ADRF6821ACPZ-RL7 [ADI]

450 MHz to 2800 MHz, DPD RFIC with Integrated Fractional-N PLL and VCO;
ADRF6821ACPZ-RL7
型号: ADRF6821ACPZ-RL7
厂家: ADI    ADI
描述:

450 MHz to 2800 MHz, DPD RFIC with Integrated Fractional-N PLL and VCO

光电二极管
文件: 总61页 (文件大小:1057K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
450 MHz to 2800 MHz, DPD RFIC with  
Integrated Fractional-N PLL and VCO  
ADRF6821  
Data Sheet  
The high isolation 2:1 RF switch and on-chip wideband RF  
balun enable the ADRF6821 to support two single-ended, 50 Ω  
terminated RF inputs. A programmable attenuator ensures an  
optimal differential RF input level to the high linearity demodulator  
core. The integrated attenuator offers an attenuation range of  
15 dB with a step size of 1 dB. High linearity IF amplifiers follow  
the demodulator and provide an interface to the next component  
in the chain, typically an analog-to-digital converter (ADC).  
FEATURES  
DPD receiver with integrated fractional-N PLL  
RF input frequency range: 450 MHz to 2800 MHz  
Internal LO input frequency range: 450 MHz to 2800 MHz  
Dual RF inputs with SPDT absorptive RF switches  
Integrated RF balun for single-ended 50 Ω input  
Integrated VCO to cover complete RF input range  
Digital programmable LO phase offset and dc nulling  
Programmable via 4-wire SPI  
The ADRF6821 offers two alternatives for generating the  
differential local oscillator (LO) input signal: internally via  
the on-chip fractional-N synthesizer with low phase noise  
VCOs or externally via a low phase noise LO signal. The  
integrated synthesizer enables continuous LO coverage from  
450 MHz to 2800 MHz. The PLL reference input supports a  
wide frequency range and includes integrated reference dividers  
before the phase frequency detector (PFD).  
56-lead, 8 mm × 8 mm LFCSP  
APPLICATIONS  
Cellular W-CDMA/GSM/LTE  
DPD receivers  
Microwave, point to point radios  
GENERAL DESCRIPTION  
When selected, the output of the internal fractional-N synthesizer  
is applied to a divide by 2, quadrature phase splitter. From the  
external LO path, a 2× LO signal can be used with the divide by 2,  
quadrature phase splitter to generate the quadrature LO inputs  
to the mixers.  
The ADRF6821 is a highly integrated, dual radio frequency (RF)  
input, zero intermediate frequency (IF)/low IF RFIC receiver  
with a quadrature demodulator, digital step attenuator (DSA),  
IF linear amplifiers, an integrated, fractional-N phase-locked loop  
(PLL), and a low phase noise, multicore, voltage controlled  
oscillator (VCO). The RFIC is ideally suited for communication  
digital predistortion (DPD) systems.  
The ADRF6821 is fabricated using an advanced silicon germanium  
(SiGe), bipolar complementary metal oxide semiconductor  
(BiCMOS) process. It is available in a 56-lead, RoHS compliant,  
8 mm × 8 mm LFCSP package with an exposed pad. Performance  
is specified over the −40°C to +105°C case temperature range.  
FUNCTIONAL BLOCK DIAGRAM  
IF_QOUT+ IF_QOUT–  
54 53  
DC DAC  
/R  
PFD  
/N  
RFIN_FB0  
RF_SEL0  
4
9
41 CPOUT  
CP  
Σ-Δ  
0
30  
VTUNE  
RF_SEL1 10  
÷2  
÷
90  
32 EX_LO_IN–  
31  
EX_LO_IN+  
39 LO_OUT–  
38 LO_OUT+  
11  
RFIN_FB1  
SPI  
DC DAC  
24  
25  
26  
27  
17  
18  
IF_IOUT+ IF_IOUT–  
SCLK SDIO SDO CS  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700 ©2017–2018 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADRF6821  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
RF Attenuator ............................................................................. 21  
Active Mixer................................................................................ 21  
I and Q Polarity .......................................................................... 21  
Low-Pass Filters (LPF) and IF Amplifiers............................... 21  
LO Generation Block................................................................. 21  
Register Write Sequence............................................................ 24  
Serial Peripheral Interface (SPI)............................................... 24  
Applications Information .............................................................. 25  
Basic Connections...................................................................... 25  
Low-Pass Filter Bandwidth Selection ...................................... 28  
I/Q Output Loading ................................................................... 29  
Analog-to-Digital Converter (ADC) Interfacing................... 29  
Image Rejection.......................................................................... 31  
Power Supply Configuration..................................................... 32  
Layout .......................................................................................... 34  
Register Map and Register Descriptions ..................................... 35  
Register Descriptions................................................................. 38  
Outline Dimensions....................................................................... 61  
Ordering Guide .......................................................................... 61  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
System Specifications ................................................................... 4  
DSA and RF Input Switch Specifications .................................. 5  
PLL/VCO Specifications.............................................................. 6  
Digital Logic Specifications......................................................... 7  
Serial Peripheral Interface (SPI) Timing Specifications.......... 8  
Absolute Maximum Ratings............................................................ 9  
Thermal Resistance ...................................................................... 9  
ESD Caution.................................................................................. 9  
Pin Configuration and Function Descriptions........................... 10  
Typical Performance Characteristics ........................................... 12  
Phase-Locked Loop (PLL) Performance ................................. 17  
Theory of Operation ...................................................................... 20  
RF Input Switch .......................................................................... 20  
Balun ............................................................................................ 21  
REVISION HISTORY  
8/2018—Rev. 0 to Rev. A  
Changed VCC_AMP_I Pin and VCC_MIX_I Pin to  
VCC_IFMIX_I Pin ........................................................ Throughout  
Changed VCC_MIX_Q Pin and VCC_AMP_Q Pin to  
VCC_IFMIX_Q Pin ..................................................... Throughout  
Changes to Figure 3........................................................................ 10  
Changes to Figure 62...................................................................... 32  
Updated Outline Dimensions....................................................... 62  
5/2017—Revision 0: Initial Version  
Rev. A | Page 2 of 61  
 
Data Sheet  
ADRF6821  
SPECIFICATIONS  
All supply pins = 3.3 V, TA = 25°C, low-side LO injection, internal LO, minimum attenuation setting (DSA setting of 0 dB),  
MIXER_GAIN_PEAK = 0, common-mode voltage (VCM) = 1.6 V, 25 Ω matching resistors on I/Q differential outputs, unless  
otherwise noted. All losses from input and output traces and baluns are de-embedded from results.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min Typ Max  
Unit  
RF INPUT INTERFACE  
Input Impedance  
RF Frequency Range  
I/Q OUTPUT INTERFACE  
Return Loss  
50  
MHz  
450  
2800  
IF_IOUT and IF_QOUT terminated with 100 Ω differential loads (25 Ω  
external resistors are required on each differential output pin)  
−10  
dB  
Output Impedance  
Output DC Offset  
10  
40  
2
55  
1.6  
No correction  
Correction applied  
mV  
mV  
mV  
V
DC Offset Correction Range  
Output VCM  
VCM Ripple  
1.2  
−5  
1.8  
+5  
mV  
LO INPUT  
External LO operation, differential  
Required Power  
Input Impedance  
Return Loss  
−6  
+6  
dBm  
dB  
100  
−10  
Frequency Range  
Low-side or high-side LO  
450  
2800  
MHz  
LO OUTPUT  
Power1, 2  
2× LO output, differential, observation purposes only  
TRM_XLODRV_DRV_POUT = 1  
2× fLO = 1800 MHz  
2× fLO = 3600 MHz  
2× fLO = 5400 MHz  
Output Impedance  
Return Loss  
Frequency Range  
POWER SUPPLY  
PLL/VCO Supplies3  
RF/IF Supplies  
0
−1  
0
50  
−10  
dBm  
dBm  
dBm  
dB  
MHz  
Differential  
2× fLO  
900  
5600  
3.2  
3.1  
3.3  
3.3  
3.4  
3.5  
V
V
POWER CONSUMPTION  
RF/IF Supplies  
0.9  
W
PLL/VCO Supplies  
fLO = 1000 MHz  
fLO = 2000 MHz  
fLO = 2800 MHz  
Internal LO  
Internal LO  
Internal LO  
1.0  
0.9  
0.8  
W
W
W
1 For LO output power setting, see the LO Generation Block section.  
2 fLO means LO frequency.  
3 See the Applications Information section for the supply circuit design.  
Rev. A | Page 3 of 61  
 
ADRF6821  
Data Sheet  
SYSTEM SPECIFICATIONS  
All supply pins = 3.3 V, TA = 25°C, internal LO, minimum attenuation setting (DSA setting of 0 dB), MIXER_GAIN_PEAK = 0, VCM = 1.6 V,  
25 Ω matching resistors on I/Q differential outputs, unless otherwise noted. All losses from input and output traces and baluns are  
de-embedded from results.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
DEMODULATION BANDWIDTH  
GROUP DELAY RIPPLE  
500  
0.1  
0.2  
MHz  
ns  
ns  
Fixed LO frequency, any 75 MHz bandwidth (BW)  
Fixed LO frequency, any 280 MHz BW  
DYNAMIC PERFORMANCE AT fLO = 1000 MHz  
High-side LO, IF frequency (fIF) = 100 MHz, RF frequency (fRF) =  
900 MHz, low-pass filter (LPF) set to lowest BW  
Power Gain  
12  
dB  
Gain Flatness  
Over any 75 MHz bandwidth, LPF set to maximum BW  
Over any 280 MHz bandwidth, LPF set to maximum BW  
Over all DSA settings, VCM = 1.6 V  
Over all DSA settings, output power (POUT) = −10 dBm/tone,  
fIF = 1 MHz to 75 MHz separation  
0.12  
0.35  
12  
dB  
dB  
dBm  
dBm  
Output 1 dB Power Compression (OP1dB)  
Output Third-Order Intercept (OIP3)  
33  
Over all DSA settings, POUT = −10 dBm/tone, fIF = 175 MHz to  
200 MHz separation  
Over all DSA settings, POUT = −10 dBm/tone, fIF = 1 MHz to  
75 MHz separation  
35  
75  
dBm  
dBm  
Output Second-Order Intercept (OIP2)  
Second-Order Harmonic Distortion (HD2)  
Third-Order Harmonic Distortion (HD3)  
Noise Figure  
POUT = −7 dBm continuous wave (CW) signal  
POUT = −7 dBm CW signal  
Double-side band (DSB)  
−85  
−85  
14  
dBc  
dBc  
dB  
Image Rejection  
LO to IF Leakage  
LO to RF Leakage  
RF to IF Leakage  
−41  
−40  
−62  
−47  
−58  
dB  
See Figure 26  
See Figure 27  
See Figure 25  
Channel to channel  
Low-side LO, fIF = 100 MHz, fRF = 2100 MHz  
dBm  
dBm  
dBc  
dBc  
Isolation  
DYNAMIC PERFORMANCE AT fLO = 2000 MHz  
Power Gain  
11  
dB  
Gain Flatness  
Over any 75 MHz bandwidth  
Over any 280 MHz bandwidth  
Over all DSA settings, VCM = 1.6 V  
Over all DSA settings, POUT = −10 dBm/tone, fIF =1 MHz to  
75 MHz separation  
0.16  
0.55  
12  
dB  
dB  
dBm  
dBm  
OP1dB  
OIP3  
32  
Over all DSA settings, POUT = −10 dBm/tone, fIF = 175 MHz to  
200 MHz separation  
Over all DSA settings, POUT = −10 dBm/tone, fIF = 1 MHz to  
75 MHz separation  
33  
74  
dBm  
dBm  
OIP2  
HD2  
HD3  
POUT = −7 dBm CW signal  
POUT = −7 dBm CW signal  
DSB  
−81  
−86  
15  
−41  
−48  
−61  
−52  
−43  
dBc  
dBc  
dB  
Noise Figure  
Image Rejection  
LO to IF Leakage  
LO to RF Leakage  
RF to IF Leakage  
Isolation  
dB  
See Figure 26  
See Figure 27  
See Figure 25  
Channel to channel  
dBm  
dBm  
dBc  
dBc  
Rev. A | Page 4 of 61  
 
