EVAL-INAMP-62RZ [ADI]

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier; 单电源,轨到轨,低成本仪表放大器
EVAL-INAMP-62RZ
型号: EVAL-INAMP-62RZ
厂家: ADI    ADI
描述:

Single-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier
单电源,轨到轨,低成本仪表放大器

仪表放大器
文件: 总24页 (文件大小:1299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Single-Supply, Rail-to-Rail, Low Cost  
Instrumentation Amplifier  
AD623  
FEATURES  
CONNECTION DIAGRAM  
AD623  
Easy to use  
1
2
3
4
8
7
6
5
–R  
+R  
G
G
Higher performance than discrete design  
Single-supply and dual-supply operation  
Rail-to-rail output swing  
–IN  
+IN  
+V  
S
OUTPUT  
REF  
–V  
S
Input voltage range extends 150 mV below  
ground (single supply)  
TOP VIEW  
(Not to Scale)  
Low power, 550 μA maximum supply current  
Gain set with one external resistor  
Gain range: 1 (no resistor) to 1000  
High accuracy dc performance  
Figure 1. 8-Lead PDIP (N), SOIC (R), and MSOP (RM) Packages  
120  
110  
0.10% gain accuracy (G = 1)  
0.35% gain accuracy (G > 1)  
100  
×1000  
10 ppm maximum gain drift (G = 1)  
200 μV maximum input offset voltage (AD623A)  
2 μV/°C maximum input offset drift (AD623A)  
100 μV maximum input offset voltage (AD623B)  
1 μV/°C maximum input offset drift (AD623B)  
25 nA maximum input bias current  
Noise: 35 nV/√Hz RTI noise @ 1 kHz (G = 1)  
Excellent ac specifications  
90  
×100  
80  
70  
×10  
60  
50  
×1  
40  
90 dB minimum CMRR (G = 10); 70 dB minimum CMRR (G = 1)  
at 60 Hz, 1 kΩ source imbalance  
800 kHz bandwidth (G = 1)  
30  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 2. CMR vs. Frequency, 5 VS, 0 VS  
20 μs settling time to 0.01% (G = 10)  
APPLICATIONS  
The AD623 holds errors to a minimum by providing superior  
ac CMRR that increases with increasing gain. Line noise, as  
well as line harmonics, are rejected because the CMRR remains  
constant up to 200 Hz. The AD623 has a wide input common-  
mode range and can amplify signals that have a common-mode  
voltage 150 mV below ground. Although the design of the AD623  
was optimized to operate from a single supply, the AD623 still  
provides superior performance when operated from a dual  
voltage supply ( 2.5 V to 6.0 V).  
Low power medical instrumentation  
Transducer interfaces  
Thermocouple amplifiers  
Industrial process controls  
Difference amplifiers  
Low power data acquisition  
GENERAL DESCRIPTION  
The AD623 is an integrated single-supply instrumentation  
amplifier that delivers rail-to-rail output swing on a 3 V to 12 V  
supply. The AD623 offers superior user flexibility by allowing  
single gain set resistor programming and by conforming to the  
8-lead industry standard pinout configuration. With no external  
resistor, the AD623 is configured for unity gain (G = 1), and  
with an external resistor, the AD623 can be programmed for  
gains up to 1000.  
Low power consumption (1.5 mW at 3 V), wide supply voltage  
range, and rail-to-rail output swing make the AD623 ideal  
for battery-powered applications. The rail-to-rail output stage  
maximizes the dynamic range when operating from low supply  
voltages. The AD623 replaces discrete instrumentation amplifier  
designs and offers superior linearity, temperature stability, and  
reliability in a minimum of space.  
Rev. D  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©1997–2008 Analog Devices, Inc. All rights reserved.  
 
AD623  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Applications Information.............................................................. 16  
Basic Connection ....................................................................... 16  
Gain Selection............................................................................. 16  
Reference Terminal .................................................................... 16  
Input and Output Offset Voltage.............................................. 17  
Input Protection ......................................................................... 17  
RF Interference ........................................................................... 17  
Grounding................................................................................... 18  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Connection Diagram ....................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Single Supply ................................................................................. 3  
Dual Supplies ................................................................................ 4  
Both Dual and Single Supplies.................................................... 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 15  
Input Differential and Common-Mode Range vs. Supply and  
Gain .............................................................................................. 20  
Outline Dimensions....................................................................... 22  
Ordering Guide .......................................................................... 23  
REVISION HISTORY  
7/08—Rev. C to Rev. D  
Updated Format..................................................................Universal  
Changes to Features Section and General Description Section. 1  
Changes to Table 3............................................................................ 6  
Changes to Figure 40...................................................................... 14  
Changes to Theory of Operation Section.................................... 15  
Changes to Figure 42 and Figure 43............................................. 16  
Changes to Table 7.......................................................................... 19  
Updated Outline Dimensions....................................................... 22  
Changes to Ordering Guide .......................................................... 23  
9/99—Rev. B to Rev. C  
Rev. D | Page 2 of 24  
 
AD623  
SPECIFICATIONS  
SINGLE SUPPLY  
Typical @ 25°C single supply, VS = 5 V, and RL = 10 kΩ, unless otherwise noted.  
Table 1.  
AD623A  
Typ Max  
AD623ARM  
Typ Max  
AD623B  
Typ Max  
Parameter  
Conditions  
Min  
Min  
Min  
Unit  
GAIN  
G =  
1 + (100 k/RG)  
Gain Range  
Gain Error1  
1
1000  
1
1000  
1
1000  
G1 VOUT  
0.05 V to 3.5 V  
G > 1 VOUT  
0.05 V to 4.5 V  
=
=
G = 1  
G = 10  
G = 100  
0.03 0.10  
0.10 0.35  
0.10 0.35  
0.10 0.35  
0.03 0.10  
0.10 0.35  
0.10 0.35  
0.10 0.35  
0.03 0.05  
0.10 0.35  
0.10 0.35  
0.10 0.35  
%
%
%
%
G = 1000  
Nonlinearity  
G1 VOUT  
0.05 V to 3.5 V  
G > 1 VOUT  
=
=
0.05 V to 4.5 V  
G = 1 to 1000  
Gain vs. Temperature  
G = 1  
50  
50  
50  
ppm  
5
50  
10  
5
50  
10  
5
50  
10  
ppm/°C  
ppm/°C  
G > 11  
VOLTAGE OFFSET  
Total RTI error =  
VOSI + VOSO/G  
Input Offset, VOSI  
Over Temperature  
Average Tempco  
Output Offset, VOSO  
Over Temperature  
Average Tempco  
25  
200  
350  
2
200 500  
650  
25  
100  
160  
1
μV  
μV  
μV/°C  
μV  
μV  
0.1  
0.1  
2
0.1  
200 1000  
1500  
2.5  
500 2000  
2600  
200 500  
1100  
10  
10  
2.5  
10  
2.5  
μV/°C  
Offset Referred to the  
Input vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
80  
100  
120  
140  
140  
80  
100  
120  
140  
140  
80  
100  
120  
140  
140  
dB  
dB  
dB  
dB  
100  
120  
120  
100  
120  
120  
100  
120  
120  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average Tempco  
Input Offset Current  
Over Temperature  
Average Tempco  
17  
25  
27.5  
17  
25  
27.5  
17  
25  
27.5  
nA  
nA  
pA/°C  
nA  
nA  
25  
0.25  
25  
0.25  
25  
0.25  
2
2.5  
2
2.5  
2
2.5  
5
5
5
pA/°C  
Rev. D | Page 3 of 24  
 
