HMC553ALC3BTR [ADI]

6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer;
HMC553ALC3BTR
型号: HMC553ALC3BTR
厂家: ADI    ADI
描述:

6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer

局域网 射频 微波
文件: 总25页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
6 GHz to 14 GHz, GaAs, MMIC,  
Double-Balanced Mixer  
HMC553ALC3B  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC553ALC3B  
Passive: no dc bias required  
Conversion loss: 7 dB typical at 6 GHz to 11 GHz  
Input IP3: 18 dBm typical at 6 GHz to 11 GHz  
LO to RF isolation: 36 dB typical  
Wide IF bandwidth: dc to 5 GHz  
RoHS compliant, 12-terminal, 2.90 mm × 2.90 mm LCC package  
12 11 10  
1
2
3
9
8
7
GND  
RF  
GND  
LO  
GND  
GND  
APPLICATIONS  
4
5
6
PACKAGE  
BASE  
Microwave and very small aperture terminal (VSAT) radios  
Test equipment  
GND  
Figure 1.  
Point to point radios  
Military electronic warfare (EW); electronic countermeasure  
(ECM); and command, control, communications and  
intelligence (C3I)  
GENERAL DESCRIPTION  
The HMC553ALC3B is a general-purpose, double-balanced,  
gallium arsenide (GaAs), monolithic microwave integrated  
circuit (MMIC) mixer housed in a leadless Pb-free, RoHS  
compliant LCC package. The HMC553ALC3B can be used as an  
upconverter or downconverter between 6 GHz and 14 GHz.  
This mixer requires no external components or matching  
circuitry.  
The HMC553ALC3B provides local oscillator (LO) to radio  
frequency (RF) and LO to intermediate frequency (IF) suppression  
due to optimized balun structures. The mixer operates with LO  
drive levels from 9 dBm to 15 dBm. The HMC553ALC3B  
eliminates the need for wire bonding, allowing use of surface-  
mount manufacturing techniques.  
Rev. B  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2018–2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
HMC553ALC3B  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Upconverter Performance......................................................... 14  
Isolation and Return Loss ......................................................... 18  
IF Bandwidth—Downconverter, Upper Sideband................. 20  
IF Bandwidth—Downconverter, Lower Sideband................. 21  
Spurious and Harmonics Performance ................................... 22  
Theory of Operation ...................................................................... 23  
Applications Information.............................................................. 24  
Typical Application Circuit....................................................... 24  
Evaluation PCB Information .................................................... 24  
Outline Dimensions....................................................................... 25  
Ordering Guide .......................................................................... 25  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Typical Performance Characteristics ............................................. 6  
Downconverter Performance...................................................... 6  
REVISION HISTORY  
3/2019—Rev.A to Rev. B  
2/2018—Revision 0: Initial Version  
Change to Table 5 ........................................................................... 22  
Changes to Downconversion, Upper Sideband Section,  
Downconversion, Lower Sideband Section, Upconversion, Upper  
Sideband Section, and Upconversion, Lower Sideband Section ... 22  
6/2018—Rev.0 to Rev. A  
Added 6 GHz to 11 GHz Downconverter Performance, Noise  
Figure Parameter and 11 GHz to 14 GHz Downconverter  
Performance, Noise Figure Parameter, Table 1............................. 3  
Rev. B | Page 2 of 25  
 
