – 1.6V to V – 2.65V  
OFF  
SHDN  
Settling Time to 0.1%  
A = 1, 2V Output Step, R = 1kΩ  
V L  
S_0.1  
Rev 0  
6
For more information www.analog.com  
LTC6226/LTC6227  
ELECTRICAL CHARACTERISTICS (VS = 5V, 0V) The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 5V, 0V,VCM = VOUT = 2.5V, VSHDN = floating  
unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
140  
6
MAX  
UNITS  
V/μS  
MHz  
SR  
Slew Rate  
A = +4, 4V Output Step (Note 9)  
V
FPBW  
Full Power Bandwidth  
V
= 4V , A = +2, THD < –40dBc  
OUT P-P V  
HD2/HD3 Harmonic Distortion, R = 1kΩ to Half Supply  
f = 100kHz, V = 2V  
P-P  
–125/–135  
–104/–106  
–90/–90  
dBc  
dBc  
dBc  
L
C
O
f = 1MHz, V = 2V  
C
O
P-P  
f = 2MHz, V = 2V  
C
O
P-P  
Harmonic Distortion, R = 100Ω to Half Supply f = 100kHz, V = 2V  
–112/–128  
–96/–88  
–88/–74  
dBc  
dBc  
dBc  
L
C
O
P-P  
P-P  
f = 1MHz, V = 2V  
C
O
f = 2MHz, V = 2V  
C
O
P-P  
ΔG  
Differential Gain  
Differential Phase  
A = 2, R = 150Ω  
0.17  
0.09  
%
%
V
L
A = +1, R = 1kΩ  
V
L
Δθ  
A = 2, R = 150Ω  
0.3  
0.04  
Deg  
Deg  
V
L
A = +1, R = 1kΩ  
V
L
ELECTRICAL CHARACTERISTICS (VS = 3V, 0V) The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 0V,VCM = 1.5V, VSHDN = floating unless  
otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
OS  
Input Offset Voltage  
–110  
–250  
24  
110  
250  
μV  
μV  
l
ΔV  
Input Offset Voltage Match  
–140  
–400  
18  
140  
400  
µV  
µV  
OS  
l
l
(Channel to Channel, LTC6227, Note 5)  
T
Input Offset Voltage Drift  
Input Bias Current (Note 6)  
0.4  
μV/°C  
CVOS  
I
B
Bias Cancellation Disabled  
–20  
–26  
–8.4  
μA  
μA  
l
l
l
l
ΔI  
Input Bias Current Match  
(Channel to Channel, LTC6227, Note 5)  
–2  
–3  
0.3  
0.2  
2
3
µA  
µA  
B
I
Input Offset Current  
–0.35  
–0.5  
0.35  
0.5  
μA  
µA  
OS  
ΔI  
Input Offset Current Match  
(Channel to Channel,LTC6227, Note 5)  
–0.7  
–1  
0.15  
0.7  
1
μA  
µA  
OS  
e
Input Noise Voltage Spectral Density  
Integrated 1/f Noise  
f = 1MHz  
1
nV/√Hz  
n
0.1Hz to 10Hz  
f = 1MHz  
0.77  
2.4  
μV  
P-P  
i
n
Input Current Noise Spectral Density  
Input Capacitance  
pA/√Hz  
C
Differential Mode  
Common Mode  
3
1
pF  
pF  
IN  
R
IN  
Input Resistance  
Differential Mode  
Common Mode  
4.7  
6
kΩ  
MΩ  
A
Large Signal Voltage Gain  
R = 1kΩ to Half Supply,  
OUT  
114  
100  
135  
114  
114  
dB  
dB  
VOL  
L
(V  
l
= V  
1V)  
CM  
R = 100Ω to Half Supply,  
dB  
L
OUT  
(V  
= V  
1V)  
CM  
+
CMRR  
Common Mode Rejection Ratio  
V
CM  
= V – 0.1V to V – 1.2V  
98  
90  
dB  
dB  
l
l
+
V
Input Common Mode Range (Note 10)  
Positive Power Supply Rejection Ratio  
V – 0.1  
V – 1.2  
V
CMR  
+
+
PSRR  
V = –1V, V = 1.8V to 10.75V  
100  
95  
115  
dB  
dB  
l
Rev 0  
7
For more information www.analog.com  
LTC6226/LTC6227  
ELECTRICAL CHARACTERISTICS (VS = 3V, 0V) The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 0V,VCM = 1.5V, VSHDN = floating unless  
otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
PSRR  
Negative Power Supply Rejection Ratio  
V = 1.5V, V = –1.3V to –10.25V  
103  
100  
127  
dB  
dB  
l
l
+
Supply Voltage Range (V – V ) (Note 7)  
Output Swing Low (V – V  
2.8  
11.75  
V
V
)
EE  
No Load  
12  
91  
14  
18  
mV  
mV  
OL  
OH  
OUT  
l
l
l
l
l
l
I
I
= 5mA  
121  
160  
mV  
mV  
SINK  
= 10mA  
161  
10  
205  
275  
mV  
mV  
SINK  
V
Output Swing High (V – V  
)
OUT  
No Load  
14  
18  
mV  
mV  
CC  
I
I
= 5mA  
150  
250  
180  
230  
mV  
mV  
SINK  
= 10mA  
330  
430  
mV  
mV  
SOURCE  
I
Output Short Circuit Current  
Supply Current/Channel  
Sourcing  
Sinking  
47  
57  
mA  
mA  
SC  
I
I
5.5  
6
mA  
mA  
S
l
l
7.25  
+
Disable Supply Current, Amplifier Off  
V
SHDN  
= V – 2.65V  
195  
247  
278  
μA  
µA  
SD  
+
l
l
l
l
V
V
SHDN Pin Input Voltage Low, Disable Amplifier  
SHDN Pin Input Voltage High, Enable Amplifier  
SHDN Pin Input Current, Disable Amplifier  
SHDN Pin Input Current, Enable Amplifier  
Output Leakage Current in Shutdown  
–3dB Closed Loop Bandwidth  
V – 2.65  
V
V
L_SHDN  
H_SHDN  
L_SHDN  
H_SHDN  
OSD  
+
V – 1.6  
–10  
+
I
I
I
V
V
= V – 2.65V  
–2.9  
0.3  
10  
10  
μA  
SHDN  
+
= V – 1.6V  
–10  
μA  
SHDN  
100  
450  
415  
nA  
BW  
A = 1, R = 1kΩ to Half Supply  
MHz  
V
L
GBW  
Gain-Bandwidth Product  
f = 5MHz, R = 1kΩ to Half Supply  
340  
280  
MHz  
MHz  
L
l
+
+
t
t
t
Turn-On Time  
V
V
= V – 2.65V to V – 1.6V  
2100  
800  
84  
ns  
ns  
ns  
ON  
SHDN  
+
+
Turn-Off Time  
= V – 1.6V to V – 2.65V  
OFF  
SHDN  
Settling Time to 0.1%  
A = 1, V = 1V, 1V Output Step,  
V CM  
R = 1kΩ to V  
S_0.1  
L
CM  
SR  
Slew Rate (Note 9)  
A = +4, 2V Output Step  
100  
8
V/μS  
MHz  
V
FPBW  
Full Power Bandwidth  
V
= 2V , A = –1, THD < –40dBc  
OUT P-P V  
Rev 0  
8
For more information www.analog.com  
LTC6226/LTC6227  
ELECTRICAL CHARACTERISTICS (VS = 3V, 0V) The l denotes the specifications which apply  
over the full operating temperature range, otherwise specifications are at TA = 25°C. VS = 3V, 0V,VCM = 1.5V, VSHDN = floating unless  
otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
HD2/HD3 Harmonic Distortion, R = 1kΩ to V  
,
f = 100kHz  
–122/–137  
–108/–111  
–95/–95  
dBc  
dBc  
dBc  
L
CM  
C
V
= 1V , V = 1V  
f = 1MHz  
OUT  
P-P CM  
C
f = 2MHz  
C
Harmonic Distortion, R = 100Ω to V  
,
f = 100kHz  
–113/–130  
–100/–94  
–90/–79  
dBc  
dBc  
dBc  
L
CM  
C
V
= 1V , V = 1V  
f = 1MHz  
OUT  
P-P CM  
C
f = 2MHz  
C
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Matching parameters are the difference between amplifiers A and  
B on the LTC6227.  
Note 6: The input bias current is the average of the average of the currents  
through the positive and negative input pins.  
Note 2: The inputs are protected by back-to-back diodes. If any of  
the input or shutdown pins goes 300mV beyond either supply or the  
differential input voltage exceeds 0.7V, the input current should be limited  
to less than 10mA.  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output current is high.  
Note 7: Supply Voltage Range is guaranteed by Power Supply Rejection  
Ratio test.  
Note 8: Thermal resistance varies with the amount of PC board metal  
connected to the package. The specified values are with short traces  
connected to the leads.  
Note 9: Middle 2/3 of the output waveform is observed for Slew Rate.  
Note 4: The LTC6226I/LTC6227I are guaranteed functional and specified  
over the temperature range of –40°C to 85°C. The LTC6226H/LTC6227H  
are guaranteed and specified functional over the temperature range of  
–40°C to 125°C.  
R = 1k to half supply.  
Note 10: Input Common Mode Range is guaranteed by Common Mode  
Rejection Ratio Test.  
L
VS = ±5V, VCM = 0V, RL = 1kΩ to Half Supply,  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Offset Distribution  
Offset Distribution  
Offset Distribution  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁ0ꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ 0ꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
00  
00  
ꢁ00 ꢂꢃꢄꢀꢅ  
0
0
0
ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0  
0
ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0  
ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0  
0
ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0  
ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0 ꢀꢁ0  
0
ꢀ0 ꢀ0 ꢀ0 ꢀ0 ꢀ0  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍꢎꢉꢏ  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍꢎꢉꢏ  
ꢀꢁꢂꢃꢄ ꢅꢆꢆꢇꢈꢄ ꢉꢅꢌꢈ ꢍꢎꢉꢏ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ  
ꢀꢁꢁꢀꢂ ꢃ0ꢁ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ  
Rev 0  
9
For more information www.analog.com  
LTC6226/LTC6227  
VS = ±5V, VCM = 0V, RL = 1kΩ to Half Supply,  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
VOS vs Temperature, 10V Supply  
VOS vs Temperature, 5V Supply  
VOS vs Temperature, 3V Supply  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢁꢂ  
ꢀ 0ꢁ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁ0ꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄꢅꢂꢆ  
ꢀ ꢁꢂꢃꢄꢅꢂꢆ  
ꢀ ꢁꢂꢃꢄꢅꢂꢆ  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
0
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0ꢁ ꢀꢁꢂ  
ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0ꢁ ꢀꢁꢂ  
ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0ꢁ ꢀꢁꢂ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ  
ꢀꢁꢁꢂ ꢃ0ꢄ  
ꢀꢁꢁꢀꢂ ꢃ0ꢀ  
Offset Voltage vs  
Input Common Mode Voltage  
Offset Voltage vs Output Current  
Warm Up Drift vs Time  
ꢀ00  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ  
ꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀ0  
ꢀ ꢁꢂꢃꢄ  
ꢀ0  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀ0  
ꢀꢁꢂꢃ  
0
ꢀꢁꢁꢂꢃ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0 ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ  
0
ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0  
0
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁꢂꢃꢁꢂ ꢄꢁRRꢅꢆꢂ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃ ꢄꢅꢀꢃR ꢆꢇꢈꢃR ꢉꢆ ꢊꢋꢌꢍ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢇꢆꢁ ꢇꢆꢈꢉ ꢊꢆꢍꢉ ꢎꢊꢏ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ  
ꢀꢁꢁꢀꢂ ꢃ0ꢂ  
Input Noise Voltage and Noise  
Current Spectral Densities  
vs Frequency  
Input Bias Current vs  
Input Common Mode Voltage  
0.1Hz to 10Hz Voltage Noise  
ꢀ00ꢁ0  
ꢀ00ꢁ0  
ꢀ00ꢁ0  
ꢀ00ꢁ0  
ꢀ00ꢁ0  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢁꢂ  
ꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ00  
ꢀ0  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ00ꢂ0  
ꢀꢁ00ꢂ0  
ꢀꢁ00ꢂ0  
ꢀꢁ00ꢂ0  
ꢀꢁ00ꢂ0  
 
