ADUC7022BCP [ADI]

IC 32-BIT, FLASH, 45.5 MHz, RISC MICROCONTROLLER, QCC40, 6 X 6 MM, MO-220VJJD-2, LFCSP-40, Microcontroller;
ADUC7022BCP
型号: ADUC7022BCP
厂家: ADI    ADI
描述:

IC 32-BIT, FLASH, 45.5 MHz, RISC MICROCONTROLLER, QCC40, 6 X 6 MM, MO-220VJJD-2, LFCSP-40, Microcontroller

微控制器 外围集成电路
文件: 总16页 (文件大小:199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Precision Analog Microcontroller  
Small Package, 12-bit Analog I/O, ARM7TDMI® MCU  
Preliminary Technical Data  
ADuC7020/ADuC7021/ADuC7022  
FEATURES  
Analog I/O  
On-Chip Peripherals  
UART, dual I2C and SPI Serial I/O  
14-Pin GPIO Port  
2 X General Purpose Timers  
Wake-up and Watchdog Timers  
Power Supply Monitor  
PLA – Programmable Logic (Array)  
Power  
Multi-Channel, 12-bit, 1MSPS ADC  
- 5 Channels on the ADuC7020  
- 8 Channels on the ADuC7021  
- 10 Channels on the ADuC7022  
Differential and single-ended modes  
0 to Vref Analog Input Range  
Multi-Channel 12-bit Voltage Output DACs  
- 4 Outputs on the ADuC7020  
- 2 Outputs on the ADuC7021  
Specified for 3V operation  
Active Mode: 6mW (@1MHz)  
300mW (@45MHz)  
On-Chip 20ppm/°C Voltage Reference  
On-Chip Temperature Sensor ( 3°C)  
Uncommitted Voltage Comparator  
Microcontroller  
Packages and Temperature Range  
40 Pin LFCSP 6x6mm body package  
Fully specified for –40°C to 85°C operation  
Tools  
ARM7TDMI Core, 16/32-bit RISC architecture  
JTAG Port supports code download and debug  
Low-Cost QuickStart Development System  
Full Third-Party Support  
Clocking options: - Trimmed On-Chip Oscillator ( 2%)  
- External Watch crystal  
APPLICATIONS  
- External clock source  
45MHz PLL with Programmable Divider  
Memory  
62k Bytes Flash/EE Memory, 8k Bytes SRAM  
In-Circuit Download, JTAG based Debug  
Software triggered in-circuit re-programmability  
Optical Networking – Laser Power Control  
Base Station Systems  
Precision Instrumentation, Smart Sensors  
Optical Transceivers – Digital Diagnostic Monitoring  
(See general description on page 10)  
FUNCTIONAL BLOCK DIAGRAM  
ADC0  
12-BIT DAC  
12-BIT DAC  
12-BIT DAC  
12-BIT DAC  
DAC0***  
ADuC7020  
ADuC7021  
ADuC7022  
ADC5*  
1MSPS  
12-BIT ADC  
MUX  
DAC1***  
DAC2****  
DAC3****  
ADC7*  
ADC8**  
ADC9**  
TEMP  
SENSOR  
CMP0  
CMP1  
+
-
BANDGAP  
REF  
CMP  
OUT  
ARM7TDMI-BASED MCU WITH  
ADDITIONAL PERIPHERALS  
V
REF  
2kX32 SRAM  
31kX16 FLASH/EEPROM  
PLA  
GPIO  
*
not on the ADuC7020  
SERIAL I/O  
4 GEN. PUR-  
POSE TIMERS  
** ADuC7022 only  
*** not on the ADuC7022  
**** ADuC7020 only  
OSC  
& PLL  
JTAG  
RST  
POR  
PSM  
2
UART, SPI, 2xI  
C
Figure 1  
Rev. PrC  
Information furnis hed by Analog Devices is believed to be accurate and reliable.  
However, no res pons ibility is as s umed by Analog Devices for its us e, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
© 2004 Analog Devices, Inc. All rights reserved.  
Fax: 781.326.8703  
ADuC7020/ADuC7021/ADuC7022  
Preliminary Technical Data  
TABLE OF CONTENTS  
ADuC7020/21/22—Specifications ................................................. 3  
General Description....................................................................... 10  
Overview of the ARM7TDMI core.......................................... 10  
Memory organisation ................................................................ 11  
Outline Dimensions....................................................................... 16  
Absolute Maximum Ratings............................................................ 7  
Ordering Guide............................................................................. 7  
Pin function descriptions ................................................................ 8  
Rev. PrC | Page 2 of 16  
Preliminary Technical Data  
ADuC7020/ADuC7021/ADuC7022  
ADUC7020/21/22—SPECIFICATIONS1  
Table 1. (AVDD = IOVDD = 2.7 to 3.6V, VREF = 2.5 V Internal Reference, fCORE = 45MHz, All specifications TA = TMAX to TMIN, unless otherwise noted.)  
Parameter  
ADuC7020/21/22  
Unit  
Test Conditions/Comments  
ADC CHANNEL SPECIFICATIONS  
DC Accuracy 2, 3  
fSAMPLE = 1MSPS  
Resolution  
12  
Bits  
Integral Nonlinearity  
1.5  
0.5  
2.0  
+1/-0.9  
0.5  
LSB max  
LSB typ  
LSB max  
LSB max  
LSB typ  
LSB max  
LSB typ  
2.5V internal reference  
2.5V internal reference  
1.0V external reference  
2.5V internal reference  
2.5V internal reference  
1.0V external reference  
ADC input is a dc voltage  
Integral Nonlinearity 4  
Differential Nonlinearity  
4
Differential Nonlinearity  
+1/-0.9  
1
DC Code Distribution  
CALIBRATED ENDPOINT ERRORS 5  
Offset Error  
Offset Error Match  
Gain Error  
5
1
5
1
LSB max  
LSB typ  
LSB max  
LSB typ  
Gain Error Match  
DYNAMIC PERFORMANCE  
Signal-to-Noise Ratio (SNR) 6  
Total Harmonic Distortion (THD)  
Peak Harmonic or Spurious Noise  
Channel-to-Channel Crosstalk 7  
ANALOG INPUT  
Fin = 10kHz Sine Wave, fSAMPLE = 1MSPS  
