HMC329ALC3BTR-R5 [ADI]

24 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer;
HMC329ALC3BTR-R5
型号: HMC329ALC3BTR-R5
厂家: ADI    ADI
描述:

24 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer

局域网 射频 微波
文件: 总23页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24 GHz to 32 GHz, GaAs, MMIC,  
Double Balanced Mixer  
HMC329ALC3B  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
HMC329ALC3B  
Conversion loss (downconverter): 11 dB typical  
LO to RF isolation: 36.5 dB typical for 24 GHz to 30 GHz  
performance  
12 11 10  
Input IP3 (downconverter): 20 dBm typical  
12-terminal, RoHS compliant, 3 mm × 3 mm LCC package  
1
2
3
9
8
7
GND  
RF  
GND  
LO  
APPLICATIONS  
GND  
GND  
Microwave and very small aperture terminal (VSAT) radios  
Test equipment  
4
5
6
PACKAGE  
BASE  
Military electronic warfare (EW)  
GND  
Electronic countermeasure (ECM)  
Figure 1.  
Command, control, communications, and intelligence (C3I)  
GENERAL DESCRIPTION  
The HMC329ALC3B is a general-purpose, double balanced  
mixer in a leadless, RoHS compliant, surface-mount technology  
(SMT) package that can be used as an upconverter or down-  
converter between 24 GHz and 32 GHz. This mixer is fabricated  
in a gallium arsenide (GaAs), monolithic microwave integrated  
circuit (MMIC) process and requires no external components  
or matching circuitry. The HMC329ALC3B provides excellent local  
oscillator (LO) to radio frequency (RF) and LO to intermediate  
frequency (IF) suppression due to optimized balun preliminary  
structures. The mixer operates with LO amplitude above 9 dBm.  
The RoHS compliant HMC329ALC3B eliminates the need for  
wire bonding, allowing the use of surface-mount manufacturing  
techniques.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
HMC329ALC3B  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Downconverter Performance, IF = 1000 MHz..........................6  
Downconverter Performance, IF = 8000 MHz....................... 10  
Upconverter Performance, IF = 1000 MHz............................ 12  
Upconverter Performance, IF = 8000 MHz............................ 14  
IF Bandwidth—Downconverter............................................... 18  
Spurious and Harmonics Performance ................................... 20  
Theory of Operation ...................................................................... 21  
Applications Information .............................................................. 22  
Typical Application Circuit....................................................... 22  
Evaluation PCB Information .................................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
Thermal Resistance ...................................................................... 4  
ESD Caution.................................................................................. 4  
Pin Configuration and Function Descriptions............................. 5  
Interface Schematics..................................................................... 5  
Typical Performance Characteristics ............................................. 6  
REVISION HISTORY  
5/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 23  
 
Data Sheet  
HMC329ALC3B  
SPECIFICATIONS  
TA = 25°C, IF = 1000 MHz, LO = 13 dBm for the upper sideband, unless otherwise noted. All measurements performed as a downconverter,  
unless otherwise noted, on the evaluation printed circuit board (PCB).  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
RF Pin  
IF Pin  
24  
DC  
24  
9
32  
8
32  
15  
GHz  
GHz  
GHz  
dBm  
LO Pin  
LO AMPLITUDE  
13  
24 GHz to 32 GHz Performance  
Downconverter  
Conversion Loss  
Single Sideband Noise Figure  
Input Third-Order Intercept  
Input 1 dB Compression Point  
Input Second-Order Intercept  
Upconverter  
11  
12  
20  
12  
42  
13.5  
dB  
dB  
dBm  
dBm  
dBm  
SSB NF  
IP3  
P1dB  
IP2  
15.5  
IFIN  
Conversion Loss  
Input Third-Order Intercept  
Input 1 dB Compression Point  
ISOLATION  
10.5  
15.3  
4.5  
dB  
dBm  
dBm  
IP3  
P1dB  
24 GHz to 30 GHz Performance  
LO to IF  
RF to IF  
28  
20  
32  
35.5  
31.5  
36.5  
dB  
dB  
dB  
LO to RF  
30 GHz to 32 GHz Performance  
LO to IF  
RF to IF  
22  
10.5  
22.5  
30  
24.4  
30.5  
dB  
dB  
dB  
LO to RF  
Rev. 0 | Page 3 of 23  
 
