HMC815B [ADI]

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter;
HMC815B
型号: HMC815B
厂家: ADI    ADI
描述:

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter

文件: 总30页 (文件大小:551K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
21 GHz to 27 GHz,  
GaAs, MMIC, I/Q Upconverter  
Data Sheet  
HMC815B  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Conversion gain: 12 dB typical  
Sideband rejection: 20 dBc typical  
OP1dB compression: 20 dBm typical  
OIP3: 27 dBm typical  
2× LO to RF isolation: 10 dB typical  
2× LO to IF isolation: 15 dB typical  
RF return loss: 12 dB typical  
LO return loss: 15 dB typical  
IF return loss: 15 dB typical  
Exposed pad, 4.90 mm × 4.90 mm, 32-terminal, ceramic LCC  
NIC  
NIC  
1
2
3
4
5
6
7
8
24 NIC  
23 NIC  
22 NIC  
21 VDD2  
20 NIC  
19 NIC  
18 VDD3  
17 NIC  
NIC  
NIC  
NIC  
×2  
VDD1  
NIC  
NIC  
APPLICATIONS  
PACKAGE  
Point to point and point to multipoint radios  
Military radars, electronic warfare, and electronic  
intelligence  
BASE  
GND  
NIC = NOT INTERNALLY CONNECTED  
Figure 1.  
Satellite communications  
Sensors  
GENERAL DESCRIPTION  
The HMC815B is a compact gallium arsenide (GaAs),  
The HMC815B is a smaller alternative to hybrid style single  
sideband (SSB) downconverter assemblies, and it eliminates the  
need for wire bonding by allowing the use of surface-mount  
manufacturing techniques.  
pseudomorphic high electron mobility transistor (pHEMT),  
monolithic microwave integrated circuit (MMIC) upconverter  
in a RoHS compliant package that operates from 21 GHz to  
27 GHz. This device provides a small signal conversion gain of  
12 dB and a sideband rejection of 20 dBc. The HMC815B  
utilizes a driver amplifier proceeded by an in phase/quadrature  
(I/Q) mixer where the LO is driven by an active 2× multiplier.  
IF1 and IF2 mixer inputs are provided, and an external 90°  
hybrid is needed to select the required sideband. The I/Q mixer  
topology reduces the need for filtering of unwanted sideband.  
The HMC815B is available in 4.90 mm × 4.90 mm, 32-terminal  
ceramic LCC package and operates over the −40°C to +85°C  
temperature range. An evaluation board for the HMC815B is  
also available upon request.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specificationssubject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC815B  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
IF = 100 MHz, IF Input Power = 0 dBm, Upper Sideband  
(Low-Side LO) ............................................................................ 13  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 6  
Typical Performance Characteristics ............................................. 7  
IF = 2500 MHz, RF Input Power = 0 dBm, Upper Sideband  
(Low-Side LO) ............................................................................ 15  
IF = 3750 MHz, RF Input Power = 0 dBm, Upper Sideband  
(Low-Side LO) ............................................................................ 17  
Isolation and Return Loss ......................................................... 19  
IF Bandwidth Performance: Lower Sideband (High-Side LO)..22  
IF Bandwidth Performance: Upper Sideband (Low-Side LO) ...23  
Spurious Performance ............................................................... 24  
Theory of Operation ...................................................................... 26  
Applications Information.............................................................. 27  
Typical Application Circuit....................................................... 27  
Evaluation Board Information ................................................. 28  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
IF = 2500 MHz, IF Input Power = 0 dBm, Lower Sideband  
(High-Side LO) ............................................................................. 7  
IF = 100 MHz, IF Input Power = 0 dBm, Lower Sideband  
(High-Side LO) ............................................................................. 9  
IF = 3750 MHz, IF Input Power = 0 dBm, Lower Sideband  
(High-Side LO) ........................................................................... 11  
REVISION HISTORY  
1/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 30  
 
Data Sheet  
HMC815B  
SPECIFICATIONS  
TA = 25°C, intermediate frequency (IF) = 2500 MHz, VDD1 = VDD2 = VDD3 = 4.5 V, LO power = 4 dBm, unless otherwise noted.  
Measurements performed with lower sideband selected and an external 90° hybrid at the IF ports, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
Frequency Range  
Radio Frequency  
Local Oscillator  
Intermediate Frequency  
LO Drive Range  
PERFORMANCE  
Conversion Gain  
Sideband Rejection  
Output Power for 1 dB Compression  
Output Third-Order Intercept  
Isolation  
RF  
LO  
IF  
21  
27  
GHz  
GHz  
GHz  
dBm  
10.5  
DC  
0
14.5  
3.75  
6
4
7
12  
12  
20  
20  
27  
dB  
dBc  
dBm  
dBm  
OP1dB  
OIP3  
22.5  
4
2× LO to RF  
2× LO to IF  
10  
15  
dB  
dB  
Return Loss  
RF  
LO  
IF  
12  
15  
15  
dB  
dB  
dB  
POWER SUPPLY  
Total Drain Current  
RF Amplifier  
IDD2 + IDD3  
IDD1  
270  
80  
300  
120  
mA  
mA  
LO Amplifier  
Rev. 0 | Page 3 of 30  
 