ꢀ ꢁꢂꢃꢄꢅ  
e
0ꢀꢁ  
ꢀꢁꢁꢀꢂ ꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢅ  
0ꢀꢁ  
ꢀ0 ꢀ00 ꢀꢁ ꢀ0ꢁ ꢀ00ꢁ ꢀꢁ ꢀ0ꢁꢀ00ꢁ  
ꢀꢁꢂꢃ ꢀꢁꢂꢃ ꢀꢁꢂꢃ ꢀꢁꢂꢃ ꢀꢁꢂꢁ ꢀ0ꢁꢂ 0ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢇꢆꢁ ꢇꢆꢈꢉ ꢊꢆꢍꢉ ꢎꢊꢏ  
ꢀꢁꢁꢀꢂ ꢃꢄꢁ  
ꢀꢁꢁꢀꢂ ꢃꢄ0  
Rev 0  
10  
For more information www.analog.com  
LTC6226/LTC6227  
VS = ±±V, VCM = 0V, RL = 1kΩ to Half Supply,  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 2±°C, unless otherwise noted.  
Supply Current vs Input Common  
Mode Voltage  
Supply Current  
Supply Current vs Supply Voltage  
vs SHDN Pin Voltage  
0
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢀ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
0
ꢀ ꢁ ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁ ꢂ ꢃꢀ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢁꢂꢃ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀ ꢁꢂꢂꢃꢄ  
0
ꢀ0 ꢀꢀ ꢀꢁ  
ꢀꢁꢂꢀꢁꢂꢀꢁꢂꢀꢁꢂꢀꢁꢂꢀ0ꢁꢂ 0ꢀꢁ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ0 ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁꢀꢂꢃ ꢄꢅꢆꢆꢉꢊ ꢋꢈꢌ  
ꢀꢁꢂꢃꢄ ꢅꢆꢇꢇꢆꢁ ꢇꢆꢈꢉ ꢊꢆꢍꢉ ꢎꢊꢏ  
SHDN ꢀꢁꢂ ꢃꢄꢈꢉ ꢊꢃꢋ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
SHDN Pin Current  
Output Saturation Voltage  
vs SHDN Pin Voltage  
Minimum Supply Voltage  
vs Load Current (Output High)  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂ  
ꢀ ꢁ ꢀꢁꢂ  
ꢀꢀ  
ꢁꢂ  
ꢀꢁ  
0
ꢀꢁꢂꢃ  
ꢀꢁꢂ0  
ꢀꢁꢂꢃ  
ꢀꢁ0ꢂ0  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ0  
ꢀꢁꢂꢃꢄ  
ꢀꢁ0ꢂ0  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ0  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
0ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀ0  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ0  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀ ꢁꢂꢂꢃꢄ  
0
ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁ0  
0ꢀ0ꢁ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁꢀ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ0 ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁ0  
0ꢀ00ꢁ  
0ꢀ0ꢁ  
0ꢀꢁ  
ꢀ0  
ꢀ00  
SHDN ꢀꢁꢂ ꢃꢄꢈꢉ ꢊꢃꢋ  
ꢀꢁꢀꢂꢃ ꢄꢅꢆꢆꢉꢊ ꢋꢈꢌ  
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢁꢀꢂ ꢃꢄꢀ  
ꢀꢁꢁꢀꢂ ꢃꢄꢂ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
Output Saturation Voltage  
Output Short Circuit Current  
vs Supply Voltage  
vs Load Current (Output Low)  
Open Loop Gain, VS = ±5V  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀꢁ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀꢁꢂꢃ  
ꢁꢂ  
R =1kΩ  
R =100Ω  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ ꢁꢂꢃꢄ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀ0  
0ꢀꢁ  
0
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ00  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂ ꢃꢄ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂꢂꢃꢄ  
ꢀꢁꢂRꢃꢄ  
0ꢀ0ꢁ  
0ꢀ00ꢁ  
0ꢀ0ꢁ  
0ꢀꢁ  
ꢀ0  
ꢀ00  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢀ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀ0ꢁ0ꢀ0ꢁꢀꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ  
0
ꢀꢁꢂꢃ ꢄꢅRRꢆꢇꢈ ꢉꢊꢂꢋ  
ꢀꢁꢀꢂꢃ ꢄꢅꢆꢆꢉꢊ ꢋꢈꢌ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢁ0  
ꢀꢁꢁꢀꢂ ꢃꢁꢄ  
Rev 0  
11  
For more information www.analog.com  
LTC6226/LTC6227  
VS = ±5V, VCM = 0V, RL = 1kΩ to Half Supply,  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Open Loop Gain, VS = ±2.5V  
Open Loop Gain, VS = ±1.5V  
Gain vs Frequency AV = 1  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
R =1kΩ  
R =1kΩ  
R =100Ω  
R =100Ω  
ꢀꢁ  
ꢀꢁ  
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
0
0
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ0  
ꢃ ꢀ  
ꢀꢁ  
R
= 1kΩ  
ꢀ ꢁꢂ ꢃꢄ  
ꢀ ꢁꢂ ꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢀꢁ ꢀꢁꢂꢃ ꢀꢁ ꢀ0ꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀ0ꢁꢂ  
0
0ꢀꢁ  
ꢀꢁꢂ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢁꢀꢂ ꢃꢁꢁ  
ꢀꢁꢁꢀꢂ ꢃꢁꢁ  
ꢀꢁꢁꢀꢂ ꢃꢁꢄ  
Open Loop Gain and Phase  
vs Frequency  
Gain Bandwidth and Phase  
Margin vs Supply Voltage  
Gain vs Frequency AV = 2  
ꢀꢁ0  
ꢀꢀꢁ  
ꢀꢀ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀ0ꢁ  
ꢀ00  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ ꢅꢂRꢆꢇꢈ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀ ꢁꢂꢃꢄ ꢅꢆꢇꢇꢈ  
ꢀꢁ  
R
= 1kΩ TO HALF SUPPLY  
0
ꢀ ꢁꢂ ꢃꢄ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢂ ꢃꢀ  
ꢀ ꢁꢂ ꢃꢄ  
R
ꢀ ꢁꢂ  
ꢀꢁꢂꢃ ꢄꢁꢃꢅꢆꢂꢅꢇꢈ ꢉRꢊꢅꢋꢌꢇ  
R
R
ꢀ R = 301kΩ  
ꢀ ꢁꢂꢃ ꢄ  
= 1kΩ  
= 1kΩ  
ꢀꢁ  
ꢀꢁꢂ0 ꢀꢁꢂꢃ ꢀꢁꢂꢃ ꢀꢁꢂꢀ ꢀꢁꢂꢂ ꢀ0ꢁꢂꢃ ꢀꢀꢁꢂꢃ  
ꢀ00ꢁ ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀ00ꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀꢁꢀꢂꢃ ꢄꢅꢆꢆꢉꢊ ꢋꢈꢌ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢁꢀꢂ ꢃꢁꢂ  
ꢀꢁꢁꢀꢂ ꢃꢁꢀ  
ꢀꢁꢁꢀꢂ ꢃꢁꢄ  
Gain Bandwidth and Phase  
Margin vs Temperature  
Output Impedance  
vs Frequency  
Common Mode Rejection Ratio  
vs Frequency  
ꢀ00  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢀ0  
ꢀ00  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀ  
ꢀ0  
ꢀ00  
ꢀ0  
ꢀꢀ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀꢁꢂꢃꢄ ꢅꢂRꢆꢇꢈꢉ ꢊ  
ꢁꢂꢃꢄ  
ꢁ ꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ0  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ ꢅꢂRꢆꢇꢈꢉ ꢊ  
ꢁꢂꢃꢄ  
ꢁꢂꢃ0  
ꢀꢁꢂꢃꢄ ꢅꢂRꢆꢇꢈꢉ ꢊ  
ꢀꢁꢃ ꢄ  
ꢁꢂꢃꢄ  
0ꢀꢁ  
ꢀ ꢁ  
0ꢀ0ꢁ  
0ꢀ00ꢁ  
0ꢀ000ꢁ  
ꢀꢁꢃ ꢄ  
ꢁꢂ  
ꢀ ꢁ  
ꢀꢁꢃ ꢄ  
ꢀ ꢁꢂꢃꢄ  
R
= 1kΩ  
ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0ꢁ ꢀꢁꢂ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ ꢀ00ꢁ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢁꢀꢂ ꢃꢁꢄ  
ꢀꢁꢁꢀꢂ ꢃꢁꢄ  
ꢀꢁꢁꢀꢂ ꢃꢄ0  
Rev 0  
12  
For more information www.analog.com  
LTC6226/LTC6227  