HMC329ALC3B  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 2.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
13 dBm  
24 dBm  
13 dBm  
3 mA  
RF Input Power  
LO Input Power  
IF Input Power  
IF Source or Sink Current  
Peak Reflow Temperature  
Maximum Junction Temperature  
θ
JA is the natural convection, junction to ambient thermal  
resistance measured in a one cubic foot sealed enclosure.  
JC is the junction to case thermal resistance.  
260°C  
175°C  
θ
Continuous Power Dissipation, PDISS (TA = 85°C,  
Derate 3.7 mW/°C Above 85°C)  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
Field-Induced Charged Device Model  
(FICDM)  
200 mW  
Table 3. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
−55°C to +85°C  
−65°C to +150°C  
260°C  
E-12-41  
120  
445  
°C/W  
1 Test Condition 1: JEDEC standard JESD51-2.  
ESD CAUTION  
1500 V, Class 1C  
1250 V, Class IV  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. 0 | Page 4 of 23  
 
 
 
 
Data Sheet  
HMC329ALC3B  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
HMC329ALC3B  
TOP VIEW  
(Not to Scale)  
12 11 10  
1
2
3
9
8
7
GND  
RF  
GND  
LO  
GND  
GND  
4
5
6
NOTES  
1. NOT INTERNALLY CONNECTED. THESE PINS  
CAN BE CONNECTED TO RF/DC GROUND.  
PERFORMANCE IS NOT AFFECTED.  
2. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO RF/DC GROUND.  
Figure 2. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 3, 4, 6, 7, 9 GND  
Ground. These pins must be connected to RF/dc ground. See Figure 3 for the interface schematic.  
LO Port. This pin is ac-coupled and matched to 50 Ω. See Figure 4 for the interface schematic.  
IF Port. This pin is dc-coupled. For applications not requiring operation to dc, dc block this port externally  
using a series capacitor of a value chosen to pass the necessary IF frequency range. For operation to dc, this  
pin must not source or sink more than 3 mA of current. Otherwise, die malfunction or die failure may result.  
See Figure 5 for the interface schematic.  
2
5
LO  
IF  
8
RF  
NIC  
EPAD  
RF Port. This pin is ac-coupled and matched to 50 Ω. See Figure 6 for the interface schematic.  
Not Internally Connected. Connect these pins to RF/dc ground. Performance is not affected.  
Exposed Pad. The exposed pad must be connected to RF/dc ground.  
10, 11, 12  
INTERFACE SCHEMATICS  
GND  
IF  
Figure 3. GND Interface Schematic  
Figure 5. IF Interface Schematic  
LO  
RF  
Figure 4. LO Interface Schematic  
Figure 6. RF Interface Schematic  
Rev. 0 | Page 5 of 23  
 
 
 
 
 
 
HMC329ALC3B  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
DOWNCONVERTER PERFORMANCE, IF = 1000 MHz  
Upper Sideband (Low-Side LO)  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–40°C  
+25°C  
–15  
+85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–20  
–25  
–30  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 7. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 10. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
30  
25  
20  
15  
10  
5
25  
20  
–40°C  
+25°C  
+85°C  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 8. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 11. Input IP3 vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
70  
60  
50  
70  
60  
50  
40  
30  
20  
10  
0
40  
–40°C  
+25°C  
+85°C  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 9. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 12. Input IP2 vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 6 of 23  
 