AD623  
AD623A  
Typ Max  
AD623ARM  
Typ Max  
AD623B  
Typ Max  
Parameter  
Conditions  
Min  
Min  
Min  
Unit  
INPUT  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range2  
2||2  
2||2  
2||2  
2||2  
2||2  
2||2  
GΩ||pF  
GΩ||pF  
V
VS = 3 V to 12 V  
(−VS) −  
0.15  
(+VS) − (−VS) −  
(+VS) − (−VS) −  
(+VS) −  
1.5  
1.5  
0.15  
1.5  
0.15  
Common-Mode Rejection  
at 60 Hz with 1 kΩ Source  
Imbalance  
G = 1  
G = 10  
G = 100  
VCM = 0 V to 3V  
VCM = 0 V to 3V  
VCM = 0 V to 3V  
VCM = 0 V to 3V  
70  
90  
105  
105  
80  
70  
90  
105  
105  
80  
77  
94  
105  
105  
86  
dB  
dB  
dB  
dB  
100  
110  
110  
100  
110  
110  
100  
110  
110  
G = 1000  
OUTPUT  
Output Swing  
RL = 10 kΩ  
0.01  
0.01  
(+VS) − 0.01  
0.5  
(+VS) − 0.01  
0.15  
(+VS) − 0.01  
0.5  
(+VS) − 0.01  
0.15  
(+VS) −  
0.5  
(+VS) −  
0.15  
V
V
RL = 100 kΩ  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
G = 10  
G = 100  
G = 1000  
Slew Rate  
Settling Time to 0.01%  
G = 1  
800  
100  
10  
2
0.3  
800  
100  
10  
2
0.3  
800  
100  
10  
2
0.3  
kHz  
kHz  
kHz  
kHz  
V/μs  
VS = 5 V  
Step size: 3.5 V  
Step size: 4 V,  
VCM = 1.8 V  
30  
20  
30  
20  
30  
20  
μs  
μs  
G = 10  
1 Does not include effects of external resistor, RG.  
2 One input grounded. G = 1.  
DUAL SUPPLIES  
Typical @ 25°C dual supply, VS = 5 V, and RL = 10 kΩ, unless otherwise noted.  
Table 2.  
AD623A  
Typ Max  
AD623ARM  
Typ Max  
AD623B  
Typ Max  
Parameter  
Conditions  
Min  
Min  
Min  
Unit  
GAIN  
G =  
1 + (100 k/RG)  
Gain Range  
Gain Error1  
1
1000  
1
1000  
1
1000  
G1 VOUT  
−4.8 V to +3.5 V  
G > 1 VOUT  
0.05 V to 4.5 V  
=
=
G = 1  
0.03 0.10  
0.10 0.35  
0.10 0.35  
0.10 0.35  
0.03 0.10  
0.10 0.35  
0.10 0.35  
0.10 0.35  
0.03 0.05  
0.10 0.35  
0.10 0.35  
0.10 0.35  
%
%
%
%
G = 10  
G = 100  
G = 1000  
Rev. D | Page 4 of 24  
 