HMC815B  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
Drain Bias Voltage (VDD1, VDD2, VDD3)  
Input Power  
5.5 V  
LO (LOIN)  
IF (IF1, IF2)  
15 dBm  
20 dBm  
3 mA  
MSL3  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
IF Source/Sink Current  
Moisture Sensitivity Level (MSL) Rating1  
Maximum Junction Temperature  
Storage Temperature Range  
Operating Temperature Range  
Reflow Temperature  
Electrostatic Discharge Sensitivity  
Human Body Model (HBM)  
Field Induced Charged Device Model  
(FICDM)  
Table 3. Thermal Resistance  
175°C  
Package Type  
E-32-11  
θJA  
θJC  
Unit  
−65°C to +150°C  
−40°C to +85°C  
260°C  
46.4  
46.7  
°C/W  
1 Thermal impedance simulated values are based on JEDEC 2S2P test board  
with 5 × 5 thermal vias. A cold plate is attached to the bottom side of the  
PCB using 100 µm tin (3.56 W/mK). Refer to JEDEC standard JESD51-2 for  
additional information.  
250 V  
1250 V  
1 See the Ordering Guide section.  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 4 of 30  
 
 
 
Data Sheet  
HMC815B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
NIC  
NIC  
NIC  
1
2
3
4
5
6
7
8
24 NIC  
23 NIC  
22 NIC  
HMC815B  
TOP VIEW  
(Not to Scale)  
VDD2  
21  
NIC  
NIC  
VDD1  
NIC  
20 NIC  
NIC  
19  
18 VDD3  
NIC  
17  
NIC  
PACKAGE  
BASE  
GND  
NOTES  
1. NIC = NOT INTERNALLY CONNECTED. THESE PINS ARE NOT CONNECTED INTERNALLY.  
HOWEVER, THESE PINS CAN BE CONNECTED TO RF/DC GROUND WITHOUT  
AFFECTING PERFORMANCE.  
2. EXPOSED PAD. CONNECT THE EXPOSED PAD TO A LOW IMPEDANCE  
THERMAL AND ELECTRICAL GROUND PLANE.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No. Mnemonic  
Description  
1 to 5, 7, 8, 11, 16, 17, 19, NIC  
20, 22 to 28  
Not Internally Connected. These pins are not connected internally. However, these pins can be  
connected to RF/dc ground without affecting performance.  
6
VDD1  
Power Supply Voltage for the LO Amplifier. See Figure 3 for the interface schematic. Refer to the  
typical application circuit (see Figure 104) for the required external components.  
9
LOIN  
GND  
Local Oscillator Input. See Figure 4 for the interface schematic. This pin is ac-coupled and  
matched to 50 Ω.  
Ground Connect. See Figure 5 for the interface schematic. These pins and the exposed pad must  
be connected to RF/dc ground.  
10, 13, 15, 30, 32  
12  
VGG  
Gate Voltage for the RF Amplifier. See Figure 6 for the interface schematic. Refer to the typical  
application circuit (see Figure 104) for the required external components.  
14  
RFOUT  
Radio Frequency Output. See Figure 7 for the interface schematic. This pin is ac-coupled and  
matched to 50 Ω.  
18, 21  
VDD3, VDD2 Power Supply Voltage for the RF Amplifier. See Figure 8 for the interface schematic. Refer to the  
typical application circuit (see Figure 104) for the required external components.  
29, 31  
IF1, IF2  
Quadrature Intermediate Frequency Inputs. See Figure 9 for the interface schematic. For  
applications not requiring operation to dc, use an off chip dc blocking capacitor. For operation  
to dc, these pins must not source or sink more than 3 mA of current or device malfunction and  
failure can result.  
EPAD  
Exposed Pad. Connect the exposed pad to a low impedance thermal and electrical ground  
plane.  
Rev. 0 | Page 5 of 30  
 
HMC815B  
Data Sheet  
INTERFACE SCHEMATICS  
VDD1  
RFOUT  
Figure 3. VDD1 Interface  
Figure 7. RFOUT Interface  
VDD3, VDD2  
LOIN  
Figure 8. VDD3, VDD2 Interface  
Figure 4. LOIN Interface  
IF1, IF2  
GND  
Figure 5. GND Interface  
Figure 9. IF1, IF2 Interface  
VGG  
Figure 6. VGG Interface  
Rev. 0 | Page 6 of 30  
 
 
 
 
 
 
 
 
Data Sheet  
HMC815B  
TYPICAL PERFORMANCE CHARACTERISTICS  
IF = 2500 MHz, IF INPUT POWER = 0 dBm, LOWER SIDEBAND (HIGH-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
6
4
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2
0
20  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 10. Conversion Gain vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 13. Sideband Rejection vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
6
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
0dBm  
2dBm  
4dBm  
6dBm  
4
2
0
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 11. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
Figure 14. Sideband Rejection vs. RF Frequency over LO Powers, TA = 25°C  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
6
10  
4.25V  
4.50V  
4.75V  
4.25V  
4.50V  
4.75V  
4
2
0
5
0
20  
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 12. Conversion Gain vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Figure 15. Sideband Rejection vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Rev. 0 | Page 7 of 30  
 
 
HMC815B  
Data Sheet  
42  
38  
34  
30  
26  
22  
18  
14  
10  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Output IP3 vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 19. Output P1dB vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
42  
26  
24  
22  
20  
18  
16  
38  
34  
30  
26  
22  
18  
14  
10  
14  
0dBm  
2dBm  
4dBm  
6dBm  
0dBm  
2dBm  
4dBm  
6dBm  
12  
10  
20  
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Output IP3 vs. RF Frequency over LO Powers, TA = 25°C  
Figure 20. Output P1dB vs. RF Frequency over LO Powers, TA = 25°C  
42  
38  
34  
30  
26  
22  
26  
24  
22  
20  
18  
16  
14  
18  
4.25V  
4.25V  
4.50V  
4.75V  
4.50V  
4.75V  
14  
10  
12  
10  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 18. Output IP3 vs. RF Frequency over VDD1, TA = 25°C  
Figure 21. Output P1dB vs. RF Frequency over VDD1, TA = 25°C  
Rev. 0 | Page 8 of 30  
Data Sheet  
HMC815B  
IF = 100 MHz, IF INPUT POWER = 0 dBm, LOWER SIDEBAND (HIGH-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
6
4
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2
0
20  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 22. Conversion Gain vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 25. Sideband Rejection vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
6
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
0dBm  
2dBm  
4dBm  
6dBm  
4
2
0
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 23. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
Figure 26. Sideband Rejection vs. RF Frequency over LO Powers, TA = 25°C  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
6
10  
4.25V  
4.50V  
4.75V  
4.25V  
4.50V  
4.75V  
4
2
0
5
0
20  
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 24. Conversion Gain vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Figure 27. Sideband Rejection vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Rev. 0 | Page 9 of 30  
 