VS = ±5V, VCM = 0V, RL = 1kΩ to Half Supply,  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Power Supply Rejection Ratio  
Overshoot  
vs Frequency  
Slew Rate vs Temperature  
vs Capacitive Load (AV = +1)  
ꢀꢁ0  
ꢀꢀ0  
ꢀ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀꢁ0  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ ꢁꢂꢃR =1kΩ  
ꢀ ꢁ ꢂ  
+
ꢀꢁRR  
R
S
V
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
OUT  
1kΩ  
ꢀꢁꢂꢃ Rꢄꢅꢂ ꢆꢂꢄꢀꢇRꢂꢈ ꢄꢅ ꢆꢉꢈꢈꢁꢂ  
ꢀꢁRR  
V
IN  
ꢊꢋꢌ ꢍꢎ ꢍꢇꢅꢏꢇꢅ  
C
L
Rꢀꢁꢀꢂꢃ  
ꢃ ꢂ ꢀ ꢁꢂ  
ꢀꢁꢂ ꢀꢁꢀ  
R
S
= 10 Ω  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢁꢂ  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢀ ꢁꢂ  
ꢁꢂꢃ  
ꢀ 0ꢁ  
ꢀꢁꢀ  
R
S
= 20 Ω  
ꢀ0  
ꢁꢂꢃꢅ  
ꢀꢁꢂꢂꢃꢄꢅ  
Rꢀꢁꢀꢂꢃ  
ꢀ0  
R
= 50 Ω  
S
ꢀ0  
ꢀꢁꢂꢂꢃꢄꢅ  
ꢁꢂꢃꢅ ꢄ ꢀ ꢁꢂ  
ꢀꢁꢂ ꢀꢁꢀ  
ꢀ0  
ꢀꢁ0  
0
0
ꢀ00  
ꢀꢁ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ ꢀ00ꢁ  
ꢀꢁꢁ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀ0ꢁ ꢀꢁꢂ  
ꢀ0  
ꢀ00  
ꢀ000  
ꢀ0000  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢂꢃꢁRꢄꢀꢅRꢁ ꢆꢇꢈꢉ  
ꢀꢁꢂꢁꢀꢃꢄꢃꢅꢆ ꢇꢈꢁꢉ ꢊꢋꢌꢍ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢄꢁ  
ꢀꢁꢁꢀꢂ ꢃꢄꢄ  
Overshoot  
vs Capacitive Load (AV = +2)  
Distortion vs Frequency,  
AV = 1, ±5V Supply  
Distortion vs Frequency,  
AV = 1, 5V Supply  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
0
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀ ꢁꢂ  
R =10Ω C ꢀ 0  
ꢀ ꢁ0ꢂ  
ꢁꢂ  
R
ꢀ ꢁꢂ  
=100Ω, 3  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
C
F
R =20Ω C ꢀ 0  
ꢀ ꢁꢂ  
ꢀꢁꢀ  
ꢀꢁꢂ  
R =50Ω C ꢀ 0  
R ꢀꢁ ꢂꢃꢄꢅꢆꢇꢈꢈꢊ  
ꢀ ꢁꢂ  
ꢀꢁꢀ  
=1kΩ, 2  
ꢀꢁꢂ  
ꢀꢁ0  
301Ω  
ꢀꢁ  
R =10Ω C ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ0  
301Ω  
V
R
+
R
ꢀꢁ  
V
S
OUT  
ꢀꢁ0  
R
= 100Ω, 3  
R =20Ω C ꢀ ꢁꢂꢃꢄꢅ  
IN  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀ  
C
1kΩ  
L
ꢀꢁ0  
R =50Ω C ꢀ ꢁꢂꢃꢄꢅ  
ꢀꢁ  
ꢀꢁ0  
R =100Ω, 2  
ꢀꢁ  
= 100Ω, 2  
ꢀꢁ0  
ꢀꢁ0  
R
ꢀꢁ00  
ꢀꢁꢁ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢁ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁ  
R= 1kΩ, 2  
ꢀꢁ  
= 1kΩ, 2  
R
R
ꢀ ꢁꢂ  
= 1kΩ, 3  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁ  
R
ꢀ ꢁꢂ  
= 1kΩ, 3  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁ  
ꢀꢁ  
R = 1kΩ, 3  
ꢀ0  
ꢀ00  
ꢀ000  
ꢀ0000  
ꢀ00ꢁ  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀ0ꢁ  
ꢀꢁꢂꢁꢀꢃꢄꢃꢅꢆ ꢇꢈꢁꢉ ꢊꢋꢌꢍ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢄꢀ  
Distortion vs Frequency,  
AV = 1, 3V Supply  
Distortion vs Frequency,  
AV = 2, ±5V Supply  
Distortion vs Frequency,  
AV = 2, 5V Supply  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ0  
ꢁꢂ  
ꢀꢁ  
= 100Ω, 3  
ꢀ ꢁ0ꢂ  
ꢀ ꢁ0ꢂ  
R
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ ꢂ  
ꢀꢁ  
ꢀꢁꢀ  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀ ꢁꢂ  
R
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢈꢈꢊ  
R
ꢀ ꢁꢂ  
= 100Ω, 3  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁꢀ  
R
ꢀꢁ0  
ꢀꢁ0  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
R
ꢀ ꢁꢂ  
ꢀꢁꢀ  
= 100Ω, 2  
ꢀꢁ0  
ꢀꢁꢂ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ  
ꢀꢁ  
= 100Ω, 3  
ꢀꢁ  
R
R
= 100Ω, 2  
ꢀꢁ0  
ꢀꢁ  
R
= 1kΩ, 2  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ  
R
ꢀ ꢁꢂ  
=1kΩ, 2  
R
= 100Ω, 2  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁ0  
ꢀꢁ  
ꢀꢁ00  
ꢀꢁꢁ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁ00  
ꢀꢁꢁ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀ ꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁ0  
ꢀꢁ  
R
= 1kΩ, 2  
ꢀꢁ  
R
= 1kΩ, 2  
ꢀꢁ00  
ꢀꢁꢁ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
R
ꢀ ꢁꢂ  
= 1kΩ, 3  
ꢀꢁꢂ  
ꢀꢁꢀ  
ꢀꢁ  
R
ꢀ ꢁꢂ  
= 1kΩ, 3  
ꢀꢁ  
= 1kΩ, 3  
ꢀꢁꢂ  
ꢀꢁꢀ  
R
ꢀꢁ  
= 1kΩ, 3  
ꢀꢁ  
R
ꢀ00ꢁ  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀ0ꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢁꢀꢂ ꢃꢄꢂ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
Rev 0  
13  
For more information www.analog.com  
LTC6226/LTC6227  
VS = ±5V, VCM = 0V, RL = 1kΩ to Half Supply,  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Distortion vs Frequency,  
AV = 2, 3V Supply  
Maxium Undistorted Output  
Signal vs Frequency  
0.1% Settling Time  
vs Output Step  
ꢀꢁ0  
ꢀꢁ0  
ꢀ0  
0
ꢀ0  
ꢀ ꢁ0ꢂ  
ꢂ ꢃꢄ  
ꢀꢁ  
ꢁꢂ  
R
ꢀ ꢁ00ꢂ ꢃ  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ ꢂ  
ꢀꢁ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂ ꢃꢁꢄꢁꢂꢅꢆꢇꢄꢁꢂ ꢈꢉꢊ ꢋꢌꢍꢎ ꢋꢏꢐꢍ ꢑꢒꢂꢓ  
ꢀꢁꢀ  
ꢀ ꢁꢂ  
ꢀꢁ0  
R
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀꢁ0  
ꢀ ꢁꢂ  
ꢀꢁ0  
ꢀꢁ  
ꢀꢁ  
ꢀ ꢁꢂ  
R
ꢀ ꢁ00ꢂ ꢃ  
ꢁꢂꢃꢄ  
R
ꢀ ꢁꢂꢃ ꢄ  
ꢀꢁ0  
ꢀ ꢁꢂ  
ꢀꢁ00  
ꢀꢁꢁ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
R
= 1kΩ  
ꢀꢁ  
ꢀꢁꢂꢃ ꢀꢁꢄ ꢀ ꢁꢂ0ꢃꢄꢅ  
R
ꢀ ꢁꢂꢃ ꢄ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀ0ꢁ  
0ꢀꢁ  
ꢀ0 ꢀ0  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ 0  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁꢂꢃꢁꢂ ꢄꢂꢅꢃ ꢆꢇꢈ  
ꢀꢁꢁꢀꢂ ꢃꢄ0  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢄꢁ  
SHDN Pin Response Time  
Large Signal Response  
ꢁꢂ  
ꢀ ꢁ  
ꢀꢁꢂꢃꢄ  
ꢅꢆꢇꢈꢀꢆ  
R
= 1kΩ  
ꢀ ꢁꢂꢃꢄ  
ꢀ ꢁꢂ  
ꢀ ꢁꢂꢃꢄ  
0ꢀ  
ꢀꢁꢂꢃꢄꢅꢆꢃ  
ꢀ ꢁ  
ꢀꢁꢂꢃꢁꢂ  
ꢄꢅꢆꢇꢈꢅ  
SHDN  
ꢀꢁꢀꢂꢃ  
ꢄꢃꢅꢆꢇꢃ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
Small Signal Response  
Output Overdriven Recovery  
ꢁꢂ  
ꢀ ꢁꢂ  
ꢀ ꢁ  
ꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢁꢂ  
ꢀꢁ  
R
R =1kΩ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀ ꢁꢂꢃꢄ  
ꢅ0ꢆꢇꢈꢉꢀꢇ  
ꢀꢁꢂꢃꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃꢁꢂ  
ꢄ0ꢅꢆꢇꢈꢉꢆ  
ꢀꢁꢁꢀꢂ ꢃꢄꢅ  
ꢀꢁꢁꢀꢂ ꢃꢄꢀ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
Rev 0  
14  
For more information www.analog.com  
LTC6226/LTC6227  
PIN FUNCTIONS  
FB (SOIC-8 Only): Feedback Pin. Internally connected to  