 
AD623  
AD623A  
Typ Max  
AD623ARM  
Typ Max  
AD623B  
Typ Max  
Parameter  
Conditions  
G1 VOUT  
−4.8 V to +3.5 V  
G > 1 VOUT  
Min  
Min  
Min  
Unit  
Nonlinearity  
=
=
−4.8 V to +4.5 V  
G = 1 to 1000  
50  
50  
50  
ppm  
Gain vs. Temperature  
G = 1  
G > 11  
5
50  
10  
5
50  
10  
5
50  
10  
ppm/°C  
ppm/°C  
VOLTAGE OFFSET  
Total RTI error =  
VOSI + VOSO/G  
Input Offset, VOSI  
Over Temperature  
Average Tempco  
Output Offset, VOSO  
Over Temperature  
Average Tempco  
25  
200  
350  
2
200 500  
650  
25  
100  
160  
1
μV  
μV  
μV/°C  
μV  
μV  
0.1  
0.1  
2
0.1  
200 1000  
1500  
2.5  
500 2000  
2600  
200 500  
1100  
2.5  
10  
2.5  
10  
10  
μV/°C  
Offset Referred to the Input  
vs. Supply (PSR)  
G = 1  
G = 10  
G = 100  
G = 1000  
80  
100  
120  
140  
140  
80  
100  
120  
140  
140  
80  
100  
120  
140  
140  
dB  
dB  
dB  
dB  
100  
120  
120  
100  
120  
120  
100  
120  
120  
INPUT CURRENT  
Input Bias Current  
Over Temperature  
Average Tempco  
Input Offset Current  
Over Temperature  
Average Tempco  
INPUT  
17  
25  
27.5  
17  
25  
27.5  
17  
25  
27.5  
nA  
nA  
pA/°C  
nA  
nA  
25  
0.25  
25  
0.25  
25  
0.25  
2
2.5  
2
2.5  
2
2.5  
5
5
5
pA/°C  
Input Impedance  
Differential  
Common-Mode  
Input Voltage Range2  
2||2  
2||2  
2||2  
2||2  
2||2  
2||2  
GΩ||pF  
GΩ||pF  
V
VS = +2.5 V to  
6 V  
(−VS) –  
0.15  
(+VS) – (−VS) –  
(+VS) – (−VS) –  
(+VS) –  
1.5  
1.5  
0.15  
1.5  
0.15  
Common-Mode Rejection at  
60 Hz with 1 kΩ Source  
Imbalance  
G = 1  
VCM = +3.5 V to  
−5.15 V  
VCM = +3.5 V to  
−5.15 V  
VCM = +3.5 V to  
−5.15 V  
VCM = +3.5 V to  
−5.15 V  
70  
80  
70  
80  
77  
86  
dB  
dB  
dB  
dB  
G = 10  
G = 100  
G = 1000  
90  
100  
110  
110  
90  
100  
110  
110  
94  
100  
110  
110  
105  
105  
105  
105  
105  
105  
OUTPUT  
Output Swing  
RL = 10 kΩ,  
VS = 5 V  
RL = 100 kΩ  
(−VS) +  
0.2  
(−VS) +  
0.05  
(+VS) − (−VS) +  
0.5 0.2  
(+VS) − (−VS) +  
0.15 0.05  
(+VS) − (−VS) +  
0.5 0.2  
(+VS) − (−VS) +  
0.15 0.05  
(+VS) −  
0.5  
(+VS) −  
0.15  
V
V
Rev. D | Page 5 of 24  
AD623  
AD623A  
Typ Max  
AD623ARM  
Typ Max  
AD623B  
Typ Max  
Parameter  
Conditions  
Min  
Min  
Min  
Unit  
DYNAMIC RESPONSE  
Small Signal −3 dB Bandwidth  
G = 1  
G = 10  
G = 100  
G = 1000  
Slew Rate  
800  
100  
10  
2
0.3  
800  
100  
10  
2
0.3  
800  
100  
10  
2
0.3  
kHz  
kHz  
kHz  
kHz  
V/μs  
Settling Time to 0.01%  
VS = 5 V,  
5 V step  
G = 1  
G = 10  
30  
20  
30  
20  
30  
20  
μs  
μs  
1 Does not include effects of external resistor, RG.  
2 One input grounded. G = 1.  
BOTH DUAL AND SINGLE SUPPLIES  
Table 3.  
AD623A  
Min Typ  
AD623ARM  
Max Min Typ  
AD623B  
Max Min Typ  
Parameter  
NOISE  
Conditions  
Max Unit  
Voltage Noise, 1 kHz  
Total RTI noise =  
2
2
(
eni  
)
+
(
eno /G  
)
Input, Voltage Noise, eni  
Output, Voltage Noise, eno  
RTI, 0.1 Hz to 10 Hz  
G = 1  
35  
50  
35  
50  
35  
50  
nV/√Hz  
nV/√Hz  
3.0  
1.5  
100  
1.5  
3.0  
1.5  
100  
1.5  
3.0  
1.5  
100  
1.5  
μV p-p  
μV p-p  
fA/√Hz  
pA p-p  
G = 1000  
Current Noise  
0.1 Hz to 10 Hz  
REFERENCE INPUT  
RIN  
f = 1 kHz  
100  
100  
100  
kΩ  
20%  
20%  
20%  
IIN  
VIN+, VREF = 0 V  
50  
60  
+VS  
50  
60  
+VS  
50  
60  
+VS  
μA  
V
V
Voltage Range  
Gain to Output  
−VS  
−VS  
−VS  
1
1
1
0.0002  
0.0002  
0.0002  
POWER SUPPLY  
Operating Range  
Dual supply  
Single supply  
Dual supply  
Single supply  
2.5  
2.7  
6
12  
550  
480  
625  
2.5  
2.7  
6
12  
550  
480  
625  
2.5  
2.7  
6
12  
550  
480  
625  
V
V
μA  
μA  
μA  
Quiescent Current  
375  
305  
375  
305  
375  
305  
Over Temperature  
TEMPERATURE RANGE  
For Specified Performance  
−40  
+85  
−40  
+85  
−40  
+85  
°C  
Rev. D | Page 6 of 24  
 
 
AD623  
ABSOLUTE MAXIMUM RATINGS  
Table 4.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Supply Voltage  
6 V  
Internal Power Dissipation1  
Differential Input Voltage  
Output Short-Circuit Duration  
Storage Temperature Range  
Operating Temperature Range  
Lead Temperature (Soldering, 10 sec)  
650 mW  
6 V  
Indefinite  
−65°C to +125°C  
−40°C to +85°C  
300°C  
ESD CAUTION  
1 Specification is for device in free air:  
8-Lead PDIP Package: θJA = 95°C/W  
8-Lead SOIC Package: θJA = 155°C/W  
8-Lead MSOP Package: θJA = 200°C/W.  
Rev. D | Page 7 of 24  
 
 
AD623  
TYPICAL PERFORMANCE CHARACTERISTICS  
At 25°C, VS = 5 V, and RL = 10 kΩ, unless otherwise noted.  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
80  
22  
20  
18  
16  
14  
12  
10  
8
6
60  
4
40  
2
20  
0
0
–600 –500 –400 –300 –200 –100  
0
100 200 300 400 500  
–100 –80 –60 –40 –20  
0
20 40 60 80 100 120 140  
OUTPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET VOLTAGE (µV)  
Figure 6. Typical Distribution of Output Offset Voltage, VS = 5 V,  
Single Supply, VREF = −0.125 V; Package Option N-8, R-8  
Figure 3. Typical Distribution of Input Offset Voltage; Package Option N-8, R-8  
210  
180  
150  
120  
90  
480  
420  
360  
300  
240  
180  
120  
60  
60  
30  
0
0
–800 –600 –400 –200  
0
200  
400  
600  
800  
–0.245 –0.240 –0.235 –0.230 –0.225 –0.220 –0.215 –0.210  
OUTPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET CURRENT (nA)  
Figure 7. Typical Distribution for Input Offset Current; Package Option N-8, R-8  
Figure 4. Typical Distribution of Output Offset Voltage; Package Option N-8, R-8  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
–80 –60 –40 –20  
0
20  
40  
60  
80  
100  
–0.025 –0.020 –0.015 –0.010 –0.005  
0
0.005 0.010  
INPUT OFFSET VOLTAGE (µV)  
INPUT OFFSET CURRENT (nA)  
Figure 8. Typical Distribution for Input Offset Current, VS = 5 V,  
Single Supply, VREF = −0.125 V; Package Option N-8, R-8  
Figure 5. Typical Distribution of Input Offset Voltage, VS = 5 V,  
Single Supply, VREF = −0.125 V; Package Option N-8, R-8  
Rev. D | Page 8 of 24  
 