71  
dB typ  
dB typ  
dB typ  
dB typ  
-78  
-78  
-80  
Input Voltage Ranges  
Differential mode  
8
VCM VREF/2  
Volts  
Single-ended mode  
0 to VREF  
Volts  
Leakage Current  
Input Capacitance  
5
20  
µA max  
pF typ  
During ADC Acquisition  
ON-CHIP VOLTAGE REFERENCE  
Output Voltage  
Accuracy  
Reference Temperature Coefficient  
Power Supply Rejection Ratio  
Output Impedance  
0.47µF from VREF (pin 55) to AGND  
2.5  
10  
10  
80  
10  
1
V
mV max  
ppm/°C typ  
dB typ  
typ  
Measured at TA = 25°C  
Internal VREF Power-On Time  
ms typ  
EXTERNAL REFERENCE INPUT9  
Input Voltage Range  
0.625  
AVDD  
TBD  
V min  
V max  
KΩ typ  
Input Impedance  
DAC CHANNEL SPECIFICATIONS  
DC ACCURACY  
RL = 5k, CL = 100pF  
Resolution  
12  
2
1
2
5
Bits  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
LSB typ  
LSB max  
mV max  
mV max  
% max  
% typ  
Guaranteed Monotonic  
DAC output unbuffered  
DAC output buffered  
Gain Error  
Gain Error Mismatch  
0.5  
TBD  
% of fullscale on DAC0  
Rev. PrC | Page 3 of 16  
ADuC7020/ADuC7021/ADuC7022  
Preliminary Technical Data  
Parameter  
ADuC7020/21/22  
Unit  
Test Conditions/Comments  
ANALOG OUTPUTS  
Output Voltage Range_0  
Ouput Voltage Range_1  
Output Voltage Range_2  
Output Impedance  
0 to DACREF  
0 to 2.5V  
0 to DACVDD  
V typ  
V typ  
V typ  
DACREF range: DACGND to DACVDD  
10  
typ  
DAC AC CHARACTERISTICS  
Voltage Output Settling Time  
Voltage Output Settling Time  
Digital to Analog Glitch Energy  
COMPARATOR  
10  
15  
TBD  
µs typ  
µs typ  
nV-sec typ  
DAC Output buffered  
DAC Output unbuffered  
I LSB change at major carry  
Input Offset Voltage  
Input Bias Current  
Input Voltage Range  
Input Capacitance  
10  
mV  
5
nA typ  
V max  
pF typ  
mV min  
mv max  
µs min  
µs max  
AVDD-1.2  
7
5
Hysteresis  
Hysteresis can be turned on or off via the CMPHYST  
bit in the CMPCON register  
Response time may be modified via the CMPRES bits  
in the CMPCON register  
10  
1
10  
Response Time  
TEMPERATURE SENSOR  
Voltage Output at 25°C  
Voltage TC  
TBD  
-2.0  
3
mV typ  
mV/°C typ  
°C typ  
Accuracy  
POWER SUPPLY MONITOR (PSM)  
IOVDD Trip Point Selection  
2.79  
3.07  
2.5  
V
V
Two selectable Trip Points  
Power Supply Trip Point Accuracy  
Watchdog Timer (WDT)4  
Timeout Period  
% max  
Of the selected nominal Trip Point Voltage  
0
TBD  
ms min  
ms max  
Flash/EE MEMORY  
Endurance10  
Data Retention11  
10,000  
30  
Cycles min  
Years min  
TJ = 55°C  
Digital Inputs  
All digital inputs including XTAL1 and XTAL2  
Input Leakage Current  
10  
1
10  
µA max  
µA typ  
pF typ  
Input Capacitance  
Logic Inputs4  
All Logic inputs including XTAL1 and XTAL2  
VINL, Input Low Voltage  
VINH, Input High Voltage  
Logic Outputs  
0.4  
2.0  
V max  
V min  
VOH, Output High Voltage  
VOL, Output Low Voltage  
MCU CLOCK RATE  
2.4  
0.4  
V min  
V max  
ISOURCE = 20µA  
ISINK = 1.6mA  
355.5  
45.5  
kHz min  
MHz max  
8 programmable core clock selections within this  
range  
STARTUP TIME  
Core Clock = TBD MHz  
At Power-On  
From Idle Mode  
From Power-Down Mode  
Programmable Logic Array (PLA)  
Propagation Delay  
TBD  
TBD  
TBD  
TBD  
ns typ  
From input pin to output pin  
Rev. PrC | Page 4 of 16  
Preliminary Technical Data  
ADuC7020/ADuC7021/ADuC7022  
Parameter  
POWER REQUIREMENTS 12  
ADuC7020/21/22  
Unit  
Test Conditions/Comments  
13  
,
Power Supply Voltage Range  
AVDD – AGND and IOVDD - IOGND  
2.7  
3.6  
V min  
V max  
Power Supply Current Normal Mode  
3mA  
5
50  
mA typ  
mA max  
mA typ  
mA max  
1MHz clock  
1MHz clock  
45MHz clock  
45MHz clock  
60  
Power Supply Current Idle Mode  
1
mA max  
Power Supply Current Power Down  
Mode  
30  
100  
µA typ  
µA max  
External Crystal or Internal Osc ON  
External Crystal or Internal Osc ON  
1 Temperature Range -40° to +85°C  
2 All ADC Channel Specifications are guaranteed during normal MicroConverter core operation.  
3 These specification apply to all ADC input channels.  
4 These numbers are not production tested but are supported by design and/or characterization data on production release.  
5
Based on external ADC system components, the user may need to execute a system calibration to remove external endpoint and a chieve these specifications..  
SNR calculation includes distortion and noise components.  
Channel-to-channel crosstalk is measured on adjacent channels.  
6
7
8
The input signal can be centered on any dc common-mode voltage (V ) as long as this value is within the ADC voltage input range specified.  
CM  
9
When using an external reference input pin, the internal reference must be disabled by setting the lsb in the REFCON MemeoryMapped Register to 0.  
10 Endurance is qualified to 50,000 cycles as per JEDEC Std. 22 method A117 and measured at -40°C, +25°C and +85°C. Typical endurance at 25°C is 70,000 cycles.  