OUT.  
+
SHDN: Shutdown Pin (Active Low). Referenced to V .  
When taken 2.75V below V+, the amplifier shuts down  
and enters low power mode, with the outputs in a high  
impedance state. When left floating, the amplifier is on.  
+IN: Non-Inverting Input of Amplifier. Valid input range is  
+
from V to V – 1.2V  
+
V : Positive Supply to Amplifier. Valid range is from 2.8V  
–IN: Inverting Input of Amplifier. Valid input range is from  
to 11.75V when V is 0V.  
+
V to V – 1.2V  
V : Negative Supply to Amplifier. Typically 0V. This can  
OUT: Output of the Amplifier. Swings rail to rail and can  
typically source/sink 60mA of current.  
+
be made a negative voltage as long as 2.8V ≤ (V – V )  
≤ 11.75V  
APPLICATIONS INFORMATION  
Circuit Description  
independent of transistor β. The bootstrap arrangement  
also enhances gain by improving output impedance. A  
pair of complementary common emitter stages, Q15 and  
Q14, enables the output to swing to either rail. The SHDN  
Interface block translates the SHDN signal into pwr_dn  
for powering down the device (by deactivating current  
sourcesI1-I4)andputtingtheoutputinahighimpedance  
state (by shorting the bases of Q15/Q14 to the supplies  
via M2 and M1).  
The LTC6226/LTC6227 have an input signal range that  
extends from the negative power supply to 1.2V below  
the positive power supply. Figure 1 depicts a simplified  
schematicoftheamplifier.TheinputstageconsistsofPNP  
transistors Q1 and Q2. Bootstrap transistor Q13 improves  
DC accuracy by reducing the offset contribution of the  
base currents of Q11 and Q12 since it has twice their col-  
lector current thus Q11/Q12 current matching becomes  
ꢖꢗꢘꢙꢚꢛ  
ꢋꢝ  
ꢖꢗꢘꢙꢚꢛ  
ꢟꢁ  
ꢉꢄꢊ  
Rꢝ  
Rꢜ  
ꢉꢄꢁ  
Rꢊ  
ꢖꢗꢘꢙꢚꢛ  
ꢋꢄ  
ꢍꢎꢏꢏꢊ  
ꢔꢞꢐ  
ꢈꢁ  
ꢍꢎꢏꢏꢄ  
ꢍꢎꢏꢏꢜ  
ꢍꢎꢏꢏꢁ  
ꢉꢄꢄ  
ꢉꢄꢝ  
ꢆꢋꢌ  
ꢆꢋꢌ  
ꢖꢗꢘꢙꢚꢛ  
SHDN  
ꢋꢌꢐꢍRꢃꢑꢈꢍ  
ꢒꢓꢔꢈꢕ  
ꢏꢊ  
ꢏꢂ  
ꢉꢄ ꢉꢁ  
SHDN  
ꢖꢗꢘꢙꢚꢛ  
ꢒꢞꢃꢃꢍR  
ꢑꢌꢏ  
ꢋꢜ  
ꢍꢎꢏꢏꢝ  
ꢔꢞꢐꢢꢞꢐ ꢒꢋꢑꢎ  
ꢉꢠ  
ꢉꢡ  
ꢍꢎꢏꢏꢀ  
ꢉꢄ0  
ꢖꢗꢘꢙꢚꢛ  
Rꢝ  
ꢟꢄ  
ꢈꢄ  
ꢉꢄꢜ  
Rꢄ  
Rꢁ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ  
Figure 1. LTC6226/LTC6227 Simplified Schematic Diagram  
Rev 0  
15  
For more information www.analog.com  
LTC6226/LTC6227  
APPLICATIONS INFORMATION  
Output  
ESD  
The LTC6226 family has excellent output drive capabil-  
ity. The amplifiers can typically deliver more than 50mA  
of output drive current at a total supply of 10V, and can  
typicallyswingtowithin600mVoftherailforloadcurrents  
as high as 25mA. As the supply voltage to the amplifier  
decreases, the output current capability also decreases.  
Attention must be paid to keep the junction temperature  
of the IC below 150°C (refer to power dissipation section)  
when the output is in continuous short-circuit. The output  
of the amplifier has reverse-biased diodes connected to  
each supply. If the output is forced beyond either supply,  
extremely high currents will flow through those diodes  
whichcanresultindamagetothedevice.Forcingtheoutput  
to even 1V beyond either supply could result in several  
hundred milliamps of current through either diode. Thus  
forcing the output beyond the supplies should be avoided.  
The LTC6226 family has reverse biased ESD protection  
diodes on all inputs as shown in Figure 1. There is an  
additional clamp between the positive and negative sup-  
plies that further protects the device during ESD strikes.  
Hot plugging of the device into a powered socket must be  
avoided since this can trigger the clamp resulting in larger  
currents flowing between the supply pins.  
Capacitive Loads  
The LTC6226/LTC6227 are optimized for high bandwidth  
applications, and have not been designed to directly drive  
capacitive loads. Hence any trace capacitance at the  
output should be made as small as possible. Increased  
capacitance at the output creates an additional pole in  
the open loop frequency response, worsening the phase  
margin. When driving capacitive loads, a resistor of 10Ω  
to 100Ω should be connected between the amplifier  
output and the capacitive load to avoid ringing or oscil-  
lation. The feedback should be taken directly from the  
amplifier output. Higher voltage gain configurations tend  
to have better capacitive drive capability than lower gain  
configurations due to lower closed loop bandwidth and  
hence higher phase margin. The graphs titled Overshoot  
vs Capacitive Load demonstrate the transient response of  
the amplifier when driving capacitive loads with various  
series resistors.  
Input Protection  
The LTC6226/LTC6227 has a pair of back to back diodes  
(D5 and D7) to prevent the emitter base breakdown of the  
inputtransistorsandlimitthedifferentialinputto 700mV.  
Unlike many other high performance amplifiers, the bases  
of the input pair transistors Q1 and Q2 are not connected  
to the pins using internal resistors to limit input current,  
since that would cause the noise to increase. For instance,  
a 100Ω resistor in series with each input would generate  
1.8nV/√Hz of noise, and the total amplifier noise voltage  
would rise from 1nV/√Hz to 2.06nV/√Hz. Once the input  
differential voltage exceeds 0.7V, current conducted  
though the protection diodes should be limited to 10mA.  
This implies 25Ω of protection resistance per quarter volt  
(250mV) of overdrive beyond 0.7V. In addition, the input  
and shutdown pins have reverse biased diodes connected  
tothesupplies.Thecurrentinthesediodesmustbelimited  
to less than 10mA. The amplifiers should not be used as  