AD623  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
30  
25  
20  
15  
10  
5
0
75 80 85 90 95 100 105 110 115 120 125 130  
CMRR (dB)  
–60 –40 –20  
0
20  
40  
60  
80  
100 120 140  
TEMPERATURE (°C)  
Figure 9. Typical Distribution for CMRR (G = 1)  
Figure 12. IBIAS vs. Temperature  
1k  
100  
10  
1k  
100  
10  
G = 1  
G= 10  
G= 100  
G= 1000  
1
10  
100  
FREQUENCY (Hz)  
1k  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 13. Current Noise Spectral Density vs. Frequency  
Figure 10. Voltage Noise Spectral Density vs. Frequency  
20.0  
22  
19.5  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
21  
20  
19  
18  
17  
16  
15  
14  
–4  
–3  
–2  
–1  
0
1
2
–4  
–2  
0
2
4
CMV (V)  
CMV (V)  
Figure 14. IBIAS vs. CMV, VS = 2.5 V  
Figure 11. IBIAS vs. CMV, VS = 5 V  
Rev. D | Page 9 of 24  
AD623  
120  
110  
100  
90  
CH1 10mV  
A
1s  
100mV VERT  
×1000  
×100  
80  
70  
60  
×10  
50  
×1  
40  
30  
1
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
Figure 15. 0.1 Hz to 10 Hz Current Noise (0.71 pA/DIV)  
Figure 18. CMR vs. Frequency, 5 VS  
70  
60  
1µV/DIV  
1s  
G = 1000  
50  
G = 100  
G = 10  
G = 1  
40  
30  
20  
10  
0
–10  
–20  
–30  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
Figure 19. Gain vs. Frequency (VS = 5 V, 0 V), VREF = 2.5 V  
Figure 16. 0.1 Hz to 10 Hz RTI Voltage Noise (1 DIV = 1 μV p-p)  
120  
110  
5
4
3
V
= ±5V  
S
100  
×1000  
2
90  
V
= ±2.5V  
S
×100  
1
80  
0
70  
–1  
–2  
–3  
–4  
–5  
×10  
60  
50  
×1  
40  
30  
1
10  
100  
1k  
10k  
100k  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
FREQUENCY (Hz)  
COMMON-MODE INPUT (V)  
Figure 20. Maximum Output Voltage vs. Common-Mode Input, G = 1, RL = 100 kΩ  
Figure 17. CMR vs. Frequency, = 5 VS, 0 VS, VREF = 2.5 V  
Rev. D | Page 10 of 24  
 
AD623  
5
4
140  
120  
100  
80  
V
= ±5V  
S
V
= ±2.5V  
S
G = 1000  
3
2
G = 100  
1
0
60  
–1  
–2  
–3  
–4  
–5  
G = 10  
40  
G = 1  
20  
0
–6  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
1
10  
100  
1k  
10k  
100k  
COMMON-MODE INPUT (V)  
FREQUENCY (Hz)  
Figure 21. Maximum Output Voltage vs. Common-Mode Input, G ≥ 10, RL = 100 Ω  
Figure 24. Positive PSRR vs. Frequency, 5 VS  
5
140  
120  
100  
80  
G = 1000  
4
3
2
1
0
G = 100  
60  
G = 10  
40  
G = 1  
20  
0
–1  
0
1
2
3
4
5
1
10  
100  
1k  
10k  
100k  
COMMON-MODE INPUT (V)  
FREQUENCY (Hz)  
Figure 22. Maximum Output Voltage vs. Common-Mode Input,  
G = 1, VS = 5 V, RL = 100 kΩ  
Figure 25. Positive PSRR vs. Frequency, 5 VS, 0 VS  
5
4
3
2
1
0
140  
120  
100  
80  
G = 1000  
G = 100  
G = 10  
60  
G = 1  
40  
20  
0
–1  
0
1
2
3
4
5
1
10  
100  
1k  
10k  
100k  
COMMON-MODE INPUT (V)  
FREQUENCY (Hz)  
Figure 23. Maximum Output Voltage vs. Common-Mode Input,  
G ≥ 10, VS = 5 V, RL = 100 kΩ  
Figure 26. Negative PSRR vs. Frequency, 5 VS  
Rev. D | Page 11 of 24  
 
AD623  
10  
500µV  
1V  
10µs  
8
6
4
V
= ±5V  
S
V
= ±2.5V  
S
2
0
0
20  
40  
60  
80  
100  
FREQUENCY (kHz)  
Figure 30. Large Signal Pulse Response and Settling Time,  
G = −10 (0.250 mV = 0.01%), CL = 100 pF  
Figure 27. Large Signal Response, G ≤ 10  
1k  
100  
10  
10mV  
2V  
50µs  
1
1
10  
100  
1k  
GAIN (V/V)  
Figure 28. Settling Time to 0.01% vs. Gain, for a 5 V Step at Output,  
CL = 100 pF, VS = 5 V  
Figure 31. Large Signal Pulse Response and Settling Time,  
G = 100, CL = 100 pF  
500µV  
1V  
20µs  
20mV  
2V  
500µs  
Figure 32. Large Signal Pulse Response and Settling Time,  
G = −1000 (5 mV = 0.01%), CL = 100 pF  
Figure 29. Large Signal Pulse Response and Settling Time,  
G = −1 (0.250 mV = 0.01%), CL = 100 pF  
Rev. D | Page 12 of 24  
AD623  
20mV  
2µs  
20mV  
500µs  
Figure 33. Small Signal Pulse Response, G = 1, RL = 10 kΩ, CL = 100 pF  
Figure 36. Small Signal Pulse Response, G = 1000, RL = 10 kΩ, CL = 100 pF  
20mV  
5µs  
200µV  
1V  
Figure 34. Small Signal Pulse Response, G = 10, RL = 10 kΩ, CL = 100 pF  
Figure 37. Gain Nonlinearity, G = −1 (50 ppm/DIV)  
20mV  
50µs  
20µV  
1V  
Figure 35. Small Signal Pulse Response, G = 100, RL = 10 kΩ, CL = 100 pF  
Figure 38. Gain Nonlinearity, G = −10 (6 ppm/DIV)  
Rev. D | Page 13 of 24  
AD623  
V+  
(V+) –0.5  
(V+) –1.5  
(V+) –2.5  
(V–) +0.5  
V–  
50µV  
1V  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT (mA)  
Figure 39. Gain Nonlinearity, G = −100, 15 ppm/DIV  
Figure 40. Output Voltage Swing vs. Output Current  
Rev. D | Page 14 of 24  
AD623  
THEORY OF OPERATION  
The AD623 is an instrumentation amplifier based on a modified  
classic 3-op-amp approach, to assure single or dual supply  
operation even at common-mode voltages at the negative  
supply rail. Low voltage offsets, input and output, as well as  
absolute gain accuracy, and one external resistor to set the  
gain, make the AD623 one of the most versatile instrumentation  
amplifiers in its class.  
The output voltage at Pin 6 is measured with respect to the  
potential at Pin 5. The impedance of the reference pin is 100 kΩ;  
therefore, in applications requiring V/I conversion, a small  
resistor between Pin 5 and Pin 6 is all that is needed.  
POSITIVE SUPPLY  
7
The input signal is applied to PNP transistors acting as voltage  
buffers and providing a common-mode signal to the input  
amplifiers (see Figure 41). An absolute value 50 kΩ resistor in  
each amplifier feedback assures gain programmability.  
INVERTING  
2
4
50k  
50kΩ  
50kΩ  
50kΩ  
50kΩ  
50kΩ  
1
GAIN  
8
OTUPUT  
6
The differential output is  
REF  
5
100 kꢀ ⎞  
VC  
VO = 1+  
7
4
RG  
The differential voltage is then converted to a single-ended  
voltage using the output amplifier, which also rejects any  
common-mode signal at the output of the input amplifiers.  
NONINVERTING  
3
NEGATIVE SUPPLY  
Because the amplifiers can swing to either supply rail, as well as  
have their common-mode range extended to below the negative  
supply rail, the range over which the AD623 can operate is further  
enhanced (see Figure 20 and Figure 21).  
Figure 41. Simplified Schematic  
Note that the bandwidth of the in-amp decreases as gain is  
increased. This occurs because the internal op-amps are the  
standard voltage feedback design. At unity gain, the output  
amplifier limits the bandwidth.  
Rev. D | Page 15 of 24  
 
