ADUM3402BRWZ [ADI]

Quad-Channel, Digital Isolators, Enhanced System-Level ESD Reliability; 四通道数字隔离器,增强的系统级ESD可靠性
ADUM3402BRWZ
型号: ADUM3402BRWZ
厂家: ADI    ADI
描述:

Quad-Channel, Digital Isolators, Enhanced System-Level ESD Reliability
四通道数字隔离器,增强的系统级ESD可靠性

文件: 总24页 (文件大小:513K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Quad-Channel, Digital Isolators,  
Enhanced System-Level ESD Reliability  
ADuM3400/ADuM3401/ADuM3402  
FEATURES  
GENERAL DESCRIPTION  
Enhanced system-level ESD performance per IEC 61000-4-x  
Low power operation  
5 V operation  
The ADuM340x1 are 4-channel digital isolators based on  
Analog Devices’ iCoupler® technology. Combining high speed  
CMOS and monolithic air core transformer technology, these  
isolation components provide outstanding performance  
1.4 mA per channel maximum @ 0 Mbps to 2 Mbps  
4.3 mA per channel maximum @ 10 Mbps  
34 mA per channel maximum @ 90 Mbps  
3 V operation  
0.9 mA per channel maximum @ 0 Mbps to 2 Mbps  
2.4 mA per channel maximum @ 10 Mbps  
20 mA per channel maximum @ 90 Mbps  
Bidirectional communication  
characteristics superior to alternatives such as optocoupler devices.  
iCoupler devices remove the design difficulties commonly  
associated with optocouplers. Typical optocoupler concerns  
regarding uncertain current transfer ratios, nonlinear transfer  
functions, and temperature and lifetime effects are eliminated  
with the simple iCoupler digital interfaces and stable performance  
characteristics. The need for external drivers and other discrete  
components is eliminated with these iCoupler products.  
3 V/5 V level translation  
High temperature operation: 105°C  
High data rate: dc to 90 Mbps (NRZ)  
Precise timing characteristics  
Furthermore, iCoupler devices consume one-tenth to one-sixth the  
power of optocouplers at comparable signal data rates.  
2 ns maximum pulse-width distortion  
2 ns maximum channel-to-channel matching  
High common-mode transient immunity: >25 kV/μs  
Output enable function  
16-lead SOIC wide body, Pb-free package  
Safety and regulatory approvals  
UL recognition: 2500 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice #5A  
VDE Certificate of Conformity  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
VIORM = 560 V peak  
The ADuM340x isolators provide three independent isolation  
channels in a variety of channel configurations and data rates  
(see the Ordering Guide). All models operate with the supply  
voltage on either side ranging from 2.7 V to 5.5 V, providing  
compatibility with lower voltage systems as well as enabling a  
voltage translation functionality across the isolation barrier. The  
ADuM340x isolators have a patented refresh feature that ensures dc  
correctness in the absence of input logic transitions and during  
power-up/power-down conditions.  
In comparison to the ADuM140x isolators, the ADuM340x  
isolators contain various circuit and layout changes to provide  
increased capability relative to system-level IEC 61000-4-x testing  
(ESD/burst/surge). The precise capability in these tests for either  
the ADuM140x or ADuM340x products is strongly determined by  
the design and layout of the users board or module. For more  
information, see Application Note AN-793, ESD/Latch-Up  
Considerations with iCoupler Isolation Products.  
APPLICATIONS  
General-purpose multichannel isolation  
SPI® interface/data converter isolation  
RS-232/RS-422/RS-485 transceivers  
Industrial field bus isolation  
1 Protected by U.S. Patents 5,952,849 and 6,873,065. Other patents pending.  
FUNCTIONAL BLOCK DIAGRAMS  
1
2
3
16  
15  
14  
1
2
3
16  
15  
14  
1
2
3
16  
15  
14  
V
V
V
V
DD2  
V
V
DD2  
DD1  
DD2  
DD1  
DD1  
GND  
V
GND  
GND  
V
GND  
2
GND  
V
GND  
1
2
1
1
2
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
V
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
ENCODE  
ENCODE  
V
ENCODE  
ENCODE  
ENCODE  
ENCODE  
DECODE  
DECODE  
DECODE  
DECODE  
V
IA  
IB  
OA  
IA  
IB  
OA  
IA  
IB  
OA  
V
V
V
4
5
13  
12  
4
5
13  
12  
4
5
13  
12  
V
V
V
OB  
OB  
OB  
V
V
V
V
V
V
V
V
IC  
OC  
OC  
IC  
IC  
OC  
6
7
8
11  
10  
9
6
7
8
11  
10  
9
6
7
8
11  
10  
9
V
V
V
V
OD  
ID  
OD  
ID  
ID  
OD  
V
V
V
V
NC  
GND  
V
E1  
E2  
E1  
E2  
E2  
GND  
GND  
GND  
GND  
2
GND  
1
2
1
1
2
Figure 1. ADuM3400 Functional Block Diagram  
Figure 2. ADuM3401 Functional Block Diagram  
Figure 3. ADuM3402 Functional Block Diagram  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADuM3400/ADuM3401/ADuM3402  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 13  
Absolute Maximum Ratings ......................................................... 14  
ESD Caution................................................................................ 14  
Pin Configurations and Function Descriptions......................... 15  
Typical Performance Characteristics ........................................... 18  
Application Information................................................................ 20  
PC Board Layout ........................................................................ 20  
System-Level ESD Considerations and Enhancements ........ 20  
Propagation Delay-Related Parameters................................... 20  
DC Correctness and Magnetic Field Immunity........................... 20  
Power Consumption .................................................................. 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagrams............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3 V Operation................................ 6  
Electrical Characteristics—Mixed 5 V/3 V or 3 V/5 V  
Operation....................................................................................... 8  
Package Characteristics ............................................................. 12  
Regulatory Information............................................................. 12  
Insulation and Safety-Related Specifications.......................... 12  
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation  
Characteristics ............................................................................ 13  
REVISION HISTORY  
3/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION1  
4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V.  
Table 1.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM3400, Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.57 0.83 mA  
0.29 0.35 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.9  
1.2  
3.5  
1.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
9.0  
3.0  
11.6 mA  
5.5 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
72  
19  