comparators or in other open loop applications.  
Rev 0  
16  
For more information www.analog.com  
LTC6226/LTC6227  
APPLICATIONS INFORMATION  
Feedback Components  
Power Dissipation  
When feedback resistors are used to set up gain, care  
must be taken to ensure that the pole formed by the feed-  
back resistors and the parasitic capacitance at the invert-  
ing input does not degrade stability. For example if the  
amplifier is set up in a gain of +2 configuration with gain  
and feedback resistors of 1k, a parasitic capacitance of  
7pF (device + PC board) at the amplifier’s inverting input  
will cause the part to oscillate, due to a pole formed at  
45MHz. An additional capacitor of 7pF across the feedback  
resistor as shown in Figure 2 will eliminate any ringing or  
oscillation. In general, if the resistive feedback network  
results in a pole whose frequency lies within the closed  
loop bandwidth of the amplifier, a capacitor can be added  
in parallel with the feedback resistor to introduce a zero  
whose frequency is close to the frequency of the pole,  
improving stability. For high speed designs, minimizing  
parasitic inductance is important. The use of capacitors  
where the electrodes are terminated on the long side  
instead of the short side (for example the use of 0306  
instead of 0603 components) can help in this regard.  
Care must be taken to ensure that the junction tempera-  
ture of the die does not exceed 150°C.  
The junction temperature, TJ, is calculated from the ambi-  
ent temperature, T , power dissipation, P , and thermal  
A
D
resistance, θ :  
JA  
T = T + (P • θ ).  
J
A
D
JA  
The power dissipation in the IC is a function of the supply  
voltage, output voltage and load resistance. For symmet-  
ric supply voltages with output load connected to ground,  
the worst-case power dissipation P  
occurs when  
D(MAX)  
the supply current is maximum and the output voltage at  
half of either supply voltage for a given load resistance.  
P
is approximately (since I actually changes with  
D(MAX)  
S
output load current) given by:  
= (2 • V • I ) + (V /2) /R  
L
2
P
D(MAX)  
S
S(MAX)  
S
Example: For an LTC6227 in a 8-lead MS package operat-  
ing on 5V supplies and driving a 250Ω load to ground,  
the worst-case power dissipation is approximately given  
2
by P  
/Amp = (10 • 7.4mA) + (5/2) /250 = 99mW.  
If boDth(McAhXa)nnels are loaded identically, the total power  
dissipation is 198mW.  
ꢂꢄꢃ  
ꢅꢆ  
At the Absolute Maximum ambient operating temperature,  
the junction temperature under these conditions will be:  
ꢅꢆ  
ꢍꢎꢏ  
ꢈꢉR  
T = T + (P • θ ) = 125 + 0.198 • 35 = 132°C  
J
A
D
JA  
ꢀꢁꢁꢀꢂ ꢃ0ꢁ  
which is less than the absolute maximum junction tem-  
perature for the LTC6227.  
ꢋꢌ  
Figure 2. 7pF Feedback Cancels Parasitic Pole  
Refer to the Pin Configuration section for thermal resis-  
tances of various packages  
Shutdown  
The LTC6226 and LTC6227DD have SHDN pins that can  
shut down the amplifier to 350µA typical supply current.  
The SHDN pin needs to be taken 2.75V below the posi-  
tive supply to shut down. When left floating, the SHDN  
pin is internally pulled up to 1.2V below the positive sup-  
ply and the amplifier remains on. During shutdown, the  
output transistors Q15 and Q14 in Figure 1 are in a high  
impedance state.  
Board Layout and Bypass Capacitors  
High speed and RF board layout techniques should  
be applied due to the very high speeds of the signals  
involved. For the LTC6226 SOIC-8 package option, the  
feedback should be taken from the FB pin rather than from  
the output pin, to reduce signal trace length.  
Stray capacitances at the –IN and +IN pins should be  
made as low as possible to reduce stability degradation.  
Rev 0  
17  
For more information www.analog.com  
LTC6226/LTC6227  
APPLICATIONS INFORMATION  
For single supply applications, it is recommended that high  
quality 0.1µF||1000pF ceramic bypass capacitors be placed  
directly between each V+ pin and its closest Vpin with  
short connections. The Vpins (including the Exposed Pad)  
should be tied directly to a low impedance ground plane  
with minimal routing. For dual (split) power supplies, it is  
recommended that additional high quality 0.1µF||1000pF  
Resistor noise dominated the input referred noise of the  
gain stage when  
2
2
R
EQ  
>> e /4kT and R << 4kT/i  
n EQ n  
Op amp input referred current noise dominates the input  
referred noise when  
2
R
EQ  
>> 4kT/i  
n
+
ceramic capacitors be used to bypass V pins to ground  
With an input referred voltage noise spectral density of  
1nV/Hz and an input referred current noise of 2.4pA/Hz,  
it is easy to see that the gain stage’s input referred noise  
and V pins to ground, again with minimal routing.  
Noise Considerations  
is dominated by op amp voltage noise when R << 60Ω  
EQ  
The ultralow input referred voltage noise of of 1nV/√Hz  
is equivalent to that of an 60Ω resistor. As with all BJT  
input amplifiers, lowering input referred noise is achieved  
by increasing the collector current of the input differential  
pair, which increases the input referred current noise.  
and by resistor noise when  
60Ω << R << 2.9kΩ.  
EQ  
Above an REQ of 2.9kΩ, input referred current noise  
dominates.  
Figure 3 shows the LTC6226 in a typical gain configuration.  
Distortion/Noise Trade-Off  
R
ꢅꢆ  
R
As evident from the previous section, gain stage noise  
can be reduced by reducing R . However, reducing R  