 
AD623  
APPLICATIONS INFORMATION  
The input voltage, which can be either single-ended (tie either  
−IN or +IN to ground), or differential is amplified by the  
programmed gain. The output signal appears as the voltage  
difference between the OUTPUT pin and the externally applied  
voltage on the REF input. For a ground-referenced output, REF  
should be grounded.  
BASIC CONNECTION  
Figure 42 and Figure 43 show the basic connection circuits for  
the AD623. The +VS and −VS terminals are connected to the  
power supply. The supply can be either bipolar (VS = 2.5 V to  
6 V) or single supply (−VS = 0 V, +VS = 3.0 V to 12 V). Power  
supplies should be capacitively decoupled close to the power pins of  
the device. For the best results, use surface-mount 0.1 μF ceramic  
chip capacitors and 10 μF electrolytic tantalum capacitors.  
GAIN SELECTION  
The gain of the AD623 is resistor programmed by RG, or more  
precisely, by whatever impedance appears between Pin 1 and  
Pin 8. The AD623 is designed to offer accurate gains using 0.1%  
to 1% tolerance resistors. Table 5 shows the required values of  
RG for the various gains. Note that for G = 1, the RG terminals  
are unconnected (RG = ∞). For any arbitrary gain, RG can be  
calculated by  
+V  
S
0.1µF  
10µF  
+2.5V TO +6V  
R
G
V
V
R
OUTPUT  
REF  
OUT  
IN  
G
R
G
REF (INPUT)  
RG = 100 kΩ/(G − 1)  
0.1µF  
10µF  
REFERENCE TERMINAL  
–V  
S
–2.5V TO –6V  
The reference terminal potential defines the zero output voltage  
and is especially useful when the load does not share a precise  
ground with the rest of the system. It provides a direct means of  
injecting a precise offset to the output. The reference terminal is  
also useful when bipolar signals are being amplified because it  
can be used to provide a virtual ground voltage. The voltage on  
the reference terminal can be varied from −VS to +VS.  
Figure 42. Dual-Supply Basic Connection  
+V  
S
0.1µF  
10µF  
+3V TO +12V  
R
R
G
V
V
R
OUTPUT  
REF  
OUT  
IN  
G
G
REF (INPUT)  
Figure 43. Single-Supply Basic Connection  
Table 5. Required Values of Gain Resistors  
Desired Gain  
1% Standard Table Value of RG (Ω)  
100 k  
Calculated Gain Using 1% Resistors  
2
2
5
10  
20  
33  
40  
50  
65  
100  
200  
500  
1000  
24.9 k  
11 k  
5.02  
10.09  
20.12  
33.36  
40.21  
49.78  
64.29  
99.04  
201.4  
501  
5.23 k  
3.09 k  
2.55 k  
2.05 k  
1.58 k  
1.02 k  
499  
200  
100  
1001  
Rev. D | Page 16 of 24  
 
 
 
AD623  
the in-amp. Resistor R1 and Capacitor C1 (and likewise, R2 and  
INPUT AND OUTPUT OFFSET VOLTAGE  
C2) form a low-pass RC filter that has a −3 dB bandwidth equal  
to F = 1/(2 π R1C1). Using the component values shown, this  
filter has a −3 dB bandwidth of approximately 40 kHz. Resistors  
R1 and R2 were selected to be large enough to isolate the input of  
the circuit from the capacitors, but not large enough to significantly  
increase the noise of the circuit. To preserve common-mode rejection  
in the amplifiers pass band, Capacitors C1 and C2 need to be 5%  
or better units, or low cost 20% units can be tested and binned  
to provide closely matched devices.  
The low errors of the AD623 are attributed to two sources,  
input and output errors. The output error is divided by the  
programmed gain when referred to the input. In practice,  
the input errors dominate at high gains and the output errors  
dominate at low gains. The total VOS for a given gain is calculated  
as the following:  
Total Error RTI = Input Error + (Output Error/G)  
Total Error RTO = (Input Error × G) + Output Error  
+V  
S
RTI offset errors and noise voltages for different gains are  
shown in Table 6.  
0.33µF  
0.01µF  
C1  
1000pF  
5%  
R1  
4.02k  
1%  
INPUT PROTECTION  
–IN  
+IN  
Internal supply referenced clamping diodes allow the input,  
reference, output, and gain terminals of the AD623 to safely  
withstand overvoltages of 0.3 V above or below the supplies.  
This is true for all gains and for power on and power off. This  
last case is particularly important because the signal source  
and amplifier may be powered separately.  
R2  
4.02kΩ  
1%  
C3  
0.047µF  
R
V
AD623  
G
OUT  
REFERENCE  
C2  
1000pF  
5%  
0.33µF  
0.01µF  
+V  
S
NOTES:  
1. LOCATE C1 TO C3 AS CLOSE TO THE INPUT PINS AS POSSIBLE.  
If the overvoltage is expected to exceed this value, the current  
through these diodes should be limited to about 10 mA using  
external current limiting resistors (see Figure 44). The size of  
this resistor is defined by the supply voltage and the required  
overvoltage protection.  
Figure 45. Circuit to Attenuate RF Interference  
Capacitor C3 is needed to maintain common-mode rejection at  
the low frequencies. R1/R2 and C1/C2 form a bridge circuit whose  
output appears across the input pins of the in-amp. Any mismatch  
between C1 and C2 unbalances the bridge and reduces the  
common-mode rejection. C3 ensures that any RF signals are  
common mode (the same on both in-amp inputs) and are not  
applied differentially. This second low-pass network, R1 + R2 and  
C3, has a −3 dB frequency equal to 1/(2 π (R1 + R2) (C3)). Using a  
C3 value of 0.047 μF, the −3 dB signal bandwidth of this circuit is  
approximately 400 Hz. The typical dc offset shift over frequency is  
less than 1.5 μV and the circuits RF signal rejection is better than  
71 dB. The 3 dB signal bandwidth of this circuit may be increased  
to 900 Hz by reducing Resistors R1 and R2 to 2.2 kΩ. The  
performance is similar to using 4 kΩ resistors, except that the  
circuitry preceding the in-amp must drive a lower impedance load.  
+V  
S
I = 10mA MAX  
LIM  
V
V
AD623  
OVER  
OVER  
R
OUTPUT  
R
G
V
–V + 0.7V  
S
R
OVER  
LIM  
R
=
LIM  
10mA  
–V  
S
Figure 44. Input Protection  
RF INTERFERENCE  
All instrumentation amplifiers can rectify high frequency out-  
of-band signals. Once rectified, these signals appear as dc offset  
errors at the output. The circuit in Figure 45 provides good RFI  
suppression without reducing performance within the pass band of  
Table 6. RTI Error Sources  
Maximum Total Input Offset Error (μV)  
Maximum Total Input Offset Drift (μV/°C)  
Total Input Referred Noise (nV/√Hz)  
Gain AD623A  
AD623B  
600  
350  
200  
150  
125  
110  
105  
100  
AD623A  
AD623B  
AD623A and AD623B  
1
2
5
10  
20  
50  
100  
1200  
700  
400  
300  
250  
220  
210  
12  
7
4
11  
6
3
62  
45  
38  
35  
35  
35  
35  
35  
3
2
2.5  
2.2  
2.1  
2
1.5  
1.2  
1.1  
1
1000 200  
Rev. D | Page 17 of 24  
 