100 mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
36  
mA  
ADuM3401, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
2.5  
1.6  
3.2  
2.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
7.4  
4.4  
10.6 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
6.5  
mA  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
59  
32  
82  
46  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM3402, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (BRW and CRW Grades Only)  
VDD1 or VDD2 Supply Current  
90 Mbps (CRW Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
IDD1 (90), IDD2 (90)  
2.0  
6.0  
51  
2.8  
7.5  
62  
mA  
mA  
mA  
DC to 1 MHz logic signal freq.  
5 MHz logic signal freq.  
45 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH, VODH  
−10  
2.0  
+0.01 +10 μA  
V
0 ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 ≤ VE1, VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.8  
V
V
V
V
V
V
,
VDD1, VDD2 − 0.1 5.0  
VDD1, VDD2 − 0.4 4.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
IOx = 4 mA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.1  
0.04 0.1  
0.2 0.4  
Rev. 0 | Page 3 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
SWITCHING SPECIFICATIONS  
ADuM340xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
65  
5
Pulse-Width Distortion, |tPLH − tPHL  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
ADuM340xBRW  
|
40  
50  
50  
ns  
ns  
ns  
tPSKCD/OD  
Minimum Pulse Width3  
PW  
100 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
10  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
32  
5
50  
3
5
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
15  
3
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM340xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
27  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
18  
Propagation Delay5  
tPHL, tPLH  
PWD  
32  
2
5
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
10  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Disable Propagation Delay  
(High/Low-to-High Impedance)  
Output Enable Propagation Delay  
(High Impedance-to-High/Low)  
Output Rise/Fall Time (10% to 90%)  
Common-Mode Transient Immunity  
at Logic High Output8  
t
PHZ, tPLH  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
tPZH, tPZL  
tR/tF  
|CMH|  
2.5  
35  
ns  
kV/μs  
25  
25  
Common-Mode Transient Immunity  
at Logic Low Output8  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.2  
0.20  
0.05  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current per Channel9  
IDDI (D)  
Output Dynamic Supply Current per Channel9 IDDO (D)  
Rev. 0 | Page 4 of 24  
ADuM3400/ADuM3401/ADuM3402  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM3400/ADuM3401/ADuM3402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. 0 | Page 5 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
ELECTRICAL CHARACTERISTICS—3 V OPERATION1  
2.7 V ≤ VDD1 ≤ 3.6 V, 2.7 V ≤ VDD2 ≤ 3.6 V; all minimum/maximum specifications apply over the entire recommended operation range,  
unless otherwise noted; all typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.0 V.  
Table 2.  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent  
Output Supply Current per Channel, Quiescent  
ADuM3400, Total Supply Current, Four Channels2  
DC to 2 Mbps  
IDDI (Q)  
IDDO (Q)  
0.31 0.49 mA  
0.19 0.27 mA  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.6  
0.7  
2.1  
1.2  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
4.8  
1.8  
7.1  
2.3  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
37  
11  
54  
15  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM3401, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (Q)  
IDD2 (Q)  
1.4  
0.9  
1.9  
1.5  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (10)  
IDD2 (10)  
4.1  
2.5  
5.6  
3.3  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
VDD2 Supply Current  
IDD1 (90)  
IDD2 (90)  
31  
17  
44  
24  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM3402, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 or VDD2 Supply Current  
10 Mbps (BRW and CRW Grades Only)  
VDD1 or VDD2 Supply Current  
90 Mbps (CRW Grade Only)  
VDD1 or VDD2 Supply Current  
For All Models  
IDD1 (Q), IDD2 (Q)  
IDD1 (10), IDD2 (10)  
IDD1 (90), IDD2 (90)  
1.2  
3.3  
24  
1.7  
4.4  
39  
mA  
mA  
mA  
DC to 1 MHz logic signal freq.  
5 MHz logic signal freq.  
45 MHz logic signal freq.  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
VIH, VEH  
VIL, VEL  
VOAH, VOBH  
VOCH, VODH  
−10  
1.6  
+0.01 +10 μA  
V
0 ≤ VIA, VIB, VIC, VID ≤ VDD1 or VDD2  
0 ≤ VE1,VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
Logic Low Input Threshold  
Logic High Output Voltages  
0.4  
V
V
V
V
V
V
,
VDD1, VDD2 − 0.1 3.0  
VDD1, VDD2 − 0.4 2.8  
0.0  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
Logic Low Output Voltages  
VOAL, VOBL  
VOCL, VODL  
,
0.1  
0.04 0.1  
0.2  
0.4  
IOx = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM340xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
75  
5
Pulse-Width Distortion, |tPLH − tPHL  
|
40  
50  
50  
ns  
ns  
ns  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
tPSKCD/OD  
Rev. 0 | Page 6 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
Parameter  
Symbol  
Min  
Typ Max Unit  
Test Conditions  
ADuM340xBRW  
Minimum Pulse Width3  
PW  
100 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
10  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
38  
5
50  
3
ns  
ns  
5
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
22  
3
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM340xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
34  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
45  
2
5
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
16  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Disable Propagation Delay  
(High/Low-to-High Impedance)  
Output Enable Propagation Delay  
(High Impedance-to-High/Low)  
tPHZ, tPLH  
tPZH, tPZL  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Output Rise/Fall Time (10% to 90%)  
tR/tF  
3
ns  
Common-Mode Transient Immunity  
at Logic High Output8  
Common-Mode Transient Immunity  
at Logic Low Output8  
|CMH|  
25  
25  
35  
kV/μs  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
|CML|  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
fr  
1.1  
0.10  
0.03  
Mbps  
mA/Mbps  
mA/Mbps  
Input Dynamic Supply Current per Channel9 IDDI (D)  
Output Dynamic Supply Current per Channel9  
IDDO (D)  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM3400/ADuM3401/ADuM3402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. 0 | Page 7 of 24  
 