HMC815B  
Data Sheet  
42  
38  
34  
30  
26  
22  
18  
14  
10  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 28. Output IP3 vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 31. Output P1dB vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
42  
26  
24  
22  
20  
18  
16  
38  
34  
30  
26  
22  
18  
14  
10  
14  
0dBm  
2dBm  
4dBm  
6dBm  
0dBm  
2dBm  
4dBm  
6dBm  
12  
10  
20  
20  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Output IP3 vs. RF Frequency over LO Powers, TA = 25°C  
Figure 32. Output P1dB vs. RF Frequency over LO Powers, TA = 25°C  
42  
38  
34  
30  
26  
22  
26  
24  
22  
20  
18  
16  
14  
18  
4.25V  
4.25V  
4.50V  
4.75V  
4.50V  
4.75V  
14  
10  
12  
10  
20  
21  
22  
23  
24  
25  
26  
27  
28  
20  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Output IP3 vs. RF Frequency over VDD1, LO Power = 4 dBm,  
TA = 25°C  
Figure 33. Output P1dB vs. RF Frequency over VDD1, LO Power = 4 dBm,  
TA = 25°C  
Rev. 0 | Page 10 of 30  
Data Sheet  
HMC815B  
IF = 3750 MHz, IF INPUT POWER = 0 dBm, LOWER SIDEBAND (HIGH-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
6
4
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2
0
20  
0
20  
21  
22  
23  
24  
25  
26  
27  
21  
22  
23  
24  
25  
26  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 34. Conversion Gain vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 37. Sideband Rejection vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
6
10  
5
0dBm  
2dBm  
4dBm  
6dBm  
0dBm  
2dBm  
4dBm  
6dBm  
4
2
0
0
20  
21  
22  
23  
24  
25  
26  
27  
20  
21  
22  
23  
24  
25  
26  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 35. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
Figure 38. Sideband Rejection vs. RF Frequency over LO Powers, TA = 25°C  
20  
18  
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
6
10  
4.25V  
4.50V  
4.75V  
4.25V  
4.50V  
4.75V  
4
2
0
5
0
20  
20  
21  
22  
23  
24  
25  
26  
27  
21  
22  
23  
24  
25  
26  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 36. Conversion Gain vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Figure 39. Sideband Rejection vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Rev. 0 | Page 11 of 30  
 
HMC815B  
Data Sheet  
42  
38  
34  
30  
26  
22  
18  
14  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
10  
20  
21  
22  
23  
24  
25  
26  
27  
20  
21  
22  
23  
24  
25  
26  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 40. Output IP3 vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 43. Output P1dB vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
42  
26  
24  
22  
20  
18  
16  
38  
34  
30  
26  
22  
18  
14  
10  
14  
0dBm  
2dBm  
4dBm  
6dBm  
0dBm  
2dBm  
4dBm  
6dBm  
12  
10  
20  
20  
21  
22  
23  
24  
25  
26  
27  
21  
22  
23  
24  
25  
26  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. Output IP3 vs. RF Frequency over LO Powers, TA = 25°C  
Figure 44. Output P1dB vs. RF Frequency over LO Powers, TA = 25°C  
42  
38  
34  
30  
26  
22  
26  
24  
22  
20  
18  
16  
18  
14  
4.25V  
4.25V  
4.50V  
4.75V  
4.50V  
14  
10  
12  
4.75V  
10  
20  
20  
21  
22  
23  
24  
25  
26  
27  
21  
22  
23  
24  
25  
26  
27  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 42. Output IP3 vs. RF Frequency over VDD1, LO Power = 4 dBm,  
TA = 25°C  
Figure 45. Output P1dB vs. RF Frequency over VDD1, LO Power = 4 dBm,  
TA = 25°C  
Rev. 0 | Page 12 of 30  
Data Sheet  
HMC815B  
IF = 100 MHz, IF INPUT POWER = 0 dBm, UPPER SIDEBAND (LOW-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
6
4
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2
0
21  
0
21  
22  
23  
24  
25  
26  
27  
28  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 46. Conversion Gain vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 49. Sideband Rejection vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
6
15  
0dBm  
0dBm  
4
2
0
10  
5
2dBm  
4dBm  
6dBm  
2dBm  
4dBm  
6dBm  
0
21  
21  
22  
23  
24  
25  
26  
27  
28  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
Figure 50. Sideband Rejection vs. RF Frequency over LO Powers, TA = 25°C  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
6
4.25V  
4.50V  
4.75V  
4.25V  
4.50V  
4.75V  
4
2
0
10  
5
0
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Conversion Gain vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Figure 51. Sideband Rejection vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Rev. 0 | Page 13 of 30  
 
