ADUM120N0BRZ [ADI]

3.0 kV rms, Dual-Channel Digital Isolators;
ADUM120N0BRZ
型号: ADUM120N0BRZ
厂家: ADI    ADI
描述:

3.0 kV rms, Dual-Channel Digital Isolators

文件: 总19页 (文件大小:500K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.0 kV rms,  
Dual-Channel Digital Isolators  
ADuM120N/ADuM121N  
Data Sheet  
FEATURES  
FUNCTIONAL BLOCK DIAGRAMS  
High common-mode transient immunity: 100 kV/µs typical  
High robustness to radiated and conducted noise  
Low propagation delay  
13 ns maximum for 5 V operation  
15 ns maximum for 1.8 V operation  
150 Mbps minimum data rate  
ADuM120N  
1
2
3
4
8
7
6
5
V
V
V
V
DD1  
DD2  
OA  
OB  
ENCODE  
ENCODE  
DECODE  
DECODE  
V
V
IA  
IB  
GND  
GND  
2
1
Safety and regulatory approvals (pending)  
UL recognition: 3000 V rms for 1 minute per UL 1577  
CSA Component Acceptance Notice 5A  
VDE certificate of conformity  
Figure 1. ADuM120N Functional Block Diagram  
ADuM121N  
1
2
3
4
8
7
6
5
V
V
V
V
DD1  
DD2  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
DECODE  
ENCODE  
ENCODE  
DECODE  
V
OA  
IA  
V
IORM = 565 V peak  
V
IB  
OB  
CQC certification per GB4943.1-2011  
Backward compatibility  
GND  
GND  
1
2
ADuM120N0 pin-compatible with ADuM1285  
ADuM120N1 pin-compatible with ADuM1280 and  
ADuM1200  
Figure 2. ADuM121N Functional Block Diagram  
ADuM121N0 pin-compatible with ADuM1286  
ADuM121N1 pin-compatible with ADuM1281 and  
ADuM1201  
Low dynamic power consumption  
1.8 V to 5 V level translation  
High temperature operation: 125°C  
Failsafe high or low options  
8-lead, RoHS-compliant, SOIC package  
Qualified for automotive applications  
APPLICATIONS  
General-purpose multichannel isolation  
Industrial field bus isolation  
providing compatibility with lower voltage systems as well as  
enabling voltage translation functionality across the isolation  
barrier.  
GENERAL DESCRIPTION  
The ADuM120N/ADuM121N1 are dual-channel digital isolators  
based on Analog Devices, Inc., iCoupler® technology. Combining  
high speed, complementary metal-oxide semiconductor (CMOS)  
and monolithic air core transformer technology, these isolation  
components provide outstanding performance characteristics  
superior to alternatives such as optocoupler devices and other  
integrated couplers. The maximum propagation delay is 13 ns  
with a pulse width distortion of less than 3 ns at 5 V operation.  
Channel matching is tight at 3.0 ns maximum.  
Unlike other optocoupler alternatives, dc correctness is ensured in  
the absence of input logic transitions. Two different fail-safe options  
are available in which the outputs transition to a predetermined  
state when the input power supply is not applied or the inputs  
are disabled.  
The ADuM120N0 is pin-compatible with the ADuM1285, and  
the ADuM120N1 is pin-compatible with the ADuM1280 and  
the ADuM1200. The ADuM121N0 is pin-compatible with  
ADuM1286, and the ADuM121N0 is pin-compatible with the  
ADuM1281 and the ADuM1201.  
The ADuM120N/ADuM121N data channels are independent and  
are available in a variety of configurations with a withstand voltage  
rating of 3 kV rms (see the Ordering Guide). The devices operate  
with the supply voltage on either side ranging from 1.8 V to 5 V,  
1 Protected by U.S. Patents 5,952,849; 6,873,065; 6,903,578; and 7,075,329. Other patents are pending.  
Rev. A Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADuM120N/ADuM121N  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Recommended Operating Conditions .................................... 12  
Absolute Maximum Ratings ......................................................... 13  
ESD Caution................................................................................ 13  
Pin Configurations and Function Descriptions......................... 14  
Typical Performance Characteristics ........................................... 15  
Applications Information.............................................................. 16  
Overview ..................................................................................... 16  
PCB Layout ................................................................................. 16  
Propagation Delay Related Parameters ................................... 17  
Jitter Measurement..................................................................... 17  
Insulation Lifetime..................................................................... 17  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Automotive Products................................................................. 19  
Applications....................................................................................... 1  
Functional Block Diagrams............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Characteristics—5 V Operation................................ 3  
Electrical Characteristics—3.3 V Operation ............................ 5  
Electrical Characteristics—2.5 V Operation ............................ 7  
Electrical Characteristics—1.8 V Operation ............................ 9  
Insulation and Safety Related Specifications .......................... 10  
Package Characteristics ............................................................. 10  
Regulatory Information............................................................. 11  
DIN V VDE V 0884-10 (VDE V 0884-10) Insulation  
Characteristics ............................................................................ 12  
REVISION HISTORY  
4/16—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to Jitter Measurement Section....................................... 17  
Changes to Ordering Guide .......................................................... 19  
Added Automotive Products Section .......................................... 19  
1/16—Revision 0: Initial Version  
Rev. A | Page 2 of 19  
 