Data Sheet  
ADRF6821  
Parameter  
Test Conditions/Comments  
Min Typ Max Unit  
DYNAMIC PERFORMANCE AT fLO = 2800 MHz  
High-side LO, fIF = 100 MHz, fRF = 2700 MHz  
Power Gain  
10  
dB  
Gain Flatness  
Over any 75 MHz bandwidth  
Over any 280 MHz bandwidth  
Over all DSA settings, VCM = 1.6 V  
Over all DSA settings, POUT = −10 dBm/tone, fIF =1 MHz to  
75 MHz separation  
0.08  
0.25  
12  
dB  
dB  
dBm  
dBm  
OP1dB  
OIP3  
33  
Over all DSA settings, POUT = −10 dBm/tone, fIF = 175 MHz to  
200 MHz separation  
Over all DSA settings, POUT = −10 dBm/tone, fIF = 1 MHz to  
75 MHz separation  
34  
70  
dBm  
dBm  
OIP2  
HD2  
HD3  
POUT = −7 dBm CW signal  
POUT = −7 dBm CW signal  
DSB  
−80  
−82  
17  
−32  
−54  
−59  
−61  
−46  
dBc  
dBc  
dB  
Noise Figure  
Image Rejection  
LO to IF Leakage  
LO to RF Leakage  
RF to IF Leakage  
Isolation  
dB  
See Figure 26  
See Figure 27  
See Figure 25  
Channel to channel  
dBm  
dBm  
dBc  
dBc  
DSA AND RF INPUT SWITCH SPECIFICATIONS  
All supply pins = 3.3 V, TA = 25°C, internal LO, minimum attenuation setting (DSA setting of 0 dB), MIXER_GAIN_PEAK = 0, VCM = 1.6 V,  
25 Ω matching resistors on I/Q differential outputs, unless otherwise noted. All losses from input and output traces and baluns are  
de-embedded from results.  
Table 3.  
Parameter  
Test Conditions/Comments  
Min Typ  
Max Unit  
DIGITAL STEP ATTENUATOR  
Attenuation Range  
Step Size  
Step Error  
Settling Time  
DSA Phase Shift  
RF INPUT SWITCH  
Switch Settling Time  
15  
1
dB  
dB  
dB  
ns  
(0.3 + attenuation × 5%)  
100  
5
Between any two different attenuation settings  
Between any two different attenuation settings  
Degrees  
50% control signal to 99% or1% RF signal final value  
2
µs  
Rev. A | Page 5 of 61  
 
ADRF6821  
Data Sheet  
PLL/VCO SPECIFICATIONS  
All supply pins = 3.3 V, TA = 25°C, reference frequency (fREF) = 122.88 MHz, fREF power = 10 dBm, PFD frequency (fPFD) = 30.72 MHz, and  
loop filter BW = 20 kHz, unless otherwise noted.  
Table 4.  
Parameter  
PLL REFERENCE  
Frequency  
Level  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
10  
0.7  
30.72 250  
3.3  
MHz  
V p-p  
For PLL lock condition, 50 Ω to ground required  
close to REF_IN pin  
Step Size  
Lock Time  
240  
0.4  
kHz  
ms  
For PLL lock condition  
PFD FREQUENCY, fPFD  
INTERNAL VCO RANGE  
OPEN-LOOP VCO PHASE NOISE  
VCO Frequency (fVCO) = 5440 MHz  
30.72 61.44 MHz  
4000  
8000  
MHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
−83  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−110  
−132  
−152  
fVCO = 7060 MHz  
10 kHz offset  
100 kHz offset  
1 MHz offset  
10 MHz offset  
−80  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
−106  
−127  
−147  
SYNTHESIZER SPECIFICATIONS  
Fractional Figure of Merit (FOM)  
Flicker FOM  
−227  
−262  
dBc/Hz  
dBc/Hz  
fPFD Spurs1  
Output to internal mixer and daisy-chain of  
another ADRF6821  
fPFD × 1  
fPFD × 2  
fPFD × 3 and Higher  
−90  
−95  
−95  
−70  
dBc  
dBc  
dBc  
dBc  
Unwanted Spurs (Other Than PFD and Harmonics)1  
Output to internal mixer and daisy-chain of  
another ADRF6821  
fLO = 1765 MHz, fVCO = 7060 MHz  
Closed-Loop Phase Noise  
1 kHz offset  
10 kHz offset  
100 kHz offset  
950 kHz offset  
2.1 MHz offset  
3.5 MHz offset  
7.5 MHz offset  
10 MHz offset  
85 MHz offset  
100 Hz to 10 MHz integration BW  
−102  
−97  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−117  
−138  
−145  
−149  
−153  
−156  
−158  
0.2  
Integrated Phase Noise  
Rev. A | Page 6 of 61  
 
Data Sheet  
ADRF6821  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
fLO = 2720 MHz, fVCO = 5440 MHz  
Closed-Loop Phase Noise  
1 kHz offset  
10 kHz offset  
100 kHz offset  
950 kHz offset  
2.1 MHz offset  
3.5 MHz offset  
7.5 MHz offset  
10 MHz offset  
85 MHz offset  
100 Hz to 10 MHz integration BW  
−102  
−99  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
°rms  
−114  
−137  
−144  
−148  
−153  
−155  
−156  
0.2  
Integrated Phase Noise  
1 Auxiliary LO output measurements are performed under a daisy-chain configuration with another ADRF6821 device. Measurements are taken from the auxiliary LO  
output of the daisy chained ADRF6821.  
DIGITAL LOGIC SPECIFICATIONS  
The following specifications are for all digital inputs.  
Table 5.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
LOGIC INPUT VOLTAGE  
Low  
High  
VIL  
VIH  
0
1.2  
0.5  
3.6  
V
V
LOGIC INPUT CURRENT  
High  
Low  
IIH  
IIL  
−100  
−100  
+100  
+100  
µA  
µA  
LOGIC OUTPUT VOLTAGE  
Low  
High  
VOL  
VOH  
0
1.4  
0.4  
1.8  
V
V
When driving loads with complementary metal oxide  
semiconductor (CMOS) 1.8 V interface  
When driving loads with CMOS 3.3 V interface  
2.4  
3.3  
V
LOGIC OUTPUT CURRENT  
High Driving  
Low Driving  
IOH  
IOL  
1
1
2
2
mA  
mA  
Rev. A | Page 7 of 61  
 
ADRF6821  
Data Sheet  
SERIAL PERIPHERAL INTERFACE (SPI) TIMING SPECIFICATIONS  
Table 6.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
TIMING REQUIREMENTS  
SDI to SCLK Rising Edge Setup  
SCLK Rising Edge to SDI Hold  
Period of SCLK  
CS Falling Edge to SCLK Rising Edge, Setup Time  
SCLK Rising Edge to CS Rising Edge, Hold Time  
SCLK Falling Edge to Valid Readback Data, SDIO or SDO (Not Shown in Figure 2)  
SCLK  
tDS  
tDH  
tCLK  
tS  
8
8
50  
10  
30  
18  
ns  
ns  
ns  
ns  
ns  
ns  
tC  
tDV  
Period of SCLK for a Logic High State  
Period of SCLK for a Logic Low State  
tHIGH  
tLOW  
25  
25  
ns  
ns  
SPI Timing Diagram  
tDS  
tHIGH  
tS  
tC  
tCLK  
tDH  
tLOW  
CS  
DON’T CARE  
DON’T CARE  
SCLK DON’T CARE  
SDIO DON’T CARE R/W A14 A13 A12 A11 A10  
A9  
A8  
A7  
A6  
A5  
D4  
D3  
D2  
D1  
D0  
Figure 2. SPI Write (MSB First), 16-Bit Instruction, Timing Measurements  
Rev. A | Page 8 of 61  
 
 
 
Data Sheet  
ADRF6821  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 7.  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
Parameter  
Rating  
VCC_LO1, VCC_LO2, VCC_3V3_I,  
VCC_3V3_Q, VCC_IFMIX_I,  
VCC_IFMIX_Q, VCCVCO_3V3,  
VCCDIV_3V3, VCCFBDIV_3V3,  
VCCLO_MIX_3V3,  
VCCLO_AUX_3V3, VCCCP_3V3,  
VCCPFD_3V3, VCCREF_3V3,  
VBAT_DIG_3V3  
−0.3 V to +3.6 V  
Typical θJA and θJC are specified vs. the number of PCB layers.  
The use of appropriate thermal management techniques is  
recommended to ensure the maximum junction temperature  
does not exceed the limits shown in Table 8.  
VCM_I, VCM_Q  
CS, SCLK, SDIO, SDO  
−0.3 V to +3.3 V  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
2.5 V peak, ac-coupled  
−0.3 V to +3.6 V  
−0.3 V to +3.6 V  
20 dBm  
10 dBm, differential  
125°C  
−40°C to +105°C  
Table 8. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
CP-56-161  
RF_SEL0, RF_SEL1, RFBT_FB  
RFIN_FB0, RFIN_FB1  
RST, SLEEP  
JEDEC 1s0p Board2  
Not applicable 3.3  
°C/W  
°C/W  
Cold Plate Only, No PCB3 Not applicable 2.8  
JEDEC 2s2p Board2  
29.3  
Not applicable °C/W  
VTUNE, CPOUT, REF_IN, DCL_BIAS  
RF Input Power RFIN  
EXT_LO_IN−, EXT_LO_IN+  
Maximum Junction Temperature  
Operating Temperature Range  
(Measured at Paddle)  
1 The maximum junction temperature of 125°C cannot be exceeded.  
2 Per JEDEC JESD51-12.  
3 For nonstandardized testing where the paddle of the device is directly  
connected to a cold plate. This approach can be useful to estimate junction  
temperature when the exact paddle temperature is known in the application.  
Storage Temperature Range  
−65°C to +150°C  
ESD CAUTION  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 9 of 61  
 
 
 