EQ  
has its disadvantages. In addition to increasing powEeQr  
dissipation in the presence of large output signals, the use  
of smaller resistors for a given gain results in increased  
distortion, because the internal nonlinearities of the op  
amp worsen with increasing load current. In addition,  
smaller resistors decrease op amp gain and hence can  
affect bandwidth. Hence when designing a system using  
the LTC6226/LTC6227, it is recommended that the resis-  
tor values be limited only by the system noise require-  
ments with the caveat that the effect of the impedances'  
parasitic capacitances shouldn’t affect the gain below the  
intended bandwidth. For example, for a feedback resistor  
of 5kΩ, a parasitic capacitor of 400fF will impact gain at  
frequencies above 79MHz.  
ꢉꢊꢋꢀꢁꢁꢀ  
e
R
ꢅꢁ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ  
Figure 3.  
As can be seen, the input referred noise spectral density  
of the gain stage (e ) can be calculated by the following  
T
equations:  
2
2
2
2
e
T
= e + i R  
+ 4kTR  
EQ EQ  
n
n
Where  
R
EQ  
= R + R ||R , k is the Boltzmann constant and  
S2 S1 F  
T is the temperature (in Kelvin).  
Op amp input referred noise dominates the input referred  
noise of the gain stage when  
2
R
EQ  
<< e /4kT  
n
Rev 0  
18  
For more information www.analog.com  
LTC6226/LTC6227  
TYPICAL APPLICATIONS  
ADR4533  
3.3V  
5V  
3.3V  
+
1/2 LTC6227  
3.3V  
2.5V  
0V  
2.2µF  
33Ω  
68pF  
+
V
V
V
CC REF LOGIC  
IN  
330pF  
AD7380  
3.3V  
0V  
+
68pF  
33Ω  
1/2 LTC6227  
IN  
62267 F04  
–2.5V  
Figure 4. Transparent Driver for 16-Bit ADC  
16-Bit High Performance Transparent ADC Driver  
High Performance Single Ended to Differential 16-Bit  
ADC Driver  
The ultralow noise and distortion performance of the  
LTC6226/LTC6227 makes it an excellent candidate for  
driving high sample rate high resolution ADCs. Figure 4  
shows the LTC6227 driven by a differential input, driving  
an AD7380, a 4Msps, 16-bit ADC. Figure 5 shows the FFT  
obtained with a –0.5 dBFS, 50kHz input signal. Spurious  
free dynamic range is an excellent 108.5dB with an SNR  
of 91dB. Increasing the input frequency to 100kHz results  
in excellent performance as well, with a THD of –100dBc,  
SNR of 89dB and SFDR of 104.9dB.  
In many applications, the signal to be digitized is single  
ended, whereas the A/D Converter needs differential inputs  
to maximize performance. The LTC6227 can be used to  
implement a Single-Ended to differential ADC driver as  
shown in Figure 6. One channel is configured in unity gain  
and drives another channel configured in an inverting gain  
stage of 1, both outputs drive the LTC2323-16 through an  
RC filter. Figure 7 shows the FFT obtained with a –1dBFS  
156.25kHz input signal, with a demanding 5Msps sample  
rate. The obtained SNR of 81 dB is equivalent to that of  
the ADC by itself, thus there is no degradation due to the  
driver. The SFDR obtained is 84dB.  
16-Bit ADC Driver Performance  
Input Signal = –0.5dBFS  
fSMPL = 4Msps, fIN = 50kHz  
0
ꢀꢁꢂꢃꢄ  
ꢀ0ꢁꢂꢃ ꢄꢅꢆꢇꢈ ꢉꢄꢊꢅꢋꢌ  
ꢀꢁꢀ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁR ꢂ ꢃꢄ ꢅꢆ  
ꢇꢈꢉ ꢂ ꢊꢄ0ꢋꢌꢍ ꢅꢆ  
ꢀꢎꢉR ꢂ ꢄ0ꢍꢌꢏ ꢅꢆ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
0
ꢀ00  
ꢀ00  
ꢀꢁ00  
ꢀꢁ00  
ꢀ000  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ  
Figure 5. Measured Performance of LTC6227  
Based Driver Driving the AD7380  
Rev 0  
19  
For more information www.analog.com  
LTC6226/LTC6227  
TYPICAL APPLICATIONS  
High Speed Low Voltage Low Noise Instrumentation  
Amplifier with High CMRR  
rejection. Implementing them using the LT5401 minimizes  
gain variation across temperature. The amplifiers were  
implemented using instances of the LTC6227MS8, and  
supply voltages of 1.5V were used. Figure 9 shows the  
measured frequency response, and Figure 10 shows the  
measured CMRR of the instrumentation amplifier, with the  
single ended output observed. Figure 11 shows the tran-  
Figure 8 shows a three op amp instrumentation ampli-  
fier with a gain of 10V/V which can operate on a wide  
range of supply voltages. The resistors are implemented  
using instances of the LT5401, a matched resistor array  
chip. The resistor matching of U3 is crucial in achieving  
high common mode rejection. The front end gain stage  
resistors were also implemented using instances of the  
LT5401, but can be implemented using other means  
as well, since they are not crucial for common mode  
sient response for a 150mV input square wave.The low  
P-P  
offset and 1/f noise allow for wide band operation down  
to DC. The broadband input referred noise of 4.6nV/√Hz  
is dominated by the resistors.  
5.5V  
200pF  
4.096V  
+
50Ω  
A +  
IN1  
REFOUT1  
VBYP1  
1/2 LTC6227  
0V  
10µF  
10µF  
LTC2323-16  
310Ω  
TO CONTROL  
SDO1  
CLKOUT  
SCK  
310Ω  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
50Ω  
A
1/2 LTC6227  
IN  
2.048V  
+
200pF  
62267 F06  
–5.5V  
Figure 6. Single-Ended to Differential Driver for 16-Bit ADC  
0
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄꢁꢅꢆꢇ ꢈꢉꢊꢋꢌ ꢍꢎꢏꢉꢐꢑ  
ꢀꢁꢀ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁR ꢂ ꢃꢄ ꢅꢆ  
ꢀꢁꢂ ꢃ ꢄꢅꢆꢇꢈ ꢉꢊ  
ꢀꢁꢂR ꢃ ꢄꢅꢆꢇꢈ ꢉꢊ  
ꢀꢁ0  
ꢀꢁ0  
ꢀꢁ00  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
ꢀꢁꢂ0  
0
ꢀ00  
ꢀ000  
ꢀꢁ00  
ꢀ000  
ꢀꢁ00  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊꢋ  
ꢀꢁꢁꢀꢂ ꢃ0ꢂ  
Figure 7. Measured Performance of the LTC6227 Based Single-Ended to Differential Converter Driving the LTC2323-16 ADC  