Data Sheet  
ADuM120N/ADuM121N  
SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS—5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 5 V. Minimum/maximum specifications apply over the entire recommended  
operation range of 4.5 V ≤ VDD1 ≤ 5.5 V, 4.5 V ≤ VDD2 ≤ 5.5 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
PW  
6.6  
150  
4.8  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within pulse width distortion (PWD) limit  
Within PWD limit  
50% input to 50% output  
tPHL, tPLH  
PWD  
7.2  
0.5  
1.5  
13  
3
|tPLH − tPHL|  
tPSK  
6.0  
Between any two units at the same  
temperature, voltage, and load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.5  
0.5  
380  
55  
3.0  
3.0  
ns  
ns  
ps p-p  
ps rms  
See the Jitter Measurement section  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold Voltage  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
II  
VDDx − 0.1 VDDx  
VDDx − 0.4 VDDx − 0.2  
V
V
V
V
IOx1 = −20 µA, VIx = VIxH  
2
IOx1 = −4 mA, VIx = VIxH  
3
Logic Low  
0.0  
0.2  
0.1  
0.4  
+10  
IOx1 = 20 µA, VIx = VIxL  
3
IOx1 = 4 mA, VIx = VIxL  
Input Current per Channel  
Quiescent Supply Current  
ADuM120N  
−10  
+0.01  
µA  
0 V ≤ VIx ≤ VDDx  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.9  
1.3  
6.4  
1.4  
1.1  
1.1  
4.0  
4.9  
1.3  
1.8  
10.0  
1.9  
1.6  
1.5  
5.8  
6.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
ADuM121N  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
IDDI (D)  
0.01  
0.02  
mA/Mbps  
mA/Mbps  
Inputs switching, 50% duty cycle  
Inputs switching, 50% duty cycle  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
Rev. A | Page 3 of 19  
 
 
ADuM120N/ADuM121N  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
Common-Mode Transient  
Immunity6  
|CMH|  
75  
75  
100  
kV/µs  
VIx = VDDx, VCM = 1000 V, transient  
magnitude = 800 V  
VIx = 0 V, VCM = 1000 V, transient  
magnitude = 800 V  
|CML|  
100  
kV/µs  
1 IOx is the Channel x output current, where x = A or B.  
2 VIxH is the input side logic high voltage.  
3 VIxL is the input side logic low voltage.  
4 VI is the input voltage.  
5 N0 is the ADuM120N0/ADuM121N0 models, and N1 is the ADuM120N1/ADuM121N1 models. See the Ordering Guide.  
6 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining the voltage output (VO) > 0.8 VDDx. |CML| is the maximum common-  
mode voltage slew rate that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode  
voltage edges.  
Table 2. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
ADuM120N  
Supply Current Side 1  
Supply Current Side 2  
ADuM121N  
IDD1  
IDD2  
3.7  
1.4  
6.8  
2.0  
4.2  
2.5  
7.2  
3.2  
6.2  
6.0  
9.3  
8.1  
mA  
mA  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
2.6  
3.0  
4.5  
4.9  
3.2  
3.7  
5.4  
5.9  
5.4  
5.8  
8.2  
8.6  
mA  
mA  
Rev. A | Page 4 of 19  
 
Data Sheet  
ADuM120N/ADuM121N  
ELECTRICAL CHARACTERISTICS—3.3 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 3.3 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 3.0 V ≤ VDD1 ≤ 3.6 V, 3.0 V ≤ VDD2 ≤ 3.6 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
PW  
6.6  
150  
4.8  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
6.8  
0.7  
1.5  
14  
3
tPSK  
7.0  
Between any two units at the same  
temperature, voltage, and load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
290  
45  
3.0  
3.0  
ns  
ns  
ps p-p  
ps rms  
See the Jitter Measurement section  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold Voltage  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
II  
VDDx − 0.1  
VDDx − 0.4  
VDDx  
VDDx − 0.2  
0.0  
0.2  
+0.01  
V
V
V
V
IOx1 = −20 µA, VIx = VIxH  
2
IOx1 = −2 mA, VIx = VIxH  
3
Logic Low  
0.1  
0.4  
+10  
IOx1 = 20 µA, VIx = VIxL  
3
IOx1 = 2 mA, VIx = VIxL  
Input Current per Channel  
Quiescent Supply Current  
ADuM120N  
−10  
µA  
0 V ≤ VIx ≤ VDDx  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.8  
1.2  
6.3  
1.3  
1.0  
1.0  
3.9  
4.8  
1.3  
1.8  
9.7  
1.8  
1.6  
1.5  
5.8  
6.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 01 (N0), 1 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
ADuM121N  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
IDDI (D)  
0.01  
0.01  
mA/Mbps  
mA/Mbps  
Inputs switching, 50% duty cycle  
Inputs switching, 50% duty cycle  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
Rev. A | Page 5 of 19  
 
ADuM120N/ADuM121N  
Data Sheet  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
Common-Mode Transient  
Immunity6  
|CMH|  
75  
75  
100  
kV/µs  
VIx = VDDx, VCM = 1000 V, transient  
magnitude = 800 V  
VIx = 0 V, VCM = 1000 V, transient  
magnitude = 800 V  
|CML|  
100  
kV/µs  
1 IOx is the Channel x output current, where x = A or B.  
2 VIxH is the input side logic high voltage.  
3 VIxL is the input side logic low voltage.  
4 VI is the input voltage.  
5 N0 is the ADuM120N0/ADuM121N0 models, and N1 is the ADuM120N1/ADuM121N1 models. See the Ordering Guide.  
6 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDDx. |CML| is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
Table 4. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
ADuM120N  
Supply Current Side 1  
Supply Current Side 2  
ADuM121N  
IDD1  
IDD2  
3.6  
1.3  
6.2  
1.9  
4.0  
2.3  
6.7  
3.1  
5.6  
5.2  
9.1  
6.8  
mA  
mA  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
2.5  
2.9  
4.6  
4.8  
3.0  
3.5  
5.5  
5.8  
5.0  
5.4  
8.1  
8.3  
mA  
mA  
Rev. A | Page 6 of 19  
 