 
Data Sheet  
HMC329ALC3B  
20  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–40°C  
+25°C  
+85°C  
15  
10  
5
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 13. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 14. Input P1dB vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 7 of 23  
HMC329ALC3B  
Data Sheet  
Lower Sideband (High-Side LO)  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–40°C  
+25°C  
–15  
+85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–20  
–25  
–30  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 15. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 18. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
30  
25  
20  
15  
10  
5
–40°C  
+25°C  
+85°C  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 16. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 19. Input IP3 vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
70  
70  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
–40°C  
+25°C  
+85°C  
30  
20  
10  
0
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 17. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 20. Input IP2 vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 8 of 23  
Data Sheet  
HMC329ALC3B  
20  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–40°C  
+25°C  
+85°C  
15  
10  
5
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 21. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 23. Input P1dB vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
20  
18  
16  
14  
12  
10  
8
6
4
2
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
Figure 22. Noise Figure vs. RF Frequency at LO = 13 dBm, TA = 25°C  
Rev. 0 | Page 9 of 23  
HMC329ALC3B  
Data Sheet  
DOWNCONVERTER PERFORMANCE, IF = 8000 MHz  
Upper Sideband (Low-Side LO)  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–10  
–15  
–40°C  
+25°C  
+85°C  
–20  
–25  
–30  
27  
28  
29  
30  
31  
32  
33  
34  
35  
27  
28  
29  
30  
31  
32  
33  
34  
35  
RF FREQUENCY  
RF FREQUENCY  
Figure 24. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 27. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
30  
25  
20  
15  
10  
5
25  
–40°C  
+25°C  
+85°C  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
0
27  
28  
29  
30  
31  
32  
33  
34  
35  
27  
28  
29  
30  
31  
32  
33  
34  
35  
RF FREQUENCY  
RF FREQUENCY  
Figure 25. Input IP3 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 28. Input IP3 vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
70  
60  
50  
70  
60  
50  
40  
30  
20  
10  
0
40  
–40°C  
+25°C  
+85°C  
30  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
20  
10  
0
27  
28  
29  
30  
31  
32  
33  
34  
35  
27  
28  
29  
30  
31  
32  
33  
34  
35  
RF FREQUENCY  
RF FREQUENCY  
Figure 26. Input IP2 vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 29. Input IP2 vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 10 of 23  
 
Data Sheet  
HMC329ALC3B  
Lower Sideband (High-Side LO)  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–40°C  
+25°C  
–15  
+85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–20  
–25  
–30  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
RF FREQUENCY  
RF FREQUENCY  
Figure 30. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 33. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
30  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
–40°C  
+25°C  
+85°C  
20  
15  
10  
5
0
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
RF FREQUENCY  
RF FREQUENCY  
Figure 31. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm  
Figure 34. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C  
70  
70  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–40°C  
+25°C  
+85°C  
60  
60  
50  
50  
40  
30  
10  
10  
0
40  
30  
10  
10  
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
RF FREQUENCY  
RF FREQUENCY  
Figure 32. Input IP2 vs. RF Frequency at Various Temperatures, LO = 13 dBm  
Figure 35. Input IP2 vs. RF Frequency at Various LO Power Levels, TA = 25°C  
Rev. 0 | Page 11 of 23  
HMC329ALC3B  
Data Sheet  
UPCONVERTER PERFORMANCE, IF = 1000 MHz  
Upper Sideband (Low-Side LO)  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–40°C  
+25°C  
–15  
+85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–20  
–25  
–30  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 36. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 39. Conversion Gain vs RF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
30  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–40°C  
+25°C  
+85°C  
25  
20  
15  
10  
5
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 37. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm  
Figure 40. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C  
20  
20  
–40°C  
+25°C  
+85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
15  
10  
5
15  
10  
5
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 38. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 41. Input P1dB vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 12 of 23  
 
Data Sheet  
HMC329ALC3B  
Lower Sideband (High-Side LO)  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–40°C  
+25°C  
+85°C  
–20  
–25  
–30  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 42. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 45. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
30  
25  
20  
15  
10  
5
LO = 9dBm  
–40°C  
+25°C  
+85°C  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
20  
15  
10  
5
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 43. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm  
Figure 46. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C  
20  
20  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–40°C  
+25°C  
+85°C  
15  
15  
10  
10  
5
5
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 44. Input P1dB vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 47. Input P1dB vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 13 of 23  
HMC329ALC3B  
Data Sheet  
UPCONVERTER PERFORMANCE, IF = 8000 MHz  
Upper Sideband (Low-Side LO)  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–40°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
+25°C  
+85°C  
–20  
–25  
–30  
27  
28  
29  
30  
31  
32  
33  
34  
35  
27  
28  
29  
30  
31  
32  
33  
34  
35  
RF FREQUENCY  
RF FREQUENCY  
Figure 48. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 50. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
30  
30  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
–40°C  
+25°C  
+85°C  
20  
15  
10  
5
0
0
27  
28  
29  
30  
31  
32  
33  
34  
35  
27  
28  
29  
30  
31  
32  
33  
34  
35  
RF FREQUENCY  
RF FREQUENCY  
Figure 49. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm  
Figure 51. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C  
Rev. 0 | Page 14 of 23  
 