Data Sheet  
HMC553ALC3B  
SPECIFICATIONS  
TA = 25°C, IF = 100 MHz, RF = −10 dBm, LO = 13 dBm, upper side band. All measurements performed as a downconverter, unless  
otherwise noted, on the evaluation printed circuit board (PCB).  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
RF  
LO Input  
6
6
DC  
9
14  
14  
5
GHz  
GHz  
GHz  
dBm  
IF  
LO DRIVE LEVELS  
6 GHz to 11 GHz PERFORMANCE  
Downconverter  
13  
15  
Conversion Loss  
Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Input Second-Order Intercept  
Upconverter  
7
9
dB  
dB  
dBm  
dBm  
dBm  
8.5  
18  
9.5  
40  
IP3  
P1dB  
IP2  
15  
IFIN  
Conversion Loss  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Isolation  
7
19  
8
dB  
dBm  
dBm  
IP3  
P1dB  
RF to IF  
LO to RF  
LO to IF  
18  
30  
28  
32  
36  
32  
dB  
dB  
dB  
11 GHz to 14 GHz PERFORMANCE  
Downconverter  
Conversion Loss  
Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Input Second-Order Intercept  
Upconverter  
9
10  
dB  
dB  
dBm  
dBm  
dBm  
10  
22  
11.5  
45  
IP3  
P1dB  
IP2  
18  
IFIN  
Conversion Loss  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Isolation  
8
19  
8
dB  
dBm  
dBm  
IP3  
P1dB  
RF to IF  
LO to RF  
LO to IF  
25  
30  
28  
29  
37  
33  
dB  
dB  
dB  
Rev. B | Page 3 of 25  
 
HMC553ALC3B  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to PCB design and  
operating environment. Careful attention to PCB thermal  
design is required.  
Parameter  
Rating  
25 dBm  
25 dBm  
25 dBm  
3 mA  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source/Sink Current  
Reflow Temperature  
Maximum Junction Temperature  
θJA is the natural convection junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure. θJC is  
the junction to case thermal resistance.  
260°C  
175°C  
Table 3. Thermal Resistance  
Package Type  
E-12-41  
Continuous Power Dissipation, PDISS  
(TA = 85°C, Derate 4.6 mW/°C Above 85°C)  
414 mW  
θJA  
θJC  
Unit  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
−40°C to +85°C  
−65°C to +150°C  
−65°C to +150°C  
120  
175  
°C/W  
1 See JEDEC standard JESD51-2 for additional information on optimizing the  
thermal impedance (PCB with 3 × 3 vias).  
ESD CAUTION  
1000 V  
1250 V  
Field Induced Charged Device Model  
(FICDM)  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. B | Page 4 of 25  
 
 
 
Data Sheet  
HMC553ALC3B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
HMC553ALC3B  
TOP VIEW  
(Not to Scale)  
12 11 10  
1
2
3
9
8
7
GND  
RF  
GND  
LO  
GND  
GND  
4
5
6
PACKAGE  
BASE  
GND  
NOTES  
1. NOT INTERNALLY CONNECTED. THESE PINS  
CAN BE CONNECTED TO RF/DC GROUND.  
PERFORMANCE IS NOT AFFECTED.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 4, 6, 7, 9 GND  
Ground. These pins and package bottom must be connected to RF/dc ground.  
Local Oscillator Port. This pin is ac-coupled and matched to 50 Ω.  
Intermediate Frequency Port. This pin is dc-coupled. For applications not requiring operation to dc, dc block  
this port externally using a series capacitor of a value chosen to pass the necessary IF frequency range. For  
operation to dc, this pin must not source or sink more than 3 mA of current or die malfunction and possible  
die failure may result.  
2
5
LO  
IF  
8
RF  
Radio Frequency Port. This pin is ac-coupled and matched to 50 Ω.  
10, 11, 12  
NIC  
EPAD  
Not Internally Connected. These pins can be connected to RF/dc ground. Performance is not affected.  
Exposed Pad. The exposed pad must be connected to RF/dc ground.  
INTERFACE SCHEMATICS  
GND  
IF  
Figure 5. IF Interface Schematic  
Figure 3. GND Interface Schematic  
RF  
LO  
Figure 4. LO Interface Schematic  
Figure 6. RF Interface Schematic  
Rev. B | Page 5 of 25  
 
 
HMC553ALC3B  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE  
IF = 100 MHz, Upper Sideband (Low-Side LO)  
0
0
–5  
–5  
–10  
–10  
–15  
–20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 9. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 10. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 6 of 25  
 