11 Retention lifetime equivalent at junction temperature (Tj) = 55°C as per JEDEC Std. 22 method A117. Retention lifetime will derate with junction temperature.  
12 Power supply current consumption is measured in normal, idle and power-down modes under the following conditions:  
Normal Mode:  
Idle Mode:  
Power-Down:  
TBD  
TBD  
TBD  
13 DVDD power supply current increases typically by TBD mA during a Flash/EE memory program or erase cycle.  
Rev. PrC | Page 5 of 16  
ADuC7020/ADuC7021/ADuC7022  
Terminology  
Preliminary Technical Data  
output of the ADC. The signal is the rms amplitude of the  
fundamental. Noise is the rms sum of all nonfundamental  
signals up to half the sampling frequency (fS/2), excluding dc.  
The ratio is dependent upon the number of quantization levels  
in the digitisation process; the more levels, the smaller the  
quantization noise. The theoretical signal to (noise + distortion)  
ratio for an ideal N-bit converter with a sine wave input is given  
by:  
ADC Specifications  
Integral Nonlinearity  
This is the maximum deviation of any code from a straight line  
passing through the endpoints of the ADC transfer function.  
The endpoints of the transfer function are zero scale, a point 1/2  
LSB below the first code transition and full scale, a point 1/2  
LSB above the last code transition.  
Signal to (Noise + Distortion) = (6.02N + 1.76) dB  
Thus for a 12-bit converter, this is 74 dB.  
Total Harmonic Distortion  
Differential Nonlinearity  
This is the difference between the measured and the ideal 1 LSB  
change between any two adjacent codes in the ADC.  
Total Harmonic Distortion is the ratio of the rms sum of the  
harmonics to the fundamental.  
Offset Error  
DAC SPECIFICATIONS  
This is the deviation of the first code transition (0000 . . . 000) to  
(0000 . . . 001) from the ideal, i.e., +1/2 LSB.  
Relative Accuracy  
Relative accuracy or endpoint linearity is a measure of the  
maximum deviation from a straight line passing through the  
endpoints of the DAC transfer function. It is measured after  
adjusting for zero error and full-scale error.  
Gain Error  
This is the deviation of the last code transition from the ideal  
AIN voltage (Full Scale – 1.5 LSB) after the offset error has been  
adjusted out.  
VoltageOutputSettlingTime  
Signal to (Noise + Distortion) Ratio  
This is the amount of time it takes for the output to settle to  
within a 1 LSB level for a full-scale input change..  
This is the measured ratio of signal to (noise + distortion) at the  
Rev. PrC | Page 6 of 16  
Preliminary Technical Data  
ADuC7020/ADuC7021/ADuC7022  
ABSOLUTE MAXIMUM RATINGS  
Table 2. Absolute Maximum Ratings (TA = 25°C unless otherwise noted)  
Parameter  
Rating  
TBD  
TBD  
PIN CONFIGURATION  
40-Lead CSP  
AVDD to DVDD  
AGND to DGND  
DVDD to DGND, AVDD to AGND  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
VREF to AGND  
TBD  
TBD  
TBD  
TBD  
40  
31  
PIN 1  
IDENTIFIER  
30  
1
Analog Inputs to AGND  
TBD  
Operating Temperature Range  
Industrial ADuC7020/21/22  
Storage Temperature Range  
Junction Temperature  
–40°C to +85°C  
TOP VIEW  
(Not to Scale)  
TBD  
TBD  
TBD  
θJA Thermal Impedance  
(ADuC7020/21/22BCP)  
21  
10  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
11  
20  
TBD  
TBD  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those listed in the operational sections  
of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
ORDERING GUIDE  
Model  
Temperature Range  
–40°C to + 85°C  
–40°C to + 85°C  
–40°C to + 85°C  
Package Description  
Package Option  
CP-40  
CP-40  
ADuC7020BCP  
ADuC7021BCP  
ADuC7022BCP  
EVAL_ADuC7020QS  
40-Lead Chip Scale Package  
40-Lead Chip Scale Package  
40-Lead Chip Scale Package  
Development System  
CP-40  
Contact the factory for chip availability.  
ESD Caution  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. PrC | Page 7 of 16  
ADuC7020/ADuC7021/ADuC7022  
Preliminary Technical Data  
PIN FUNCTION DESCRIPTIONS  
Table 3. Pin Function Descriptions  
Pin# ADuC702X  
Mnemonic  
Type* Function  
7020  
7021  
37  
38  
39  
40  
1
7022  
36  
37  
38  
39  
40  
1
38  
39  
40  
1
2
-
ADC0  
I
I
I
I
I
I
I
I
I
I
Single-ended or differential Analog input 0  
Single-ended or differential Analog input 1  
ADC1  
ADC2/CMP0  
ADC3/CMP1  
ADC4  
Single-ended or differential Analog input 2 / Comparator Positive Input  
Single-ended or differential Analog input 3 / Comparator Negative Input  
Single-ended or differential Analog input 4  
2
ADC5  
Single-ended or differential Analog input 5  
-
3
2
ADC6  
Single-ended or differential Analog input 6  
-
4
3
ADC7  
Single-ended or differential Analog input 7  
-
-
4
ADC8  
Single-ended or differential Analog input 8  
-
-
5
ADC9  
Single-ended or differential Analog input 9  
Ground voltage reference for the ADC. For optimal performance the  