Rev 0  
20  
For more information www.analog.com  
LTC6226/LTC6227  
TYPICAL APPLICATIONS  
V +  
S
U3A 1/2LT5401  
IN+  
+
U1A  
700Ω 350Ω 350Ω 700Ω  
2
1/2 LTC6227  
CAN BE REPLACED BY SURFACE MOUNTED  
RESISTORS IF VERY LOW GAIN DRIFT WITH  
TEMPERATURE NOT REQUIRED  
C1  
5.6pF  
V +  
S
U2A  
+
OUT+  
1/2 LTC6227  
1
C7  
3.3pF  
700Ω 350Ω 350Ω 700Ω  
U5A 1/2LT5401  
IF DIFFERENTIAL  
OUTPUTS REQUIRED  
11  
1
700Ω 350Ω 350Ω 700Ω  
700Ω 350Ω 350Ω 700Ω  
U3B 1/2LT5401  
U4A 1/2LT5401  
U6B 1/2LT5401  
U5B 1/2LT5401  
2
5
U2B  
+
OUT–  
1/2 LTC6227  
6
3.3pF  
U6A 1/2LT5401  
V –  
S
700Ω 350Ω 350Ω 700Ω  
10  
700Ω 350Ω 350Ω 700Ω  
U4B 1/2LT5401  
C2  
5.6pF  
–IN  
+
1/2 LTC6227  
U2B  
V –  
S
Figure 8. High Speed High CMRR Instrumentation Amplifier  
Rev 0  
21  
For more information www.analog.com  
LTC6226/LTC6227  
TYPICAL APPLICATIONS  
ꢀ0  
ꢀꢁ  
ꢀ0  
ꢀꢁ  
ꢀ0  
0
ꢀꢁ  
ꢀꢁ0  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄꢅ  
Figure 9. LTC6227-LT5401 Based Instrumentation Amplifier Frequency Response  
ꢀ00  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
ꢀ0  
0
ꢀ00  
ꢀꢁ  
ꢀ0ꢁ  
ꢀ00ꢁ  
ꢀꢁ  
ꢀ0ꢁ  
ꢀRꢁꢂꢃꢁꢄꢅꢆ ꢇꢈꢉꢊ  
ꢀꢁꢁꢀꢂ ꢃ0ꢄ0  
Figure 10. LTC6227-LT5401 Based Instrumentation Amplifier CMRR  
ꢀꢁꢂꢃ  
ꢀꢁ0ꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢂꢃ  
ꢀꢁ0ꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢁꢀꢂ ꢃꢄ0  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
Figure 11. LTC6227-LT5401 Based Instrumentation Amplifier Transient Response  
Rev 0  
22  
For more information www.analog.com  
LTC6226/LTC6227  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
ꢅReꢥeꢦeꢧꢨe ꢛꢋꢖ ꢚꢠꢓ ꢩ 0ꢄꢪ0ꢊꢪꢁꢂꢁ0 Rev ꢓꢉ  
ꢀꢁꢊꢔ ꢃ ꢀꢁꢔꢈ  
ꢅꢆꢀꢊ0ꢁ ꢃ ꢄꢀ00ꢆꢉ  
ꢀ0ꢆꢄ ±ꢀ00ꢄ  
ꢗꢐꢋꢑ ꢎ  
ꢀ0ꢄ0 ꢕꢏꢖ  
ꢀꢇꢆꢄ  
ꢘꢙꢗ  
ꢀꢁꢂ0 ±ꢀ00ꢄ  
ꢀꢁꢄ0 ꢃ ꢀꢁꢄꢈ  
ꢅꢎꢀꢊꢁ0 ꢃ ꢎꢀꢔꢊꢊꢉ  
ꢗꢐꢋꢑ ꢎ  
ꢀꢇꢇꢊ ꢃ ꢀꢇꢆꢆ  
ꢅꢄꢀꢈꢔꢁ ꢃ ꢂꢀꢁꢔꢈꢉ  
ꢀ0ꢎ0 ±ꢀ00ꢄ  
ꢋꢌꢍ  
Rꢑꢖꢐꢘꢘꢑꢗꢚꢑꢚ ꢏꢐꢛꢚꢑR ꢍꢜꢚ ꢛꢜꢌꢐꢝꢋ  
ꢀ0ꢁ0 ꢃ ꢀ0ꢇ0  
ꢅ0ꢀꢇꢄꢆ ꢃ 0ꢀꢄ0ꢊꢉ  
× ꢆꢄ°  
ꢀ0ꢄꢎ ꢃ ꢀ0ꢂꢔ  
ꢅꢁꢀꢎꢆꢂ ꢃ ꢁꢀꢈꢄꢇꢉ  
ꢀ00ꢆ ꢃ ꢀ0ꢁ0  
ꢅ0ꢀꢁ0ꢁ ꢃ 0ꢀꢇꢄꢆꢉ  
ꢀ00ꢊ ꢃ ꢀ0ꢁ0  
ꢅ0ꢀꢇ0ꢎ ꢃ 0ꢀꢇꢄꢆꢉ  
0°ꢃ ꢊ° ꢋꢌꢍ  
ꢀ0ꢁꢂ ꢃ ꢀ0ꢄ0  
ꢅ0ꢀꢆ0ꢂ ꢃ ꢁꢀꢇꢈ0ꢉ  
ꢀ0ꢄ0  
ꢅꢁꢀꢇꢈ0ꢉ  
ꢕꢏꢖ  
ꢀ0ꢁꢆ ꢃ ꢀ0ꢁꢔ  
ꢅ0ꢀꢎꢄꢄ ꢃ 0ꢀꢆꢊꢎꢉ  
ꢋꢌꢍ  
ꢗꢐꢋꢑꢟ  
ꢙꢗꢖꢞꢑꢏ  
ꢁꢀ ꢚꢙꢘꢑꢗꢏꢙꢐꢗꢏ ꢙꢗ  
ꢅꢘꢙꢛꢛꢙꢘꢑꢋꢑRꢏꢉ  
ꢇꢀ ꢚRꢜꢠꢙꢗꢓ ꢗꢐꢋ ꢋꢐ ꢏꢖꢜꢛꢑ  
ꢎꢀ ꢋꢞꢑꢏꢑ ꢚꢙꢘꢑꢗꢏꢙꢐꢗꢏ ꢚꢐ ꢗꢐꢋ ꢙꢗꢖꢛꢝꢚꢑ ꢘꢐꢛꢚ ꢡꢛꢜꢏꢞ ꢐR ꢍRꢐꢋRꢝꢏꢙꢐꢗꢏꢀ  
ꢘꢐꢛꢚ ꢡꢛꢜꢏꢞ ꢐR ꢍRꢐꢋRꢝꢏꢙꢐꢗꢏ ꢏꢞꢜꢛꢛ ꢗꢐꢋ ꢑꢢꢖꢑꢑꢚ ꢀ00ꢂꢣ ꢅ0ꢀꢁꢄꢤꢤꢉ  
ꢆꢀ ꢍꢙꢗ ꢁ ꢖꢜꢗ ꢕꢑ ꢕꢑꢒꢑꢛ ꢑꢚꢓꢑ ꢐR ꢜ ꢚꢙꢘꢍꢛꢑ  
ꢏꢐꢊ Rꢑꢒ ꢓ 0ꢇꢁꢇ  
Rev 0  
23  
For more information www.analog.com  
LTC6226/LTC6227  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
ꢅReꢩeꢪeꢫꢬe ꢔꢈꢐ ꢕꢡꢢ ꢭ 0ꢂꢜ0ꢍꢜꢀꢒꢑꢒꢋ  
ꢌꢁꢛ0 ꢎꢏꢐ  
ꢅꢆꢇꢈꢉ ꢊꢋ  
0ꢁꢒꢌ  
ꢘꢖꢝ  
0ꢁꢛꢂ  
Rꢉꢞ  
ꢀꢁꢌꢌ Rꢉꢞ  
ꢀꢁꢊ ꢘꢟꢆ  
ꢀꢁꢂ0 ꢃ ꢀꢁꢄꢂ  
ꢌꢁꢍ0 ꢎꢏꢐ  
ꢑꢁꢍꢂ ꢘꢖꢝ ꢌꢁꢒꢌ Rꢉꢞ  
ꢅꢆꢇꢈꢉ ꢊꢋ  
ꢓꢟꢆ ꢇꢆꢉ ꢟꢕ  
Rꢉꢐꢇꢘꢘꢉꢆꢕꢉꢕ ꢏꢇꢔꢕꢉR ꢓꢖꢕ ꢔꢖꢨꢇꢗꢈ  
ꢓꢉR ꢟꢓꢐ ꢐꢖꢔꢐꢗꢔꢖꢈꢇR  
0ꢁꢑ0 ꢃ 0ꢁꢊꢂ  
ꢒ ꢓꢔꢐꢏ ꢅꢆꢇꢈꢉ ꢑꢋ  
0ꢁꢛꢂ ꢎꢏꢐ  
0ꢁꢍ0 ꢃ 0ꢁꢛ0  
0ꢁꢌ0 ꢎꢏꢐ  
ꢕꢖꢈꢗꢘ ꢙꢖꢚ  
0ꢁ0ꢀ ꢃ 0ꢁꢀ0  
ꢀꢁ00 ꢘꢖꢝ  
0ꢁꢑ0 ꢃ 0ꢁꢂ0 Rꢉꢞ  
ꢀꢁꢛ0 ꢎꢏꢐ  
0ꢁ0ꢛ ꢃ 0ꢁꢌ0  
ꢅꢆꢇꢈꢉ ꢑꢋ  
ꢏꢒ ꢈꢏꢇꢈꢜꢌꢑ 0ꢑ0ꢌ  
ꢆꢇꢈꢉꢠ  
ꢀꢁ ꢕꢟꢘꢉꢆꢏꢟꢇꢆꢏ ꢖRꢉ ꢟꢆ ꢘꢟꢔꢔꢟꢘꢉꢈꢉRꢏ  
ꢌꢁ ꢕRꢖꢡꢟꢆꢢ ꢆꢇꢈ ꢈꢇ ꢏꢐꢖꢔꢉ  
ꢑꢁ ꢕꢟꢘꢉꢆꢏꢟꢇꢆꢏ ꢖRꢉ ꢟꢆꢐꢔꢗꢏꢟꢣꢉ ꢇꢞ ꢓꢔꢖꢈꢟꢆꢢ  
ꢊꢁ ꢕꢟꢘꢉꢆꢏꢟꢇꢆꢏ ꢖRꢉ ꢉꢝꢐꢔꢗꢏꢟꢣꢉ ꢇꢞ ꢘꢇꢔꢕ ꢞꢔꢖꢏꢤ ꢖꢆꢕ ꢘꢉꢈꢖꢔ ꢎꢗRR  
ꢂꢁ ꢘꢇꢔꢕ ꢞꢔꢖꢏꢤ ꢏꢤꢖꢔꢔ ꢆꢇꢈ ꢉꢝꢐꢉꢉꢕ 0ꢁꢌꢂꢊꢥꢥ  
ꢒꢁ ꢦꢉꢕꢉꢐ ꢓꢖꢐꢧꢖꢢꢉ RꢉꢞꢉRꢉꢆꢐꢉ ꢟꢏ ꢘꢇꢜꢀꢛꢑ  
Rev 0  
24  
For more information www.analog.com  
LTC6226/LTC6227  
PACKAGE DESCRIPTION  
DC6 Package  
6-Lead Plastic DFN (2mm × 2mm)  
ꢃReꢩeꢪeꢫꢬe ꢘꢌꢔ ꢇꢏꢐ ꢭ 0ꢡꢙ0ꢮꢙꢂꢦ0ꢝ Rev ꢔꢉ  
0ꢁꢦ0 ±0ꢁ0ꢡ  
ꢀꢁꢡꢡ ±0ꢁ0ꢡ  
0ꢁꢤ0 ±0ꢁꢂ0  
ꢂꢁꢂꢡ ±0ꢁ0ꢡ  
ꢃꢀ ꢅꢆꢇꢈꢅꢉ  
ꢕꢎꢔꢖꢎꢐꢈ  
ꢋꢗꢌꢘꢆꢊꢈ  
0ꢁꢀꢡ ±0ꢁ0ꢡ  
0ꢁꢡ0 ꢑꢅꢔ  
ꢂꢁꢝꢦ ±0ꢁꢂ0  
ꢃꢀ ꢅꢆꢇꢈꢅꢉ  
Rꢈꢔꢋꢒꢒꢈꢊꢇꢈꢇ ꢅꢋꢘꢇꢈR ꢕꢎꢇ ꢕꢆꢌꢔꢟ ꢎꢊꢇ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ  
R ꢧ 0ꢁꢂꢀꢡ  
ꢌꢣꢕ  
0ꢁꢤ0 ±0ꢁꢂ0  
ꢃꢀ ꢅꢆꢇꢈꢅꢉ  
0ꢁꢄ0 ±0ꢁꢂ0  
ꢀꢁ00 ±0ꢁꢂ0  
ꢕꢆꢊ ꢂ ꢊꢋꢌꢔꢟ  
R ꢧ 0ꢁꢀ0 ꢋR  
0ꢁꢀꢡ × ꢄꢡ°  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢕꢆꢊ ꢂ ꢑꢎR  
ꢌꢋꢕ ꢒꢎRꢖ  
ꢃꢅꢈꢈ ꢊꢋꢌꢈ ꢤꢉ  
ꢔꢟꢎꢒꢜꢈR  
ꢃꢇꢔꢤꢉ ꢇꢜꢊ Rꢈꢛ ꢔ 0ꢚꢂꢡ  
R ꢧ 0ꢁ0ꢡ  
ꢌꢣꢕ  
0ꢁꢀꢡ ±0ꢁ0ꢡ  
0ꢁꢡ0 ꢑꢅꢔ  
0ꢁꢦꢡ ±0ꢁ0ꢡ  
0ꢁꢀ00 Rꢈꢜ  
ꢂꢁꢝꢦ ±0ꢁꢂ0  
ꢃꢀ ꢅꢆꢇꢈꢅꢉ  
ꢑꢋꢌꢌꢋꢒ ꢛꢆꢈꢏꢥꢈꢞꢕꢋꢅꢈꢇ ꢕꢎꢇ  
0ꢁ00 ꢨ 0ꢁ0ꢡ  
ꢊꢋꢌꢈꢍ  
ꢂꢁ ꢇRꢎꢏꢆꢊꢐ ꢌꢋ ꢑꢈ ꢒꢎꢇꢈ ꢎ ꢓꢈꢇꢈꢔ ꢕꢎꢔꢖꢎꢐꢈ ꢋꢗꢌꢘꢆꢊꢈ ꢒ0ꢙꢀꢀꢚ ꢛꢎRꢆꢎꢌꢆꢋꢊ ꢋꢜ ꢃꢏꢔꢔꢇꢙꢀꢉ  
ꢀꢁ ꢇRꢎꢏꢆꢊꢐ ꢊꢋꢌ ꢌꢋ ꢅꢔꢎꢘꢈ  
ꢝꢁ ꢎꢘꢘ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ ꢎRꢈ ꢆꢊ ꢒꢆꢘꢘꢆꢒꢈꢌꢈRꢅ  
ꢄꢁ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ ꢋꢜ ꢈꢞꢕꢋꢅꢈꢇ ꢕꢎꢇ ꢋꢊ ꢑꢋꢌꢌꢋꢒ ꢋꢜ ꢕꢎꢔꢖꢎꢐꢈ ꢇꢋ ꢊꢋꢌ ꢆꢊꢔꢘꢗꢇꢈ  
ꢒꢋꢘꢇ ꢜꢘꢎꢅꢟꢁ ꢒꢋꢘꢇ ꢜꢘꢎꢅꢟꢠ ꢆꢜ ꢕRꢈꢅꢈꢊꢌꢠ ꢅꢟꢎꢘꢘ ꢊꢋꢌ ꢈꢞꢔꢈꢈꢇ 0ꢁꢂꢡꢢꢢ ꢋꢊ ꢎꢊꢣ ꢅꢆꢇꢈ  
ꢡꢁ ꢈꢞꢕꢋꢅꢈꢇ ꢕꢎꢇ ꢅꢟꢎꢘꢘ ꢑꢈ ꢅꢋꢘꢇꢈR ꢕꢘꢎꢌꢈꢇ  
ꢤꢁ ꢅꢟꢎꢇꢈꢇ ꢎRꢈꢎ ꢆꢅ ꢋꢊꢘꢣ ꢎ RꢈꢜꢈRꢈꢊꢔꢈ ꢜꢋR ꢕꢆꢊ ꢂ ꢘꢋꢔꢎꢌꢆꢋꢊ ꢋꢊ ꢌꢟꢈ  
ꢌꢋꢕ ꢎꢊꢇ ꢑꢋꢌꢌꢋꢒ ꢋꢜ ꢕꢎꢔꢖꢎꢐꢈ  
Rev 0  
25  
For more information www.analog.com  
LTC6226/LTC6227  
PACKAGE DESCRIPTION  
MS8E Package  
8-Lead Plastic MSOP, Exposed Die Pad  
ꢄReꢫeꢬeꢭꢮe ꢕꢑꢙ ꢗꢛꢔ ꢯ 0ꢎꢥ0ꢅꢥꢉꢏꢏꢈ Rev ꢌꢇ  
ꢟꢂꢑꢑꢂꢀ ꢋꢒꢆꢛ ꢂꢝ  
ꢆꢠꢃꢂꢁꢆꢗ ꢃꢐꢗ ꢂꢃꢑꢒꢂꢓ  
ꢉꢍꢅꢅ  
ꢄꢍ0ꢦꢣꢇ  
ꢉꢍꢏꢅ  
0ꢍꢈꢨ  
Rꢆꢝ  
ꢉꢍꢅꢅ ±0ꢍꢉ0ꢈ  
ꢄꢍ0ꢦꢣ ±ꢍ00ꢣꢇ  
0ꢍꢅꢅꢨ ±0ꢍꢉꢈꢦ  
ꢄꢍ0ꢊꢎ ±ꢍ00ꢎꢇ  
ꢄꢍ0ꢏꢏꢇ  
0ꢍ0ꢎ Rꢆꢝ  
ꢗꢆꢑꢐꢒꢕ ꢩꢟꢪ  
ꢎꢍꢉ0  
ꢄꢍꢈ0ꢉꢇ  
ꢀꢒꢓ  
ꢊꢍꢈ0 ꢧ ꢊꢍꢣꢎ  
ꢄꢍꢉꢈꢏ ꢧ ꢍꢉꢊꢏꢇ  
ꢉꢍꢏꢅ ±0ꢍꢉ0ꢈ  
ꢙꢂRꢓꢆR ꢑꢐꢒꢕ ꢒꢁ ꢃꢐRꢑ ꢂꢝ  
ꢑꢚꢆ ꢕꢆꢐꢗꢝRꢐꢀꢆ ꢝꢆꢐꢑꢜRꢆꢍ  
ꢝꢂR RꢆꢝꢆRꢆꢓꢙꢆ ꢂꢓꢤ  
ꢄꢍ0ꢏꢏ ±ꢍ00ꢣꢇ  
ꢗꢆꢑꢐꢒꢕ ꢩꢟꢪ  
NO MEASUREMENT PURPOSE  
ꢊꢍ00 ±0ꢍꢉ0ꢈ  
ꢄꢍꢉꢉꢅ ±ꢍ00ꢣꢇ  
ꢄꢓꢂꢑꢆ ꢊꢇ  
0ꢍꢏꢎ  
ꢄꢍ0ꢈꢎꢏꢇ  
ꢟꢁꢙ  
0ꢍꢎꢈ  
ꢄꢍ0ꢈ0ꢎꢇ  
Rꢆꢝ  
0ꢍꢣꢈ ±0ꢍ0ꢊꢅ  
ꢄꢍ0ꢉꢏꢎ ±ꢍ00ꢉꢎꢇ  
ꢦ ꢏ ꢎ  
ꢑꢤꢃ  
Rꢆꢙꢂꢀꢀꢆꢓꢗꢆꢗ ꢁꢂꢕꢗꢆR ꢃꢐꢗ ꢕꢐꢤꢂꢜꢑ  
ꢊꢍ00 ±0ꢍꢉ0ꢈ  
ꢄꢍꢉꢉꢅ ±ꢍ00ꢣꢇ  
ꢄꢓꢂꢑꢆ ꢣꢇ  
ꢣꢍꢨ0 ±0ꢍꢉꢎꢈ  
ꢄꢍꢉꢨꢊ ±ꢍ00ꢏꢇ  
ꢗꢆꢑꢐꢒꢕ ꢩꢐꢪ  
0ꢍꢈꢎꢣ  
ꢄꢍ0ꢉ0ꢇ  
0° ꢧ ꢏ° ꢑꢤꢃ  
ꢔꢐꢜꢔꢆ ꢃꢕꢐꢓꢆ  
0ꢍꢎꢊ ±0ꢍꢉꢎꢈ  
ꢄꢍ0ꢈꢉ ±ꢍ00ꢏꢇ  
ꢉꢍꢉ0  
ꢄꢍ0ꢣꢊꢇ  
ꢀꢐꢠ  
0ꢍꢅꢏ  
ꢄꢍ0ꢊꢣꢇ  
Rꢆꢝ  
ꢗꢆꢑꢐꢒꢕ ꢩꢐꢪ  
0ꢍꢉꢅ  
ꢄꢍ00ꢦꢇ  
ꢁꢆꢐꢑꢒꢓꢔ  
ꢃꢕꢐꢓꢆ  
0ꢍꢈꢈ ꢧ 0ꢍꢊꢅ  
ꢄꢍ00ꢨ ꢧ ꢍ0ꢉꢎꢇ  
ꢑꢤꢃ  
0ꢍꢉ0ꢉꢏ ±0ꢍ0ꢎ0ꢅ  
ꢄꢍ00ꢣ ±ꢍ00ꢈꢇ  
0ꢍꢏꢎ  
ꢄꢍ0ꢈꢎꢏꢇ  
ꢟꢁꢙ  
ꢀꢁꢂꢃ ꢄꢀꢁꢅꢆꢇ 0ꢈꢉꢊ Rꢆꢋ ꢌ  
ꢓꢂꢑꢆꢖ  