 
 
 
AD623  
The circuit in Figure 45 should be built using a PC board with a  
ground plane on both sides. All component leads should be as  
short as possible. Resistors R1 and R2 can be common 1% metal  
film units, but Capacitors C1 and C2 need to be 5% tolerance  
devices to avoid degrading the circuits common-mode rejection.  
Either the traditional 5% silver mica units or Panasonic 2%  
PPS film capacitors are recommended.  
ground. The REF pin should, however, be tied to a low impedance  
point for optimal CMR.  
The use of ground planes is recommended to minimize the  
impedance of ground returns (and hence the size of dc errors).  
To isolate low level analog signals from a noisy digital environment,  
many data acquisition components have separate analog and  
digital ground returns (see Figure 47). All ground pins from  
mixed signal components, such as analog-to-digital converters  
(ADCs), should be returned through the high quality analog  
ground plane. Maximum isolation between analog and digital is  
achieved by connecting the ground planes back at the supplies.  
The digital return currents from the ADC that flow in the analog  
ground plane, in general, have a negligible effect on noise  
performance.  
In many applications, shielded cables are used to minimize  
noise; for best CMR over frequency, the shield should be properly  
driven. Figure 46 shows an active guard driver that is configured  
to improve ac common-mode rejection by bootstrapping the  
capacitances of input cable shields, thus minimizing the capacitance  
mismatch between the inputs.  
+V  
S
If there is only a single power supply available, it must be shared  
by both digital and analog circuitry. Figure 48 shows how to  
minimize interference between the digital and analog circuitry.  
–IN  
2
1
7
R
2
G
100Ω  
AD8031  
6
AD623  
OUTPUT  
R
G
As in the previous case, separate analog and digital ground planes  
should be used (reasonably thick traces can be used as an  
alternative to a digital ground plane). These ground planes  
should be connected at the ground pin of the power supply.  
Separate traces should be run from the power supply to the  
supply pins of the digital and analog circuits. Ideally, each device  
should have its own power supply trace, but these can be shared  
by a number of devices, as long as a single trace is not used to  
route current to both digital and analog circuitry.  
5
8
3
2
REF  
4
+IN  
–V  
S
Figure 46. Common-Mode Shield Driver  
GROUNDING  
Because the AD623 output voltage is developed with respect to  
the potential on the reference terminal, many grounding problems  
can be solved by simply tying the REF pin to the appropriate local  
ANALOG POWER SUPPLY  
DIGITAL POWER SUPPLY  
+5V  
–5V  
GND  
GND  
+5V  
0.1µF 0.1µF  
0.1µF  
0.1µF  
7
1
6
14  
2
3
V
AGND DGND  
AGND  
V
4
DD  
DD  
12  
6
4
3
AD623  
V
IN1  
ADC  
MICROPROCESSOR  
AD7892-2  
5
V
IN2  
Figure 47. Optimal Grounding Practice for a Bipolar Supply Environment with Separate Analog and Digital Supplies  
POWER SUPPLY  
+5V  
GND  
0.1µF  
0.1µF  
0.1µF  
7
1
6
14  
2
3
V
AGND DGND  
AGND  
V
DD  
4
DD  
V
IN1  
12  
6
4
AD623  
ADC  
MICROPROCESSOR  
AD7892-2  
5
Figure 48. Optimal Ground Practice in a Single Supply Environment  
Rev. D | Page 18 of 24  
 
 
 