analog power supply should be separated from IOGND and DGND  
3
5
6
GNDREF  
S
4
5
6
7
8
9
6
7
-
-
-
DAC0/ADC12  
DAC1/ADC13  
DAC2/ADC14  
DAC3/ADC15  
TMS  
I/O  
I/O  
I/O  
I/O  
I
DAC0 Voltage Output / Single-ended or differential Analog input 12  
DAC1 Voltage Output / Single-ended or differential Analog input 13  
DAC2 Voltage Output / Single-ended or differential Analog input 14  
DAC3 Voltage Output / Single-ended or differential Analog input 15  
JTAG Test Port Input - Test Mode Select. Debug and download access  
JTAG Test Port Input – Test Data In. Debug and download access  
Multifunction I/O pin:  
-
-
-
8
9
7
8
TDI  
I
Boot Mode. The ADuC702X will enter UART serial download mode if BM  
is low at reset and will execute code if BM is pulled high at reset through  
a 1kOhm resistor/ General Purpose Input-Output Port 0.0 / Voltage  
Comparator Output/ Programmable Logic Array Input Element 7  
BM/P0.0/CMPOUT/P  
LAI[7]  
10  
10  
9
I/O  
Multifunction pin: driven low after reset  
General Purpose Output Port 0.6 / Timer 1 Input / Power on reset output  
/ Programmable Logic Array Output Element 3  
P0.6/T1/MRST/PLA  
O[3]  
11  
12  
11  
12  
10  
11  
O
I
JTAG Test Port Input - Test Clock. Debug and download access / Input to  
the internal clock generator circuits  
TCK/XCLK  
13  
14  
15  
13  
14  
15  
12  
13  
14  
TDO  
O
S
JTAG Test Port Output - Test Data Out. Debug and download access  
Ground for GPIO. Typically connected to DGND  
IOGND  
IOVDD  
S
3.3V Supply for GPIO and input of the on-chip voltage regulator.  
2.5V. Output of the on-chip voltage regulator. Must be connected to a  
0.47µF capacitor to DGND  
16  
16  
15  
LVDD  
S
17  
18  
19  
17  
18  
19  
16  
17  
18  
DGND  
TRST  
RST  
S
I
Ground for core logic.  
JTAG Test Port Output - Test Reset. Debug and download access  
Reset Input. (active low)  
I
Multifunction I/O pin:  
IRQ0/P0.4/CONVST  
ART/PLAO[1]  
External Interrupt Request 0, active high / General Purpose Input-Output  
Port 0.4 / Start conversion input signal for ADC / Programmable Logic  
Array Output Element 1  
20  
21  
20  
21  
19  
20  
I/O  
I/O  
Multifunction I/O pin:  
External Interrupt Request 1, active high / General Purpose Input-Output  
Port 0.5 / ADCBUSY signal / Programmable Logic Array Output Element 2  
IRQ1/P0.5/ADCBUSY  
/PLAO[2]  
Serial Port Multiplexed:  
General Purpose Input-Output Port 2.0 / UART / Programmable Logic  
Array Output Element 5/ Start conversion input signal for ADC  
P2.0/SPM9/PLAO[  
5]/CONVSTART  
22  
23  
22  
23  
21  
22  
I/O  
I/O  
Serial Port Multiplexed:  
General Purpose Input-Output Port 0.7 / Output for External Clock signal  
P0.7/ECLK/SPM8/P  
LAO[4]  
Rev. PrC | Page 8 of 16  
Preliminary Technical Data  
ADuC7020/ADuC7021/ADuC7022  
Pin# ADuC702X  
Mnemonic  
Type* Function  
7020  
7021  
7022  
/ UART / Programmable Logic Array Output Element 4  
Output to the crystal oscillator inverter  
24  
25  
24  
24  
23  
24  
XCLKO  
XCLKI  
O
I
Input to the crystal oscillator inverter and input to the internal clock  
generator circuits  
Serial Port Multiplexed:  
General Purpose Input-Output Port 1.7 / UART / SPI / Programmable  
Logic Array Output Element 0  
P1.7/SPM7/PLAO[  
0]  
26  
27  
28  
29  
30  
31  
32  
33  
26  
27  
28  
29  
30  
31  
32  
33  
25  
26  
27  
28  
29  
30  
31  
32  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Serial Port Multiplexed:  
General Purpose Input-Output Port 1.6 / UART / SPI / Programmable  
Logic Array Input Element 6  
P1.6/SPM6/PLAI[6]  
P1.5/SPM5/PLAI[5]  
P1.4/SPM4/PLAI[4]  
P1.3/SPM3/PLAI[3]  
P1.2/SPM2/PLAI[2]  
P1.1/SPM1/PLAI[1]  
Serial Port Multiplexed:  
General Purpose Input-Output Port 1.5 / UART / SPI / Programmable  
Logic Array Input Element 5  
Serial Port Multiplexed:  
General Purpose Input-Output Port 1.4 / UART / SPI / Programmable  
Logic Array Input Element 4  
Serial Port Multiplexed:  
General Purpose Input-Output Port 1.3/ UART / I2C1 /Programmable  
Logic Array Input Element 3  
Serial Port Multiplexed:  
General Purpose Input-Output Port 1.2 / UART / I2C1 /Programmable  
Logic Array Input Element 2  
Serial Port Multiplexed:  
General Purpose Input-Output Port 1.1 / UART / I2C0 / Programmable  
Logic Array Input Element 1  
Serial Port Multiplexed:  
General Purpose Input-Output Port 1.0/ Timer 1 Input / UART / I2C0 /  
Programmable Logic Array Input Element 0  
P1.0/T1/SPM0/PLA  
I[0]  
General Purpose Input-Output Port 4.2 / Programmable Logic Array  
Output Element 10  
34  
35  
-
-
P4.2/PLAO[10]  
VREF  
I/O  
I/O  
2.5V internal Voltage Reference. Must be connected to a 0.47uF capacitor  
when using the internal reference.  
34  
33  
36  
37  
35  
36  
34  
35  
AGND  
AVDD  
S
S
Analog Ground. Ground reference point for the analog circuitry  
3.3V Analog Power  
* I = Input, O = Output, S = Supply.  
- No pin assigned.  