 
ADRF6821  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
VCM_Q  
VDD_DIG  
GND  
1
2
3
4
5
6
7
8
9
42 VCCCP_3V3  
41 CPOUT  
40 GND  
RFIN_FB0  
GND  
39 LO_OUT–  
38 LO_OUT+  
VCC_LO1  
RFBT_FB  
VCC_LO2  
RF_SEL0  
37 VCCLO_AUX_3V3  
36 VCCLO_MIX_3V3  
35 VCCFBDIV_3V3  
34 VCCDIV_3V3  
33 VCCVCO_3V3  
32 EXT_LO_IN–  
31 EXT_LO_IN+  
30 VTUNE  
ADRF6821  
TOP VIEW  
(Not to Scale)  
RF_SEL1 10  
RFIN_FB1 11  
GND 12  
SLEEP 13  
VCM_I 14  
29 DCL_BIAS  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED TO A GROUND  
PLANE WITH LOW THERMAL IMPEDANCE.  
Figure 3. Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No.  
Mnemonic  
VCM_Q  
VDD_DIG  
GND  
Description  
1
2
Q Channel VCM Input.  
Digital VDD (1.8 V) Pin from On-Chip LDO.  
Ground.  
3, 5, 12, 16,  
19, 52, 55  
4
6
7
8
RFIN_FB0  
VCC_LO1  
RFBT_FB  
VCC_LO2  
RF_SEL0  
RF_SEL1  
RFIN_FB1  
SLEEP  
RF Input 0 Single-Pole, Double-Throw (SPDT), 50 Ω Single-Ended.  
LO Path VCC.  
RF Input Low Frequency Balun Connection. This pin requires a dc block to an external inductor.  
LO Path VCC.  
RF Input 0 Select.  
9
10  
11  
13  
14  
15  
17  
18  
20  
21  
22  
23  
24  
25  
26  
RF Input 1 Select.  
RF Input 1 SPDT, 50 Ω Single-Ended.  
Pin Controllable Fast Turn On/Off (1.8 V and 3.3 V Compatible).  
I Channel VCM Input.  
VCM_I  
VCC_3V3_I  
IF_IOUT+  
IF_IOUT−  
VCC_IFMIX_I  
VDCPL_I  
VCC_IFMIX_I  
LO_LCKDT  
SCLK  
I Channel 3.3 V Supply.  
I Channel IF Positive Output.  
I Channel IF Negative Output.  
I Channel IF Amplifier VCC Supply.  
I Channel Mixer Decoupling.  
I Channel Mixer VCC Supply.  
LO Lock Detect.  
SPI Clock.  
SDIO  
SDO  
SPI Data Input/Output in 3-Wire Mode. SPI data input in 4-wire mode.  
SPI Data Output. SDO used in 4-wire mode only.  
Rev. A | Page 10 of 61  
 
Data Sheet  
ADRF6821  
Pin No.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
53  
54  
56  
Mnemonic  
Description  
CS  
SPI Chip Select (N).  
RST  
Reset (Active Low).  
DCL_BIAS  
VTUNE  
VCO Core Bias Decouple.  
VTUNE Input.  
Positive External LO Input.  
Negative External LO Input.  
VCC 3.3 V Supply.  
LO Chain and Divider 3.3 V Supply.  
PLL Feedback Divider 3.3 V Supply.  
LO Mixer Output Buffer 3.3 V Supply.  
LO External Output Buffer 3.3 V Supply.  
Positive External LO Output.  
Negative External LO Output.  
Charge Pump Ground.  
Charge Pump Output.  
Charge Pump 3.3 V Supply.  
PFD 3.3 V Supply.  
Reference Input Buffer 3.3 V Supply.  
Reference Input Buffer.  
SPI 1.8 V LDO External Decouple Output.  
EXT_LO_IN+  
EXT_LO_IN−  
VCCVCO_3V3  
VCCDIV_3V3  
VCCFBDIV_3V3  
VCCLO_MIX_3V3  
VCCLO_AUX_3V3  
LO_OUT+  
LO_OUT−  
GND  
CPOUT  
VCCCP_3V3  
VCCPFD_3V3  
VCCREF_3V3  
REF_IN  
SPILDO_OUT_1V8  
SDMLDO_OUT_1V8 Sigma-Delta Modulator (SDM) 1.8 V LDO External Decouple Output.  
VBAT_DIG_3V3  
VCC_IFMIX_Q  
VDCPL_Q  
VCC_IFMIX_Q  
IF_QOUT−  
IF_QOUT+  
VCC_3V3_Q  
EPAD  
SPI and SDM LDO 3.3 V Input.  
Q Channel Mixer VCC Supply.  
Q Channel Mixer Decoupling.  
Q Channel IF Amplifier VCC Supply.  
Q Channel IF Negative Output.  
Q Channel IF Positive Output.  
Q Channel 3.3 V Supply.  
Exposed Pad. The exposed pad must be connected to a ground plane with low thermal impedance.  
Rev. A | Page 11 of 61  
ADRF6821  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
All supply pins = 3.3 V, TA = 25°C, high-side LO injection for LO frequencies less than or equal to 1 GHz and equal to 2.8 GHz, low-side  
LO injection for frequencies between 1 GHz and 2.8 GHz, internal LO, minimum attenuation setting (DSA setting of 0 dB), MIXER_GAIN_  
PEAK = 0, VCM = 1.6 V, and 25 Ω matching resistors on I/Q differential outputs, unless otherwise noted. For linearity measurements, a tone  
spacing of 75 MHz is used, unless otherwise noted. All losses from input and output traces and baluns are de-embedded from results.  
14  
12  
10  
8
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
+105°C  
+27°C  
–40°C  
6
MIXER_GAIN_PEAK = 0  
MIXER_GAIN_PEAK = 3  
4
2
0
450  
920  
1390  
1860  
2330  
2800  
75  
160  
245  
330  
415  
500  
RF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 7. Gain Flatness vs. IF Frequency, Fixed LO Frequency of 2000 MHz,  
75 MHz IF Frequency Window  
Figure 4. Gain vs. RF Frequency for Various MIXER_GAIN_PEAK  
(Register 0x003A, Bits[1:0]) Settings  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.0  
0.8  
14  
12  
10  
8
0.6  
LO = 1000MHz  
LO = 2000MHz  
LO = 2800MHz  
0.4  
0.2  
0
6
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
LO = 1000MHz  
4
2
0
LO = 2000MHz  
LO = 2800MHz  
75  
160  
245  
330  
415  
500  
0
100  
200  
300  
400  
500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 5. Gain vs. IF Frequency, RF Sweep with Fixed LO, RF to IF Roll-Off  
Figure 8. Gain Flatness vs. IF Frequency for Various LOs, 75 MHz (Left Axis)  
and 280 MHz (Right Axis) IF Frequency Window  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
14  
13  
12  
11  
+105°C  
10  
+27°C  
0.3  
+105°C  
–40°C  
+27°C  
0.2  
0.1  
0
–40°C  
9
8
280  
324  
368  
412  
456  
500  
500  
940  
1380  
1820  
2260  
2700  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 6. Gain Flatness vs. IF Frequency, Fixed LO Frequency of 2000 MHz,  
280 MHz IF Frequency Window  
Figure 9. Output P1dB vs. RF Frequency  
Rev. A | Page 12 of 61  
 
Data Sheet  
ADRF6821  
45  
40  
35  
30  
25  
20  
15  
10  
5
14  
13  
12  
11  
10  
9
MIXER_GAIN_PEAK = 0  
MIXER_GAIN_PEAK = 3  
LO = 1000MHz  
LO = 2000MHz  
LO = 2800MHz  
8
0
600  
0
100  
200  
300  
400  
500  
1040  
1480  
1920  
2360  
2800  
LO FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 10. Output P1dB vs. IF Frequency, RF Sweep with Fixed LO,  
Various LO Frequency  
Figure 13. Output IP3 vs. LO Frequency, Measured on −10 dBm for  
Each Tone at the IF Output for Various MIXER_GAIN_PEAK  
(Register 0x003A, Bits[1:0]) Settings  
14  
12  
10  
8
45  
40  
35  
30  
25  
20  
6
15  
LO = 1000MHz  
DSA = 0dB  
4
2
0
LO = 2000MHz  
LO = 2800MHz  
DSA = 8dB  
DSA = 15dB  
10  
5
0
1.2  
1.4  
1.6  
(V)  
1.8  
2.0  
600  
1040  
1480  
1920  
2360  
2800  
V
CM  
LO FREQUENCY (MHz)  
Figure 11. Output P1dB vs. Common-Mode Voltage (VCM), IF = 100 MHz  
Figure 14. Output IP3 vs. LO Frequency for Various DSA Settings,  
Measured on −10 dBm for Each Tone at the IF Output  
45  
40  
35  
30  
25  
20  
45  
40  
35  
30  
25  
20  
+105°C  
15  
15  
LO = 1000MHz  
+27°C  
LO = 2000MHz  
–40°C  
LO = 2800MHz  
10  
10  
5
0
5
0
0
100  
200  
300  
400  
500  
600  
1040  
1480  
1920  
2360  
2800  
IF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 12. Output IP3 vs. LO Frequency, Measured on −10 dBm for Each  
Tone at the IF Output for Various Temperature  
Figure 15. Output IP3 vs. IF Frequency for Various LO Frequencies,  
Measured on −10 dBm for Each Tone at the IF Output, Low Side LO for 1 GHz  
Rev. A | Page 13 of 61  
ADRF6821  
Data Sheet  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
DIFFERENCE  
PRODUCT  
SUM  
+105°C  
+27°C  
–40°C  
PRODUCT  
MIXER_GAIN_PEAK = 0  
MIXER_GAIN_PEAK = 3  
600  
1040  
1480  
1920  
2360  
2800  
0
100  
200  
300  
400  
500  
LO FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 16. Output IP2 vs. LO Frequency for Various MIXER_GAIN_PEAK  
(Register 0x003A, Bits[1:0]) Settings  
Figure 19. HD2 vs IF Frequency, LO at 2000 MHz and POUT = −7 dBm  
110  
–10  
DIFFERENCE  
PRODUCT  
–20  
100  
+105°C  
+27°C  
–40°C  
–30  
–40  
90  
80  
70  
60  
–50  
–60  
–70  
SUM  
PRODUCT  
50  
40  
30  
20  
DSA = 0dB  
–80  
DSA = 15dB  
–90  
–100  
–110  
600  
1040  
1480  
1920  
2360  
2800  
0
50  
100  
150  
200  
250  
300  
350  
LO FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 17. Output IP2 vs. LO Frequency, Measured on −10 dBm for Each  
Tone at the IF Output for Various DSA Settings  
Figure 20. HD3 vs. IF Frequency, LO at 2000 MHz and POUT = −7 dBm  
90  
–10  
DIFFERENCE  
PRODUCT  
–20  
80  
70  
60  
50  
40  
30  
20  
10  
0
LO = 1000MHz  
LO = 2000MHz  
–30  
–40  
LO = 2800MHz  
–50  
SUM  
PRODUCT  
–60  
–70  
HD2  
LO = 1000MHz  
LO = 2000MHz  
LO = 2800MHz  
–80  
–90  
–100  
–110  
HD3  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 21. HD2 and HD3 vs. IF Frequency for Various LO Frequencies  
Figure 18. Output IP2 vs. IF Frequency, RF Sweep with Fixed LO, Measured  
on −10 dBm for Each Tone at the IF Output  
Rev. A | Page 14 of 61  
Data Sheet  
ADRF6821  
60  
50  
40  
30  
20  
10  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DSA = 0dB  
DSA = 15dB  
CHANNEL 1  
LO = 1000MHz  
LO = 2000MHz  
LO = 2800MHz  
CHANNEL 0  
0
100  
200  
300  
400  
500  
550  
1000  
1450  
1900  
2350  
2800  
IF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
Figure 22. Image Rejection vs. IF Frequency for Various LO Frequencies  
Figure 25. RF to IF Leakage at IF Output  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
30  
28  
LO = 1000MHz  
DSA = 0dB  
DSA = 15dB  
LO = 2000MHz  
26  
24  
22  
20  
18  
16  
14  
12  
10  
LO = 2800MHz  
Q OUTPUT  
I OUTPUT  
1000  
0
100  
200  
300  
400  
500  
550  
1450  
1900  
2350  
2800  
LO FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 23. Noise Figure vs. IF Frequency for Various LO Frequencies,  
Double Side Band  
Figure 26. LO to IF Leakage at IF Output  
0
–30  
–40  
–50  
–60  
–70  
–80  
–90  
DSA = 0dB  
DSA = 15dB  
–10  
Q OUTPUT  
I OUTPUT  
–20  
–30  
–40  
–50  
–60  
–70  
DSA = 0dB  
DSA = 15dB  
450  
920  
1390  
1860  
2330  
2800  
550  
1000  
1450  
1900  
2350  
2800  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 24. Channel to Channel Isolation vs. RF Frequency  
Figure 27. LO to RF Leakage vs. LO Frequency  
Rev. A | Page 15 of 61  
 