Data Sheet  
ADuM120N/ADuM121N  
ELECTRICAL CHARACTERISTICS—2.5 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 2.5 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 2.25 V ≤ VDD1 ≤ 2.75 V, 2.25 V ≤ VDD2 ≤ 2.75 V, 40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 5.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
Data Rate  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
PW  
6.6  
150  
5.0  
ns  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
tPHL, tPLH  
PWD  
7.0  
0.7  
1.5  
14  
3
tPSK  
7.0  
Between any two units at the same  
temperature, voltage, load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
320  
65  
3.0  
3.0  
ns  
ns  
ps p-p  
ps rms  
See the Jitter Measurement section  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold Voltage  
Logic High  
Logic Low  
Output Voltage  
Logic High  
VIH  
VIL  
0.7 × VDDx  
VDDx − 0.1  
V
V
0.3 × VDDx  
2
VOH  
VOL  
II  
VDDx  
V
V
V
V
IOx1 = −20 µA, VIx = VIxH  
2
VDDx − 0.4 VDDx − 0.2  
IOx1 = −2 mA, VIx = VIxH  
3
Logic Low  
0.0  
0.2  
+0.01  
0.1  
0.4  
+10  
IOx1 = 20 µA, VIx = VIxL  
3
IOx1 = 2 mA, VIx = VIxL  
Input Current per Channel  
Quiescent Supply Current  
ADuM120N  
−10  
µA  
0 V ≤ VIx ≤ VDDx  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.8  
1.2  
6.2  
1.3  
1.0  
1.0  
3.9  
4.8  
1.2  
1.8  
9.5  
1.8  
1.5  
1.4  
5.8  
6.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
ADuM121N  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
IDDI (D)  
IDDO (D)  
0.01  
0.01  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
Rev. A | Page 7 of 19  
 
ADuM120N/ADuM121N  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC SPECIFICATIONS  
Output Rise/Fall Time  
tR/tF  
2.5  
ns  
10% to 90%  
Common-Mode Transient  
Immunity6  
|CMH|  
75  
75  
100  
kV/µs  
VIx = VDDx, VCM = 1000 V, transient  
magnitude = 800 V  
VIx = 0 V, VCM = 1000 V, transient  
magnitude = 800 V  
|CML|  
100  
kV/µs  
1 IOx is the Channel x output current, where x = A or B.  
2 VIxH is the input side logic high voltage.  
3 VIxL is the input side logic low voltage.  
4 VI is the input voltage.  
5 N0 is the ADuM120N0/ADuM121N0 models, and N1 is the ADuM120N1/ADuM121N1 models. See the Ordering Guide.  
6 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDDx. |CML| is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
Table 6. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
ADuM120N  
Supply Current Side 1  
Supply Current Side 2  
ADuM121N  
IDD1  
IDD2  
3.5  
1.3  
6.2  
1.9  
3.9  
2.0  
6.6  
2.8  
5.4  
4.2  
9.0  
5.8  
mA  
mA  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
2.4  
2.9  
4.7  
4.9  
2.9  
3.3  
5.5  
5.7  
4.5  
4.9  
8.0  
7.7  
mA  
mA  
Rev. A | Page 8 of 19  
 
Data Sheet  
ADuM120N/ADuM121N  
ELECTRICAL CHARACTERISTICS—1.8 V OPERATION  
All typical specifications are at TA = 25°C, VDD1 = VDD2 = 1.8 V. Minimum/maximum specifications apply over the entire recommended  
operation range: 1.7 V ≤ VDD1 ≤ 1.9 V, 1.7 V ≤ VDD2 ≤ 1.9 V, and −40°C ≤ TA ≤ +125°C, unless otherwise noted. Switching specifications  
are tested with CL = 15 pF and CMOS signal levels, unless otherwise noted. Supply currents are specified with 50% duty cycle signals.  
Table 7.  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SWITCHING SPECIFICATIONS  
Pulse Width  
PW  
6.6  
ns  
Within PWD limit  
Data Rate  
150  
tPHL, tPLH 5.8  
PWD  
Mbps  
ns  
ns  
ps/°C  
ns  
Within PWD limit  
50% input to 50% output  
|tPLH − tPHL|  
Propagation Delay  
Pulse Width Distortion  
Change vs. Temperature  
Propagation Delay Skew  
8.7  
0.7  
1.5  
15  
3
tPSK  
7.0  
Between any two units at the same  
temperature, voltage, and load  
Channel Matching  
Codirectional  
Opposing Direction  
Jitter  
tPSKCD  
tPSKOD  
0.7  
0.7  
630  
190  
3.0  
3.0  
ns  
ns  
ps p-p  
ps rms  
See the Jitter Measurement section  
See the Jitter Measurement section  
DC SPECIFICATIONS  
Input Threshold Voltage  
Logic High  
VIH  
VIL  
0.7 × VDDx  
V
V
Logic Low  
0.3 × VDDx  
Output Voltage  
Logic High  
2
VOH  
VOL  
II  
VDDx − 0.1 VDDx  
VDDx − 0.4 VDDx − 0.2  
V
V
V
V
IOx1 = −20 µA, VIx = VIxH  
2
IOx1 = −2 mA, VIx = VIxH  
3
Logic Low  
0.0  
0.2  
0.1  
0.4  
+10  
IOx1 = 20 µA, VIx = VIxL  
3
IOx1 = 2 mA, VIx = VIxL  
Input Current per Channel  
Quiescent Supply Current  
ADuM120N  
−10  
+0.01  
µA  
0 V ≤ VIx ≤ VDDx  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
IDD1 (Q)  
IDD2 (Q)  
0.7  
1.2  
6.2  
1.3  
1.0  
1.0  
3.8  
4.7  
1.2  
1.8  
9.6  
1.8  
1.5  
1.4  
5.8  
6.4  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 0 (N0), 1 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
VI4 = 1 (N0), 0 (N1)5  
ADuM121N  
Dynamic Supply Current  
Dynamic Input  
Dynamic Output  
Undervoltage Lockout  
Positive VDDx Threshold  
Negative VDDx Threshold  
VDDx Hysteresis  
IDDI (D)  
0.01  
0.01  
mA/Mbps Inputs switching, 50% duty cycle  
mA/Mbps Inputs switching, 50% duty cycle  
IDDO (D)  
UVLO  
VDDxUV+  
VDDxUV−  
VDDxUVH  
1.6  
1.5  
0.1  
V
V
V
Rev. A | Page 9 of 19  
 