Rev. PrC | Page 9 of 16  
ADuC7020/ADuC7021/ADuC7022  
GENERAL DESCRIPTION  
Preliminary Technical Data  
compressed into 16-bits, the Thumb instruction set. Faster  
execution from 16-bit memory and greater code density can  
usually be achieved by using the Thumb instruction set instead  
of the ARM instruction set, which makes the ARM7TDMI core  
particularly suitable for embedded applications.  
The ADuC7020/21/22 are fully integrated, 1MSPS, 12-bit data  
acquisition systems incorporating a high performance multi-  
channel ADC, a 16/32-bit MCU and Flash/EE Memory on a  
single chip.  
The ADC consists of 5/8/10 single-ended inputs. An additional  
2/4 inputs are available on the ADuC7021/20 but are  
multiplexed with the 2/4 DAC output pins. The ADC can  
operate in single-ended or differential input modes with a fully  
flexible front end. The ADC input voltage is 0 to VREF. Low drift  
bandgap reference, temperature sensor and voltage comparator  
complete the ADC peripheral set.  
However the Thumb mode has two limitations:  
- Thumb code usually uses more instructions for the same job,  
so ARM code is usually best for maximising the performance  
of the time-critical code.  
- The Thumb instruction set does not include some  
instructions that are needed for exception handling, so ARM  
code needs to be used for exception handling.  
The part also integrates 2/4 buffered voltage output DACs on-  
chip. The DAC output range is 0 to AVDD max.  
See ARM7TDMI User Guide for details on the core  
architecture, the programming model and both the ARM and  
ARM Thumb instruction sets.  
The device operates from the on-chip oscillator and PLL  
generating an internal high-frequency clock of 45 MHz. This  
clock is routed through a programmable clock divider from  
which the MCU core clock operating frequency is generated.  
The microcontroller core is an ARM7TDMI, 16/32-bit RISC  
machine, offering up to 45 MIPS peak performance. 62k Bytes  
of non-volatile Flash/EE are provided on-chip as well as 8k  
Bytes of SRAM. Both the Flash/EE and SRAM memory arrays  
are mapped into a single linear array.  
Long multiple (M)  
The ARM7TDMI instruction set includes four extra  
instructions which perform 32-bit by 32-bit multiplication with  
64-bit result and 32-bit by 32-bit multiplication-accumulation  
(MAC) with 64-bit result.  
EmbeddedICE (I)  
O n-chip factory firmware supports in-circuit serial download  
via the UART and JTAG serial interface ports while non-  
intrusive emulation is also supported via the JTAG interface.  
These features are incorporated into a low cost QuickStart  
system supporting this MicroConverter family.  
EmbeddedICE provides integrated on-chip support for the core.  
The EmbeddedICE module contains the breakpoint and  
watchpoint registers which allow code to be halted for  
debugging purposes. These registers are controlled through the  
JTAG test port.  
The parts operate from 2.7V to 3.6V and are specified over an  
industrial temperature range of -40°C to 85°C. When operating  
@45MHz the power dissipation is 300mW. The  
ADuC7020/21/22 are available in a 40-lead LFCSP package.  
When a breakpoint or watchpoint is encountered, the processor  
halts and enters debug state. Once in a debug state, the  
processor registers may be inspected as well as the Flash/EE, the  
SRAM and the Memory Mapped Registers.  
OVERVIEW OF THE ARM7TDMI CORE  
Exceptions  
The ARM7 core is a 32-bit Reduced Instruction Set Computer  
(RISC). It uses a single 32-bit bus for instruction and data. The  
length of the data can be 8, 16 or 32 bits and the length of the  
instruction word is 32 bits.  
ARM supports five types of exceptions, and a privileged  
processing mode for each type. The five type of exceptions are:  
- Normal interrupt or IRQ. It is provided to service general-  
purpose interrupt handling of internal and external events  
- Fast interrupt or FIQ. It is provided to service data transfer or  
communication channel with low latency. FIQ has priority  
over IRQ  
The ARM7TDMI is an ARM7 core with 4 additional features:  
- T support for the Thumb (16 bit) instruction set.  
- D support for debug  
- Memory abort  
- M support for long multiplies  
- Attempted execution of an undefined instruction  
- Software interrupt (SWI) instruction which can be used to  
make a call to an operating system.  
- I include the EmbeddedICE module to support embedded  
system debugging.  
Thumb mode (T)  
Typically the programmer will define interrupts as IRQ but for  
higher priority interrupt, i.e. faster response time, the  
programmer can define interrupt as FIQ.  
An ARM instruction is 32-bits long. The ARM7TDMI  
processor supports a second instruction set that has been  
Rev. PrC | Page 10 of 16  
Preliminary Technical Data  
ADuC7020/ADuC7021/ADuC7022  
The maximum IRQ latency calculation is similar, but must  