HMC815B  
Data Sheet  
26  
24  
22  
20  
18  
16  
14  
12  
10  
42  
38  
34  
30  
26  
22  
18  
14  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
10  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 52. Output IP3 vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 55. Output P1dB vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
42  
26  
24  
22  
20  
18  
16  
38  
34  
30  
26  
22  
18  
14  
10  
0dBm  
2dBm  
4dBm  
6dBm  
14  
12  
10  
0dBm  
2dBm  
4dBm  
6dBm  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. Output IP3 vs. RF Frequency over LO Powers, TA = 25°C  
Figure 56. Output P1dB vs. RF Frequency over LO Powers, TA = 25°C  
42  
38  
34  
30  
26  
22  
26  
24  
22  
20  
18  
16  
18  
14  
4.25V  
4.25V  
4.50V  
4.75V  
4.50V  
14  
10  
12  
4.75V  
10  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 54. Output IP3 vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Figure 57. Output P1dB vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Rev. 0 | Page 14 of 30  
Data Sheet  
HMC815B  
IF = 2500 MHz, RF INPUT POWER = 0 dBm, UPPER SIDEBAND (LOW-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
6
+85°C  
+25°C  
–40°C  
4
+85°C  
+25°C  
–40°C  
2
0
21  
0
21  
22  
23  
24  
25  
26  
27  
28  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 58. Conversion Gain vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 61. Sideband Rejection vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
6
15  
0dBm  
0dBm  
4
2
0
10  
5
2dBm  
4dBm  
6dBm  
2dBm  
4dBm  
6dBm  
0
21  
21  
22  
23  
24  
25  
26  
27  
28  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
Figure 62. Sideband Rejection vs. RF Frequency over LO Powers, TA = 25°C  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
6
4.25V  
4.50V  
4.75V  
4.25V  
4.50V  
4.75V  
4
2
0
10  
5
0
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 60. Conversion Gain vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Figure 63. Sideband Rejection vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Rev. 0 | Page 15 of 30  
 
HMC815B  
Data Sheet  
42  
38  
34  
30  
26  
22  
18  
14  
10  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 64. Output IP3 vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 67. Output P1dB vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
42  
26  
24  
22  
20  
18  
16  
38  
34  
30  
26  
22  
18  
14  
10  
14  
0dBm  
2dBm  
4dBm  
6dBm  
0dBm  
2dBm  
4dBm  
6dBm  
12  
10  
21  
21  
22  
23  
24  
25  
26  
27  
28  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 65. Output IP3 vs. RF Frequency over LO Powers, TA = 25°C  
Figure 68. Output P1dB vs. RF Frequency over LO Powers, TA = 25°C  
42  
38  
34  
30  
26  
22  
26  
24  
22  
20  
18  
16  
14  
18  
4.25V  
4.25V  
4.50V  
4.75V  
4.50V  
4.75V  
14  
10  
12  
10  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 66. Output IP3 vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Figure 69. Output P1dB vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Rev. 0 | Page 16 of 30  
Data Sheet  
HMC815B  
IF = 3750 MHz, RF INPUT POWER = 0 dBm, UPPER SIDEBAND (LOW-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
6
+85°C  
+25°C  
–40°C  
4
+85°C  
+25°C  
–40°C  
2
0
21  
0
21  
22  
23  
24  
25  
26  
27  
28  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 70. Conversion Gain vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 73. Sideband Rejection vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
6
15  
0dBm  
0dBm  
4
2
0
10  
5
2dBm  
4dBm  
6dBm  
2dBm  
4dBm  
6dBm  
0
21  
21  
22  
23  
24  
25  
26  
27  
28  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 71. Conversion Gain vs. RF Frequency over LO Powers, TA = 25°C  
Figure 74. Sideband Rejection vs. RF Frequency over LO Powers, TA = 25°C  
20  
18  
16  
14  
12  
10  
8
50  
45  
40  
35  
30  
25  
20  
15  
6
4.25V  
4.50V  
4.75V  
4.25V  
4.50V  
4.75V  
4
2
0
10  
5
0
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 72. Conversion Gain vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Figure 75. Sideband Rejection vs. RF Frequency over VDD1,  
LO Power = 4 dBm, TA = 25°C  
Rev. 0 | Page 17 of 30  
 