ADuM120N/ADuM121N  
Data Sheet  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
AC SPECIFICATIONS  
Output Rise/Fall Time  
Common-Mode Transient Immunity6  
tR/tF  
|CMH|  
2.5  
100  
ns  
kV/µs  
10% to 90%  
VIx = VDDx, VCM = 1000 V, transient  
magnitude = 800 V  
VIx = 0 V, VCM = 1000 V, transient  
magnitude = 800 V  
75  
75  
|CML|  
100  
kV/µs  
1 IOx is the Channel x output current, where x = A or B.  
2 VIxH is the input side logic high voltage.  
3 VIxL is the input side logic low voltage.  
4 VI is the input voltage.  
5 N0 is the ADuM120N0/ADuM121N0 models, N1 is the ADuM120N1/ADuM121N1 models. See the Ordering Guide.  
6 |CMH| is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDDx. |CML| is the maximum common-mode voltage slew rate  
that can be sustained while maintaining VO > 0.8 V. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges.  
Table 8. Total Supply Current vs. Data Throughput  
1 Mbps  
Typ  
25 Mbps  
Typ  
100 Mbps  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
SUPPLY CURRENT  
ADuM120N  
Supply Current Side 1  
Supply Current Side 2  
ADuM121N  
IDD1  
IDD2  
3.4  
1.2  
6.0  
1.8  
3.8  
1.9  
6.4  
2.8  
5.2  
4.0  
8.4  
5.8  
mA  
mA  
Supply Current Side 1  
Supply Current Side 2  
IDD1  
IDD2  
2.4  
2.8  
4.7  
4.8  
2.8  
3.2  
5.5  
5.6  
4.4  
4.8  
7.8  
7.9  
mA  
mA  
INSULATION AND SAFETY RELATED SPECIFICATIONS  
For additional information, see www.analog.com/icouplersafety.  
Table 9.  
Parameter  
Symbol Value Unit  
Test Conditions/Comments  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
3000  
4.0  
V rms  
1-minute duration  
L (I01)  
L (I02)  
L (PCB)  
mm min Measured from input terminals to output terminals,  
shortest distance through air  
mm min Measured from input terminals to output terminals,  
shortest distance path along body  
mm min Measured from input terminals to output terminals,  
shortest distance through air, line of sight, in the PCB  
mounting plane  
Minimum External Tracking (Creepage)  
4.0  
4.5  
Minimum Clearance in the Plane of the Printed  
Circuit Board (PCB Clearance)  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance (Comparative Tracking Index)  
Material Group  
25.5  
>400  
II  
µm min  
V
Insulation distance through insulation  
DIN IEC 112/VDE 0303 Part 1  
Material Group (DIN VDE 0110, 1/89, Table 1)  
CTI  
PACKAGE CHARACTERISTICS  
Table 10.  
Parameter  
Symbol Min Typ Max Unit Test Conditions/Comments  
Resistance (Input to Output)1  
Capacitance (Input to Output)1  
Input Capacitance2  
RI-O  
CI-O  
CI  
1013  
2
4.0  
80  
pF  
pF  
f = 1 MHz  
IC Junction to Ambient Thermal Resistance  
θJA  
°C/W Thermocouple located at center of package underside  
1 The device is considered a 2-terminal device: Pin 1 through Pin 4 are shorted together, and Pin 5 through Pin 8 are shorted together.  
2 Input capacitance is from any input data pin to ground.  
Rev. A | Page 10 of 19  
 
 
 
 
Data Sheet  
ADuM120N/ADuM121N  
REGULATORY INFORMATION  
See Table 15 and the Insulation Lifetime section for details regarding recommended maximum working voltages for specific cross-  
isolation waveforms and insulation levels.  
Table 11.  
UL (Pending)  
CSA (Pending)  
VDE (Pending)  
CQC (Pending)  
Recognized under UL 1577  
Component Recognition  
Program1  
Approved under CSA Component  
Acceptance Notice 5A  
DIN V VDE V 0884-10 (VDE V  
0884-10):2006-122  
Certified under  
CQC11-471543-2012  
Single Protection, 3000 V rms  
Isolation Voltage  
CSA 60950-1-07+A1+A2 and  
IEC 60950-1, second edition, +A1+A2:  
Reinforced insulation, 565 V  
peak, VIOSM = 6000 V peak  
GB4943.1-2011  
Double Protection, 3000 V rms  
Isolation Voltage  
Basic insulation at 400 V rms  
(565 V peak)  
Basic insulation, 565 V peak,  
VIOSM = 10000 V peak  
Basic insulation at 770 V rms  
(1089 V peak) working voltage  
Reinforced insulation at 200 V rms  
(283 V peak)  
Reinforced insulation at  
385 V rms (545 V peak)  
IEC 60601-1 Edition 3.1:  
Basic insulation (1 MOPP), 250 V rms  
(354 V peak)  
CSA 61010-1-12 and IEC 61010-1  
third edition  
Basic insulation at 300 V rms mains,  
400 V rms (565 V peak)  
Reinforced insulation at 300 V rms  
mains, 200 V secondary (283 V peak)  
File E214100  
File 205078  
File 2471900-4880-0001  
File (pending)  
1 In accordance with UL 1577, each ADuM120N/ADuM121N is proof tested by applying an insulation test voltage ≥ 3600 V rms for 1 sec.  
2 In accordance with DIN V VDE V 0884-10, each ADuM120N/ADuM121N is proof tested by applying an insulation test voltage ≥ 1059 V peak for 1 sec (partial discharge  
detection limit = 5 pC). The * marking branded on the component designates DIN V VDE V 0884-10 approval.  
Rev. A | Page 11 of 19  
 