allow for the fact that FIQ has higher priority and could delay  
entry into the IRQ handling routine for an arbitrary length of  
time.  
ARM Registers  
ARM7TDMI has a total of 37 registers, of which 31 are general  
purpose registers and six are status registers. Each operating  
mode has dedicated banked registers.  
The minimum latency for FIQ or IRQ interrupts is four cycles  
in total which consists of the shortest time the request can take  
through the synchronizer plus the time to enter the exception  
mode.  
When writing user-level programs, 15 general purpose 32-bit  
registers (r0 to r14), the program counter (r15) and the current  
program status register (CPSR) are usable. The remaining  
registers are used only for system-level programming and for  
exception handling.  
Note that the ARM7TDMI will always be run in ARM (32-bit)  
mode when in privileged modes, i.e. when executing interrupt  
service routines.  
When an exception occurs, some of the standard register are  
replaced with registers specific to the exception mode. All  
exception modes have replacement banked registers for the  
stack pointer (r13) and the link register (r14) as represented in  
Figure22. The fast interrupt mode has more registers (8 to 12)  
for fast interrupt processing, so that the interrupt processing  
can begin without the need to save or restore these registers and  
thus save critical time in the interrupt handling process.  
MEMORY ORGANISATION  
The ADuC7020/21/22 incorporate two separate blocks of  
memory, 8kByte of SRAM and 64kByte of O n-Chip Flash/EE  
memory. 62kByte of On-Chip Flash/EE memory are available to  
the user, and the remaining 2kBytes are reserved for the factory  
configured boot page. These two blocks are mapped as shown  
Figure 3.  
r0  
r1  
r2  
usable in user mode  
Note that by default, after a reset, the Flash/EE memory is  
mirrored at address 0x00000000. It is possible to remap the  
SRAM at address 0x00000000 by clearing bit 0 of the REMAP  
MMR. This remap function is described in more details in the  
Flash/EE memory chapter.  
r3  
r4  
system modes only  
r5  
r6  
r7  
r8_fiq  
r9_fiq  
r8  
r9  
FFFFFFFFh  
MMRs  
r10_fiq  
r11_fiq  
r12_fiq  
r13_fiq  
r14_fiq  
FFFF0000h  
r10  
r11  
r12  
r13  
r13_und  
r13_irq  
Reserved  
r13_abt  
r14_abt  
r14_und  
r13_svc  
r14_svc  
r14_irq  
0008FFFFh  
r14  
Flash/EE  
r15 (PC)  
00080000h  
SPSR_und  
SPSR_irq  
SPSR_abt  
Reserved  
SPSR_svc  
CPSR  
SPSR_fiq  
00011FFFh  
SRAM  
00010000h  
user mode  
fiq  
mode  
svc  
mode  
abord  
mode  
irq undefined  
0000FFFFh  
mode  
mode  
Re-mappable Memory Space  
(Flash/EE or SRAM)  
00000000h  
Figure22: register organisation  
Figure 3: Physical memory map  
Interrupt latency  
Memory Access  
The worst case latency for an FIQ, assuming that it is enabled,  
consists of the longest time the request can take to pass through  
the synchronizer, plus the time for the longest instruction to  
complete (the longest instruction is an LDM) which loads all  
the registers including the PC, plus the time for the data abort  
entry, plus the time for FIQ entry. At the end of this time, the  
ARM7TDMI will be executing the instruction at 0x1C (FIQ  
interrupt vector address). The maximum total time is 44  
processor cycles, which is just over 975 nanoseconds in a system  
using a continuous 45 MHz processor clock.  
32  
The ARM7 core sees memory as a linear array of 2 byte  
location where the different blocks of memory are mapped as  
outlined in Figure 3 above.  
The ADuC7020/21/22 memory organisation is configured in  
little endian format: the least significant byte is located in the  
lowest byte address and the most significant byte in the highest  
byte address.  
Rev. PrC | Page 11 of 16  
ADuC7020/ADuC7021/ADuC7022  
Preliminary Technical Data  
bit0  
0xFFFFFFFF  
bit31  
Byte3  
Byte2 Byte1 Byte0  
0xFFFFF820  
Flash Control  
0xFFFFFFFFh  
Interface  
0xFFFFF800  
B
7
3
A
6
2
9
5
1
8
4
0
0x00000004h  
0x00000000h  
0xFFFFF46C  
GPIO  
0xFFFFF400  
0xFFFF0B54  
32 bits  
Figure 4: little endian format  
PLA  
0xFFFF0B00  
0xFFFF0A14  
Flash/EE Memory  
SPI  
0xFFFF0A00  
The total 64kBytes of Flash/EE are organised as 32k X 16 bits.  
31k X 16 bits are user space and 1k X 16 bits is reserved for boot  
loader. The page size of this Flash/EE memory is 256Bytes.  
0xFFFF0948  
2
I C1  
0xFFFF0900  
0xFFFF0848  
62kBytes of Flash/EE are available to the user as code and non-  
volatile data memory. There is no distinction between data and  
program as ARM code shares the same space. The real width of  
the Flash/EE memory is 16 bits, which means that in ARM  
mode (32-bit instruction), two accesses to the Flash/EE are  
necessary for each instruction fetch. It is therefore  
recommended to use Thumb mode when executing from  
Flash/EE memory for optimum access speed. The maximum  