ꢉꢍ ꢗꢒꢀꢆꢓꢁꢒꢂꢓꢁ ꢒꢓ ꢀꢒꢕꢕꢒꢀꢆꢑꢆRꢘꢄꢒꢓꢙꢚꢇ  
ꢈꢍ ꢗRꢐꢛꢒꢓꢔ ꢓꢂꢑ ꢑꢂ ꢁꢙꢐꢕꢆ  
ꢊꢍ ꢗꢒꢀꢆꢓꢁꢒꢂꢓ ꢗꢂꢆꢁ ꢓꢂꢑ ꢒꢓꢙꢕꢜꢗꢆ ꢀꢂꢕꢗ ꢝꢕꢐꢁꢚꢞ ꢃRꢂꢑRꢜꢁꢒꢂꢓꢁ ꢂR ꢔꢐꢑꢆ ꢟꢜRRꢁꢍ  
ꢀꢂꢕꢗ ꢝꢕꢐꢁꢚꢞ ꢃRꢂꢑRꢜꢁꢒꢂꢓꢁ ꢂR ꢔꢐꢑꢆ ꢟꢜRRꢁ ꢁꢚꢐꢕꢕ ꢓꢂꢑ ꢆꢠꢙꢆꢆꢗ 0ꢍꢉꢎꢈꢡꢡ ꢄꢍ00ꢏꢢꢇ ꢃꢆR ꢁꢒꢗꢆ  
ꢣꢍ ꢗꢒꢀꢆꢓꢁꢒꢂꢓ ꢗꢂꢆꢁ ꢓꢂꢑ ꢒꢓꢙꢕꢜꢗꢆ ꢒꢓꢑꢆRꢕꢆꢐꢗ ꢝꢕꢐꢁꢚ ꢂR ꢃRꢂꢑRꢜꢁꢒꢂꢓꢁꢍ  
ꢒꢓꢑꢆRꢕꢆꢐꢗ ꢝꢕꢐꢁꢚ ꢂR ꢃRꢂꢑRꢜꢁꢒꢂꢓꢁ ꢁꢚꢐꢕꢕ ꢓꢂꢑ ꢆꢠꢙꢆꢆꢗ 0ꢍꢉꢎꢈꢡꢡ ꢄꢍ00ꢏꢢꢇ ꢃꢆR ꢁꢒꢗꢆ  
ꢎꢍ ꢕꢆꢐꢗ ꢙꢂꢃꢕꢐꢓꢐRꢒꢑꢤ ꢄꢟꢂꢑꢑꢂꢀ ꢂꢝ ꢕꢆꢐꢗꢁ ꢐꢝꢑꢆR ꢝꢂRꢀꢒꢓꢔꢇ ꢁꢚꢐꢕꢕ ꢟꢆ 0ꢍꢉ0ꢈꢡꢡ ꢄꢍ00ꢣꢢꢇ ꢀꢐꢠ  
ꢏꢍ ꢆꢠꢃꢂꢁꢆꢗ ꢃꢐꢗ ꢗꢒꢀꢆꢓꢁꢒꢂꢓ ꢗꢂꢆꢁ ꢒꢓꢙꢕꢜꢗꢆ ꢀꢂꢕꢗ ꢝꢕꢐꢁꢚꢍ ꢀꢂꢕꢗ ꢝꢕꢐꢁꢚ ꢂꢓ ꢆꢥꢃꢐꢗ  
ꢁꢚꢐꢕꢕ ꢓꢂꢑ ꢆꢠꢙꢆꢆꢗ 0ꢍꢈꢎꢣꢡꢡ ꢄꢍ0ꢉ0ꢢꢇ ꢃꢆR ꢁꢒꢗꢆꢍ  
Rev 0  
26  
For more information www.analog.com  
LTC6226/LTC6227  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
ꢃReꢪeꢫeꢬꢭe ꢘꢌꢔ ꢇꢏꢐ ꢮ 0ꢡꢙ0ꢨꢙꢂꢤꢛꢛ Rev ꢔꢉ  
0ꢁꢦ0 ±0ꢁ0ꢡ  
ꢀꢁꢡꢡ ±0ꢁ0ꢡ  
ꢚꢁꢂꢡ ±0ꢁ0ꢡ ꢃꢚ ꢅꢆꢇꢈꢅꢉ  
ꢂꢁꢤꢡ ±0ꢁ0ꢡ  
ꢕꢎꢔꢖꢎꢐꢈ  
ꢋꢗꢌꢘꢆꢊꢈ  
0ꢁꢚꢡ ±0ꢁ0ꢡ  
0ꢁꢡ0  
ꢑꢅꢔ  
ꢚꢁꢀꢨ ±0ꢁ0ꢡ  
ꢃꢚ ꢅꢆꢇꢈꢅꢉ  
RECOMMENDED ꢅꢋꢘꢇꢈR ꢕꢎꢇ ꢕꢆꢌꢔꢞ ꢎꢊꢇ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ  
R ꢧ 0ꢁꢂꢚꢡ  
0ꢁꢄ0 ±0ꢁꢂ0  
ꢌꢣꢕ  
ꢂ0  
ꢀꢁ00 ±0ꢁꢂ0  
ꢃꢄ ꢅꢆꢇꢈꢅꢉ  
ꢂꢁꢤꢡ ±0ꢁꢂ0  
ꢃꢚ ꢅꢆꢇꢈꢅꢉ  
ꢕꢆꢊ ꢂ ꢊꢋꢌꢔꢞ  
R ꢧ 0ꢁꢚ0 ꢋR  
ꢕꢆꢊ ꢂ  
ꢌꢋꢕ ꢒꢎRꢖ  
ꢃꢅꢈꢈ ꢊꢋꢌꢈ ꢤꢉ  
0ꢁꢀꢡ × ꢄꢡ°  
ꢔꢞꢎꢒꢝꢈR  
ꢃꢇꢇꢉ ꢇꢝꢊ Rꢈꢜ ꢔ 0ꢀꢂ0  
0ꢁꢚꢡ ±0ꢁ0ꢡ  
0ꢁꢡ0 ꢑꢅꢔ  
0ꢁꢦꢡ ±0ꢁ0ꢡ  
0ꢁꢚ00 Rꢈꢝ  
ꢚꢁꢀꢨ ±0ꢁꢂ0  
ꢃꢚ ꢅꢆꢇꢈꢅꢉ  
0ꢁ00 ꢩ 0ꢁ0ꢡ  
ꢑꢋꢌꢌꢋꢒ ꢜꢆꢈꢏꢥꢈꢟꢕꢋꢅꢈꢇ ꢕꢎꢇ  
ꢊꢋꢌꢈꢍ  
ꢂꢁ ꢇRꢎꢏꢆꢊꢐ ꢌꢋ ꢑꢈ ꢒꢎꢇꢈ ꢎ ꢓꢈꢇꢈꢔ ꢕꢎꢔꢖꢎꢐꢈ ꢋꢗꢌꢘꢆꢊꢈ ꢒ0ꢙꢚꢚꢛ ꢜꢎRꢆꢎꢌꢆꢋꢊ ꢋꢝ ꢃꢏꢈꢈꢇꢙꢚꢉꢁ  
ꢔꢞꢈꢔꢖ ꢌꢞꢈ ꢘꢌꢔ ꢏꢈꢑꢅꢆꢌꢈ ꢇꢎꢌꢎ ꢅꢞꢈꢈꢌ ꢝꢋR ꢔꢗRRꢈꢊꢌ ꢅꢌꢎꢌꢗꢅ ꢋꢝ ꢜꢎRꢆꢎꢌꢆꢋꢊ ꢎꢅꢅꢆꢐꢊꢒꢈꢊꢌ  
ꢚꢁ ꢇRꢎꢏꢆꢊꢐ ꢊꢋꢌ ꢌꢋ ꢅꢔꢎꢘꢈ  
ꢀꢁ ꢎꢘꢘ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ ꢎRꢈ ꢆꢊ ꢒꢆꢘꢘꢆꢒꢈꢌꢈRꢅ  
ꢄꢁ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ ꢋꢝ ꢈꢟꢕꢋꢅꢈꢇ ꢕꢎꢇ ꢋꢊ ꢑꢋꢌꢌꢋꢒ ꢋꢝ ꢕꢎꢔꢖꢎꢐꢈ ꢇꢋ ꢊꢋꢌ ꢆꢊꢔꢘꢗꢇꢈ  
ꢒꢋꢘꢇ ꢝꢘꢎꢅꢞꢁ ꢒꢋꢘꢇ ꢝꢘꢎꢅꢞꢠ ꢆꢝ ꢕRꢈꢅꢈꢊꢌꢠ ꢅꢞꢎꢘꢘ ꢊꢋꢌ ꢈꢟꢔꢈꢈꢇ 0ꢁꢂꢡꢢꢢ ꢋꢊ ꢎꢊꢣ ꢅꢆꢇꢈ  
ꢡꢁ ꢈꢟꢕꢋꢅꢈꢇ ꢕꢎꢇ ꢅꢞꢎꢘꢘ ꢑꢈ ꢅꢋꢘꢇꢈR ꢕꢘꢎꢌꢈꢇ  
ꢤꢁ ꢅꢞꢎꢇꢈꢇ ꢎRꢈꢎ ꢆꢅ ꢋꢊꢘꢣ ꢎ RꢈꢝꢈRꢈꢊꢔꢈ ꢝꢋR ꢕꢆꢊ ꢂ ꢘꢋꢔꢎꢌꢆꢋꢊ ꢋꢊ ꢌꢞꢈ  
ꢌꢋꢕ ꢎꢊꢇ ꢑꢋꢌꢌꢋꢒ ꢋꢝ ꢕꢎꢔꢖꢎꢐꢈ  
Rev 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
27  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC6226/LTC6227  
TYPICAL APPLICATION  
High Speed High Dynamic Range Photodiode Amplifier  
Photodiode Amplifier  
Noise Spectrum  
Photodiode Amplifier  
Transient Response  
R1  
1MΩ  
5
C3  
R3  
1µF  
604Ω  
C1  
0.05pF  
Rꢀꢁꢂ ꢃꢀꢄꢂ ꢅ ꢆꢆꢆꢇꢈ  
ꢉꢊꢋꢋ ꢃꢀꢄꢂ ꢅ ꢌꢍꢇꢈ  
J1  
(PARASITIC)  
5
200nV/√Hz  
ON-SEMI  
2SK932-22  
ꢀ00ꢁꢂꢃꢄꢅꢂ  
D1  
PHOTODIODE  
SFH213  
+
R7  
1k  
LTC6226  
+
–5  
OUT  
–5  
–3dB BW = 3.1MHz  
INTEGRATED NOISE = 649µV  
OVER 3.78MHz MEAS BW  
–5  
ꢀꢁ  
62267 TA02a  
RMS  
ꢀꢁꢁꢀꢂ ꢃꢄ0ꢁꢅ  
ꢀ0ꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀ00ꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢁꢀꢂ ꢃꢄ0ꢁꢅ  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Operational Amplifiers  
LTC6228/LTC6229 Single/Dual High Speed Ultra Low Noise Low Distortion  
Rail-to-Rail Output Op Amps  
0.88 nV/√Hz, 730MHz, 500V/µs Unity Gain Stable  
LTC6252/LTC6253/ Single/Dual/Quad High Speed Rail-to-Rail Input and Output  
720MHz, 3.5mA, 2.75nV/√Hz, 280V/µs, 0.35mV, Unity Gain Stable  
LTC6254  
Op Amps  
ADA4899-1  
High Speed Ultra Low Noise Ultra Low Distortion  
1 nV/√Hz, 600MHz, 310V/µs Unity Gain Stable  
LTC6268/LTC6269 Single/Dual High Speed FET Input Op Amp  
400MHz, 4nV/√Hz, 3f Input Bias Current  
A
LT1818/LT1819  
Single/Dual Wide Bandwidth, High Slew Rate Low Noise and  
400MHz, 9mA, 6nV/√Hz, 2500V/µs, 1.5mV –85dBc at 5MHz  
3mA 1 nV/√Hz 230 MHz 120 V/µs Unity Gain Stable  
215MHz, 3.5mA, 1.1nV/√Hz, 70V/µs, 350µV  
Distortion Op Amps  
ADA4896-1/  
ADA4896-2  
Low Noise Low Power Rail-to-Rail Output  
LT6230/LT6231/  
LT6232  
Single/Dual/Quad Low Noise Rail-to-Rail Output Op Amps  
LTC6246/LTC6247/ Single/Dual/Quad High Speed Rail-to-Rail Input and Output  
180MHz, 1mA, 4.2nV/√Hz, 90V/µs, 0.5mV  
LTC6248  
Op Amps  
LT6200/LT6201  
Single/Dual Ultralow Noise Rail-to-Rail Input/Output Op Amps 165MHz, 20mA, 0.95nV/√Hz, 44V/µs, 1mV  
LT6202/LT6203/  
LT6204  
Single/Dual/Quad Ultralow Noise Rail-to-Rail Op Amp  
100MHz, 3mA, 1.9nV/√Hz, 25V/µs, 0.5mV  
80MHz, 2mA, 8.5nV√Hz, 25V/µs, 350µV  
75MHz, 9.5mA, 0.85nV/√Hz, 11V/µs, 40µV  
LT1801/LT1802  
Dual/Quad Low Power High Speed Rail-to-Rail Input and  
Output Op Amps  
LT1028  
Ultralow Noise, Precision High Speed Op Amps  
LTC6350  
ADCs  
Low Noise Single-Ended to Differential Converter/ADC Driver 33MHz (–3dB), 4.8mA, 1.9nV/√Hz, 240ns Settling to 0.01% 8V  
P-P  
LTC2387-18  
AD7380  
18-Bit, 15Msps SAR-ADC  
4Msps 16-Bit SAR-ADC  
5Msps 16-Bit SAR-ADC  
1.8 Msps 20-Bit SAR-ADC  
95.7dB SNR  
92dB DNR SNR, 6.6 V Input Range  
P-P  
LTC2323-16  
AD4020  
81dB SNR,8V Input Range  
P-P  
99 dB SNR  
Rev 0  
03/20  
www.analog.com  
28  
ANALOG DEVICES, INC. 2020  
For more information www.analog.com  

相关型号:

LTC6269-10

2GHz, 3.5mA Gain of 7 Stable Rail-to-Rail I/O Dual Op Amp
Linear

LTC6269-10_15

4GHz Ultra-Low Bias Current FET Input Op Amp
Linear

LTC6269HMS8E-10#PBF

LTC6269-10 - Dual 4GHz Ultra-Low Bias Current FET Input Op Amp; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6269HMS8E-10#TRPBF

LTC6269-10 - Dual 4GHz Ultra-Low Bias Current FET Input Op Amp; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6269IMS8E-10#PBF

LTC6269-10 - Dual 4GHz Ultra-Low Bias Current FET Input Op Amp; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6269_15

500MHz Ultra-Low Bias Current FET Input Op Amp
Linear

LTC627A1G

Optoelectronic
ETC

LTC627A1P

Optoelectronic
ETC

LTC627D1G

Optoelectronic
ETC

LTC627D1P

Optoelectronic
ETC

LTC6360

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC6360CMS8E

LTC6360 DRIVING 18 - BIT SAR ADC
Linear