ADuM120N/ADuM121N  
Data Sheet  
DIN V VDE V 0884-10 (VDE V 0884-10) INSULATION CHARACTERISTICS  
These isolators are suitable for reinforced electrical isolation only within the safety limit data. Protective circuits ensure the maintenance  
of the safety data. The * marking on packages denotes DIN V VDE V 0884-10 approval.  
Table 12.  
Description  
Test Conditions/Comments  
Symbol  
Characteristic Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltage ≤ 150 V rms  
For Rated Mains Voltage ≤ 300 V rms  
For Rated Mains Voltage ≤ 400 V rms  
Climatic Classification  
Pollution Degree per DIN VDE 0110, Table 1  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method B1  
I to IV  
I to III  
I to III  
40/105/21  
2
VIORM  
Vpd (m)  
565  
1059  
V peak  
V peak  
VIORM × 1.875 = Vpd (m), 100% production test,  
t
ini = tm = 1 sec, partial discharge < 5 pC  
Input to Output Test Voltage, Method A  
After Environmental Tests Subgroup 1  
VIORM × 1.5 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
VIORM × 1.2 = Vpd (m), tini = 60 sec, tm = 10 sec,  
partial discharge < 5 pC  
Vpd (m)  
848  
678  
V peak  
V peak  
After Input and/or Safety Test Subgroup 2  
and Subgroup 3  
Highest Allowable Overvoltage  
Surge Isolation Voltage Basic  
VIOTM  
VIOSM  
4200  
10000  
V peak  
V peak  
V peak = 10 kV, 1.2 µs rise time, 50 µs,  
50% fall time  
Surge Isolation Voltage Reinforced  
Safety Limiting Values  
V peak = 10 kV, 1.2 µs rise time, 50 µs,  
50% fall time  
Maximum value allowed in the event of a  
failure (see Figure 3)  
VIOSM  
6000  
V peak  
Maximum Junction Temperature  
Total Power Dissipation at 25°C  
Insulation Resistance at TS  
TS  
PS  
RS  
150  
1.56  
>109  
°C  
W
VIO = 500 V  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
RECOMMENDED OPERATING CONDITIONS  
Table 13.  
Parameter  
Symbol  
TA  
VDD1, VDD2  
Rating  
Operating Temperature  
Supply Voltages  
Input Signal Rise and Fall Times  
−40°C to +125°C  
1.7 V to 5.5 V  
1.0 ms  
0
50  
100  
150  
200  
AMBIENT TEMPERATURE (°C)  
Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Ambient Temperature per DIN V VDE V 0884-10  
Rev. A | Page 12 of 19  
 
 
 
Data Sheet  
ADuM120N/ADuM121N  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 14.  
Parameter  
Rating  
Supply Voltages (VDD1, VDD2  
Input Voltages (VIA, VIB)1  
Output Voltages (VOA, VOB)2  
)
−0.5 V to +7.0 V  
−0.5 V to VDDI + 0.5 V  
−0.5 V to VDDO + 0.5 V  
Average Output Current per Pin3  
ESD CAUTION  
Side 1 Output Current (IO1)  
Side 2 Output Current (IO2)  
Common-Mode Transients4  
Storage Temperature (TST) Range  
−10 mA to +10 mA  
−10 mA to +10 mA  
−150 kV/µs to +150 kV/µs  
−65°C to +150°C  
Ambient Operating Temperature  
(TA) Range  
−40°C to +125°C  
1 VDDI is the input side supply voltage.  
2 VDDO is the output side supply voltage.  
3 See Figure 3 for the maximum rated current values for various temperatures.  
4 Common-mode transients refer to the common-mode transients across the  
insulation barrier. Common-mode transients exceeding the absolute  
maximum ratings may cause latch-up or permanent damage.  
Table 15. Maximum Continuous Working Voltage1  
Parameter  
Rating  
Constraint2  
Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
AC VOLTAGE  
Bipolar Waveform  
Basic Insulation  
Reinforced Insulation  
Unipolar Waveform  
Basic Insulation  
Reinforced Insulation  
DC VOLTAGE  
789 V peak  
403 V peak  
909 V peak  
469 V peak  
Lifetime limited by package creepage maximum approved working voltage per IEC 60950-1  
Basic Insulation  
Reinforced Insulation  
558 V peak  
285 V peak  
1 Maximum continuous working voltage refers to the continuous voltage magnitude imposed across the isolation barrier. See the Insulation Lifetime section for more details.  
2 Insulation lifetime for the specified test condition is greater than 50 years.  
Truth Tables  
Table 16. ADuM120N/ADuM121N Truth Table (Positive Logic)  
Default Low (N0),  
V
Default High (N1),  
VOx Output1, 2  
VIx Input1  
Low  
VDDI State1  
Powered  
VDDO State1  
Powered  
Ox Output1, 2  
Test Conditions/Comments  
Normal operation  
Low  
Low  
High  
Powered  
Powered  
High  
High  
Normal operation  
Don’t Care3  
Don’t Care3  
Unpowered  
Powered  
Powered  
Unpowered  
Low  
Indeterminate  
High  
Indeterminate  
Fail-safe output  
1 VIx and VOx refer to the input and output signals of a given channel (A or B). VDDI and VDDO refer to the supply voltages on the input and output sides of the given  
channel, respectively.  
2 N0 is the ADuM120N0/ADuM121N0 models, N1 is the ADuM120N1/ADuM121N1 models. See the Ordering Guide.  
3 Input pins (VIx) on the same side as an unpowered supply must be in a low state to avoid powering the device through its ESD protection circuitry.  
Rev. A | Page 13 of 19  
 