 
 
ADuM3400/ADuM3401/ADuM3402  
ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION1  
5 V/3 V operation: 4.5 V ≤ VDD1 ≤ 5.5 V, 2.7 V ≤ VDD2 ≤ 3.6 V; 3 V/5 V operation: 2.7 V ≤ VDD1 ≤ 3.6 V, 4.5 V ≤ VDD2 ≤ 5.5 V; all  
minimum/maximum specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications  
are at TA = 25°C; VDD1 = 3.0 V, VDD2 = 5 V or VDD1 = 5 V, VDD2 = 3.0 V.  
Table 3.  
Parameter  
Symbol Min  
Typ  
Max Unit  
Test Conditions  
DC SPECIFICATIONS  
Input Supply Current per Channel, Quiescent IDDI (Q)  
5 V/3 V Operation  
3 V/5 V Operation  
0.57  
0.31  
0.83 mA  
0.49 mA  
Output Supply Current per Channel, Quiescent  
5 V/3 V Operation  
3 V/5 V Operation  
ADuM3400, Total Supply Current, Four Channels2  
IDDO (Q)  
0.29  
0.19  
0.27 mA  
0.35 mA  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
2.9  
1.6  
3.5  
2.1  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.7  
1.2  
1.2  
1.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
9.0  
4.8  
11.6 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
7.1  
mA  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
1.8  
3.0  
2.3  
5.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
72  
37  
100 mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
54  
mA  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
11  
19  
15  
36  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM3401, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
2.5  
1.4  
3.2  
1.9  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
0.9  
1.6  
1.5  
2.4  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
7.4  
4.1  
10.6 mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
5.6  
mA  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
2.5  
4.4  
3.3  
6.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
Rev. 0 | Page 8 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
Parameter  
90 Mbps (CRW Grade Only)  
Symbol Min  
Typ  
Max Unit  
Test Conditions  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (90)  
59  
31  
82  
44  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
17  
32  
24  
46  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
ADuM3402, Total Supply Current, Four Channels2  
DC to 2 Mbps  
VDD1 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD1 (Q)  
2.0  
1.2  
2.8  
1.7  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (Q)  
1.2  
2.0  
1.7  
2.8  
mA  
mA  
DC to 1 MHz logic signal freq.  
DC to 1 MHz logic signal freq.  
10 Mbps (BRW and CRW Grades Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (10)  
6.0  
3.3  
7.5  
4.4  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (10)  
3.3  
6.0  
4.4  
7.5  
mA  
mA  
5 MHz logic signal freq.  
5 MHz logic signal freq.  
90 Mbps (CRW Grade Only)  
VDD1 Supply Current  
5 V/3 V Operation  
IDD1 (90)  
46  
24  
62  
39  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
3 V/5 V Operation  
VDD2 Supply Current  
5 V/3 V Operation  
3 V/5 V Operation  
IDD2 (90)  
24  
46  
39  
62  
mA  
mA  
45 MHz logic signal freq.  
45 MHz logic signal freq.  
For All Models  
Input Currents  
IIA, IIB, IIC,  
IID, IE1, IE2  
−10  
+0.01  
+10 μA  
0 ≤ VIA,VIB, VIC,VID ≤ VDD1 or VDD2  
0 ≤ VE1,VE2 ≤ VDD1 or VDD2  
,
Logic High Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIH, VEH  
2.0  
1.6  
V
V
Logic Low Input Threshold  
5 V/3 V Operation  
3 V/5 V Operation  
VIL, VEL  
0.8  
0.4  
V
V
V
V
V
V
V
Logic High Output Voltages  
VOAH, VOBH, VDD1, VDD2 − 0.1 VDD1, VDD2  
VOCH, VODH  
IOx = −20 μA, VIx = VIxH  
IOx = −4 mA, VIx = VIxH  
IOx = 20 μA, VIx = VIxL  
IOx = 400 μA, VIx = VIxL  
V
DD1, VDD2 − 0.4 VDD1, VDD2 − 0.2  
Logic Low Output Voltages  
VOAL, VOBL,  
VOCL, VODL  
0.0  
0.04  
0.2  
0.1  
0.1  
0.4  
I
Ox = 4 mA, VIx = VIxL  
SWITCHING SPECIFICATIONS  
ADuM340xARW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
1000 ns  
Mbps  
100 ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
1
50  
Propagation Delay5  
tPHL, tPLH  
PWD  
tPSK  
70  
5
Pulse-Width Distortion, |tPLH − tPHL  
|
40  
50  
50  
ns  
ns  
ns  
Propagation Delay Skew6  
Channel-to-Channel Matching7  
tPSKCD/OD  
Rev. 0 | Page 9 of 24  
ADuM3400/ADuM3401/ADuM3402  
Parameter  
Symbol Min  
Typ  
Max Unit  
Test Conditions  
ADuM340xBRW  
Minimum Pulse Width3  
PW  
100 ns  
Mbps  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
Maximum Data Rate4  
10  
15  
Propagation Delay5  
tPHL, tPLH  
PWD  
35  
5
50  
3
ns  
ns  
5
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
22  
3
Channel-to-Channel Matching,  
tPSKOD  
6
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
ADuM340xCRW  
Minimum Pulse Width3  
Maximum Data Rate4  
PW  
8.3  
120  
30  
0.5  
3
11.1 ns  
Mbps  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
90  
20  
Propagation Delay5  
tPHL, tPLH  
PWD  
40  
2
5
Pulse-Width Distortion, |tPLH − tPHL  
Change vs. Temperature  
Propagation Delay Skew6  
Channel-to-Channel Matching,  
Codirectional Channels7  
|
ns  
ps/°C  
ns  
ns  
tPSK  
tPSKCD  
14  
2
Channel-to-Channel Matching,  
tPSKOD  
5
ns  
CL = 15 pF, CMOS signal levels  
Opposing-Directional Channels7  