Data Sheet  
HMC329ALC3B  
Lower Sideband (High-Side LO)  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–40°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–20  
–25  
–30  
+25°C  
+85°C  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
RF FREQUENCY  
RF FREQUENCY  
Figure 52. Conversion Gain vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 54. Conversion Gain vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
30  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–40°C  
+25°C  
+85°C  
25  
20  
15  
10  
5
0
0
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
RF FREQUENCY  
RF FREQUENCY  
Figure 53. Input IP3 vs. RF Frequency at Various Temperatures, LO = 13 dBm  
Figure 55. Input IP3 vs. RF Frequency at Various LO Power Levels, TA = 25°C  
Rev. 0 | Page 15 of 23  
HMC329ALC3B  
Data Sheet  
Isolation and Return Loss  
50  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
–40°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
20  
15  
10  
5
+25°C  
+85°C  
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 56. LO to RF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 59. LO to RF Isolation vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
50  
45  
40  
35  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
–40°C  
+25°C  
+85°C  
LO = 9dBm  
25  
20  
15  
10  
5
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 57. LO to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 60. LO to IF Isolation vs. RF Frequency at Various LO Power Levels,  
T
A = 25°C  
50  
45  
40  
35  
30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
LO = 9dBm  
–40°C  
+25°C  
+85°C  
25  
20  
15  
10  
5
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
0
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
RF FREQUENCY  
Figure 58. RF to IF Isolation vs. RF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 61. RF to IF Isolation vs. RF Frequency at Various LO Power Levels,  
A = 25°C  
T
Rev. 0 | Page 16 of 23  
Data Sheet  
HMC329ALC3B  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–10  
–15  
–20  
–25  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
0
1
2
3
4
5
6
7
8
9
10  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
IF FREQUENCY  
RF FREQUENCY  
Figure 62. LO Return Loss vs. RF Frequency at LO = 13 dBm, TA = 25°C  
Figure 64. IF Return Loss vs. IF Frequency at Various LO Power Levels,  
A = 25°C, LO = 27 GHz  
T
0
–5  
–10  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–15  
–20  
–25  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
RF FREQUENCY  
Figure 63. RF Return Loss vs. RF Frequency at Various LO Power Levels,  
A = 25°C, LO = 27 GHz  
T
Rev. 0 | Page 17 of 23  
HMC329ALC3B  
Data Sheet  
IF BANDWIDTH—DOWNCONVERTER  
Upper Sideband, LO Frequency = 25 GHz  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–40°C  
+25°C  
+85°C  
–20  
–25  
–30  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
IF FREQUENCY  
IF FREQUENCY  
Figure 65. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 67. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
25  
20  
30  
25  
20  
15  
10  
5
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
15  
–40°C  
+25°C  
+85°C  
10  
5
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
IF FREQUENCY  
IF FREQUENCY  
Figure 66. Input IP3 vs. IF Frequency at Various Temperatures, LO = 13 dBm  
Figure 68. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 25°C  
Rev. 0 | Page 18 of 23  
 