 
 
ADuM120N/ADuM121N  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
8
7
6
5
V
V
V
V
DD1  
DD2  
OA  
OB  
ADuM120N  
V
V
IA  
IB  
TOP VIEW  
(Not to Scale)  
GND  
GND  
2
1
Figure 4. ADuM120N Pin Configuration  
Reference the AN-1109 Application Note for specific layout guidelines.  
Table 17. ADuM120N Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
VDD1  
VIA  
VIB  
GND1  
GND2  
VOB  
VOA  
VDD2  
Supply Voltage for Isolator Side 1.  
Logic Input A.  
Logic Input B.  
Ground 1. This pin is the ground reference for Isolator Side 1.  
Ground 2. This pin is the ground reference for Isolator Side 2.  
Logic Output B.  
Logic Output A.  
Supply Voltage for Isolator Side 2.  
1
2
3
4
8
7
6
5
V
V
V
V
DD1  
DD2  
IA  
ADuM121N  
V
OA  
V
TOP VIEW  
(Not to Scale)  
IB  
OB  
GND  
GND  
2
1
Figure 5. ADuM121N Pin Configuration  
Reference the AN-1109 Application Note for specific layout guidelines.  
Table 18. ADuM121N Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
VDD1  
VOA  
VIB  
GND1  
GND2  
VOB  
VIA  
VDD2  
Supply Voltage for Isolator Side 1.  
Logic Output A.  
Logic Input B.  
Ground 1. This pin is the ground reference for Isolator Side 1.  
Ground 2. This pin is the ground reference for Isolator Side 2.  
Logic Output B.  
Logic Input A.  
Supply Voltage for Isolator Side 2.  
Rev. A | Page 14 of 19  
 
Data Sheet  
ADuM120N/ADuM121N  
TYPICAL PERFORMANCE CHARACTERISTICS  
10  
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
5V  
5V  
3.3V  
2.5V  
1.8V  
3.3V  
2.5V  
1.8V  
1
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 6. ADuM120N IDD1 Supply Current vs. Data Rate at Various Voltages  
Figure 9. ADuM121N IDD1 Supply Current vs. Data Rate at Various Voltages  
10  
9
10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
5V  
5V  
3.3V  
2.5V  
1.8V  
3.3V  
2.5V  
1.8V  
1
0
1
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
20  
40  
60  
80  
100  
120  
140  
160  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 7. ADuM120N IDD2 Supply Current vs. Data Rate at Various Voltages  
Figure 10. ADuM121N IDD2 Supply Current vs. Data Rate at Various Voltages  
14  
12  
10  
8
14  
12  
10  
8
6
6
4
4
5V  
5V  
2
2
3.3V  
2.5V  
1.8V  
3.3V  
2.5V  
1.8V  
0
0
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. Propagation Delay for Logic High Output (tPLH) vs. Temperature at  
Various Voltages  
Figure 11. Propagation Delay for Logic Low Output (tPHL) vs. Temperature at  
Various Voltages  
Rev. A | Page 15 of 19  
 
ADuM120N/ADuM121N  
Data Sheet  
APPLICATIONS INFORMATION  
See the Ordering Guide for the model numbers that have the  
fail-safe output state of low or the fail-safe output state of high.  
OVERVIEW  
The ADuM120N/ADuM121N use a high frequency carrier to  
transmit data across an isolation barrier using iCoupler chip  
scale transformer coils separated by layers of polyimide  
isolation. With an on/off keying (OOK) technique and the  
differential architecture shown in Figure 13 and Figure 14, the  
ADuM120N/ADuM121N have very low propagation delay and  
high speed. Internal regulators and input/output design techniques  
allow logic and supply voltages over a wide range from 1.7 V to  
5.5 V, offering voltage translation of 1.8 V, 2.5 V, 3.3 V, and 5 V  
logic. The architecture is designed for high common-mode  
transient immunity and high immunity to electrical noise and  
magnetic interference. Radiated emissions are minimized with a  
spread spectrum OOK carrier and other techniques.  
PCB LAYOUT  
The ADuM120N/ADuM121N digital isolators require no external  
interface circuitry for the logic interfaces. Power supply bypassing  
is strongly recommended at the input and output supply pins  
(see Figure 12). Bypass capacitors are most conveniently connected  
between Pin 1 and Pin 4 for VDD1 and between Pin 5 and Pin 8  
for VDD2. The recommended bypass capacitor value is between  
0.01 μF and 0.1 μF. The total lead length between both ends of  
the capacitor and the input power supply pin must not exceed  
10 mm.  
V
V
V
V
DD2  
DD1  
V
V
V
IA/ OA  
OA/ IA  
OB  
V
IB  
Figure 13 shows the operation block diagram of a single channel  
for the ADuM120N0/ADuM121N0 models, which have the  
condition of the fail-safe output state equal to low, where the  
carrier waveform is off when the input state is low. If the input  
side is off or not operating, the fail-safe output state of low  
(noted by the 0 in the model number) sets the output to low.  
For the ADuM120N1/ADuM121N1, which have a fail-safe output  
state of high, Figure 14 shows the conditions where the carrier  
waveform is off when the input state is high. When the input  
side is off or not operating, the fail-safe output state of high  
(noted by the 1 in the model number) sets the output to high.  
GND  
1
GND  
2
Figure 12. Recommended Printed Circuit Board Layout  
In applications involving high common-mode transients, ensure  
that board coupling across the isolation barrier is minimized.  
Furthermore, design the board layout such that any coupling  
that does occur equally affects all pins on a given component  
side. Failure to ensure this can cause voltage differentials between  
pins exceeding the Absolute Maximum Ratings of the device,  
thereby leading to latch-up or permanent damage.  
See the AN-1109 Application Note for board layout guidelines.  
REGULATOR  
REGULATOR  
RECEIVER  
TRANSMITTER  
V
V
OUT  
IN  
GND  
GND  
2
1
Figure 13. Operational Block Diagram of a Single Channel with a Low Fail-Safe Output State  
REGULATOR  
REGULATOR  
RECEIVER  
TRANSMITTER  
V
V
OUT  
IN  
GND  
GND  
2
1
Figure 14. Operational Block Diagram of a Single Channel with a High Fail-Safe Output State  
Rev. A | Page 16 of 19  
 