 
 
ADRF6821  
Data Sheet  
500  
450  
400  
350  
300  
250  
200  
150  
100  
0
–2  
PLL/VCO = 3.3V  
RF/IF = 3.3V  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
I OUTPUT  
Q OUTPUT  
450  
920  
1390  
1860  
2330  
2800  
0
100  
200  
300  
400  
500  
LO FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 28. Supply Current vs. LO Frequency  
Figure 30. Return Loss vs. IF Frequency, Differential with 25 Ω Series  
Resistor on Each Leg, Measured with 100 Ω Differential  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
CHANNEL 0  
CHANNEL 1  
450  
920  
1390  
1860  
2330  
2800  
RF FREQUENCY (MHz)  
Figure 29. Return Loss vs. RF Frequency for Channel 0 and Channel 1  
Rev. A | Page 16 of 61  
Data Sheet  
ADRF6821  
PHASE-LOCKED LOOP (PLL) PERFORMANCE  
All supply pins = 3.3 V, TA = 25°C, fPFD = 30.72 MHz, fREF = 122.88 MHz, 20 kHz loop filter, measured at LO output, unless otherwise noted.  
0
–10  
–60  
–70  
+105°C  
+27°C  
–40°C  
–20  
–30  
–90  
–40  
–80  
–50  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–70  
–90  
–80  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 31. Open-Loop VCO Phase Noise vs. Offset Frequency for Various  
Temperatures  
Figure 34. Closed-Loop Phase Noise vs. Offset Frequency for fLO = 2350 MHz  
0
–60  
–70  
–10  
VCO = 4GHz  
–20  
–30  
VCO = 4.7GHz  
VCO = 5.6GHz  
VCO = 6.8GHz  
–90  
–40  
–80  
–50  
–60  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–70  
–90  
–80  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
0.001  
0.01  
0.1  
1
10  
100  
0.001  
0.01  
0.1  
1
10  
100  
OFFSET FREQUENCY (MHz)  
OFFSET FREQUENCY (MHz)  
Figure 32. Open-Loop VCO Phase Noise vs. Offset Frequency for Various  
VCO Frequencies  
Figure 35. Closed-Loop Phase Noise vs. Offset Frequency for fLO = 2720 MHz  
–60  
–70  
–170  
–180  
–190  
–200  
–210  
–220  
–230  
–240  
–250  
–260  
–270  
+105°C  
+27°C  
–40°C  
–90  
–80  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
FRACTIONAL  
FLICKER  
1390  
0.001  
0.01  
0.1  
1
10  
100  
450  
920  
1860  
2330  
2800  
OFFSET FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 33. Closed-Loop Phase Noise vs. Offset Frequency for fLO = 1765 MHz  
Figure 36. PLL Figure of Merit (FOM) vs. LO Frequency  
Rev. A | Page 17 of 61  
 
ADRF6821  
Data Sheet  
–50  
–60  
–50  
–60  
+105°C  
+27°C  
–40°C  
+105°C  
+27°C  
–40°C  
–70  
–80  
10kHz  
–90  
–70  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–80  
100kHz  
–90  
1MHz  
–100  
–110  
10MHz  
450  
920  
1390  
1860  
2330  
2800  
450  
920  
1390  
1860  
2330  
2800  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 37. Closed-Loop LO Phase Noise vs. LO Frequency for Various  
Offset Frequencies and for Various Temperatures  
Figure 40. Reference Spurs, 2 × fPFD Offset vs. LO Frequency  
1.0  
–50  
3 × fPFD  
4 × fPFD  
5 × fPFD  
6 × fPFD  
7 × fPFD  
0.9  
+105°C  
+27°C  
–60  
–70  
–40°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
–80  
–90  
–100  
–110  
450  
920  
1390  
1860  
2330  
2800  
450  
920  
1390  
1860  
2330  
2800  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 38. 100 Hz to 10 MHz Integrated Phase Noise with Spurs vs.  
LO Frequency  
Figure 41. Reference Spurs, 3 × fPFD and Higher Offset vs. LO Frequency  
0
–10  
–20  
–50  
+105°C  
+27°C  
–60  
–40°C  
–70  
HD2  
HD3  
–80  
–90  
–30  
–40  
–50  
–60  
–100  
–110  
450  
920  
1390  
1860  
2330  
2800  
1000  
1360  
1720  
2080  
2440  
2800  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
Figure 39. Reference Spurs, 1 × fPFD Offset vs. LO Frequency  
Figure 42. LO HD2 and HD3 vs. LO Frequency  
Rev. A | Page 18 of 61  
Data Sheet  
ADRF6821  
2101.5  
2101.0  
2100.5  
2100.0  
2099.5  
2099.0  
2098.5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
EXTERNAL LO INPUTS  
AUXILIARY LO OUTPUTS  
0
100  
200  
300  
400  
500  
600  
900  
1840  
2180  
3720  
4660  
5600  
TIME (µs)  
LO FREQUENCY (MHz)  
Figure 43. LO Frequency Settling Time, LO = 2.1 GHz  
Figure 44. Return Loss vs. LO Frequency for Auxiliary LO Outputs and  
External LO Inputs  
Rev. A | Page 19 of 61  
ADRF6821  
Data Sheet  
THEORY OF OPERATION  
RF INPUT SWITCH  
The ADRF6821 integrates many of the essential building blocks  
for a high bandwidth quadrature demodulator and receiver,  
especially for the feedback downconverter path for the digital  
predistortion in cellular base stations. The main features include  
two single-pole, double-throw (SPDT) RF input switches, a  
balun, a variable RF attenuator, a pair of active mixers, and two  
baseband buffers. Additionally, the local oscillator (LO) signals  
for the mixers are generated by a fractional-N synthesizer and a  
multicore voltage controlled oscillator (VCO), covering an octave  
frequency range with low phase noise. A pair of flip-flops then  
divides the LO frequency by two and generates the in phase and  
quadrature phase LO signals to drive the mixers. The synthesizer  
uses a fractional-N phase-locked loop (PLL) with additional  
frequency dividers to enable continuous LO coverage from  
450 MHz to 2800 MHz.  
The ADRF6821 incorporates two SPDT switches, which allow  
one RF input to be selected while the other RF input can be  
correctly terminated to 50 Ω. Selection of the desired RF input  
is achieved externally via two control pins or serially via register  
writes to the SPI. When compared to the serial write approach,  
pin control allows faster switching between the RF inputs. Using  
the RF_SEL0 and RF_SEL1 pins (Pin 9 and Pin 10, respectively),  
the RF input can be switched from one channel to the other  
quickly and settle the IF output within 2 µs. When the input is  
controlled via the SPI serial port, the time for the serial data  
transfer must also be considered and is dependent on the serial  
interface clock rate.  
The SEL_RFSW_SPI_CONTROL bit (Register 0x0030, Bit 6)  
selects whether the RF input switch is controlled via the external  
pins or via the SPI (see Table 10). By default at power-up, the  
device is configured for pin control. In serial mode control,  
writing to the RFSW_SEL0 bit (Register 0x0030, Bit 4) allows  
selection of RF Input 0 and writing to the RFSW_SEL1 bit  
(Register 0x0030, Bit 5) allows selection of RF Input 1. If only  
one RFINx port is used, the unused RF input must be properly  
terminated to improve isolation. It is recommended to use a dc  
blocking capacitor to GND as termination. Figure 45 shows the  
recommended configuration when only RFIN_FB0 is employed.  
The signal path through the device begins at one of two RF  
inputs, RFIN_FB0 and RFIN_FB1, selected by the RF switches.  
The selected single-ended input converts to a differential signal  
via the integrated balun. The differential RF signal attenuates to  
an optimal input level via the digital step attenuator with 15 dB  
of attenuation range in 1 dB steps. The RF signal then mixes  
with the LO signal in the Gilbert cell mixers down to an  
intermediate frequency (IF) or baseband. From the mixer, the  
signal passes through a wideband low-pass filter to remove the  
higher order mixing terms, followed by a fixed gain linear IF  
amplifier.  
ADRF6821  
RFIN_FB0  
4
The different sections of the ADRF6821 are controlled through  
registers programmable via a serial peripheral interface (SPI).  
50Ω  
The EN_ANALOG_MASTER bit (Register 0x0020, Bit 1) is the  
master enable for all enables related to the RF switch, attenuator,  
mixer, IF amplifiers, divider, and LO drivers. This bit does not  
control any of the enables related to LO generation blocks.  
RFIN_FB1  
100pF  
11  
50Ω  
Figure 45. Terminating the Unused Port of the ADRF6821  
Table 10. RF Input Selection1  
SEL_RFSW_SPI_CONTROL Bit,  
(Register 0x0030, Bit 6)  
RFSW_SEL0 Bit,  
(Register 0x0030, Bit 4)  
RFSW_SEL1 Bit,  
(Register 0x0030, Bit 5)  
RF_SEL0 and RF_SEL1 Pins  
RF Input Pin  
RFIN_FB0  
RFIN_FB1  
RFIN_FB0  
RFIN_FB1  
0
0
1
1
X
X
1
0
X
X
0
1
RF_SEL0  
RF_SEL1  
X
X
1 X means don’t care.  
Rev. A | Page 20 of 61  
 
 
 