 
Data Sheet  
HMC553ALC3B  
Downconverter P1dB and IP2, IF = 100 MHz, Upper Sideband (Low-Side LO)  
20  
15  
10  
5
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 11. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 13. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
60  
50  
40  
30  
60  
50  
40  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
20  
10  
0
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 12. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 14. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 7 of 25  
HMC553ALC3B  
Data Sheet  
IF = 100 MHz, Lower Sideband (High-Side LO)  
0
0
–5  
–5  
–10  
–10  
–15  
–20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 15. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 18. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
20  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 16. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 19. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
15  
15  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
5
10  
LO = 9dBm  
LO = 11dBm  
5
LO = 13dBm  
LO = 15dBm  
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 17. Noise Figure vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 20. Noise Figure vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 8 of 25  
Data Sheet  
HMC553ALC3B  
Downconverter P1dB and IP2, IF = 100 MHz, Lower Sideband (High-Side LO)  
20  
15  
10  
5
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 21. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 23. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
20  
10  
0
20  
LO = 15dBm  
10  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 22. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 24. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 9 of 25  
HMC553ALC3B  
Data Sheet  
IF = 4000 MHz, Upper Sideband (Low-Side LO)  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 25. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 27. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
25  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
20  
15  
10  
5
20  
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 26. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 28. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 10 of 25  
Data Sheet  
HMC553ALC3B  
Downconverter P1dB and IP2, IF = 40000 MHz, Upper Sideband (Low-Side LO)  
20  
15  
10  
5
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 29. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 31. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
LO = 9dBm  
30  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
20  
10  
0
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 30. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 32. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 11 of 25  
HMC553ALC3B  
Data Sheet  
IF = 4000 MHz, Lower Sideband (High-Side LO)  
0
0
–5  
–5  
–10  
–10  
–15  
–20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 33. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 35. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
30  
25  
20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
15  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 34. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 36. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 12 of 25  
Data Sheet  
HMC553ALC3B  
Downconverter P1dB and IP2, IF = 4000 MHz, Lower Sideband (High-Side LO)  
20  
15  
10  
5
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 37. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 39. Input P1dB vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
80  
70  
60  
50  
80  
70  
60  
50  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
40  
30  
20  
10  
0
40  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
30  
20  
10  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 38. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 40. Input IP2 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 13 of 25  
HMC553ALC3B  
Data Sheet  
UPCONVERTER PERFORMANCE  
IFIN = 100 MHz, Upper sideband (Low-Side LO)  
0
0
–5  
–5  
–10  
–10  
–15  
–20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 41. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 44. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
30  
25  
20  
15  
15  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
10  
10  
5
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 42. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 45. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
LO = 9dBm  
LO = 11dBm  
15  
15  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 13dBm  
LO = 15dBm  
A
A
A
10  
5
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 43. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 46. Input P1dB vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. B | Page 14 of 25  
 
Data Sheet  
HMC553ALC3B  
IFIN = 100 MHz, Lower Sideband (High-Side LO)  
0
0
–5  
–5  
–10  
–10  
–15  
–20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 47. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 50. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
30  
25  
20  
15  
15  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
10  
10  
5
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 48. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 51. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
15  
10  
15  
10  
5
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
5
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 49. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 52. Input P1dB vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. B | Page 15 of 25  
HMC553ALC3B  
Data Sheet  
IFIN = 4000 MHz, Upper Sideband (Low-Side LO)  
0
0
–5  
–5  
–10  
–10  
–15  
–20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 53. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 56. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
25  
20  
15  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
5
10  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
5
LO = 15dBm  
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 54. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 57. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
20  
20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
15  
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 55. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 58. Input P1dB vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. B | Page 16 of 25  
Data Sheet  
HMC553ALC3B  
IFIN = 4000 MHz, Lower Sideband (High-Side LO)  
0
0
–5  
–5  
–10  
–10  
–15  
–20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
A
A
A
–15  
–20  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 59. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 62. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
15  
30  
25  
20  
15  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
5
10  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 60. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 63. Input IP3 vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
15  
10  
5
20  
15  
10  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
5
0
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 61. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 64. Input P1dB vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. B | Page 17 of 25  
HMC553ALC3B  
Data Sheet  
ISOLATION AND RETURN LOSS  
Downconverter performance at IF = 100 MHz, upper sideband (low-side LO).  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
= –40°C  
= +25°C  
= +85°C  
A
20  
10  
0
T
A
T
A
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 65. LO to RF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 68. LO to RF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
60  
50  
40  
30  
60  
50  
40  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
= –40°C  
= +25°C  
= +85°C  
A
20  
20  
10  
0
T
A
T
A
10  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 66. LO to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 69. LO to IF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
60  
50  
40  
60  
50  
40  
30  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
20  
20  
10  
0
10  
0
5
6
7
8
9
10  
11  
12  
13  
14  
15  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 67. RF to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 70. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 18 of 25  
 