access speed for the Flash/EE memory is 45MHz in Thumb  
mode and 22.5MHz in full ARM mode. More details on  
Flash/EE access time are outlined later in ‘Execution from  
SRAM and Flash/EE’ section of this datasheet.  
2
I C0  
0xFFFF0800  
0xFFFF0730  
UART  
0xFFFF0700  
0xFFFF0620  
DAC  
0xFFFF0600  
0xFFFF0538  
ADC  
0xFFFF0500  
0xFFFF0490  
Bandgap  
Reference  
0xFFFF048C  
SRAM  
0xFFFF0448  
Power Supply  
8kBytes of SRAM are available to the user, organized as 2k X 32  
bits, i.e. 2kWords. ARM code can run directly from SRAM at  
45MHz , given that the SRAM array is configured as a 32-bit  
wide memory array. More details on SRAM access time are  
outlined later in ‘Execution from SRAM and Flash/EE’ section  
of this datasheet.  
Monitor  
0xFFFF0440  
0xFFFF0420  
PLL &  
Oscillator Control  
0xFFFF0404  
0xFFFF0370  
Watchdog  
Timer  
0xFFFF0360  
Memory Mapped Registers  
0xFFFF0350  
Wake Up  
The Memory Mapped Register (MMR) space is mapped into  
the upper 2 pages of the Flash/EE space and accessed by  
indirect addressing through the ARM7 banked registers.  
Timer  
0xFFFF0340  
0xFFFF0334  
General Purpose  
Timer  
0xFFFF0320  
The MMR space provides an interface between the CPU and all  
on-chip peripherals. All registers except the core registers  
reside in the MMR area. All shaded locations shown in Figure 6  
are unoccupied or reserved locations and should not be  
accessed by user software. Table 4 shows a full MMR memory  
map. The ‘Access’ column corresponds to the access time  
reading or writing a MMR. Table 4 shows a full MMR memory  
map.  
0xFFFF0310  
Timer 0  
0xFFFF0300  
0xFFFF0238  
Remap &  
System Control  
0xFFFF0220  
0xFFFF0110  
Interrupt  
Controller  
0xFFFF0000  
Figure 5: Memory Mapped  
Rev. PrC | Page 12 of 16  
Preliminary Technical Data  
ADuC7020/ADuC7021/ADuC7022  
Table 4. Complete MMRs list  
Address Name  
Byte  
Access  
Type  
Page  
Address Name  
Byte  
Access  
Page  
Cycle  
Type  
RW  
W
Cycle  
IRQ address base = 0xFFFF0000  
0x0414  
0x0418  
PLLCON  
PLLKY2  
1
1
2
2
0x0000  
0x0004  
0x0008  
0x000C  
0x0010  
0x0100  
0x0104  
0x0108  
0x010C  
IRQSTA  
IRQSIG  
IRQEN  
4
4
4
4
4
4
4
4
4
R
1
1
1
1
1
1
1
1
1
R
PSM address base = 0xFFFF0440  
RW  
W
W
R
0x0440  
0x0444  
PSMCON  
CMPCON  
2
2
RW  
RW  
2
2
IRQCLR  
SWICFG  
FIQSTA  
FIQSIG  
FIQEN  
Reference address base = 0xFFFF0480  
0x048C  
REFCON  
1
RW  
2
R
ADC address base = 0xFFFF0500  
RW  
W
0x0500  
0x0504  
0x0508  
0x050C  
0x0510  
0x0514  
0x0530  
0x0534  
ADCCON  
ADCCP  
1
1
1
1
4
1
2
2
RW  
RW  
RW  
RW  
R
2
2
2
2
2
2
2
2
FIQCLR  
ADCCN  
ADCSTA  
ADCDAT  
ADCRST  
ADCGN  
ADCOF  
System Control address base = 0xFFFF0200  
0x0220  
0x0230  
0x0234  
REMAP  
RSTSTA  
RSTCLR  
1
1
1
RW  
R
1
1
1
W
RW  
RW  
RW  
Timer address base = 0xFFFF0300  
0x0300  
0x0304  
0x0308  
0x030C  
0x0320  
0x0324  
0x0328  
0x032C  
0x0330  
0x0340  
0x0344  
0x0348  
0x034C  
0x0360  
0x0364  
0x0368  
0x036C  
T0LD  
2
2
2
1
4
4
2
1
4
4
4
2
1
2
2
2
1
RW  
R
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
T0VAL  
T0CON  
T0CLRI  
T1LD  
DAC address base = 0xFFFF0600  
RW  
W
0x0600  
0x0604  
0x0608  
0x060C  
0x0610  
0x0614  
0x0618  
0x061C  
DAC0CON  
DAC0DAT  
DAC1CON  
DAC1DAT  
DAC2CON  
DAC2DAT  
DAC3CON  
DAC3DAT  
1
4
1
4
1
4
1
4
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
2
2
2
2
2
2
2
2
RW  
R
T1VAL  
T1CON  
T1CLRI  
T1CAP  
T2LD  
RW  
W
RW  
RW  
R
T2VAL  
T2CON  
T2CLRI  
T3LD  
UART base address = 0xFFFF0700  
RW  
W
0x0700  
COMTX  
1
1
1
1
1
1
1
1
1
1
1
RW  
R
2
2
2
2
2
2
2
2
2
2
2
COMRX  
RW  
R
COMDIV0  
COMIEN0  
COMDIV1  
COMIID0  
COMCON0  
COMCON1  
COMSTA0  
COMSTA1  
COMSCR  
RW  
RW  
R/W  
R
T3VAL  
T3CON  
T3CLRI  
0x0704  
RW  
W
0x0708  
0x070C  
0x0710  
0x0714  
0x0718  
0x071C  
RW  
RW  
R
PLL base address = 0xFFFF0400  
0x0404  
0x0408  
0x040C  
0x0410  
POWKY1  
POWCON  
POWKY2  
PLLKY1  
1
1
1
1
W
2
2
2
2
RW  
W
R
W
RW  
Rev. PrC | Page 13 of 16  
ADuC7020/ADuC7021/ADuC7022  
Preliminary Technical Data  
Address Name  
Byte  
Access  
Type  
RW  
Page  
Address Name  
Byte  
Access  
Type  
RW  
Page  
Cycle  
Cycle  
0x0720  
0x0724  
0x0728  
0X072C  
COMIEN1  
1
1
1
2
2
2
2
2
0x0944  
I2C1ID3  
1
2
COMIID1  
COMADR  
COMDIV2  
R
SPI base address = 0xFFFF0A00  
RW  
0x0A00  
0x0A04  
0x0A08  
0x0A0C  
0x0A10  
SPISTA  
SPIRX  
1
1
1
1
2
R
2
2
2
2
2
RW  
R
SPITX  
W
I2C0 base address = 0xFFFF0800  
SPIDIV  
SPICON  
RW  
RW  
0x0800  
0x0804  
0x0808  
0x080C  
0x0810  
0x0814  
0x0818  
0x081C  
0x0824  
0x0828  
0x082C  
0x0830  
0x0834  
0x0838  
0x083C  
0x0840  
0x0844  
I2C0MSTA  
I2C0SSTA  
I2C0SRX  
I2C0STX  
I2C0MRX  
I2C0MTX  
I2C0CNT  
I2C0ADR  
I2C0BYTE  
I2C0ALT  
I2C0CFG  
I2C0DIVH  
I2C0DIVL  
I2C0ID0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
R
R
PLA base address = 0xFFFF0B00  
W
0x0B00  
0x0B04  