 
Data Sheet  
ADRF6821  
At power-up, depending on the whether high-side or low-side  
injection of the LO frequency is applied, the I channel can  
either lead or lag the Q channel by 90°. When the RF frequency  
is greater than the LO frequency (low-side LO injection), the  
Q channel leads the I channel. On the contrary, if the RF  
frequency is less than the LO frequency (high-side LO  
injection), the I channel leads the Q channel by 90°.  
BALUN  
The ADRF6821 integrates a balun operating over a 450 MHz to  
2800 MHz frequency range. The wideband balun offers the  
benefit of ease of drivability with single-ended, 50 Ω RF inputs,  
and the single-ended to differential conversion of the integrated  
balun provides additional common-mode noise rejection.  
RF ATTENUATOR  
LOW-PASS FILTERS (LPF) AND IF AMPLIFIERS  
The RF digital step attenuator follows the balun, and the  
attenuation range is 0 dB to 15 dB with a step size of 1 dB.  
The ATTEN_DSA bits (Register 0x0031, Bits[5:2]) in the  
DSA_CONTROL register determine the setting of the RF  
digital step attenuator. The EN_DSA (Register 0x0031, Bit [0])  
bit enables the RF attenuator.  
From the mixer, the IF or baseband outputs pass through an  
integrated adjustable LPF to remove the unwanted mixing  
product. The LPF bandwidth is adjustable over four steps, as  
listed in Table 12.  
Table 12. LPF Bandwidth Selection  
EN_LPF_LB_I  
(Register 0x0060, Bit 0) (Register 0x0060, Bit 1) Bandwidth  
EN_LPF_LB_Q  
LPF  
ACTIVE MIXER  
After the RF digital step attenuator, the RF signal is split and  
provided to a pair of double balanced, Gilbert cell active mixers.  
The RF signal is then downconverted by the on-chip LO at the  
mixer, resulting in a baseband output. Enable the mixer and the  
common-mode controls as listed in Table 11.  
0
0
1
1
0
1
0
1
1 GHz  
750 MHz  
500 MHz  
250 MHz  
From the LPF, the IF or baseband signal passes to a linear  
output amplifier to drive the baseband output pins (IF_IOUT+,  
IF_IOUT−, IF_QOUT−, and IF_QOUT+). The IF amplifier  
provides the overall gain for the ADRF6821 and, with the  
required 25 Ω series resistors, allows the ADRF6821 to drive  
a 100 Ω load directly. The ADRF6821 can be interfaced to a  
variety of analog-to-digital converters (ADCs), and the  
common-mode output can be adjusted with the external VCM  
pin. The IF amplifiers are enabled through the EN_IFAMP_I  
bit (Register 0x0070, Bit 0) and the EN_IFAMP_Q bit  
(Register 0x0070, Bit 1).  
Table 11. Demodulator Enable Registers  
Register Address  
Value Description  
0x0032  
0x0040  
0x0033  
0x0034  
0x3E  
0x0F  
0x2D  
0x2D  
Demodulator enables  
Common-mode control enables  
Mixer LO common-mode control  
Mixer output stage common-  
mode control  
The ADRF6821 provides a gain peaking circuit to increase the  
gain for high RF. The amount of gain peaking is controlled by  
the MIXER_GAIN_PEAK bits (Register 0x003A, Bits[1:0]).  
Note that increased gain leads to slight degradation of the  
linearity performance.  
LO GENERATION BLOCK  
The ADRF6821 supports the use of both internal and external  
LO signals for the mixers. The internally generated or externally  
supplied 2× LO signal is fed to the quadrature divider. The  
quadrature divider block divides the 2× LO frequency by 2 and  
then generates two LO signals with a 90° phase difference.  
The ADRF6821 uses dc compensation digital-to-analog converters  
(DACs) for both I and Q outputs. DC compensation covers a  
range of 40 mV. Control the dc compensation value via the  
CODE_DC_IDAC_RF0 bits (Register 0x0051) for the I output  
and the CODE_DC_QDAC_RF0 bits (Register 0x0052) via the  
Q output for Channel 0. For Channel 1, use the CODE_DC_  
IDAC_RF1 bits (Register 0x0053) for the I output and the  
CODE_DC_QDAC_RF1 bits (Register 0x0054) for the Q output.  
The control words are in signed magnitude format and eight bits  
wide. The effective least significant bit (LSB) is approximately  
0.5 mV.  
The internal 2× LO is generated by an on-chip VCO, which is  
tunable over a frequency range of 4000 MHz to 8000 MHz. The  
output of the VCO is phase locked to an external reference clock  
through a fractional-N PLL that is programmable through the SPI  
control registers. To produce 2× LO signals over the 900 MHz to  
5600 MHz frequency range to drive the LO divider, steer the  
VCO outputs through an output divider. Alternatively, an  
external signal can be used with the dividers to generate the  
2× LO signals to the quadrature divider and the demodulators.  
I AND Q POLARITY  
The ADRF6821 offers the flexibility of specifying the polarity of  
the I and Q outputs, where I can lead Q or vice versa. By addressing  
SEL_LODRV_PREDRVI_POL (Register 0x0080, Bit 1) or  
SEL_LODRV_PREDRVQ_POL (Register 0x0080, Bit 2), both  
the I and Q outputs can be inverted from their default configuration.  
The flexibility of specifying the polarity becomes important  
when the I and Q outputs are processed simultaneously in the  
complex domain, I + jQ.  
Rev. A | Page 21 of 61  
 
 
 
 
 
 
 
 
ADRF6821  
Data Sheet  
Internal LO Mode  
PLL Frequency Programming  
For internal LO mode, the ADRF6821 uses the on-chip PLL and  
VCO to synthesize the frequency of the LO signal. The PLL,  
shown in Figure 46, consists of a reference path, phase and  
frequency detector (PFD), charge pump, and a programmable  
integer divider with prescaler. The reference path takes in a  
reference clock and it is divided down by a value calculated with  
a reference (R) divider together with a doubler bit and a  
prescaler bit. Then the divided down reference signal passes to  
the PFD. The PFD compares this signal to the divided down  
signal from the VCO. The PFD sends an up or down signal to  
the charge pump if the VCO signal is slow or fast compared to the  
reference frequency. The charge pump sends a current pulse to  
the off-chip loop filter to increase or decrease the tuning voltage  
(VTUNE).  
The INT, FRAC1, FRAC2, and MOD values, in conjunction  
with the R counter, make it possible to generate output frequencies  
that are spaced by fractions of the PFD frequency (fPFD).  
Calculate the VCO frequency (VCOOUT) by  
VCOOUT = fPFD × N  
where:  
(1)  
VCOOUT is the output frequency of the VCO (without using  
the output divider).  
f
f
PFD is the frequency of the phase frequency detector. Calculate  
PFD by  
PFD = REFIN × ((1 + D)/(R × (1 + T)))  
f
(2)  
where:  
REFIN is the reference input frequency.  
D is the REFIN doubler bit (Register 0x120E, Bit 3).  
R is the preset divide ratio of the binary 7-bit programmable  
reference counter, 1 to 255, (Register 0x120C, Bits[6:0]).  
T is the REFIN divide by 2 bit, set to 0 or 1, (Register 0x120E, Bit 0).  
N is the desired value of the feedback counter. N compromises  
The ADRF6821 integrates multiple VCO cores covering an  
octave range of 4 GHz to 8 GHz. The suitable VCO is selected  
with the autotune functionality built into the chip. After the  
user determines the necessary register values, a write to the  
INT_L register (Address 0x1200) initiates the autotune process.  
FRAC2  
FRAC1+  
LO Frequency and Dividers  
MOD  
(3)  
N = INT +  
where:  
16,777,216  
The signal coming from the VCO or the external LO inputs  
passes through a series of dividers before it is buffered to drive  
the demodulator. The programmable, divide by 2 stages divide  
the frequency of the incoming signal by 1, 2, 4, and 8 before  
reaching the quadrature divider that further divides the signal  
frequency by 2 to generate the in phase and quadrature phase  
LO signals for the mixers. The LO control bits (OUT_DIVRATIO,  
Register 0x1414, Bits[4:0]) needed to select the different LO  
frequency ranges are listed in Table 13.  
INT is the 16-bit integer value (23 to 32,767 for the prescaler in  
4/5 mode, 75 to 65,535 for the prescaler in 8/9 mode) referenced  
with Register 0x1201 and Register 0x1200. The recommended  
setting for the prescaler is 8/9 mode, and it is set by enabling  
PRE_SEL (Register 0x120B, Bit 1).  
FRAC1 is the 24-bit numerator of the primary modulus (0 to  
16,777,215) referenced with Register 0x1204, Register 0x1203,  
and Register 0x1202.  
Table 13. Output Divide Ratio for Frequency Ranges  
FRAC2 is the numerator of the 14-bit auxiliary modulus (0 to  
16,383) referenced with Register 0x1234, Bits[5:0] and  
Register 0x1233.  
2× LO Frequency OUT_DIVRATIO  
VCO  
(Register 0x1414, Bits[4:0]) Frequency  
(MHz)  
900 to 1000  
1000 to 2000  
2000 to 4000  
4000 to 5600  
01000  
00100  
00010  
00001  
(2× LO) × 8  
(2× LO) × 4  
(2× LO) × 2  
(2× LO) × 1  
MOD is the programmable, 14-bit auxiliary fractional modulus  
(2 to 16,383), referenced with Register 0x1209, Bits[5:0] and  
Register 0x1208.  
EXT_LO_IN+ 31  
32  
SEE PLL FREQUENCY  
PROGRAMMING SECTION  
EXT_LO_IN–  
REGISTER 0x1414  
[4:0]  
OUT  
DIVIDER  
DIVIDE  
BY 2  
REF_IN  
EXTERNAL  
LOOP FILTER  
R
CPOUT  
VTUNE  
30  
TO DEMODULATOR  
45  
PFD  
CHARGE  
PUMP  
DIVIDER  
41  
SEE PLL FREQUENCY  
PROGRAMMING SECTION  
SEE EXTERNAL  
LO MODE  
SECTION  
FRAC2  
FRAC1 +  
PRESCALER  
MOD  
16,777,216  
N = INT +  
REGISTER 0x120B  
Figure 46. PLL/VCO Block Diagram  
Rev. A | Page 22 of 61  
 
 
 