For All Models  
Output Disable Propagation Delay  
(High/Low-to-High Impedance)  
Output Enable Propagation Delay  
(High Impedance-to-High/Low)  
Output Rise/Fall Time (10% to 90%)  
5 V/3 V Operation  
3 V/5 V Operation  
Common-Mode Transient Immunity  
at Logic High Output8  
Common-Mode Transient Immunity  
at Logic Low Output8  
tPHZ, tPLH  
tPZH, tPZL  
tR/tf  
6
6
8
8
ns  
ns  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
CL = 15 pF, CMOS signal levels  
3.0  
2.5  
35  
ns  
ns  
kV/μs  
|CMH|  
|CML|  
fr  
25  
25  
VIx = VDD1/VDD2, VCM = 1000 V,  
transient magnitude = 800 V  
VIx = 0 V, VCM = 1000 V,  
35  
kV/μs  
transient magnitude = 800 V  
Refresh Rate  
5 V/3 V Operation  
3 V/5 V Operation  
Input Dynamic Supply Current per Channel9  
1.2  
1.1  
Mbps  
Mbps  
IDDI (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.20  
0.10  
mA/Mbps  
mA/Mbps  
Output Dynamic Supply Current per Channel9 IDDO (D)  
5 V/3 V Operation  
3 V/5 V Operation  
0.03  
0.05  
mA/Mbps  
mA/Mbps  
Rev. 0 | Page 10 of 24  
ADuM3400/ADuM3401/ADuM3402  
1 All voltages are relative to their respective ground.  
2 The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load  
present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section.  
See Figure 8 through Figure 10 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 11 through  
Figure 15 for total VDD1 and VDD2 supply currents as a function of data rate for ADuM3400/ADuM3401/ADuM3402 channel configurations.  
3 The minimum pulse width is the shortest pulse width at which the specified pulse-width distortion is guaranteed.  
4 The maximum data rate is the fastest data rate at which the specified pulse-width distortion is guaranteed.  
5 tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling edge of the VOx signal. tPLH propagation delay is  
measured from the 50% level of the rising edge of the VIx signal to the 50% level of the rising edge of the VOx signal.  
6 tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating temperature, supply voltages, and output load  
within the recommended operating conditions.  
7 Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of  
the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with  
inputs on opposing sides of the isolation barrier.  
8 CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO < 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient  
magnitude is the range over which the common mode is slewed.  
9 Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 8 through Figure 10 for information  
on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current  
for a given data rate.  
Rev. 0 | Page 11 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
PACKAGE CHARACTERISTICS  
Table 4.  
Parameter  
Symbol  
RI-O  
CI-O  
CI  
θJCI  
Min  
Typ  
1012  
2.2  
4.0  
33  
Max  
Unit  
Ω
pF  
pF  
°C/W  
°C/W  
Test Conditions  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
f = 1 MHz  
IC Junction-to-Case Thermal Resistance, Side 1  
IC Junction-to-Case Thermal Resistance, Side 2  
Thermocouple located at  
center of package underside  
θJCO  
28  
1 Device considered a 2-terminal device; Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14, Pin 15, and  
Pin 16 shorted together.  
2 Input capacitance is from any input data pin to ground.  
REGULATORY INFORMATION  
The ADuM340x is approved by the organizations listed in Table 5.  
Table 5.  
UL1  
CSA  
VDE2  
Recognized under  
Approved under  
CSA Component Acceptance Notice #5A  
Certified according to  
1577 component recognition program1  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-012  
Double/reinforced insulation,  
2500 V rms isolation voltage  
Reinforced insulation per  
CSA 60950-1-03 and IEC 60950-1,  
400 V rms maximum working voltage  
Basic insulation, 560 V peak  
Complies with  
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01,  
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000  
Reinforced insulation, 560 V peak  
File 2471900-4880-0001  
File E214100  
File 205078  
1 In accordance with UL1577, each ADuM340x is proof tested by applying an insulation test voltage ≥3000 V rms for 1 sec (current leakage detection limit = 5 μA).  
2 In accordance with DIN EN 60747-5-2, each ADuM340x is proof tested by applying an insulation test voltage ≥1050 V peak for 1 sec (partial discharge detection limit =  
5 pC). The * marking branded on the component designates DIN EN 60747-5-2 approval.  
INSULATION AND SAFETY-RELATED SPECIFICATIONS  
Table 6.  
Parameter  
Symbol Value  
Unit Conditions  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
2500  
7.7 min  
V rms 1-minute duration  
L(I01)  
L(I02)  
mm  
Measured from input terminals to output terminals,  
shortest distance through air  
Minimum External Tracking (Creepage)  
8.1 min  
mm  
Measured from input terminals to output terminals,  
shortest distance path along body  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Isolation Group  
0.017 min mm  
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
>175  
IIIa  
V
Rev. 0 | Page 12 of 24  
 