Data Sheet  
HMC329ALC3B  
Lower Sideband, LO Frequency = 31 GHz  
–5  
–5  
–10  
–15  
–20  
–25  
–30  
–10  
–15  
–40°C  
+25°C  
+85°C  
LO = 9dBm  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
–20  
–25  
–30  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
IF FREQUENCY  
IF FREQUENCY  
Figure 69. Conversion Gain vs. IF Frequency at Various Temperatures,  
LO = 13 dBm  
Figure 71. Conversion Gain vs. IF Frequency at Various LO Power Levels,  
T
A = 25°C  
30  
30  
25  
20  
15  
10  
5
LO = 9dBm  
–40°C  
+25°C  
+85°C  
LO = 11dBm  
LO = 13dBm  
LO = 15dBm  
25  
20  
15  
10  
5
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
IF FREQUENCY  
IF FREQUENCY  
Figure 72. Input IP3 vs. IF Frequency at Various LO Power Levels, TA = 25°C  
Figure 70. Input IP3 vs. IF Frequency at Various Temperatures, LO = 13 dBm  
Rev. 0 | Page 19 of 23  
HMC329ALC3B  
Data Sheet  
M × N Spurious Outputs  
SPURIOUS AND HARMONICS PERFORMANCE  
Downconverter, Upper Sideband  
Mixer spurious products are measured in dBc from the IF output  
power level. N/A means not applicable.  
Spur values are (M × RF) − (N × LO). RF = 28 GHz at  
−10 dBm, LO = 27 GHz at 13 dBm.  
LO Harmonics  
LO = 13 dBm, all values in dBc are below input LO level and are  
measured at the RF port.  
N × LO  
0
1
2
3
4
5
0
1
2
3
4
5
N/A  
27  
7
N/A N/A N/A  
N/A N/A  
N/A  
N/A  
N/A  
N/A  
72  
Table 5. LO Harmonics at RF  
N/A 36  
66 57  
N/A 72  
N × LO Spur at RF Port  
N/A  
N/A  
N/A  
N/A  
69  
81  
N/A  
72  
LO Frequency (GHz)  
1
2
3
4
M × RF  
22  
25  
28  
30  
33  
35  
38  
43  
42  
45  
37  
30  
37  
28  
69  
75  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A N/A 73  
78  
N/A N/A N/A 71  
78  
N/A  
N/A  
N/A  
N/A  
N/A  
Upconverter, Upper Sideband  
Spur values are (M × IF) + (N × LO). IFIN = 1000 MHz at  
−10 dBm, LO = 27 GHz at 13 dBm.  
N × LO  
LO = 13 dBm, all values in dBc are below input LO level and are  
measured at the IF port.  
0
1
2
3
−5  
−4  
−3  
−2  
−1  
0
80  
79  
74  
55  
20  
N/A  
20  
55  
72  
79  
80  
70  
71  
61  
41  
0
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
58  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Table 6. LO Harmonics at IF  
N × LO Spur at IF Port  
LO Frequency (GHz)  
1
2
3
4
22  
25  
28  
30  
33  
35  
38  
41  
43  
43  
34  
36  
39  
31  
99  
78  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6
M × IF  
N/A  
N/A  
N/A  
N/A  
N/A  
+1  
+2  
+3  
+4  
+5  
0
39  
58  
75  
74  
58  
Rev. 0 | Page 20 of 23  
 
Data Sheet  
HMC329ALC3B  
THEORY OF OPERATION  
The HMC329ALC3B is a general-purpose, double balanced  
mixer that can be used as an upconverter or a downconverter  
from 24 GHz to 32 GHz.  
When used as an upconverter, the mixer upconverts intermediate  
frequencies between dc and 8 GHz to radio frequencies between  
24 GHz and 32 GHz.  
When used as a downconverter, the HMC329ALC3B down-  
converts radio frequencies between 24 GHz and 32 GHz to  
intermediate frequencies between dc and 8 GHz.  
Rev. 0 | Page 21 of 23  
 