Data Sheet  
ADRF6821  
Equation 3 results in a very fine frequency resolution with no  
residual frequency error. To apply this formula, take the  
following steps:  
PLL Lock Time  
The time it takes to lock the PLL after the last register is written  
into two parts: VCO band calibration and loop settling.  
1. Calculate N by VCOOUT/fPFD  
.
After writing to the last register, the PLL automatically performs  
a VCO band calibration to choose the correct VCO band. This  
calibration requires approximately 200 µs. After calibration  
completes, the feedback action of the PLL causes the VCO to  
eventually lock to the correct frequency. The speed with which  
this lock occurs depends on the small signal settling of the loop.  
Settling time, after calibration, depends on the PLL loop filter  
bandwidth. With a 20 kHz loop filter bandwidth, settling time is  
approximately 200 µs.  
2. The integer value of this number forms INT.  
3. Subtract the INT value from the full N value.  
4. Multiply the remainder by 224.  
5. The integer value of this number forms FRAC1.  
6. Calculate MOD based on the channel spacing (fCHSP) by  
MOD = fPFD/GCD(fPFD, fCHSP  
)
(4)  
where:  
GCD(fPFD, fCHSP) is the greatest common divider of the PFD  
frequency and the desired channel spacing frequency.  
Lock Detect Control  
The ADRF6821 provides two ways of observing lock detection.  
Lock detection can be monitored from a dedicated register,  
LOCK_DETECT (Register 0x124D, Bit 0). Lock detection can  
also be monitored through the dedicated LO_LCKDT pin (Pin 23).  
7. Calculate FRAC2 by the following equation:  
FRAC2 = ((N − INT) × 224 − FRAC1)) × MOD  
(5)  
The FRAC2 and MOD fraction result in outputs with zero  
frequency error for channel spacings when  
Required PLL/VCO Settings and Register Write Sequence  
f
PFD/GCD(fPFD/fCHSP) < 16,383  
where:  
PFD is the frequency of the phase frequency detector.  
GCD is a greatest common denominator function.  
CHSP is the desired channel spacing frequency.  
(6)  
Configure the PLL registers as described in the PLL Frequency  
Programming section to achieve the desired frequency, and  
the last write must be to Register 0x1200 (INT_L). When  
Register 0x1200 is programmed, an internal VCO calibration  
initiates, which is the last step to locking the PLL.  
f
f
External LO Mode  
After determining the necessary register values for PLL, set the  
SD_EN_FRAC0 bit (Register 0x122A, Bit 5) to 1. In the integer  
mode (when FRAC = 0), set the SD_EN_OUT_OFF bit  
(Register 0x122A, Bit 4) to 1. In the same manner, set the  
SD_EN_OUT_OFF bit to 0 for fractional mode (that is, when  
FRAC ≠ 0).  
The external LO frequency range is 900 MHz to 5600 MHz and  
2× LO signal is used with the internal quadrature divider. To  
configure for external LO mode, write the following register  
sequence and apply the differential LO signals to Pin 31  
(EXT_LO_IN+) and Pin 32 (EXT_LO_IN−).  
It is recommended to set the charge pump current to be 2.4 mA,  
by setting the CP_CURRENT bit (Register 0x122E, Bits[3:0]) to  
8. With a 20 kHz loop filter, the charge pump current setting  
results in an optimized performance.  
Table 14. Register Settings for External LO Mode  
Register Required Value Description  
0x120B  
0x122D  
0x1240  
0x1217  
0x121F  
0x1021  
0x1414  
0x00  
0x00  
0x03  
0x00  
0x40  
0xD8  
0xA1  
Disable feedback divider  
Disable PFD and charge pump (CP)  
Disable VCO adjust  
Set VCO select to a low value  
Disable calibration  
Bleed Setting  
The PFD circuitry compares the PFD and divided down VCO  
signals. The ADRF6821 employs a bleed circuit to put the PFD  
circuit in the linear operation region. The bleed circuit introduces a  
delay to the incoming PFD signal, indicated as PFD_OFFSET in  
Equation 7. Calculate the bleed current, BICP, (Register 0x122F,  
Bits[7:0]), from the desired PFD_OFFSET, as shown in  
Equation 7.  
Disable PLL blocks  
Use external LO  
The EXT_LO_IN+ and EXT_LO_IN− input pins must be  
ac-coupled. When not in use, leave the EXT_LO_IN+ and  
EXT_LO_IN− pins unconnected.  
BICP = Integer(round(float(ICP × PFD_OFFSET ×  
f
PFD)/960)/255))  
where:  
CP is the charge pump current.  
The recommended PFD_OFFSET for the 20 kHz loop filter is 2 ns.  
(7)  
I
Rev. A | Page 23 of 61  
ADRF6821  
Data Sheet  
Quadrature Divider  
SERIAL PERIPHERAL INTERFACE (SPI)  
The quadrature divider block divides the 2× LO frequency  
generated by either the internal PLL and VCO or the external  
input by 2. Next, the quadrature divide block generates two  
LO signals with a 90° phase difference. To enable the divider,  
disable the bits, EN_IBIASGEN (Register 0x0090, Bit 0),  
EN_DIVPATH_BUF (Register 0x0090, Bit 1), and  
EN_DIVPATH_QUADDIV (Register 0x0090, Bit 2). Two  
separate LO drivers take these LO signals and feed them to the  
mixers. LO driver paths are enabled via the following registers:  
The SPI of the ADRF6821 allows the user to configure the  
device for specific functions or operations through a structured  
register space provided inside the chip. This interface provides  
users with added flexibility and customization. Addresses are  
accessed via the SPI and can be written to or read from the SPI.  
The serial peripheral interface consists of four control lines:  
CS  
SCLK, SDIO, SDO, and . The serial clock (SCLK) is the serial  
shift clock, and it synchronizes the serial interface reads and  
writes. SDIO is the serial data input or the serial data output  
depending on the instruction sent and the relative position in  
EN_LODRV_DRVI (Register 0x0090, Bit 3)  
EN_LODRV_DRVQ (Register 0x0090, Bit 4)  
EN_LODRV_PREDRVI (Register 0x0090, Bit 5)  
EN_LODRV_PREDRVQ (Register 0x0090, Bit 6)  
CS  
the timing frame. Chip select bar ( ) is an active low control  
CS  
that gates the read and write cycles. The falling edge of  
conjunction with the rising edge of SCLK determines the start  
CS  
in  
of the frame. When  
is high, all SCLK and SDIO activity is  
REGISTER WRITE SEQUENCE  
ignored. See Table 6 for the serial timing and its definitions.  
The proper register write sequence starts with locking the LO  
frequency or enabling the external LO inputs. After ensuring that  
the local oscillator is locked in either the internal PLL/VCO or  
the external LO source, enable the LO_OE bit (Register 0x1414,  
Bit 6). After enabling the LO_OE bit, the RF and IF blocks can  
be enabled as defined in the Theory of Operation section.  
The ADRF6821 protocol consists of a read/write followed by  
16 register address bits and 8 data bits. Both the address and  
data fields are organized with the most significant bit (MSB)  
first and end with the least significant bit (LSB).  
The SPI and general-purpose input/output (GPIO) interfaces of  
the ADRF6821 provides two options for the logic voltage levels,  
1.8 V and 3.3 V. The interfaces use 1.8 V logic levels as the  
default. Enable SPI_18_33_SEL (Register 0x0020, Bit 0) and  
SPI_1P8_3P3_CTRL (Register 0x1401, Bit 4) for 3.3 V compatible  
logic levels. See Table 6 for the SPI specifications.  
Rev. A | Page 24 of 61  
 
 
Data Sheet  
ADRF6821  
APPLICATIONS INFORMATION  
BASIC CONNECTIONS  
39Ω  
39Ω  
0.1µF  
0.1µF  
25Ω  
25Ω  
35.7Ω  
35.7Ω  
Q OUTPUT  
TC 1-1-13MX+  
54 53  
45  
220Ω  
CPOUT  
4300pF  
VTUNE  
4300pF  
DC DAC  
220Ω  
100pF  
0.12µF  
/R  
PFD  
/N  
4
RF INPUT 0  
RFIN_FB0  
41 CPOUT  
CP  
Δ-Σ  
9
RF_SEL0  
30  
VTUNE  
0
RF_SEL1 10  
100pF  
÷2  
EX LO INPUT  
÷
90  
EX_LO_IN–  
32  
31  
TCM 1-8 3X+  
EX_LO_IN+  
100pF  
100pF  
RFIN_FB1  
11  
RF INPUT 0  
SPI  
DC DAC  
17 18  
24 25 26 27  
39Ω  
0.1µF  
0.1µF  
25Ω  
25Ω  
35.7Ω  
I OUTPUT  
TC 1-1-13MX+  
35.7Ω  
39Ω  
Figure 47. Typical Application Circuit  
Table 15. Typical Connections  
Pin No.  
RF Inputs  
4, 11  
Mnemonic  
Description  
Basic Connection  
RFIN_FB0, RFIN_FB1  
RF inputs  
The single-ended RF inputs have a 50 Ω impedance.  
These pins must be ac-coupled. Terminate unused  
RF inputs with a dc blocking capacitor to ground  
to improve isolation. Refer to the Layout section  
for the recommended PCB layout.  
RF Balun Optimization  
7
RFBT_FB  
RF balun tuning inductor  
RF select control pins  
Connect the balun tuning inductor (LTUNE) to ground.  
GPIOs  
9, 10  
RF_SEL0, RF_SEL1  
Active high. 1.8 V and 3.3 V logic level compatible.  
See the Theory of Operation section for RF select  
pin use.  
13  
SLEEP  
Sleep mode enable pin  
Active high. 1.8 V and 3.3 V logic level compatible.  
Rev. A | Page 25 of 61  
 