 
 
 
 
 
Data Sheet  
ADuM120N/ADuM121N  
PROPAGATION DELAY RELATED PARAMETERS  
INSULATION LIFETIME  
Propagation delay is a parameter that describes the time it takes  
a logic signal to propagate through a component. The propagation  
delay to a Logic 0 output may differ from the propagation delay  
to a Logic 1 output.  
All insulation structures eventually break down when subjected  
to voltage stress over a sufficiently long period. The rate of  
insulation degradation is dependent on the characteristics of the  
voltage waveform applied across the insulation as well as on the  
materials and material interfaces.  
INPUT (V  
)
50%  
Ix  
The two types of insulation degradation of primary interest are  
breakdown along surfaces exposed to the air and insulation  
wear out. Surface breakdown is the phenomenon of surface  
tracking and the primary determinant of surface creepage  
requirements in system level standards. Insulation wear out is the  
phenomenon where charge injection or displacement currents  
inside the insulation material cause long-term insulation  
degradation.  
tPLH  
tPHL  
OUTPUT (V  
)
50%  
Ox  
Figure 15. Propagation Delay Parameters  
Pulse width distortion is the maximum difference between these  
two propagation delay values and is an indication of how  
accurately the timing of the input signal is preserved.  
Channel matching is the maximum amount the propagation delay  
differs between channels within a single ADuM120N/ADuM121N  
component.  
Surface Tracking  
Surface tracking is addressed in electrical safety standards by  
setting a minimum surface creepage based on the working voltage,  
the environmental conditions, and the properties of the insulation  
material. Safety agencies perform characterization testing on the  
surface insulation of components that allows the components to be  
categorized in different material groups. Lower material group  
ratings are more resistant to surface tracking and, therefore, can  
provide adequate lifetime with smaller creepage. The minimum  
creepage for a given working voltage and material group is in each  
system level standard and is based on the total rms voltage  
across the isolation, pollution degree, and material group. The  
material group and creepage for the ADuM120N/ADuM121N  
isolators are presented in Table 9.  
Propagation delay skew is the maximum amount the propagation  
delay differs between multiple ADuM120N/ADuM121N  
components operating under the same conditions  
JITTER MEASUREMENT  
Figure 16 shows the eye diagram for the ADuM120N/ADuM121N.  
The measurement was taken using an Agilent 81110A pulse  
pattern generator at 150 Mbps with pseudorandom bit sequences  
(PRBS) 2(n − 1), n = 14, for 5 V supplies. Jitter was measured  
with the Tektronix Model 5104B oscilloscope, 1 GHz, 10 GS/s  
with the DPOJET jitter and eye diagram analysis tools. The result  
shows a typical measurement on the ADuM120N/ADuM121N  
with 380 ps p-p jitter.  
Insulation Wear Out  
The lifetime of insulation caused by wear out is determined by  
its thickness, material properties, and the voltage stress applied.  
It is important to verify that the product lifetime is adequate at  
the application working voltage. The working voltage supported  
by an isolator for wear out may not be the same as the working  
voltage supported for tracking. It is the working voltage  
5
4
3
2
1
0
applicable to tracking that is specified in most standards.  
Testing and modeling show that the primary driver of long-  
term degradation is displacement current in the polyimide  
insulation causing incremental damage. The stress on the  
insulation can be broken down into broad categories, such as  
dc stress, which causes very little wear out because there is  
no displacement current, and an ac component time varying  
voltage stress, which causes wear out.  
–10  
–5  
0
5
10  
TIME (ns)  
Figure 16. ADuM120N/ADuM121N Eye Diagram  
Rev. A | Page 17 of 19  
 
 
 