Data Sheet  
HMC553ALC3B  
0
0
–5  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
–25  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
0.01  
1.01  
2.01  
3.01  
4.01  
5.01  
6.01  
7.01  
8.01  
LO FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 73. IF Return Loss vs. IF Frequency at LO Power Levels,  
TA = 25°C, LO = 10 GHz  
Figure 71. LO Return Loss vs. LO Frequency at LO = 13 dBm,  
TA = 25°C  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
RF FREQUENCY (GHz)  
Figure 72. RF Return Loss vs. RF Frequency at LO Power Levels,  
A = 25°C, LO = 10 GHz  
T
Rev. B | Page 19 of 25  
HMC553ALC3B  
Data Sheet  
IF BANDWIDTH—DOWNCONVERTER, UPPER SIDEBAND  
LO frequency = 8 GHz.  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–5  
–10  
–15  
–20  
–10  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–15  
–20  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 74. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 76. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
A = 25°C  
T
30  
25  
20  
15  
30  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
10  
5
0
0.1  
0
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 75. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 77. Input IP3 vs. IF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. B | Page 20 of 25  
 
Data Sheet  
HMC553ALC3B  
IF BANDWIDTH—DOWNCONVERTER, LOWER SIDEBAND  
LO frequency = 13 GHz.  
0
0
–5  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
–5  
–10  
–15  
–20  
–10  
–15  
–20  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 78. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 80. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
30  
25  
20  
30  
25  
20  
T
T
T
= –40°C  
= +25°C  
= +85°C  
A
A
A
15  
10  
5
15  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
10  
5
0
0.1  
0
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
0.1  
1.1  
2.1  
3.1  
4.1  
5.1  
6.1  
7.1  
IF FREQUENCY (GHz)  
IF FREQUENCY (GHz)  
Figure 79. Input IP3 vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 81. Input IP3 vs. IF Frequency at Various LO Power Levels,  
TA = 25°C  
Rev. B | Page 21 of 25  
 