 
 
 
ADuM3400/ADuM3401/ADuM3402  
DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS  
Table 7.  
Description  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤150 V rms  
For Rated Mains Voltage ≤300 V rms  
For Rated Mains Voltage ≤400 V rms  
Climatic Classification  
I-IV  
I-III  
I-II  
40/105/21  
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input-to-Output Test Voltage, Method b1  
VIORM × 1.875 = VPR, 100% Production Test, tm = 1 sec, Partial Discharge < 5 pC  
Input-to-Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
VIORM × 1.6 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
After Input and/or Safety Test Subgroup 2/3  
VIORM × 1.2 = VPR, tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage (Transient Overvoltage, tTR = 10 sec)  
Safety-Limiting Values (Maximum Value Allowed in the Event of a Failure; also see Figure 4)  
Case Temperature  
2
560  
1050  
VIORM  
VPR  
V peak  
V peak  
VPR  
896  
V peak  
V peak  
V peak  
672  
VTR  
4000  
TS  
IS1  
IS2  
RS  
150  
265  
335  
>109  
°C  
Side 1 Current  
Side 2 Current  
Insulation Resistance at TS, VIO = 500 V  
mA  
mA  
Ω
These isolators are suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by  
protective circuits. The * marking on packages denotes DIN EN 60747-5-2 approval.  
350  
RECOMMENDED OPERATING CONDITIONS  
300  
Table 8.  
250  
Parameter  
Symbol Min Max Unit  
TA −40 +105 °C  
SIDE #2  
200  
150  
100  
50  
Operating Temperature  
Supply Voltages1  
Input Signal Rise and Fall Times  
VDD1, VDD 2 2.7 5.5  
1.0  
V
ms  
SIDE #1  
1 All voltages are relative to their respective ground. See the DC Correctness  
and Magnetic Field Immunity section for information on immunity to  
external magnetic fields.  
0
0
50  
100  
CASE TEMPERATURE (°C)  
150  
200  
Figure 4. Thermal Derating Curve, Dependence of Safety-Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Rev. 0 | Page 13 of 24  
 
 
ADuM3400/ADuM3401/ADuM3402  
ABSOLUTE MAXIMUM RATINGS  
Ambient temperature = 25°C, unless otherwise noted.  
Table 9.  
Parameter  
Symbol  
Min  
−65  
−40  
−0.5  
−0.5  
−0.5  
Max  
Unit  
°C  
°C  
V
V
V
Storage Temperature  
Ambient Operating Temperature  
Supply Voltages1  
Input Voltage1, 2  
Output Voltage1, 2  
Average Output Current per Pin3  
Side 1  
TST  
TA  
+150  
+105  
+7.0  
VDDI + 0.5  
VDDO + 0.5  
VDD1, VDD2  
VIA, VIB, VIC, VID, VE1,VE2  
VOA, VOB, VOC, VOD  
IO1  
−18  
+18  
mA  
Side 2  
IO2  
CMH, CML  
−22  
−100  
+22  
+100  
mA  
kV/μs  
Common-Mode Transients4  
1 All voltages are relative to their respective ground.  
2 VDDI and VDDO refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.  
3 See Figure 4 for maximum rated current values for various temperatures.  
4 Refers to common-mode transients across the insulation barrier. Common-mode transients exceeding the Absolute Maximum Ratings can cause latch-up or  
permanent damage.  
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only;  
functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is  
not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Table 10. Truth Table (Positive Logic)  
VIX Input1 VEX Input2 VDDI State1 VDDO State1 VOX Output1  
Notes  
H
L
X
X
X
X
H or NC  
H or NC  
L
H or NC  
L
X
Powered  
Powered  
Powered  
Unpowered Powered  
Unpowered Powered  
Powered  
Powered  
Powered  
H
L
Z
H
Z
Outputs return to the input state within 1 μs of VDDI power restoration.  
Powered  
Unpowered Indeterminate Outputs return to the input state within 1 μs of VDDO power restoration  
if VEX state is H or NC. Outputs return to high impedance state within  
8 ns of VDDO power restoration if VEX state is L.  
1 VIX and VOX refer to the input and output signals of a given channel (A, B, C, or D). VEX refers to the output enable signal on the same side as the VOX outputs. VDDI and  
DDO refer to the supply voltages on the input and output sides of the given channel, respectively.  
2 In noisy environments, connecting VEX to an external logic high or low is recommended.  
V
Rev. 0 | Page 14 of 24  
 
 
 
 
 