HMC815B  
Data Sheet  
42  
38  
34  
30  
26  
22  
18  
14  
26  
24  
22  
20  
18  
16  
14  
12  
10  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
10  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 76. Output IP3 vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
Figure 79. Output P1dB vs. RF Frequency over Temperature,  
LO Power = 4 dBm  
42  
26  
24  
22  
20  
18  
16  
38  
34  
30  
26  
22  
18  
14  
10  
14  
0dBm  
2dBm  
4dBm  
6dBm  
0dBm  
2dBm  
4dBm  
6dBm  
12  
10  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 77. Output IP3 vs. RF Frequency over LO Powers, TA = 25°C  
Figure 80. Output P1dB vs. RF Frequency over LO Powers, TA = 25°C  
42  
38  
34  
30  
26  
22  
26  
24  
22  
20  
18  
16  
14  
18  
4.25V  
4.25V  
4.50V  
4.75V  
4.50V  
4.75V  
14  
10  
12  
10  
21  
22  
23  
24  
25  
26  
27  
28  
21  
22  
23  
24  
25  
26  
27  
28  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 78. Output IP3 vs. RF Frequency over VDD1, LO Power = 4 dBm,  
TA = 25°C  
Figure 81. Output P1dB vs. RF Frequency over VDD1, LO Power = 4 dBm,  
TA = 25°C  
Rev. 0 | Page 18 of 30  
Data Sheet  
HMC815B  
ISOLATION AND RETURN LOSS  
50  
70  
60  
50  
40  
30  
20  
10  
0
+85°C, IF1  
+25°C, IF1  
–40°C, IF1  
+85°C, IF2  
+25°C, IF2  
–40°C, IF2  
45  
40  
35  
30  
25  
20  
15  
10  
5
0dBm, IF1  
2dBm, IF1  
4dBm, IF1  
6dBm, IF1  
0dBm, IF2  
2dBm, IF2  
4dBm, IF2  
6dBm, IF2  
0
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0  
2× LO FREQUENCY (GHz)  
1× LO FREQUENCY (GHz)  
Figure 82. 2× LO to IF Isolation vs. 2× LO Frequency over Temperature,  
LO Power = 4 dBm  
Figure 85. 1× LO to IF Isolation vs. 1× LO Frequency over LO Powers,  
TA = 25°C  
60  
30  
25  
20  
15  
10  
0dBm, IF1  
2dBm, IF1  
4dBm, IF1  
6dBm, IF1  
0dBm, IF2  
2dBm, IF2  
50  
40  
4dBm, IF2  
6dBm, IF2  
30  
20  
10  
0
+85°C  
+25°C  
–40°C  
5
0
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
2× LO FREQUENCY (GHz)  
2× LO FREQUENCY (GHz)  
Figure 83. 2× LO to IF Isolation vs. 2× LO Frequency over LO Powers,  
TA = 25°C  
Figure 86. 2× LO to RF Isolation vs. 2× LO Frequency over Temperature,  
LO Power = 4 dBm  
70  
60  
50  
40  
30  
25  
20  
15  
30  
+85°C, IF1  
10  
0dBm  
+25°C, IF1  
–40°C, IF1  
+85°C, IF2  
+25°C, IF2  
–40°C, IF2  
20  
10  
0
2dBm  
4dBm  
6dBm  
5
0
19  
9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
1× LO FREQUENCY (GHz)  
2× LO FREQUENCY (GHz)  
Figure 84. 1× LO to IF Isolation vs. 1× LO Frequency over Temperature,  
LO Power = 4 dBm  
Figure 87. 2× LO to RF Isolation vs. 2× LO Frequency over LO Powers,  
TA = 25°C  
Rev. 0 | Page 19 of 30  
 
HMC815B  
Data Sheet  
60  
55  
50  
45  
40  
35  
30  
25  
20  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
+85°C  
+25°C  
–40°C  
0dBm  
2dBm  
4dBm  
6dBm  
9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
1× LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
Figure 88. 1× LO to RF Isolation vs. 1× LO Frequency over Temperature,  
LO Power = 4 dBm  
Figure 91. LO Return Loss vs. LO Frequency over LO Powers,  
TA = 25°C  
60  
55  
50  
45  
40  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
35  
0dBm  
2dBm  
4dBm  
6dBm  
30  
+85°C  
+25°C  
–40°C  
25  
20  
9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0  
20  
21  
22  
23  
24  
25  
26  
27  
28  
1× LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 89. 1× LO to RF Isolation vs. 1× LO Frequency over LO Powers,  
TA = 25°C  
Figure 92. RF Return Loss vs. RF Frequency over Temperature,  
LO Frequency = 12 GHz, LO Power = 4 dBm  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0dBm  
2dBm  
4dBm  
6dBm  
+85°C  
+25°C  
–40°C  
–35  
–40  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
20  
21  
22  
23  
24  
25  
26  
27  
28  
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 90. LO Return Loss vs. LO Frequency over Temperature,  
LO Power = 4 dBm  
Figure 93. RF Return Loss vs. RF Frequency over LO Powers,  
LO Frequency = 12 GHz, TA = 25°C  
Rev. 0 | Page 20 of 30  
Data Sheet  
HMC815B  
0
0
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
0dBm, IF1  
2dBm, IF1  
4dBm, IF1  
6dBm, IF1  
0dBm, IF2  
2dBm, IF2  
4dBm, IF2  
6dBm, IF2  
+85°C, IF1  
+25°C, IF1  
–40°C, IF1  
+85°C, IF2  
+25°C, IF2  
–40°C, IF2  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 94. IF Return Loss vs. IF Frequency over Temperature,  
LO Frequency = 12 GHz, LO Power = 4 dBm  
Figure 95. IF Return Loss vs. IF Frequency over LO Powers,  
LO Frequency = 12 GHz, TA = 25°C  
Rev. 0 | Page 21 of 30  
HMC815B  
Data Sheet  
IF BANDWIDTH PERFORMANCE: LOWER SIDEBAND (HIGH-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
42  
38  
34  
30  
26  
22  
18  
14  
0
6
4
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2
0
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 96. Conversion Gain vs. IF Frequency over Temperature,  
LO Frequency = 12 GHz, LO Power = 4 dBm  
Figure 98. Output IP3 vs. IF Frequency over Temperature,  
LO Frequency = 12 GHz, LO Power = 4 dBm  
20  
18  
16  
14  
12  
10  
8
42  
38  
34  
30  
26  
22  
18  
14  
0
0dBm  
2dBm  
4dBm  
6dBm  
6
4
2
0
0dBm  
2dBm  
4dBm  
6dBm  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 97. Conversion Gain vs. IF Frequency over LO Powers,  
LO Frequency = 12 GHz, TA = 25°C  
Figure 99. Output IP3 vs. IF Frequency over LO Powers,  
LO Frequency = 24 GHz, TA = 25°C  
Rev. 0 | Page 22 of 30  
 