HMC553ALC3B  
Data Sheet  
Upconversion, Upper Sideband  
SPURIOUS AND HARMONICS PERFORMANCE  
LO Harmonics  
Spur values are (M × IFIN) + (N × LO). IFIN = 0.1 GHz, LO =  
10 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer  
spurious products are measured in dBc from the RF output power  
level. N/A means not applicable.  
LO = 13 dBm, all values in dBc below input LO level and  
measured at RF port. N/A means not applicable.  
Table 5. LO Harmonics at RF  
N × LO  
N × LO Spur at RF Port (dBc)  
0
1
2
3
4
LO Frequency (GHz)  
1
2
3
4
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
36  
99  
86  
81  
51  
0
96  
94  
83  
59  
35  
10  
36  
58  
84  
92  
94  
64  
62  
75  
72  
22  
27  
20  
68  
76  
84  
84  
61  
−5  
−4  
−3  
−2  
−1  
0
6
8
9
10  
12  
14  
37  
38  
38  
37  
37  
39  
21  
41  
46  
45  
50  
50  
51  
43  
49  
58  
45  
71  
53  
64  
70  
82  
105  
N/A  
61  
61  
59  
43  
6
19  
M × IFIN  
0
N/A  
N/A  
N/A  
N/A  
N/A  
+1  
+2  
+3  
+4  
+5  
LO = 13 dBm, all values in dBc below input LO level and  
measured at IF port. N/A means not applicable.  
81  
50  
63  
85  
100  
95  
101  
102  
Table 6. LO Harmonics at IF  
N × LO Spur at IF Port (dBc)  
LO Frequency (GHz)  
1
2
3
4
Upconversion, Lower Sideband  
6
8
9
10  
12  
14  
43  
28  
29  
29  
31  
43  
38  
50  
66  
76  
84  
93  
60  
88  
102  
103  
88  
74  
Spur values are (M × IFIN) + (N × LO).  
104  
109  
108  
10  
IFIN = 0.1 GHz, LO = 14.1 GHz, RF power = −10 dBm, and  
LO power = 13 dBm. Mixer spurious products are measured in  
dBc from the RF output power level. N/A means not applicable.  
107  
N/A  
N × LO  
M × N Spurious Outputs  
0
1
2
3
4
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
34  
96  
85  
71  
52  
0
82  
84  
77  
60  
28  
20  
28  
61  
61  
84  
62  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
−5  
−4  
−3  
−2  
−1  
0
Downconversion, Upper Sideband  
Spur values are (M × RF) − (N × LO). RF = 10.1 GHz, LO =  
10 GHz, RF power = −10 dBm, and LO power = 13 dBm. Mixer  
spurious products are measured in dBc from the IF output power  
level. N/A means not applicable.  
8
M × IFIN  
N × LO  
0
+1  
+2  
+3  
+4  
+5  
0
1
2
3
4
79  
50  
63  
86  
95  
N/A  
22  
0.6  
0
26  
44  
58  
93  
93  
25  
70  
70  
71  
98  
N/A  
68  
0
1
2
3
4
96  
100  
100  
71  
67  
92  
82  
78  
M × RF  
84  
91  
N/A  
101  
Downconversion, Lower Sideband  
Spur values are (M × RF) − (N × LO). RF = 14 GHz, LO =  
14.1 GHz, RF power = −10 dBm, and LO power = 13 dBm.  
Mixer spurious products are measured in dBc from the IF  
output power level. N/A means not applicable.  
N × LO  
0
1
2
3
4
N/A  
18  
3
26  
40  
70  
93  
58  
N/A  
65  
77  
74  
95  
N/A  
N/A  
56  
0
1
2
3
4
0
55  
72  
57  
N/A  
M × RF  
N/A  
N/A  
89  
101  
Rev. B | Page 22 of 25  
 
Data Sheet  
HMC553ALC3B  
THEORY OF OPERATION  
The HMC553ALC3B is a general-purpose, double-balanced  
mixer that can be used as an upconverter or a downconverter  
from 6 GHz to 14 GHz.  
When used as an upconverter, the mixer upconverts intermediate  
frequencies between dc and 5 GHz to radio frequencies between  
6 GHz and 14 GHz.  
When used a downconverter, the HMC553ALC3B downconverts  
radio frequencies (RF) between 6 GHz and 14 GHz to intermediate  
frequencies (IF) between dc and 5 GHz.  
Rev. B | Page 23 of 25  
 