 
ADuM3400/ADuM3401/ADuM3402  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
IC  
ID  
2
V
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
OD  
E2  
ADuM3400  
TOP VIEW  
(Not to Scale)  
NC  
*GND  
GND *  
1
2
NC = NO CONNECT  
Figure 5. ADuM3400 Pin Configuration  
*Pin 2 and Pin 8 are internally connected and connecting both to GND1 is recommended. Pin 9 and Pin 15 are internally connected and  
connecting both to GND2 is recommended. In noisy environments, connecting output enables (Pin 7 for ADuM3401/ADuM3402 and  
Pin 10 for all models) to an external logic high or low is recommended.  
Table 11. ADuM3400 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground Reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
VID  
Logic Input D.  
7
NC  
No Connect.  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for Isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, VOC, and VOD outputs are enabled when VE2 is high or disconnected.  
VOA, VOB, VOC, and VOD outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic  
high or low is recommended.  
11  
12  
13  
14  
16  
VOD  
VOC  
VOB  
VOA  
VDD2  
Logic Output D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. 0 | Page 15 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
IA  
IB  
IC  
2
V
V
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
OA  
OB  
OC  
ID  
ADuM3401  
TOP VIEW  
(Not to Scale)  
V
OD  
V
E1  
E2  
*GND  
GND *  
1
2
NC = NO CONNECT  
Figure 6. ADuM3401 Pin Configuration  
*Pin 2 and Pin 8 are internally connected and connecting both to GND1 is recommended. Pin 9 and Pin 15 are internally connected and  
connecting both to GND2 is recommended. In noisy environments, connecting output enables (Pin 7 for ADuM3401/ADuM3402 and  
Pin 10 for all models) to an external logic high or low is recommended.  
Table 12. ADuM3401 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
VIC  
Logic Input C.  
6
7
VOD  
VE1  
Logic Output D.  
Output Enable 1. Active high logic input. VOD output is enabled when VE1 is high or disconnected. VOD is disabled when  
VE1 is low. In noisy environments, connecting VE1 to an external logic high or low is recommended.  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for isolator Side 2.  
Output Enable 2. Active high logic input. VOA, VOB, and VOC outputs are enabled when VE2 is high or disconnected.  
VOA, VOB, and VOC outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high  
or low is recommended.  
11  
12  
13  
14  
16  
VID  
Logic Input D.  
Logic Output C.  
Logic Output B.  
Logic Output A.  
VOC  
VOB  
VOA  
VDD2  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Rev. 0 | Page 16 of 24  
ADuM3400/ADuM3401/ADuM3402  
V
1
2
3
4
5
6
7
8
16  
V
DD2  
DD1  
*GND  
15 GND *  
1
2
V
14  
13  
12  
11  
10  
9
V
V
V
V
V
IA  
OA  
OB  
IC  
ADuM3402  
V
IB  
TOP VIEW  
(Not to Scale)  
V
V
OC  
OD  
ID  
V
E1  
E2  
*GND  
GND *  
1
2
NC = NO CONNECT  
Figure 7. ADuM3402 Pin Configuration  
*Pin 2 and Pin 8 are internally connected and connecting both to GND1 is recommended. Pin 9 and Pin 15 are internally connected and  
connecting both to GND2 is recommended. In noisy environments, connecting output enables (Pin 7 for ADuM3401/ADuM3402 and  
Pin 10 for all models) to an external logic high or low is recommended.  
Table 13. ADuM3402 Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2, 8  
3
VDD1  
GND1  
VIA  
Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.  
Ground 1. Ground reference for Isolator Side 1.  
Logic Input A.  
4
VIB  
Logic Input B.  
5
6
7
VOC  
VOD  
VE1  
Logic Output C.  
Logic Output D.  
Output Enable 1. Active high logic input. VOC and VOD outputs are enabled when VE1 is high or disconnected.  
VOC and VOD outputs are disabled when VE1 is low. In noisy environments, connecting VE1 to an external logic high or  
low is recommended.  
9, 15  
10  
GND2  
VE2  
Ground 2. Ground reference for isolator Side 2.  
Output Enable 2. Active high logic input. VOA and VOB outputs are enabled when VE2 is high or disconnected.  
VOA and VOB outputs are disabled when VE2 is low. In noisy environments, connecting VE2 to an external logic high or  
low is recommended.  
11  
12  
13  
14  
16  
VID  
VIC  
VOB  
VOA  
VDD2  
Logic Input D.  
Logic Input C.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.  
Rev. 0 | Page 17 of 24  
ADuM3400/ADuM3401/ADuM3402  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
80  
60  
40  
15  
5V  
10  
5V  
3V  
3V  
5
20  
0
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
100  
100  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 8. Typical Input Supply Current per Channel vs. Data Rate (No Load)  
Figure 11. Typical ADuM3400 VDD1 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
20  
80  
60  
40  
15  
10  
5
20  
0
5V  
5V  
3V  
3V  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Typical Output Supply Current per Channel vs. Data Rate (No Load)  
Figure 12. Typical ADuM3400 VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
20  
80  
60  
40  
15  
10  
5V  
5V  
5
20  
0
3V  
3V  
0
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 10. Typical Output Supply Current per Channel vs.  
Data Rate (15 pF Output Load)  
Figure 13. Typical ADuM3401 VDD1 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Rev. 0 | Page 18 of 24  
 
 
 