 
AD623  
Ground Returns for Input Bias Currents  
Output Buffering  
Input bias currents are those dc currents that must flow to bias  
the input transistors of an amplifier. These are usually transistor  
base currents. When amplifying floating input sources, such as  
transformers or ac-coupled sources, there must be a direct dc  
path into each input in order that the bias current can flow.  
Figure 49, Figure 50, and Figure 51 show how a bias current  
path can be provided for the cases of transformer coupling,  
thermocouple, and capacitive ac coupling. In dc-coupled resistive  
bridge applications, providing this path is generally not necessary  
as the bias current simply flows from the bridge supply through  
the bridge into the amplifier. However, if the impedances that  
the two inputs see are large and differ by a large amount (>10 kΩ),  
the offset current of the input stage causes dc errors  
The AD623 is designed to drive loads of 10 kΩ or greater. If  
the load is less than this value, the output of the AD623 should  
be buffered with a precision single-supply op amp, such as the  
OP113. This op amp can swing from 0 V to 4 V on its output  
while driving a load as small as 600 Ω. Table 7 summarizes the  
performance of some buffer op amps.  
5V  
5V  
0.1µF  
0.1µF  
V
R
G
AD623  
IN  
OP113  
V
OUT  
REFERENCE  
proportional with the input offset voltage of the amplifier.  
Figure 52. Output Buffering  
+V  
S
–IN  
Table 7. Buffering Options  
Op Amp Description  
2
1
7
OP113  
OP191  
Single supply, high output current  
Rail-to-rail input and output, low supply current  
R
6
AD623  
OUTPUT  
G
5
8
3
REF  
4
+IN  
LOAD  
–V  
S
Single-Supply Data Acquisition System  
TO POWER  
SUPPLY  
GROUND  
Interfacing bipolar signals to single-supply ADCs presents a  
Figure 49. Ground Returns for Bias Currents with Transformer-Coupled Inputs  
challenge. The bipolar signal must be mapped into the input  
range of the ADC. Figure 53 shows how this translation can be  
achieved.  
+V  
7
S
–IN  
5V  
2
1
5V  
5V  
0.1µF  
0.1µF  
R
6
AD623  
OTUPUT  
G
5
8
3
REF  
AD7776  
A
IN  
R
G
4
AD623  
±10mV  
+IN  
1.02k  
LOAD  
–V  
S
REFERENCE  
TO POWER  
SUPPLY  
GROUND  
REFOUT  
REFIN  
Figure 50. Ground Returns for Bias Currents with Thermocouple Inputs  
+V  
7
S
Figure 53. A Single-Supply Data Acquisition System  
–IN  
2
1
The bridge circuit is excited by a 5 V supply. The full-scale output  
voltage from the bridge ( 10 mV) therefore has a common-  
mode level of 2.5 V. The AD623 removes the common-mode  
component and amplifies the input signal by a factor of 100  
(RGAIN = 1.02 kΩ). This results in an output signal of 1 V. To  
prevent this signal from running into the ground rail of the  
AD623, the voltage on the REF pin must be raised to at least  
1 V. In this example, the 2 V reference voltage from the AD7776  
ADC is used to bias the output voltage of the AD623 to 2 V 1 V.  
This corresponds to the input range of the ADC.  
R
6
AD623  
OUTPUT  
G
5
8
3
REF  
4
+IN  
100k  
LOAD  
100kΩ  
–V  
S
TO POWER  
SUPPLY  
GROUND  
Figure 51. Ground Returns for Bias Currents with AC-Coupled Inputs  
Rev. D | Page 19 of 24  
 
 
 
 
 
AD623  
Amplifying Signals with Low Common-Mode Voltage  
the previous equations, the maximum and minimum input  
common-mode voltages are given by the following equations:  
Because the common-mode input range of the AD623 extends  
0.1 V below ground, it is possible to measure small differential  
signals which have low, or no, common-mode component.  
Figure 54 shows a thermocouple application where one side  
of the J-type thermocouple is grounded.  
5V  
VCMMAX = V+ − 0.7 V − VDIFF × Gain/2  
V
CMMIN = V− − 0.590 V + VDIFF × Gain/2  
These equations can be rearranged to give the maximum  
possible differential voltage (positive or negative) for a  
particular common-mode voltage, gain, and power supply.  
Because the signals on A1 and A2 can clip on either rail, the  
maximum differential voltage are the lesser of the two equations.  
0.1µF  
R
J-TYPE  
THERMOCOUPLE  
G
AD623  
OUTPUT  
2V  
1.02k  
|VDIFFMAX| = 2 (V+ − 0.7 V − VCM/Gain  
|VDIFFMAX| = 2 (VCM V− +0.590 V/Gain  
REF  
However, the range on the differential input voltage range is  
also constrained by the output swing. Therefore, the range of  
VDIFF may have to be lower according the following equation.  
Figure 54. Amplifying Bipolar Signals with Low Common-Mode Voltage  
Over a temperature range of −200°C to +200°C, the J-type thermo-  
couple delivers a voltage ranging from −7.890 mV to +10.777 mV.  
A programmed gain on the AD623 of 100 (RG = 1.02 kΩ) and a  
voltage on the REF pin of 2 V, results in the output voltage ranging  
from 1.110 V to 3.077 V relative to ground.  
Input Range Available Output Swing/Gain  
For a bipolar input voltage with a common-mode voltage that is  
roughly half way between the rails, VDIFFMAX is half the value that  
the previous equations yield because the REF pin is at midsupply.  
Note that the available output swing is given for different supply  
conditions in the Specifications section.  
INPUT DIFFERENTIAL AND COMMON-MODE RANGE  
vs. SUPPLY AND GAIN  
The equations can be rearranged to give the maximum gain for  
a fixed set of input conditions. Again, the maximum gain will be  
the lesser of the two equations.  
Figure 55 shows a simplified block diagram of the AD623. The  
voltages at the outputs of Amplifier A1 and Amplifier A2 are  
given by  
GainMAX = 2 (V+ − 0.7 V − VCM)/VDIFF  
GainMAX = 2 (VCM − V− +0.590 V)/VDIFF  
VA2 = VCM + VDIFF/2 + 0.6 V + VDIFF × RF/RG  
= VCM + 0.6 V + VDIFF × Gain/2  
VA1 = VCM + VDIFF/2 + 0.6 V + VDIFF × RF/RG  
= VCM + 0.6 V VDIFF × Gain/2  
Again, it is recommended that the resulting gain times the input  
range is less than the available output swing. If this is not the  
case, the maximum gain is given by  
POSITIVE SUPPLY  
7
GainMAX = Available Output Swing/Input Range  
INVERTING  
Also for bipolar inputs (that is, input range = 2 VDIFF), the  
maximum gain is half the value yielded by the previous equations  
because the REF pin must be at midsupply.  
2
A1  
R
F
4
1
8
50k  
50kΩ  
50kΩ  
50kΩ  
+
V
DIFF  
2
The maximum gain and resulting output swing for different  
input conditions is given in Table 8. Output voltages are  
referenced to the voltage on the REF pin.  
OUTPUT  
6
GAIN  
R
A3  
50kΩ  
G
V
CM  
R
F
50kΩ  
REF  
5
7
For the purposes of computation, it is necessary to break down the  
input voltage into its differential and common-mode component.  
Therefore, when one of the inputs is grounded or at a fixed  
voltage, the common-mode voltage changes as the differential  
voltage changes. Take the case of the thermocouple amplifier  
in Figure 54. The inverting input on the AD623 is grounded;  
therefore, when the input voltage is −10 mV, the voltage on the  
noninverting input is −10 mV. For the purpose of the signal swing  
calculations, this input voltage should be composed of a common-  
mode voltage of −5 mV (that is, (+IN + −IN)/2) and a differential  
input voltage of −10 mV (that is, +IN − −IN).  
+
V
DIFF  
2
A2  
NONINVERTING  
3
4
NEGATIVE SUPPLY  
Figure 55. Simplified Block Diagram  
The voltages on these internal nodes are critical in determining  
whether the output voltage will be clipped. The VA1 and VA2  
voltages can swing from approximately 10 mV above the negative  
supply (V− or ground) to within approximately 100 mV of the  
positive rail before clipping occurs. Based on this and from  
Rev. D | Page 20 of 24  
 