 
ADRF6821  
Data Sheet  
Pin No.  
Mnemonic  
Description  
Basic Connection  
3.3 V RF/IF Power  
15, 56  
VCC_3V3_I, VCC_3V3_Q  
Supply for DSA and RF  
switches  
Decouple these power supply pins to ground  
using 100 pF, 0.1 µF, and 10 µF capacitors. Place  
the decoupling capacitors close to these pins.  
6, 8  
VCC_LO1, VCC_LO2  
LO path to mixer supply  
Mixer supply  
Decouple these power supply pins to ground  
using 100 pF and 0.1 µF capacitors. Place the  
decoupling capacitors close to these pins.  
22, 49  
VCC_IFMIX_I,  
VCC_IFMIX_Q  
20, 51  
VCC_IFMIX_I,  
VCC_IFMIX_Q  
IF amplifier supply  
VCM adjust pins  
VCM Input  
1, 14  
VCM_Q, VCM_I  
Decouple the VCM input pins to ground using  
100 pF and 0.1 µF capacitors and connect these  
pins to the same supply domain as the  
VCC_IFMIX_Q and VCC_IFMIX_I pins. Place the  
decoupling capacitors close to the pins. Place a  
resistive divider to divide the supply voltage into  
two. Use 5.1 kΩ (or similar) for resistive divider  
component values.  
Decoupling  
2
VDD_DIG  
Decoupling pin for the  
internal LDO to supply the  
internal digital circuits  
Decouple these pins to ground using 100 pF and  
0.1 µF capacitors. Place the decoupling capacitors  
close to these pins.  
21, 50  
VDCPL_I, VDCPL_Q  
Decoupling pins for I and Q  
channels  
IF Outputs  
17, 18, 53, 54  
IF_IOUT+, IF_IOUT−,  
IF_QOUT−, IF_QOUT+  
I and Q outputs  
Place 25 Ω resistors in series for each differential  
leg. The differential I/Q output impedance  
together with the series 25 Ω resistors becomes  
60 Ω. For optimized performance, the 60 Ω output  
impedance must be terminated with a 100 Ω load.  
3.3 V PLL/VCO Power  
33  
34  
VCCVCO_3V3  
VCCDIV_3V3  
VCO 3.3 V supply  
Decouple these power supply pins to ground using  
100 pF and 0.1 µF capacitors. Place the decoupling  
capacitors close to the pins. Employ ferrite beads  
to provide isolation between the PLL/VCO supply  
pins. Beware of the series resistance of the ferrite  
beads and try to minimize the voltage drop.  
LO chain and divider 3.3 V  
supply  
35  
36  
37  
VCCFBDIV_3V3  
VCCLO_MIX_3V3  
VCCLO_AUX_3V3  
PLL feedback divider 3.3 V  
supply  
LO mixer output buffer 3.3 V  
supply  
LO external output buffer  
3.3 V supply  
42  
43  
44  
VCCCP_3V3  
VCCPFD_3V3  
VCCREF_3V3  
Charge pump 3.3 V supply  
PFD 3.3 V supply  
Reference input buffer 3.3 V  
supply  
48  
VBAT_DIG_3V3  
SPI and SDM LDO 3.3 V  
supply  
PLL/VCO  
23  
29  
30  
LO_LCKDT  
DCL_BIAS  
VTUNE  
LO lock detect  
VCO core bias decouple  
VTUNE input  
Decouple this pin to ground using a 0.1 µF capacitor.  
This pin is driven by the output of the loop filter;  
its nominal input voltage range is 1.5 V to 2.5 V.  
41  
45  
CPOUT  
REF_IN  
Charge pump output  
Reference input buffer  
Connect this pin to the VTUNE pin through the  
loop filter.  
The nominal input level of this pin is 1 V p-p. The  
input range is 10 MHz to 250 MHz. This pin is  
internally biased and must be ac-coupled and  
terminated externally with a 50 Ω resistor. Place  
the ac coupling capacitor between the pin and  
Rev. A | Page 26 of 61  
Data Sheet  
ADRF6821  
Pin No.  
Mnemonic  
Description  
Basic Connection  
the resistor.  
46  
47  
SPILDO_OUT_1V8  
SDMLDO_OUT_1V8  
SPI 1.8 V LDO external  
decouple output  
Decouple these pins to ground using 100 pF and  
0.1 µF capacitors. Place the decoupling capacitors  
close to the pins.  
SDM 1.8 V LDO external  
decouple output  
Auxiliary LO Output  
38, 39  
LO_OUT+, LO_OUT−  
LO outputs  
The differential output impedance of the buffer of  
the LO outputs is 50 Ω.  
External LO Inputs  
31, 32  
EXT_LO_IN+,  
EXT_LO_IN−  
External LO inputs  
The differential input impedance of the buffer of  
the external LO inputs is 100 Ω.  
Serial Peripheral Interface  
24  
25  
SCLK  
SDIO  
SPI clock  
1.8 V and 3.3 V compatible logic levels.  
SPI data input/output in 3-wire 1.8 V and 3.3 V compatible logic levels.  
mode and SPI data input in  
for 4-wire mode  
26  
SDO  
SPI data output for 4-wire  
mode and this pin is not used  
for 3-wire mode  
1.8 V and 3.3 V compatible logic levels.  
27  
CS  
SPI chip select  
Active low; 1.8 V and 3.3 V compatible logic levels  
Active low; 1.8 V and 3.3 V compatible logic levels  
Connect these pins to the ground of the PCB.  
Reset  
28  
RST  
Reset  
Ground  
3, 5, 12, 16, 19, 52, 55  
40  
GND  
GND  
Ground  
Charge pump ground  
Do not connect this pin to the paddle ground,  
connect this pin to the PCB ground.  
Exposed Pad  
EPAD  
Exposed Pad  
The exposed pad is on the bottom of the package.  
The exposed pad must be soldered to ground.  
Rev. A | Page 27 of 61  
ADRF6821  
Data Sheet  
Figure 49 and Figure 50 illustrate the effect of the LPF on the RF  
to IF leakage and LO to IF leakage.  
LOW-PASS FILTER BANDWIDTH SELECTION  
The ADRF6821 incorporates an on-chip, third-order, low-pass  
filter (LPF) between the demodulator and the output buffer. The  
filter has four different bandwidth settings. The EN_LPF_LB_I  
(Register 0x0060, Bit 0) and the EN_LPF_LB_Q (Register 0x0060,  
Bit 1) bits enable various LPF bandwidth modes, as detailed in  
Table 12.  
0
1000MHz BANDWIDTH  
750MHz BANDWIDTH  
500MHz BANDWIDTH  
250MHz BANDWIDTH  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
The ADRF6821 incorporates a wideband buffer at the I and Q  
outputs that poses a challenge for the linearity of the overall  
RFIC. For RF and LO frequencies lower than 1000 MHz, the  
mixing product, RF + LO, is amplified by the wideband buffer  
and, in turn, deteriorates the overall linearity. The on-chip LPF  
can improve the leakage rejection of the high frequency mixing  
product. Depending on the I/Q bandwidth requirement of the  
system, the LPF can be set to lower bandwidths to provide  
rejection at RF and LO frequencies. Table 16 can determine the  
LPF bandwidth according to RF and LO frequency of operation.  
450  
920  
1390  
1860  
2330  
2800  
RF FREQUENCY (MHz)  
Figure 49. RF to IF Rejection for RF Frequency at 100 MHz and a Low-Pass  
Filter Setting of 250 MHz  
0
Table 16. LPF Bandwidth Selection for Various RF and LO  
Frequencies  
1000MHz BANDWIDTH  
750MHz BANDWIDTH  
500MHz BANDWIDTH  
–10  
250MHz BANDWIDTH  
LO Frequency  
(MHz)  
LPF Bandwidth  
Setting (MHz)  
EN_LPF_LB_I,  
EN_LPF_LB_Q  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
450 to 1000  
1000 to 1200  
1200 to 2000  
2000 to 2800  
250  
500  
750  
1000  
1, 1  
1, 0  
0, 1  
0, 0  
Moreover, the on-chip LPF can improve the RF to IF and LO to  
IF leakage performance for RF and LO frequencies higher than  
1 GHz. However, note the gain flatness degradation with the use  
of various LPF settings (see Figure 48).  
450  
920  
1390  
1860  
2330  
2800  
14  
LO FREQUENCY (MHz)  
Figure 50. LO to IF Rejection for LO Frequency at 100 MHz and a Low-Pass  
Filter Setting of 250 MHz  
12  
10  
8
6
4
1000MHz BANDWIDTH  
750MHz BANDWIDTH  
2
500MHz BANDWIDTH  
250MHz BANDWIDTH  
300 400  
IF FREQUENCY (MHz)  
0
0
100  
200  
500  
Figure 48. Gain vs. IF Frequency for Various Low-Pass Filter Settings,  
LO = 2000 MHz  
Rev. A | Page 28 of 61  
 
 
 
 
 
Data Sheet  
ADRF6821  
90  
80  
70  
60  
50  
40  
30  
20  
10  
I/Q OUTPUT LOADING  
By design, the ADRF6821 has an I/Q output impedance of 10 Ω  
and it is optimized to perform with an external 25 Ω in each  
differential leg. External resistors increase the output impedance  
and with the external 25 Ω, the total differential output  
impedance equals 60 Ω. When terminated with a 100 Ω differential  
load, the return loss is less than −10 dB for a wide range of IF  
frequencies.  
ADRF6821  
I/Q OUTPUTS  
25  
100  
200ꢀ  
10Ω  
25Ω  
500  
960  
1420  
1880  
2340  
2800  
LO FREQUENCY (MHz)  
Figure 54. Output IP2 (OIP2) vs. LO Frequency for Different Loads  
Z
LOAD  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–60  
Figure 51. IF Output Schematic  
–70  
Different application circuits can require various loading  
conditions for the I and Q outputs. Therefore, it is important  
to understand the effect of I and Q output loading on the  
performance characteristics, such as output IF gain, output IP3,  
output IP2, HD2 and HD3. Figure 53 to Figure 55 illustrates the  
effect of output loading on these characteristics.  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
14  
100ꢀ  
200ꢀ  
13  
12  
11  
10  
9
100  
200ꢀ  
0
50  
100  
150  
200  
250  
IF FREQUENCY (MHz)  
Figure 55. HD2 and HD3 vs. IF Frequency for Different Loads  
8
7
6
5
4
0
100  
200  
300  
400  
500  
IF FREQUENCY (MHz)  
Figure 52. Gain vs. IF Frequency for Different Loads  
45  
40  
35  
30  
25  
20  
15  
10  
5
100ꢀ  
200ꢀ  
0
500  
960  
1420  
1880  
2340  
2800  
LO FREQUENCY (MHz)  
Figure 53. Output IP3 (OIP3) vs. LO Frequency for Different Loads  
Rev. A | Page 29 of 61  
 
 
 
 
ADRF6821  
Data Sheet  
I/Q OUTPUTS  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
INTERFACING  
56nH 68nH 56nH  
25  
8.2pF 15pF  
15pF  
6.8pF  
The ADRF6821 perfectly suits in a zero IF receiver chain. The  
integrated IF amplifier of the ADRF6821 provides variable and  
sufficient drive capabilities for both buffered and unbuffered  
ADCs. It also provides isolation between the sampling edges of  
the ADC and the mixer core. As a result, an antialiasing low-pass  
filter is sufficient when interfacing with an ADC.  
56nH 68nH 56nH  
25ꢀ  
100ꢀ  
100ꢀ  
Figure 56. Low-Pass Filter Schematic  
Table 17. Component Values for the Low-Pass Filter Design  
(1 dB Corner Frequency of 150 MHz)  
The filter resides between the ADRF6821 and the ADC. The  
low-pass filter eliminates all out of band signals that may alias  
onto the actual band and degrade the performance of the  
ADRF6821 and the ADC pair. Selection of the low-pass filter  
center and bandwidth is application specific. Take into account  
the trade-off between the amount of rejection required and the  
insertion loss to choose the order of the filter. A higher order  
filter also requires more layout space, which is another design  
criterion.  
Parameter  
Value  
56 nH  
68 nH  
8.2 pF  
6.8 pF  
15 pF  
Type  
Manufacturer  
Coilcraft  
Coilcraft  
Murata  
Murata  
Murata  
Inductors  
0402 CS  
0402 CS  
0402 C0G  
0402 C0G  
0402 C0G  
Capacitors  
Figure 57 compares the measured low-pass filter response and  
the normalized gain of the ADRF6821 LPF pair. Refer to the  
highest gain of the ADRF6821 (without the low-pass filter) to  
acheive normalization. The in band roll-off is associated to the  
finite Q and trace and pad losses.  
For the purposes of ADC interfacing, consider a DPD receiver  
chain, correcting for a 70 MHz bandwidth signal. Assuming a  
fifth-order correction, 350 MHz from the output of the power  
amplifier must be sampled. With the use of a zero-IF receiver,  
I and Q bandwidths are half of the 350 MHz, that is, 175 MHz.  
Next, determine the sampling rate of the ADC. To relax the  
antialiasing filter requirements, use a slightly oversampled  
system. Considering the bandwidth of interest for I and Q  
(that is, 175 MHz), 500 MSPS is a sufficiently large sampling  
rate. With a 500 MSPS sampling rate, the second Nyquist zone  
lies between 250 MHz and 500 MHz. Because there are no  
interferers present in a DPD chain, only the replica of the signal  
of interest in the second Nyquist zone (between 325 MHz and  
500 MHz) is of concern. As a result, the antialiasing filter provides  
sufficient attenuation starting from 325 MHz.  
0
NORMALIZED GAIN OF ADRF6821 LPF  
LPF RESPONSE  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
100 200 300 400 500 600 700 800 900 1000  
IF FREQUENCY (MHz)  
The required attenuation from the filter is determined with the  
dynamic range requirement. As previously mentioned, in a DPD  
receiver chain, ideally only the signal of interest is present.  
Therefore, the filter requirements can be relaxed further. Because of  
this, consider a 40 dB rejection at the aliased portion.  
Figure 57. Frequency Response for the 150 MHz Low-Pass Filter and  
Frequency Response for ADRF6821 LPF Pair  
Considering the pass band, the stop band, and the attenuation  
at stop band, a seventh-order Chebyshev low-pass filter is  
suitable with a 0.1 dB ripple in-band. Keep in mind that the  
ADRF6821 is optimized with a 100 Ω load at the output.  
Therefore, design the filter for an input and output impedance  
of differential 100 Ω. The Chebyshev filter design is discussed  
extensively and is straightforward with the use of a filter wizard,  
such as ADS built-in filter design tool from Keysight. Filter  
design tools provide component values that are not necessarily  
commercially available. It is recommended that designers  
use commercially available component models and take into  
account the layout effects. Figure 56 displays the component  
values for the antialiasing LPF. Table 17 provides commercially  
available component values for the low-pass filter design.  
Rev. A | Page 30 of 61  
 
 
 