 
ADuM3400/ADuM3401/ADuM3402  
40  
35  
30  
25  
80  
60  
40  
3V  
5V  
20  
0
5V  
3V  
–50  
–25  
0
25  
50  
75  
100  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
DATA RATE (Mbps)  
Figure 14. Typical ADuM3401 VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Figure 16. Propagation Delay vs. Temperature, C Grade  
80  
60  
40  
5V  
20  
0
3V  
0
20  
40  
60  
80  
100  
DATA RATE (Mbps)  
Figure 15. Typical ADuM3402 VDD1 or VDD2 Supply Current vs.  
Data Rate for 5 V and 3 V Operation  
Rev. 0 | Page 19 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
APPLICATION INFORMATION  
While the ADuM340x improve system-level ESD reliability,  
they are no substitute for a robust system-level design. See  
Application Note AN-793 ESD/Latch-Up Considerations with  
iCoupler Isolation Products for detailed recommendations on  
board layout and system-level design.  
PC BOARD LAYOUT  
The ADuM340x digital isolator requires no external interface  
circuitry for the logic interfaces. Power supply bypassing is  
strongly recommended at the input and output supply pins (see  
Figure 17). Bypass capacitors are most conveniently connected  
between Pin 1 and Pin 2 for VDD1 and between Pin 15 and  
Pin 16 for VDD2. The capacitor value should be between 0.01 μF  
and 0.1 μF. The total lead length between both ends of the  
capacitor and the input power supply pin should not exceed  
20 mm. Bypassing between Pin 1 and Pin 8 and between Pin 9  
and Pin 16 should also be considered unless the ground pair on  
each package side is connected close to the package.  
PROPAGATION DELAY-RELATED PARAMETERS  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a logic low output can differ from the propagation  
delay to a logic high.  
INPUT (V  
)
50%  
IX  
V
GND  
V
DD1  
DD2  
GND  
tPLH  
tPHL  
1
IA  
IB  
2
V
V
V
V
V
V
V
OA  
OB  
OUTPUT (V  
)
50%  
OX  
V
V
IC/OC  
ID/OD  
OC/IC  
OD/ID  
E2  
Figure 18. Propagation Delay Parameters  
V
E1  
GND  
GND  
1
2
Pulse-width distortion is the maximum difference between  
these two propagation delay values and is an indication of how  
accurately the input signals timing is preserved.  
Figure 17. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, care  
should be taken to ensure that board coupling across the isolation  
barrier is minimized. Furthermore, the board layout should be  
designed such that any coupling that does occur equally affects  
all pins on a given component side. Failure to ensure this could  
cause voltage differentials between pins exceeding the devices  
Absolute Maximum Ratings, thereby leading to latch-up or  
permanent damage.  
Channel-to-channel matching refers to the maximum amount  
the propagation delay differs between channels within a single  
ADuM340x component.  
Propagation delay skew refers to the maximum amount the  
propagation delay differs between multiple ADuM340x  
components operating under the same conditions.  
DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY  
SYSTEM-LEVEL ESD CONSIDERATIONS AND  
ENHANCEMENTS  
Positive and negative logic transitions at the isolator input cause  
narrow (~1 ns) pulses to be sent to the decoder via the transformer.  
The decoder is bistable and is, therefore, either set or reset by  
the pulses, indicating input logic transitions. In the absence of  
logic transitions at the input for more than 2 μs, a periodic set  
of refresh pulses indicative of the correct input state are sent to  
ensure dc correctness at the output. If the decoder receives no  
internal pulses of more than about 5 μs, the input side is  
assumed to be unpowered or nonfunctional, in which case the  
isolator output is forced to a default state (see Table 10) by the  
watchdog timer circuit.  
System-level ESD reliability (for example, per IEC 61000-4-x) is  
highly dependent on system design which varies widely by  
application. The ADuM340x incorporate many enhancements  
to make ESD reliability less dependent on system design. The  
enhancements include:  
ESD protection cells added to all input/output interfaces.  
Key metal trace resistances reduced using wider geometry  
and paralleling of lines with vias.  
The SCR effect inherent in CMOS devices minimized by use  
of guarding and isolation technique between PMOS and  
NMOS devices.  
The limitation on the ADuM340xs magnetic field immunity is  
set by the condition in which induced voltage in the transformer’s  
receiving coil is sufficiently large to either falsely set or reset the  
decoder. The following analysis defines the conditions under  
which this can occur. The 3 V operating condition of the  
ADuM340x is examined because it represents the most  
susceptible mode of operation.  
Areas of high electric field concentration eliminated using  
45° corners on metal traces.  
Supply pin overvoltage prevented with larger ESD clamps  
between each supply pin and its respective ground.  
Rev. 0 | Page 20 of 24  
 
 
 
ADuM3400/ADuM3401/ADuM3402  
The pulses at the transformer output have an amplitude greater  
than 1.0 V. The decoder has a sensing threshold at about 0.5 V, thus  
establishing a 0.5 V margin in which induced voltages can be  
tolerated. The voltage induced across the receiving coil is given by  
The preceding magnetic flux density values correspond to  
specific current magnitudes at given distances from the  
ADuM340x transformers. Figure 20 expresses these allowable  
current magnitudes as a function of frequency for selected  
distances. As shown, the ADuM340x is extremely immune and  
can be affected only by extremely large currents operated at  
high frequency very close to the component. For the 1 MHz  
example noted, one would have to place a 0.5 kA current 5 mm  
away from the ADuM340x to affect the components operation.  
2
V = (−dβ/dt)rn ; n = 1, 2, … , N  
where:  
β is magnetic flux density (gauss).  
N is the number of turns in the receiving coil.  
rn is the radius of the nth turn in the receiving coil (cm).  
1000  
DISTANCE = 1m  
Given the geometry of the receiving coil in the ADuM340x and  
an imposed requirement that the induced voltage be at most  
50% of the 0.5 V margin at the decoder, a maximum allowable  
magnetic field is calculated as shown in Figure 19.  
100  
10  
DISTANCE = 100mm  
100  
1
DISTANCE = 5mm  
10  
0.1  
1
0.01  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
0.1  
Figure 20. Maximum Allowable Current  
for Various Current-to-ADuM340x Spacings  
0.01  
Note that at combinations of strong magnetic field and high  
frequency, any loops formed by printed circuit board traces  
could induce error voltages sufficiently large enough to trigger  
the thresholds of succeeding circuitry. Care should be taken in  
the layout of such traces to avoid this possibility.  
0.001  
1k  
10k  
100k  
1M  
10M  
100M  
MAGNETIC FIELD FREQUENCY (Hz)  
Figure 19. Maximum Allowable External Magnetic Flux Density  
For example, at a magnetic field frequency of 1 MHz, the  
maximum allowable magnetic field of 0.2 kgauss induces a  
voltage of 0.25 V at the receiving coil. This is about 50% of the  
sensing threshold and does not cause a faulty output transition.  
Similarly, if such an event were to occur during a transmitted  
pulse (and was of the worst-case polarity), it would reduce the  
received pulse from >1.0 V to 0.75 V—still well above the 0.5 V  
sensing threshold of the decoder.  
Rev. 0 | Page 21 of 24  
 