 
 
AD623  
Table 8. Maximum Attainable Gain and Resulting Output Swing for Different Input Conditions  
Closest 1% Gain  
VCM (V) VDIFF (V)  
REF Pin (V) Supply Voltages (V) Maximum Gain Resistor (Ω)  
Resulting Gain Output Swing (V)  
0
0
0
0
10 m  
100 m  
10 m  
100 m  
1
10 m  
100 m  
1
10 m  
100 m  
10 m  
100 m  
2.5  
2.5  
0
0
0
2.5  
2.5  
2.5  
1.5  
1.5  
1.5  
1.5  
+5  
+5  
5
5
5
+5  
+5  
+5  
+3  
+3  
+3  
+3  
118  
11.8  
490  
49  
866  
9.31 k  
205  
2.1 k  
26.1 k  
422  
4.32 k  
71.5 k  
715  
116  
11.7  
488  
48.61  
4.83  
238  
24.1  
2.4  
141  
14  
116  
11.74  
1.2  
1.1  
4.8  
4.8  
4.8  
2.3  
2.4  
2.4  
1.4  
1.4  
1.1  
1.1  
0
4.9  
2.5  
2.5  
2.5  
1.5  
1.5  
0
242  
24.2  
2.42  
142  
14.2  
118  
11.8  
7.68 k  
866  
9.31 k  
0
Rev. D | Page 21 of 24  
 
AD623  
OUTLINE DIMENSIONS  
0.400 (10.16)  
0.365 (9.27)  
0.355 (9.02)  
8
1
5
4
0.280 (7.11)  
0.250 (6.35)  
0.240 (6.10)  
0.325 (8.26)  
0.310 (7.87)  
0.300 (7.62)  
0.100 (2.54)  
BSC  
0.060 (1.52)  
MAX  
0.195 (4.95)  
0.130 (3.30)  
0.115 (2.92)  
0.210 (5.33)  
MAX  
0.015  
(0.38)  
MIN  
0.150 (3.81)  
0.130 (3.30)  
0.115 (2.92)  
0.015 (0.38)  
GAUGE  
0.014 (0.36)  
0.010 (0.25)  
0.008 (0.20)  
PLANE  
SEATING  
PLANE  
0.022 (0.56)  
0.018 (0.46)  
0.014 (0.36)  
0.430 (10.92)  
MAX  
0.005 (0.13)  
MIN  
0.070 (1.78)  
0.060 (1.52)  
0.045 (1.14)  
COMPLIANT TO JEDEC STANDARDS MS-001  
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.  
Figure 56. 8-Lead Plastic Dual In-Line Package [PDIP]  
Narrow Body (N-8)  
Dimensions shown in inches and (millimeters)  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 57. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
Rev. D | Page 22 of 24  
 
AD623  
3.20  
3.00  
2.80  
8
1
5
4
5.15  
4.90  
4.65  
3.20  
3.00  
2.80  
PIN 1  
0.65 BSC  
0.95  
0.85  
0.75  
1.10 MAX  
0.80  
0.60  
0.40  
8°  
0°  
0.15  
0.00  
0.38  
0.22  
0.23  
0.08  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-187-AA  
Figure 58. 8-Lead Mini Small Outline Package [MSOP]  
(RM-8)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Temperature  
Range  
Package  
Option  
Model  
Package Description  
Branding  
AD623AN  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N], 13" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N], 7" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N], 7" Tape and Reel  
8-Lead SOIC, 13" Tape and Reel  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
R-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
RM-8  
N-8  
N-8  
R-8  
R-8  
R-8  
R-8  
R-8  
AD623ANZ1  
AD623AR  
AD623AR-REEL  
AD623AR-REEL7  
AD623ARZ1  
AD623ARZ-R71  
AD623ARZ-RL1  
AD623ARM  
AD623ARM-REEL  
AD623ARM-REEL7  
AD623ARMZ1  
AD623ARMZ-REEL1  
AD623ARMZ-REEL71  
AD623BN  
8-Lead Mini Small Outline Package [MSOP]  
J0A  
J0A  
J0A  
J0A  
J0A  
J0A  
8-Lead Mini Small Outline Package [MSOP], 13" Tape and Reel  
8-Lead Mini Small Outline Package [MSOP], 7" Tape and Reel  
8-Lead Mini Small Outline Package [MSOP]  
8-Lead Mini Small Outline Package [MSOP], 13" Tape and Reel  
8-Lead Mini Small Outline Package [MSOP], 7" Tape and Reel  
8-Lead Plastic Dual In-Line Package [PDIP]  
AD623BNZ1  
AD623BR  
8-Lead Plastic Dual In-Line Package [PDIP]  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N], 13" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N], 7" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N]  
8-Lead Standard Small Outline Package [SOIC_N], 7" Tape and Reel  
8-Lead Standard Small Outline Package [SOIC_N], 13" Tape and Reel  
Evaluation Board  
AD623BR-REEL  
AD623BR-REEL7  
AD623BRZ1  
AD623BRZ-R71  
AD623BRZ-RL1  
EVAL-INAMP-62RZ1  
R-8  
1 Z = RoHS Compliant Part.  
Rev. D | Page 23 of 24  
 
 
AD623  
NOTES  
©1997–2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D00788-0-7/08(D)  
Rev. D | Page 24 of 24  

相关型号:

EVAL-MEQ10-20A

Passive GaAs MMIC 20 GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ10-7A

Passive GaAs MMIC 7GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ11-20A

Passive GaAs MMIC 20 GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ12-7A

Passive GaAs MMIC 7GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ3-20A

Passive GaAs MMIC 20 GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ3-7A

Passive GaAs MMIC 7GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ5-20A

Passive GaAs MMIC 20 GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ6-20A

Passive GaAs MMIC 20 GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ6-7A

Passive GaAs MMIC 7GHz Equalizer Family
MARKIMICROWAV

EVAL-MEQ7-20A

Passive GaAs MMIC 20 GHz Equalizer Family
MARKIMICROWAV

EVAL-SDP-CB1Z

16-Bit Lower Power
ADI

EVAL-SDP-CBZ1

1 MSPS, 8-Channel, Software-Selectable, True Bipolar Input, 12-Bit Plus Sign ADC
ADI