Data Sheet  
HMC815B  
IF BANDWIDTH PERFORMANCE: UPPER SIDEBAND (LOW-SIDE LO)  
20  
18  
16  
14  
12  
10  
8
42  
38  
34  
30  
26  
22  
18  
14  
0
6
4
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
2
0
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 100. Conversion Gain vs. IF Frequency over Temperature,  
LO Frequency = 12 GHz, LO Power = 4 dBm  
Figure 102. Output IP3 vs. IF Frequency over LO Powers,  
LO Frequency = 12 GHz, TA = 25°C  
20  
18  
16  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
15  
10  
0dBm  
2dBm  
4dBm  
6dBm  
6
4
2
0
0dBm  
2dBm  
4dBm  
6dBm  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
3.7  
4.2  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 101. Conversion Gain vs. IF Frequency over Temperature,  
LO Frequency = 12 GHz, LO Power = 4 dBm  
Figure 103. Output IP3 vs. IF Frequency over LO Powers,  
LO Frequency = 12 GHz, TA = 25°C  
Rev. 0 | Page 23 of 30  
 
HMC815B  
Data Sheet  
RF = 24 GHz, LO frequency = 13.25 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
SPURIOUS PERFORMANCE  
M × N Spurious Outputs, IF = 2500 MHz  
N × LO  
Mixer spurious products are measured in dBc from the RF  
output power level with lower sideband selected and without  
external 90° hybrid at the IF ports. N/A means not applicable.  
0
1
2
3
98  
63  
91  
N/A  
91  
63  
97  
104  
86  
70  
0
56  
46  
0
77  
−3  
−2  
−1  
0
61  
RF = 21 GHz, LO frequency = 11.75 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
48  
4
N/A  
N/A  
N/A  
N/A  
M × IF  
N × LO  
36  
57  
80  
N/A  
54  
55  
+1  
+2  
+3  
0
1
2
3
88  
62  
76  
N/A  
76  
63  
89  
104  
92  
67  
34  
44  
57  
79  
58  
49  
0
75  
75  
41  
19  
42  
N/A  
N/A  
−3  
−2  
−1  
0
8
RF = 25 GHz, LO frequency = 13.75 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
M × IF  
N/A  
59  
52  
+1  
+2  
+3  
N × LO  
0
1
2
3
85  
63  
73  
N/A  
73  
63  
75  
101  
87  
65  
26  
36  
56  
67  
49  
37  
0
73  
−3  
−2  
−1  
0
54  
RF = 22 GHz, LO frequency = 12.25 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
48  
0
N/A  
N/A  
N/A  
N/A  
M × IF  
N × LO  
N/A  
39  
57  
+1  
+2  
+3  
0
1
2
3
87  
62  
75  
N/A  
75  
62  
76  
100  
91  
67  
33  
43  
60  
78  
58  
43  
0
86  
61  
44  
18  
49  
N/A  
N/A  
−3  
−2  
−1  
0
4
RF = 26 GHz, LO frequency = 14.25 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
M × IF  
N/A  
45  
50  
+1  
+2  
+3  
N × LO  
0
1
2
3
+85  
+63  
+74  
N/A  
+74  
+63  
+74  
+96  
+80  
+62  
+20  
+26  
+59  
+56  
+49  
+44  
0
+61  
+56  
+213  
N/A  
N/A  
N/A  
N/A  
−3  
−2  
−1  
0
RF = 23 GHz, LO frequency = 12.75 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
−2  
M × IF  
N × LO  
N/A  
+35  
+62  
+1  
+2  
+3  
0
1
2
3
−3  
−2  
−1  
0
88  
61  
79  
N/A  
78  
61  
88  
101  
97  
76  
34  
47  
67  
79  
62  
43  
0
83  
62  
57  
RF = 27 GHz, LO frequency = 14.75 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
M × IF  
3
29  
+1  
+2  
+3  
N/A  
51  
48  
N/A  
N/A  
N/A  
N × LO  
0
1
2
3
82  
62  
70  
N/A  
70  
62  
73  
95  
77  
50  
26  
22  
34  
51  
46  
39  
0
N/A  
54  
−3  
−2  
−1  
0
N/A  
N/A  
N/A  
N/A  
N/A  
1
M × IF  
N/A  
51  
48  
+1  
+2  
+3  
Rev. 0 | Page 24 of 30  
 