 
ADuM120N/ADuM121N  
Data Sheet  
The ratings in certification documents are usually based on  
60 Hz sinusoidal stress because this the reflects isolation  
from line voltage. However, many practical applications have  
combinations of 60 Hz ac and dc across the barrier as shown  
in Equation 1. Because only the ac portion of the stress causes  
wear out, the equation can be rearranged to solve for the ac rms  
voltage, as is shown in Equation 2. For insulation wear out with  
the polyimide materials used in these products, the ac rms  
voltage determines the product lifetime.  
The working voltage across the barrier from Equation 1 is  
2
VRMS = VAC RMS2 +VDC  
VRMS = 2402 + 4002  
VRMS = 466 V  
This is the working voltage used together with the material group  
and pollution degree when looking up the creepage required by  
a system standard.  
2
VRMS = VAC RMS2 +VDC  
(1)  
To determine if the lifetime is adequate, obtain the time varying  
portion of the working voltage. To obtain the ac rms voltage,  
use Equation 2.  
or  
2
VAC RMS = VRMS2 VDC  
(2)  
2
VAC RMS = VRMS2 VDC  
where:  
VAC RMS  
AC RMS = 240 V rms  
=
4662 4002  
V
V
V
RMS is the total rms working voltage.  
AC RMS is the time varying portion of the working voltage.  
DC is the dc offset of the working voltage.  
V
In this case, the ac rms voltage is simply the line voltage of  
240 V rms. This calculation is more relevant when the waveform is  
not sinusoidal. The value is compared to the limits for working  
voltage in Table 15 for the expected lifetime, less than a 60 Hz  
sine wave, and it is well within the limit for a 50-year service life.  
Calculation and Use of Parameters Example  
The following example frequently arises in power conversion  
applications. Assume that the line voltage on one side of the  
isolation is 240 VAC RMS and a 400 VDC bus voltage is present on  
the other side of the isolation barrier. The isolator material is  
polyimide. To establish the critical voltages in determining the  
creepage, clearance, and lifetime of a device, see Figure 17 and  
the following equations.  
Note that the dc working voltage limit in Table 15 is set by the  
creepage of the package as specified in IEC 60664-1. This value  
can differ for specific system level standards.  
V
AC RMS  
V
V
V
DC  
PEAK  
RMS  
TIME  
Figure 17. Critical Voltage Example  
Rev. A | Page 18 of 19  
 
Data Sheet  
ADuM120N/ADuM121N  
OUTLINE DIMENSIONS  
5.00 (0.1968)  
4.80 (0.1890)  
8
1
5
4
6.20 (0.2441)  
5.80 (0.2284)  
4.00 (0.1574)  
3.80 (0.1497)  
0.50 (0.0196)  
0.25 (0.0099)  
1.27 (0.0500)  
BSC  
45°  
1.75 (0.0688)  
1.35 (0.0532)  
0.25 (0.0098)  
0.10 (0.0040)  
8°  
0°  
0.51 (0.0201)  
0.31 (0.0122)  
COPLANARITY  
0.10  
1.27 (0.0500)  
0.40 (0.0157)  
0.25 (0.0098)  
0.17 (0.0067)  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MS-012-AA  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS  
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR  
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.  
Figure 18. 8-Lead Standard Small Outline Package [SOIC_N]  
Narrow Body (R-8)  
Dimensions shown in millimeters and (inches)  
ORDERING GUIDE  
No. of  
Inputs,  
No. of  
Inputs,  
Fail-Safe  
Output  
State  
Temperature  
Range  
Withstand Voltage  
Package  
Description  
Package  
Option  
Model1, 2  
VDD1 Side VDD2 Side Rating (kV rms)  
ADuM120N1BRZ  
ADuM120N1BRZ-RL7  
−40°C to +125°C  
−40°C to +125°C  
2
2
0
0
3
3
High  
High  
8-Lead SOIC_N  
8-Lead SOIC_N,  
Tape and Reel  
R-8  
R-8  
ADuM120N0BRZ  
ADuM120N0BRZ-RL7  
−40°C to +125°C  
−40°C to +125°C  
2
2
0
0
3
3
Low  
Low  
8-Lead SOIC_N  
8-Lead SOIC_N,  
Tape and Reel  
R-8  
R-8  
ADuM121N1BRZ  
ADuM121N1BRZ-RL7  
−40°C to +125°C  
−40°C to +125°C  
1
1
1
1
3
3
High  
High  
8-Lead SOIC_N  
8-Lead SOIC_N,  
Tape and Reel  
R-8  
R-8  
ADuM121N0BRZ  
ADuM121N0BRZ-RL7  
−40°C to +125°C  
−40°C to +125°C  
1
1
1
1
3
3
Low  
Low  
8-Lead SOIC_N  
8-Lead SOIC_N,  
Tape and Reel  
R-8  
R-8  
ADuM121N1WBRZ  
ADuM121N1WBRZ-RL7  
−40°C to +125°C  
−40°C to +125°C  
1
1
1
1
3
3
High  
High  
8-Lead SOIC_N  
8-Lead SOIC_N,  
Tape and Reel  
R-8  
R-8  
1 Z = RoHS Compliant Part.  
2 W = Qualified for Automotive Applications.  
AUTOMOTIVE PRODUCTS  
The ADuM121N1WBRZ and the ADuM121N1WBRZ-RL7 models are available with controlled manufacturing to support the quality and  
reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the  
commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade  
products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific  
product ordering information and to obtain the specific Automotive Reliability reports for these models.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14122-0-4/16(A)  
Rev. A | Page 19 of 19  
 
 

相关型号:

ADUM120N0BRZ-RL7

3.0 kV rms, Dual-Channel Digital Isolators
ADI

ADUM120N1BRZ

3.0 kV rms, Dual-Channel Digital Isolators
ADI

ADUM120N1BRZ-RL7

3.0 kV rms, Dual-Channel Digital Isolators
ADI

ADUM120X

Digital Isolator Product Selection and Resource Guide
ADI

ADUM121

Quad-Channel, 2.5 kV Isolators with Integrated DC-to-DC Converter
ADI

ADUM1210

Dual-Channel Digital Isolator
ADI

ADUM1210BRZ

Dual-Channel Digital Isolator
ADI

ADUM1210BRZ-RL7

Dual-Channel Digital Isolator
ADI

ADUM121N

3.0 kV rms双通道数字隔离器
ADI

ADUM121N0BRZ

3.0 kV rms, Dual-Channel Digital Isolators
ADI

ADUM121N0BRZ-RL7

3.0 kV rms, Dual-Channel Digital Isolators
ADI

ADUM121N1BRZ

3.0 kV rms, Dual-Channel Digital Isolators
ADI