0x0B08  
0x0B0C  
0x0B10  
0x0B14  
0x0B18  
0x0B1C  
0x0B20  
0x0B24  
0x0B28  
0x0B2C  
0x0B30  
0x0B34  
0x0B38  
0x0B3C  
0x0B40  
0x0B44  
0x0B48  
0x0B4C  
0x0B50  
PLAELM0  
PLAELM1  
PLAELM2  
PLAELM3  
PLAELM4  
PLAELM5  
PLAELM6  
PLAELM7  
PLAELM8  
PLAELM9  
PLAELM10  
PLAELM11  
PLAELM12  
PLAELM13  
PLAELM14  
PLAELM15  
PLACLK  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
4
4
4
4
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
R
W
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
I2C0ID1  
I2C0ID2  
I2C0ID3  
I2C1 base address = 0xFFFF0900  
0x0900  
0x0904  
0x0908  
0x090C  
0x0910  
0x0914  
0x0918  
0x091C  
0x0924  
0x0928  
0x092C  
0x0930  
0x0934  
0x0938  
0x093C  
0x0940  
I2C1MSTA  
I2C1SSTA  
I2C1SRX  
I2C1STX  
I2C1MRX  
I2C1MTX  
I2C1CNT  
I2C1ADR  
I2C1BYTE  
I2C1ALT  
I2C1CFG  
I2C1DIVH  
I2C1DIVL  
I2C1ID0  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
R
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
R
R
PLAIRQ  
W
PLAADC  
R
PLADIN  
W
PLADOUT  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
GPIO base address = 0xFFFFF400  
0xF400  
0xF404  
0xF408  
0xF40C  
0xF410  
0xF420  
0xF424  
0xF428  
0xF430  
GP0CON  
GP1CON  
GP2CON  
GP3CON  
GP4CON  
GP0DAT  
GP0SET  
GP0CLR  
GP1DAT  
4
4
4
4
4
4
1
1
4
RW  
RW  
RW  
RW  
RW  
RW  
W
1
1
1
1
1
1
1
1
1
I2C1ID1  
W
I2C1ID2  
RW  
Rev. PrC | Page 14 of 16  
Preliminary Technical Data  
ADuC7020/ADuC7021/ADuC7022  
Development Tools  
Address Name  
Byte  
Access  
Type  
W
Page  
An entry level, low cost development system is available for the  
ADuC702X family. This system consists of the following PC-  
based (Windows® compatible) hardware and software  
development tools:  
Cycle  
0xF434  
0xF438  
0xF440  
0xF444  
0xF448  
0xF450  
0xF454  
0xF458  
0xF460  
0xF464  
0xF468  
GP1SET  
GP1CLR  
GP2DAT  
GP2SET  
GP2CLR  
GP3DAT  
GP3SET  
GP3CLR  
GP4DAT  
GP4SET  
GP4CLR  
1
1
4
1
1
4
1
1
4
1
1
1
1
1
1
1
1
1
1
1
1
1
W
RW  
W
Hardware:  
-
ADuC702X Evaluation board  
- Serial Port programming cable  
- JTAG emulator  
Software:  
- Integrated Development Environment, incorporating  
assembler, compiler and non intrusive JTAG-based  
debugger  
- Serial Downloader software  
- Example Code  
W
RW  
W
W
RW  
W
W
Miscellaneous:  
-
CD-ROM Documentation  
Flash/EE base address = 0xFFFFF800  
0xF800  
0xF804  
0xF808  
0xF80C  
0xF810  
0xF818  
0xF81C  
FEESTA  
1
1
1
2
2
3
4
R
1
1
1
1
1
1
1
FEEMOD  
FEECON  
FEEDAT  
FEEADR  
FEESIGN  
FEEPRO  
RW  
RW  
RW  
RW  
R
In-Circuit Serial Downloader  
The Serial Downloader is a Windows application that allows  
the user to serially download an assembled program (Intel Hex  
format file) to the on-chip program FLASH/EE memory via the  
serial port on a standard PC.  
RW  
The ‘Access’ column corresponds to the access time reading or  
writing MMR. It depends on the AMBA (Advanced  
a
Microcontroller Bus Architecture) bus used to access the  
peripheral. The processor has two AMBA busses, AHB  
(Advanced High-performance Bus) used for system modules  
and APB (Advanced Peripheral Bus) used for lower  
performance peripheral.  
Rev. PrC | Page 15 of 16  
ADuC7020/ADuC7021/ADuC7022  
OUTLINE DIMENSIONS  
Preliminary Technical Data  
6.00  
BSC SQ  
0.60 MAX  
PIN 1  
INDICATOR  
0.60 MAX  
31  
30  
40  
1
PIN 1  
INDICATOR  
0.50  
BSC  
4.25  
TOP  
VIEW  
5.75  
BSC SQ  
BOTTOM  
VIEW  
3.70 SQ  
1.75  
0.50  
0.40  
0.30  
21  
20  
10  
11  
4.50  
REF  
128MAX  
1.00 MAX  
0.65 NOM  
0.05 MAX  
0.02 NOM  
1.00  
0.30  
0.23  
0.18  
0.90  
0.80  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-VJJD-2  
Figure 6. 40-Lead Frame Chip Scale Package [LFCSP] (CP-40)—Dimensions shown in millimetres  
Rev. PrC | Page 16 of 16  

相关型号:

ADUC7022BCP32

Precision Analog Microcontroller 12-bit Analog I/O, ARM7TDMI MCU
ADI

ADUC7022BCP62

Precision Analog Microcontroller 12-bit Analog I/O, ARM7TDMI MCU
ADI

ADuC7022BCPZ32

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU
ADI

ADuC7022BCPZ32-RL

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU
ADI

ADuC7022BCPZ62

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU
ADI

ADUC7022BCPZ62-RL

IC 32-BIT, FLASH, 44 MHz, RISC MICROCONTROLLER, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP-40, Microcontroller
ADI

ADuC7022BCPZ62-RL7

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU
ADI

ADUC7022_15

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU
ADI

ADUC7023

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU with Enhanced IRQ Handler
ADI

ADuC7023BCBZ62I-R7

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU with Enhanced IRQ Handler
ADI

ADuC7023BCP6Z62I

Precision Analog Microcontroller, 12-Bit Analog I/O, ARM7TDMI MCU with Enhanced IRQ Handler
ADI

ADUC7023BCP6Z62I-RL

IC RISC MICROCONTROLLER, QCC40, 6 X 6 MM, ROHS COMPLIANT, MO-220WJJD, LFCSP-40, Microcontroller
ADI