 
ADuM3400/ADuM3401/ADuM3402  
POWER CONSUMPTION  
The supply current at a given channel of the ADuM340x  
isolator is a function of the supply voltage, the channels data  
rate, and the channels output load.  
For each input channel, the supply current is given by  
IDDI = IDDI (Q)  
DDI = IDDI (D) × (2f fr) + IDDI (Q)  
f ≤ 0.5 fr  
f > 0.5 fr  
I
For each output channel, the supply current is given by  
IDDO = IDDO (Q) f ≤ 0.5 fr  
I
DDO = (IDDO (D) + (0.5 × 10−3) × CL × VDDO) × (2f − fr) + IDDO (Q)  
f > 0.5 fr  
where:  
DDI (D), IDDO (D) are the input and output dynamic supply currents  
I
per channel (mA/Mbps).  
CL is the output load capacitance (pF).  
V
DDO is the output supply voltage (V).  
f is the input logic signal frequency (MHz); it is half of the input  
data rate expressed in units of Mbps.  
fr is the input stage refresh rate (Mbps).  
I
DDI (Q), IDDO (Q) are the specified input and output quiescent  
supply currents (mA).  
To calculate the total IDD1 and IDD2 supply current, the supply  
currents for each input and output channel corresponding to  
VDD1 and VDD2 are calculated and totaled. Figure 8 provides per-  
channel input supply current as a function of data rate. Figure 9  
and Figure 10 provide per-channel supply output current as a  
function of data rate for an unloaded output condition and for a  
15 pF output condition, respectively. Figure 11 through Figure 15  
provide total VDD1 and VDD2 supply current as a function of data  
rate for ADuM3400/ADuM3401/ADuM3402 channel  
configurations.  
Rev. 0 | Page 22 of 24  
 
ADuM3400/ADuM3401/ADuM3402  
OUTLINE DIMENSIONS  
10.50 (0.4134)  
10.10 (0.3976)  
16  
1
9
8
7.60 (0.2992)  
7.40 (0.2913)  
10.65 (0.4193)  
10.00 (0.3937)  
1.27 (0.0500)  
BSC  
0.75 (0.0295)  
× 45°  
2.65 (0.1043)  
2.35 (0.0925)  
0.25 (0.0098)  
0.30 (0.0118)  
0.10 (0.0039)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
SEATING  
PLANE  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.33 (0.0130)  
0.20 (0.0079)  
COMPLIANT TO JEDEC STANDARDS MS-013-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 21. 16-Lead Standard Small Outline Package [SOIC_W]  
Wide Body (RW-16)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
Number of Number of Maximum Maximum  
Maximum  
Inputs,  
DD1 Side  
Inputs,  
DD2 Side  
Data Rate Propagation  
(Mbps)  
Pulse-Width  
Package  
Model  
Temperature Range (°C)  
V
V
Delay, 5 V (ns) Distortion (ns) Option1  
ADuM3400ARWZ 2, 3 −40 to +105  
ADuM3400BRWZ2, 3 −40 to +105  
ADuM3400CRWZ2, 3 −40 to +105  
ADuM3401ARWZ2, 3 −40 to +105  
ADuM3401BRWZ2, 3 −40 to +105  
ADuM3401CRWZ2, 3 −40 to +105  
ADuM3402ARWZ2, 3 −40 to +105  
ADuM3402BRWZ2, 3 −40 to +105  
ADuM3402CRWZ2, 3 −40 to +105  
4
0
1
100  
50  
32  
40  
3
2
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
RW-16  
4
4
3
3
3
2
2
2
0
0
1
1
1
2
2
2
10  
90  
1
10  
90  
1
100  
50  
32  
40  
3
2
100  
50  
32  
40  
3
2
10  
90  
1 RW-16 = 16-lead wide body SOIC.  
2 Tape and reel are available. The addition of an “-RL” suffix designates a 13” (1,000 units) tape and reel option.  
3 Z = Pb-free part.  
Rev. 0 | Page 23 of 24  
 
 
 
ADuM3400/ADuM3401/ADuM3402  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05985-0-3/06(0)  
Rev. 0 | Page 24 of 24  
 
 

相关型号:

ADUM3402CRWZ

Quad-Channel, Digital Isolators, Enhanced System-Level ESD Reliability
ADI

ADUM3402CRWZ-RL

Quad-Channel, Digital Isolator, Enhanced System-Level ESD Reliability
ADI

ADUM3402CRWZ-RL

SPECIALTY ANALOG CIRCUIT, PDSO16, ROHS COMPLIANT, MS-013AA, SOIC-16
ROCHESTER

ADUM3402TRWZ-EP

Quad-Channel, Digital Isolator, Enhanced System-Level ESD Reliability
ADI

ADUM3402WARWZ

Quad-Channel, Digital Isolator, Enhanced System-Level ESD Reliability
ADI

ADUM3402WARWZ-RL

Quad-Channel, Digital Isolator, Enhanced System-Level ESD Reliability
ADI

ADUM3402WBRWZ

Quad-Channel, Digital Isolator, Enhanced System-Level ESD Reliability
ADI

ADUM3402WBRWZ-RL

Quad-Channel, Digital Isolator, Enhanced System-Level ESD Reliability
ADI

ADUM3402_15

Quad-Channel, Digital Isolators, Enhanced System-Level ESD Reliability
ADI

ADUM340X

Digital Isolator Product Selection and Resource Guide
ADI

ADUM3440

Quad Channel, High Speed Digital Isolators
ADI

ADUM3440CRWZ

Quad Channel, High Speed Digital Isolators
ADI