Data Sheet  
HMC815B  
M × N Spurious Outputs, IF = 2500 MHz  
RF = 25.5 GHz, LO frequency = 11.5 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
Mixer spurious products are measured in dBc from the RF  
output power level with upper sideband selected and without  
external 90° hybrid at the IF ports. N/A means not applicable.  
N × LO  
0
1
2
3
90  
60  
74  
N/A  
74  
60  
90  
109  
91  
69  
0
60  
42  
N/A  
9
82  
54  
39  
18  
39  
68  
N/A  
−3  
−2  
−1  
0
RF = 24 GHz, LO frequency = 10.75 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
N × LO  
M × IF  
0
1
2
3
41  
50  
81  
0
+1  
+2  
+3  
95  
60  
79  
N/A  
79  
61  
93  
108  
83  
69  
39  
40  
49  
68  
65  
52  
N/A  
14  
0
61  
47  
29  
17  
27  
53  
71  
−3  
−2  
−1  
0
42  
52  
M × IF  
+1  
+2  
+3  
RF = 26 GHz, LO frequency = 11.75 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
49  
53  
N × LO  
0
1
2
3
85  
60  
72  
N/A  
72  
60  
86  
105  
94  
65  
33  
42  
60  
75  
58  
48  
N/A  
7
75  
56  
43  
18  
35  
58  
N/A  
M × IF  
−3  
−2  
−1  
0
RF = 24.5 GHz, LO frequency = 11 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
N × LO  
0
1
2
3
0
+1  
+2  
+3  
82  
60  
77  
N/A  
77  
60  
94  
107  
84  
69  
37  
39  
47  
72  
64  
47  
N/A  
11  
0
65  
44  
30  
18  
30  
52  
N/A  
−3  
−2  
−1  
0
45  
51  
M × IF  
+1  
+2  
+3  
RF = 26.5 GHz, LO frequency = 12 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
50  
52  
N × LO  
0
1
2
3
84  
60  
70  
N/A  
70  
59  
83  
106  
98  
64  
32  
47  
74  
75  
52  
46  
N/A  
6
75  
57  
47  
18  
54  
N/A  
N/A  
−3  
−2  
−1  
0
RF = 25 GHz, LO frequency = 11.25 GHz at LO input power =  
4 dBm, IF input power = −10 dBm.  
N × LO  
M × IF  
0
1
2
3
0
+1  
+2  
+3  
84  
60  
76  
N/A  
76  
60  
97  
109  
89  
70  
38  
41  
51  
70  
62  
57  
N/A  
11  
0
63  
52  
33  
19  
35  
58  
N/A  
−3  
−2  
−1  
0
47  
51  
M × IF  
+1  
+2  
+3  
RF = 27 GHz, LO frequency = 12.25 GHz at LO input power =  
4 dBm, IF input power = −10 dBm  
47  
51  
N × LO  
0
1
2
3
82  
59  
69  
N/A  
69  
59  
82  
103  
100  
65  
33  
58  
73  
76  
52  
37  
N/A  
5
N/A  
56  
−3  
−2  
−1  
0
46  
19  
M × IF  
0
51  
+1  
+2  
+3  
47  
51  
N/A  
N/A  
Rev. 0 | Page 25 of 30  
HMC815B  
Data Sheet  
THEORY OF OPERATION  
The HMC815B is a GaAs, pHEMT, MMIC I/Q upconverter  
with an integrated LO buffer that upconverts IF between dc and  
3.75 GHz to RF between 21 GHz and 27 GHz. LO buffer  
amplifiers are included on chip to allow an LO drive range from  
0 dBm to 6 dBm for full performance. The LO path feeds a  
quadrature splitter followed by on-chip baluns that drive the  
I and Q singly balanced cores of the passive mixers. The RF  
output of the I and Q mixers are then summed through an  
on-chip Wilkinson power combiner and relatively matched to  
provide a single-ended, 50 Ω output signal that is amplified by  
the RF amplifiers to produce a dc-coupled and 50 Ω matched  
RF output signal at the RFOUT port.  
Rev. 0 | Page 26 of 30  
 
Data Sheet  
HMC815B  
APPLICATIONS INFORMATION  
LO suppression is <3 mA for each IF port to prevent damage to  
the device. The common-mode voltage for each IF port is 0 V.  
TYPICAL APPLICATION CIRCUIT  
Figure 104 shows the typical application circuit for the  
To select the upper sideband, connect the IF1 pin to the 90°  
port of the hybrid and the IF2 pin to the 0° port of the hybrid.  
To select the lower sideband, connect the IF1 pin to the 0° port  
of the hybrid and the IF2 pin to the 90° port of the hybrid.  
HMC815B. To select the appropriate sideband, an external 90°  
hybrid is required. For applications not requiring operation to  
dc, use an off chip, dc blocking capacitor. For applications that  
require the LO signal at the output to be suppressed, use a bias  
tee or RF feed. Ensure that the source or sink current used for  
IF1 J3  
IF IN  
IF2 J4  
90° HYBRID  
COUPLER  
1
2
3
4
24  
23  
22  
VDD2  
J11  
21  
20  
19  
18  
17  
C11  
2.2µF  
C7  
C3  
5
1000pF  
100pF  
×2  
HMC815B  
VDD1  
J5  
6
7
8
+
VDD3  
C8  
2.2µF  
C5  
1000pF  
C1  
100pF  
J10  
C10  
C6  
1000pF  
C2  
100pF  
2.2µF  
PACKAGE  
BASE  
LOIN  
J1  
GND  
VGG  
RFOUT  
J2  
J7  
+
C9  
2.2µF  
C4  
1000pF  
Figure 104. Typical Application Circuit  
Rev. 0 | Page 27 of 30  
 
 
 
HMC815B  
Data Sheet  
Layout  
EVALUATION BOARD INFORMATION  
Solder the exposed pad on the underside of the HMC815B to a low  
thermal and electrical impedance ground plane. This exposed  
pad is typically soldered to an exposed opening in the solder  
mask on the evaluation board. Connect these ground vias to all  
other ground layers on the evaluation board to maximize heat  
dissipation from the device package. Figure 105 and Figure 106  
show the PCB land pattern footprint for the HMC815B and the  
solder paste stencil for the HMC815B evaluation board,  
respectively.  
The circuit board used in the application must use RF circuit  
design techniques. Signal lines must have 50 Ω impedance.  
Connect the package ground leads and exposed pad directly to  
the ground plane, as shown in Figure 105. Use a sufficient  
number of via holes to connect the top and bottom ground  
planes. The evaluation circuit board shown in Figure 107 is  
available from Analog Devices upon request.  
EV1HMC815BLC5 Power-On Sequence  
To set up the EV1HMC815BLC5, take the following steps:  
0.217" SQUARE  
0.004" MASK/METAL OVERLAP  
SOLDERMASK  
0.010" MIN MASK WIDTH  
1. Power up VGG with a −2 V supply.  
2. Power up VDD2 and VDD3 with a 4.5 V supply.  
3. Power up VDD1 with another 4.5 V supply.  
4. Adjust the VGG supply between −2 V and 0 V until the total  
RF supply current (IDD2 + IDD3) = 270 mA.  
GROUND PAD  
PAD SIZE  
0.026" × 0.010"  
PIN 1  
0.197"  
[0.50]  
5. Connect LOIN to the LO signal generator with an LO  
power of 4 dBm (typical).  
0.156"  
MASK  
OPENING  
6. Apply the IF1 and IF2 signals.  
ø.034"  
TYPICAL  
VIA SPACING  
EV1HMC815BLC5 Power-Off Sequence  
To turn off the EV1HMC815BLC5, take the following steps:  
ø.010"  
TYPICAL VIA  
1. Turn off the LO and IF signals.  
2. Set VGG to −2 V.  
3. Set the VDD1, VDD2, and VDD3 supplies to 0 V and then  
0.010" REF  
0.138" SQUARE MASK OPENING  
0.02 ×45° CHAMFER FOR PIN1  
0.030"  
MASK OPENING  
0.146" SQUARE  
GROUND PAD  
turn them off.  
Figure 105. PCB Land Pattern Footprint  
4. Turn off the VGG supply.  
0.017  
0.0197  
TYP  
0.219  
SQUARE  
0.132  
SQUARE  
0.017  
0.027  
TYP  
R0.0040 TYP  
132 PLCS  
0.010  
TYP  
Figure 106. Solder Paste Stencil  
Rev. 0 | Page 28 of 30  
 