HMC329ALC3B  
Data Sheet  
APPLICATIONS INFORMATION  
TYPICAL APPLICATION CIRCUIT  
EVALUATION PCB INFORMATION  
Figure 73 shows the typical application circuit for the  
Use RF circuit design techniques for the circuit board used in  
the application. Ensure that signal lines have 50 Ω impedance  
and connect the package ground leads and the exposed pad  
directly to the ground plane (see Figure 74). Use a sufficient  
number of via holes to connect the top and bottom ground  
planes. The evaluation circuit board shown in Figure 74 is  
available from Analog Devices, Inc., upon request.  
HMC329ALC3B. The HMC329ALC3B is a passive device  
and does not require any external components. The LO and RF  
pins are internally ac-coupled. The IF pin is internally dc-coupled.  
For applications not requiring operation to dc, dc block this  
port externally using a series capacitor of a value chosen to pass  
the necessary IF frequency range. When IF operation to dc is  
required, do not exceed the IF source and sink current rating  
specified in the Absolute Maximum Ratings section.  
Table 7. List of Materials for Evaluation PCB  
EV1HMC329ALC3B  
Item  
Description  
12  
11 10  
J1, J2 PCB mount, SRI, 2.92 mm connectors  
HMC329ALC3B  
GND  
LO  
GND  
RF  
J3  
U1  
PCB1  
PCB mount, Johnson Components SMA connector  
HMC329ALC3B  
9
8
7
1
2
3
LO  
RF  
117611-1 evaluation board on  
GND  
GND  
Rogers Corporation RO4350B laminates  
4
5
6
1 117611-1 is the raw bare PCB identifier. Reference EV1HMC329ALC3B when  
ordering complete evaluation PCB.  
IF  
Figure 73. Typical Application Circuit  
LO  
RF  
117611–1  
329 A  
J2  
J1  
IF  
U1  
J3  
Figure 74. Evaluation PCB Top Layer  
Rev. 0 | Page 22 of 23  
 
 
 
 
 
Data Sheet  
HMC329ALC3B  
OUTLINE DIMENSIONS  
3.05  
2.90 SQ  
2.75  
0.36  
0.30  
0.24  
0.08  
BSC  
PIN 1  
INDICATOR  
10  
12  
PIN 1  
9
1
3
0.50  
BSC  
1.60  
1.50 SQ  
1.40  
EXPOSED  
PAD  
7
6
4
0.32  
BSC  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
1.00 REF  
2.10 BSC  
0.90  
0.80  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
SEATING  
PLANE  
SECTION OF THIS DATA SHEET.  
Figure 75. 12-Terminal Ceramic Leadless Chip Carrier [LCC]  
(E-12-4)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Model1  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Moisture Sensitivity Level (MSL) Rating2  
Package Description  
Option  
E-12-4  
E-12-4  
E-12-4  
HMC329ALC3B  
HMC329ALC3BTR  
HMC329ALC3BTR-R5  
EV1HMC329ALC3B  
MSL3  
MSL3  
MSL3  
12-Terminal LCC  
12-Terminal LCC  
12-Terminal LCC  
Evaluation PCB Assembly  
1 The HMC554ALC3B, HMC554ALC3BTR, and HMC554ALC3BTR-R5 are RoHS compliant parts.  
2 See Table 2 in the Absolute Maximum Ratings section.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D16676-0-5/18(0)  
Rev. 0 | Page 23 of 23  
 
 
 
 

相关型号:

HMC329LC3B

GaAs MMIC FUNDAMENTAL MIXER, 24 - 32 GHz
HITTITE

HMC329LC3BRTR

HMC329LC3BRTR
ADI

HMC329LC3BTR

暂无描述
HITTITE

HMC329LC3B_09

GaAs MMIC FUNDAMENTAL MIXER, 24 - 32 GHz
HITTITE

HMC329LM3

GaAs MMIC DOUBLE-BALANCED SMT MIXER, 26 - 40 GHz
HITTITE

HMC329LM3TR

暂无描述
HITTITE

HMC329LM3_06

GaAs MMIC DOUBLE-BALANCED SMT MIXER, 26 - 40 GHz
HITTITE

HMC329LM3_08

GaAs MMIC DOUBLE-BALANCED SMT MIXER, 26 - 40 GHz
HITTITE

HMC329_07

GaAs MMIC DOUBLE-BALANCED MIXER, 25 - 40 GHz
HITTITE

HMC329_09

GaAs MMIC DOUBLE-BALANCED MIXER, 25 - 40 GHz
HITTITE

HMC330

GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 25 - 40 GHz
HITTITE

HMC330_01

GaAs MMIC SUB-HARMONICALLY PUMPED MIXER, 25 - 40 GHz
HITTITE