HMC553ALC3B  
Data Sheet  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
EVALUATION PCB INFORMATION  
Figure 82 shows the typical application circuit for the  
Use RF circuit design techniques for the circuit board used in  
the application. Ensure that signal lines have 50 Ω impedance,  
and connect the package ground leads and the exposed pad  
directly to the ground plane (see Figure 83). Use a sufficient  
number of via holes to connect the top and bottom ground  
planes. The evaluation circuit board shown in Figure 83 is  
available from Analog Devices, Inc., upon request.  
HMC553ALC3B. The HMC553ALC3B is a passive device and  
does not require any external components. The LO and RF pins  
are internally ac-coupled. The IF pin is internally dc-coupled.  
When IF operation to dc is not required, use of an external  
series capacitor is recommended, of a value chosen to pass the  
necessary IF frequency range. When IF operation to dc is  
required, do not exceed the IF source and sink current rating  
specified in the Absolute Maximum Ratings section.  
Table 7. List of Materials for Evaluation PCB  
EV1HMC553ALC3B  
Item  
J1, J2  
J3  
U1  
PCB1  
Description  
SRI 2.92 mm connector  
Johnson Surface-Mount Type A (SMA) connector  
HMC553ALC3B  
12  
11 10  
HMC553ALC3B  
GND  
LO  
GND  
RF  
9
8
7
1
2
3
LO  
RF  
117611-7 evaluation board  
GND  
GND  
1 117611-7 is the raw bare PCB identifier. Reference EV1HMC553ALC3B when  
ordering the complete evaluation PCB.  
4
5
6
IF  
Figure 82. Typical Application Circuit  
LO  
RF  
117611–7  
553A  
J2  
J1  
IF  
U1  
J3  
Figure 83. Evaluation PCB Top Layer  
Rev. B | Page 24 of 25  
 
 
 
 
 
Data Sheet  
HMC553ALC3B  
OUTLINE DIMENSIONS  
3.05  
2.90 SQ  
2.75  
0.36  
0.30  
0.24  
0.08  
BSC  
PIN 1  
INDICATOR  
10  
12  
PIN 1  
9
1
3
0.50  
BSC  
1.60  
1.50 SQ  
1.40  
EXPOSED  
PAD  
7
6
4
0.32  
BSC  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
1.00 REF  
2.10 BSC  
0.90  
0.80  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 84. 12-Terminal Ceramic Leadless Chip Carrier (LCC)  
(E-12-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Moisture Sensitivity Level (MSL) Rating2 Package Description  
Package Option  
HMC553ALC3B  
HMC553ALC3BTR  
HMC553ALC3BTR-R5 −40°C to +85°C  
EV1HMC553ALC3B  
−40°C to +85°C  
−40°C to +85°C  
MSL3  
MSL3  
MSL3  
12-Terminal Ceramic LCC  
E-12-4  
E-12-4  
E-12-4  
12-Terminal Ceramic LCC  
12-Terminal Ceramic LCC  
Evaluation PCB Assembly  
1 All models are RoHS compliant.  
2 The peak reflow temperature is 260°C. See the Absolute Maximum Ratings section, Table 2.  
©2018–2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16420-0-3/19(B)  
Rev. B | Page 25 of 25  
 
 

相关型号:

HMC553ALC3BTR-R5

6 GHz to 14 GHz, GaAs, MMIC, Double-Balanced Mixer
ADI

HMC553LC3B

GaAs MMIC FUNDAMENTAL MIXER, 7 - 14 GHz
HITTITE

HMC553LC3B

HMC553LC3B
ADI

HMC553LC3BTR

Telecom Circuit, 1-Func, CBCC12, 3 X 3 MM, ROHS COMPLIANT, CERAMIC, SMT-12
HITTITE

HMC553LC3BTR

HMC553LC3BTR
ADI

HMC553LC3B_09

GaAs MMIC FUNDAMENTAL MIXER, 7 - 14 GHz
HITTITE

HMC553_09

GaAs MMIC FUNDAMENTAL MIXER, 7 - 14 GHz
HITTITE

HMC554

GaAs MMIC FUNDAMENTAL MIXER, 11 - 20 GHz
HITTITE

HMC554A

10 GHz to 20 GHz, GaAs, MMIC, Double-Balanced Mixer
ADI

HMC554A-SX

10 GHz to 20 GHz, GaAs, MMIC, Double-Balanced Mixer
ADI

HMC554ACHIPS

10 GHz to 20 GHz, GaAs, MMIC, Double-Balanced Mixer
ADI

HMC554ALC3B

10 GHz to 20 GHz, GaAs, MMIC, Double Balanced Mixer
ADI