 
 
Data Sheet  
HMC815B  
Figure 107. HMC815B Evaluation Board Top Layer  
Table 5. Bill of Materials for the EV1HMC815BLC5 Evaluation Board PCB  
Reference  
Quantity Designator  
Description  
Manufacturer  
Part Number  
1
1
4
Not applicable PCB, EV1HMC815BLC5  
Analog Devices supplied  
Analog Devices  
Southwest Microwave, Inc.  
120410  
HMC815B  
1092-01A  
HMC815B  
J1, J2  
Mixer, 21 GHz to 27 GHz upconverter  
Connector, end launch, 2.92 mm, 40 GHz,  
jack  
2
8
3
J3, J4  
Johnson Subminiature Version A (SMA)  
connectors  
DC pin, PCB terminal  
Cinch Connectivity Solutions  
Johnson  
Mill-Max Manufacturing  
Corporation  
142-0701-851  
J5 to J12  
C1, C2, C3,  
3101-2-00-21-00-00-08-0  
C0402C101J5GACTU  
Ceramic capacitors, 100 pF, 5%, 50 V, C0G,  
0402  
Kemet  
1
3
C4  
C5, C6, C7  
Ceramic capacitors, 1000 pF, 50 V, X7R, 0402  
Ceramic capacitors, 1000 pF, 50 V, 10%, X7R,  
0603  
Murata Manufacturing  
Murata Manufacturing  
GRM155R71H102KA01D  
GRM188R71H102KA01D  
4
C8, C9, C10,  
C11  
Tantalum capacitors, 2.2 μF, 25 V, 10%, SMD,  
Case A  
AVX Corporation  
TAJA225K025RNJ  
Rev. 0 | Page 29 of 30  
 
HMC815B  
Data Sheet  
OUTLINE DIMENSIONS  
5.05  
4.90 SQ  
4.75  
0.36  
0.30  
0.24  
PIN 1  
0.08  
REF  
INDICATOR  
PIN 1  
32  
25  
24  
1
0.50  
BSC  
3.60  
3.50 SQ  
3.40  
EXPOSED  
PAD  
17  
8
16  
9
0.38  
0.32  
0.26  
0.20 MIN  
BOTTOM VIEW  
3.50 REF  
TOP VIEW  
SIDE VIEW  
1.10  
1.00  
0.90  
4.10 REF  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 108. 32-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-32-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package Body  
Material  
MSL  
Package  
Description  
Package  
Option  
Model1  
Lead Finish  
Rating2  
MSL3  
HMC815BLC5  
HMC815BLC5TR  
HMC815BLC5TR-R5  
EV1HMC815BLC5  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Alumina Ceramic  
Alumina Ceramic  
Alumina Ceramic  
Gold over Nickel  
Gold over Nickel  
Gold over Nickel  
32-Terminal LCC  
32-Terminal LCC  
32-Terminal LCC  
Evaluation PCB  
Assembly  
E-32-1  
E-32-1  
E-32-1  
MSL3  
MSL3  
1 The HMC815BLC5, HMC815BLC5TR, and the HMC815BLC5TR-R5 are RoHS compliant parts.  
2 See the Absolute Maximum Ratings section.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D13597-0-1/18(0)  
Rev. 0 | Page 30 of 30  
 
 

相关型号:

HMC815BLC5

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter
ADI

HMC815BLC5TR

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter
ADI

HMC815BLC5TR-R5

21 GHz to 27 GHz, GaAs, MMIC, I/Q Upconverter
ADI

HMC815LC5

GaAs MMIC I/Q UPCONVERTER 21 - 27 GHz
HITTITE

HMC815LC5TR

暂无描述
HITTITE

HMC815LC5_10

GaAs MMIC I/Q UPCONVERTER 21 - 27 GHz
HITTITE

HMC815LC5_1007

GaAs MMIC I/Q UPCONVERTER 21 - 27 GHz
HITTITE

HMC816LP4E

SMT GaAs PHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 230 - 660 MHz
HITTITE

HMC816LP4ERTR

IC,RF AMPLIFIER,DUAL,GAAS,LLCC,24PIN,PLASTIC
ADI

HMC816LP4ETR

Dual Channel Low Noise Amplifier, 230 - 660 MHz
ADI

HMC816LP4E_10

SMT GaAs pHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 230 - 660 MHz
HITTITE

HMC817LP4E

SMT GaAs PHEMT DUAL CHANNEL LOW NOISE AMPLIFIER, 550 - 1200 MHz
HITTITE