Data Sheet  
ADRF6821  
One of the dominant sources of phase error in a system originates  
from the demodulator where the quadrature phase split of the  
LO signal occurs. The ADRF6821 offers phase and gain adjustment  
of the I and Q paths independently to allow quadrature correction.  
Adjusting the phase with the TRM_LODRV_CAPI bits  
(Register 0x0092, Bits[3:0]) for the I path correction and the  
TRM_LODRV_CAPQ bits (Register 0x0092, Bits[7:4]) for the  
Q path correction accesses the quadrature correction. Adjust  
the I_MIXER_GAIN_ADJ bits (Register 0x003A, Bits[3:2]) and  
the Q_MIXER_GAIN_ADJ bits (Register 0x003A, Bits[5:4]) for  
the I and Q outputs, respectively, to achieve gain correction.  
Figure 60 shows uncalibrated and calibrated image rejection for  
an LO frequency of 2800 MHz and across temperature.  
45  
IMAGE REJECTION  
For direct conversion systems, maximizing image rejection is  
key to achieving performance and optimizing bandwidth. The  
amplitude and phase mismatch of the baseband I and Q paths  
directly translates to degradation in image rejection, as is shown  
in the following equation. The equation translates the gain and  
quadrature phase mismatch to the image rejection ratio (IRR)  
performance.  
1+ Ae2 + 2Aecos(ϕe )  
IRR (dB) =10log  
1+ Ae2 + 2Aecos(ϕe )  
where:  
Ae is the amplitude error and is shown in Figure 58 for various  
LO frequencies.  
φe is the phase error and is shown in Figure 59 for various LO  
frequencies.  
CORRECTED  
40  
35  
The image rejection calculated with the given phase and gain  
mismatches is shown in Figure 60.  
30  
25  
20  
15  
10  
5
UNCORRECTED  
0.50  
LO = 2800MHz  
LO = 2000MHz  
LO = 1000MHz  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
+105°C  
+27°C  
–40°C  
0
0
50  
100 150 200 250 300 350 400 450 500  
IF FREQUENCY (MHz)  
Figure 60. Corrected and Uncorrected Image Rejection vs. IF Frequency for  
Various Temperatures, fLO = 2800 MHz  
For any correction circuit, it is important to observe the effect  
of temperature on the correction level and settings. Figure 61  
shows how the correction with a given phase and gain setting  
holds across temperature.  
0
50  
100 150 200 250 300 350 400 450 500  
IF FREQUENCY (MHz)  
Figure 58. Gain Mismatch (Error) Between I and Q Outputs vs. IF Frequency  
4.5  
TRM_LODRV_CAPI = 15  
TRM_LODRV_CAPI = 8  
TRM_LODRV_CAPI = 0  
4.5  
LO = 2800MHz  
4.0  
LO = 2000MHz  
LO = 1000MHz  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0
50  
100 150 200 250 300 350 400 450 500  
IF FREQUENCY (MHz)  
0
50  
100 150 200 250 300 350 400 450 500  
IF FREQUENCY (MHz)  
Figure 61. Phase Mismatch vs. IF Frequency (fLO = 2800 MHz) for Various  
Phase Setting Values  
Figure 59. Phase Mismatch (Error) Between I and Q Outputs vs. IF Frequency  
Rev. A | Page 31 of 61  
 
 
 
 
 
ADRF6821  
Data Sheet  
PLL/VCO Supply Domain  
POWER SUPPLY CONFIGURATION  
The PLL/VCO supply domain requires specific attention;  
otherwise, performance degradation can result. The ADRF6821  
incorporates an ultralow noise PLL and VCO that are sensitive  
to any noise and/or frequency component at the supply pins.  
These unwanted noise and frequency components degrade  
the performance of the overall system. To avoid performance  
degradation, the ADRF6821 evaluation board employs the  
PLL/VCO supply domain circuit shown in Figure 63. The supply  
circuit in Figure 63 uses the HMC1060, an ultralow noise, LDO  
with four isolated outputs. Noise performance and isolated outputs  
make the HMC1060 an ideal solution for the PLL/VCO supply  
domain. For additional configuration options, refer to the  
ADRF6821-EVALZ user guide.  
The ADRF6821 incorporates two main supply domains, namely  
RF/IF and PLL/VCO. The RF/IF supply domain includes the  
supplies related to the RF switch, the DSA, the mixer, the mixer  
LO drivers, and the IF amplifier. The PLL/VCO supply domain  
includes the P F D / C P, the VCO, the dividers, and the output  
drivers.  
RF/IF Supply Domain  
Connect the RF/IF supply domain pins together with beads in  
between and decoupling capacitors specific to each pin as shown  
in Figure 62. The RF/IF supply pins draw a combined 350 mA  
approximately. For the RF/IF supply domain, the ADRF6821  
evaluation board employs the ADM7170, a low noise and high  
power supply rejection ratio (PSRR) linear regulator that is  
capable of delivering 500 mA.  
The power supply rejection (PSR) of the RF/IF supply pins allow  
the use of a switching supply to reduce the power consumption  
on the linear regulators. The ADRF6821 evaluation board includes  
the ADP2370 switching regulator and allows the observation of  
the operation with a switching supply. The ADP2370 is a low  
quiescent current buck regulator capable of delivering an output  
current of 800 mA with a selectable switching frequencies of  
600 kHz and 1.2 MHz. See the ADRF6821-EVALZ user guide  
on how to configure the switching supply for RF/IF domain.  
BEAD  
VCC_3V3_I  
10µF  
0.1µF  
0.1µF  
100pF  
100pF  
100pF  
100pF  
BEAD  
10µF  
VCC_3V3_Q  
VCC_LO1  
BEAD  
0.1µF  
BEAD  
0.1µF  
ADM7170  
VCC_LO2  
10µF  
BEAD  
0.1µF  
VCC_IFMIX_I  
100pF  
100pF  
BEAD  
0.1µF  
VCC_IFMIX_Q  
VCC_IFMIX_I  
VCC_IFMIX_Q  
BEAD  
0.1µF  
100pF  
100pF  
BEAD  
0.1µF  
Figure 62. RF/IF Domain Power Supply Circuit  
Rev. A | Page 32 of 61  
 
 
Data Sheet  
ADRF6821  
BEAD  
10µF  
VCCVCO_3V3  
VCCCP_3V3  
0.1µF  
100pF  
100pF  
100pF  
100pF  
100pF  
100pF  
0.1µF  
BEAD  
0.1µF  
10µF  
VR1  
VR2  
VR3  
VR4  
BEAD  
0.1µF  
VCCPFD_3V3  
VCCREF_3V3  
VBAT_DIG_3V3  
HMC1060  
BEAD  
0.1µF  
10µF  
BEAD  
0.1µF  
BEAD  
0.1µF  
VCCLO_AUX_3V3  
VCCLO_MIX_3V3  
10µF  
BEAD  
VCCDIV_3V3  
100pF  
VCCFBDIV_3V3  
100pF  
0.1µF  
Figure 63. PLL/VCO Domain Power Supply Circuit  
Rev. A | Page 33 of 61  
 
ADRF6821  
Data Sheet  
The ADRF6821 incorporates a very low noise PLL/VCO and  
care must be taken when designing the PCB routing around the  
PLL/VCO pins. It is required to put the decoupling capacitors  
for the supply pins as close as possible. If 0402 capacitors are  
used, putting all of the decoupling capacitors close to the pin  
becomes problematic. In such a case, place the smaller value  
decoupling capacitor as close as possible to the pin. It is a good  
practice to keep the first capacitor of the loop filter close to the  
CPOUT pin, and the last capacitor close to the VTUNE pin, as  
can be seen in Figure 65.  
LAYOUT  
Careful layout of the ADRF6821 is necessary for optimizing  
performance and minimizing stray parasitics. Because the  
ADRF6821 supports two channels, the layout of the RF section  
is critical in achieving isolation between channels. Figure 64  
shows the recommended layout for the RF inputs. The best  
layout approach is to keep the traces short and direct. In  
addition, for improved isolation, do not route the RF input  
traces in parallel to each other and spread the traces immediately  
after each one leaves the pins. Keep the traces as far away from  
each other as possible (and at an angle, if possible) to prevent  
cross coupling.  
The input impedance of the RF inputs is 50 Ω, and the traces  
leading to the pin must have a 50 Ω characteristic impedance.  
Terminate the unused RF inputs with a dc blocking capacitor to  
ground.  
Figure 65. PLL/VCO Domain Layout  
Figure 64. RF/IF Domain Layout  
Rev. A | Page 34 of 61  
 
 
 
Data Sheet  
ADRF6821  
REGISTER MAP AND REGISTER DESCRIPTIONS  
Register addresses not listed in Table 18 are reserved, unused, or open registers.  
Table 18.  
Reg  
Addr  
(Hex)  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
0000  
ADI_SPI_  
CONFIG  
[7:0]  
SOFTRESET_  
LSB_FIRST_  
ENDIAN_  
SDOACTIVE_  
SDOACTIVE  
ENDIAN  
LSB_FIRST  
SOFTRESET  
0x00  
R/W  
0001  
SPI_  
CONFIG_B  
[7:0]  
SINGLE_  
INSTRUCTION  
CSB_STALL  
MASTER_  
SLAVE_RB  
RESERVED  
SOFT_RESET  
MASTER_  
SLAVE_  
0x00  
R/W  
TRANSFER  
0003  
0004  
CHIPTYPE  
[7:0]  
[7:0]  
CHIPTYPE  
0x01  
0x13  
R
R
PRODUCT_  
ID_L  
PRODUCT_ID, Bits[7:0]  
0005  
PRODUCT_  
ID_H  
[7:0]  
PRODUCT_ID, Bits[15:8]  
0x00  
R
000A  
000B  
000C  
SCRATCHPAD  
SPI_REV  
[7:0]  
[7:0]  
[7:0]  
SCRATCHPAD  
SPI_REV  
0x00  
0x00  
0x56  
R/W  
R
VENDOR_  
ID_L  
VENDOR_ID, Bits[7:0]  
R
000D  
0020  
0030  
0031  
0032  
0033  
VENDOR_  
ID_H  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
VENDOR_ID, Bits[15:8]  
0x04  
0x00  
0x00  
0x00  
0x00  
0x00  
R
MASTER_  
CONFIG  
RESERVED  
RFSW_SEL0  
EN_ANALOG_  
MASTER  
SPI_18_33_SEL  
EN_SW  
R/W  
R/W  
R/W  
R/W  
R/W  
RF_SWITCH  
RESERVED  
SEL_RFSW_  
SPI_CONTROL  
RFSW_SEL1  
RFSW_SEL1_IN  
ATTEN_DSA  
EN_IMXBIAS_I EN_MIXIBIASGEN  
CODE_MIXER_DRVR  
RFSW_SEL0_IN  
EN_MIX_Q  
ENB_SW_  
1P8_GEN  
DSA_  
CONTROL  
RESERVED  
ENB_DSA_  
1P8_GEN  
EN_DSA  
DEMOD_  
ENABLES  
RESERVED  
EN_IMXBIAS_Q  
EN_MIX_I  
ENB_MIX_  
1P8_GEN  
DEMOD_  
LO_COM_  
CTRL  
0034  
DEMOD_  
OUT_COM_  
CTRL  
[7:0]  
CODE_MIXER_OCM  
0x00  
R/W  
003A  
0040  
DEMOD_  
SPARES  
[7:0]  
[7:0]  
RESERVED  
Q_MIXER_GAIN_ADJ  
I_MIXER_GAIN_ADJ  
MIXER_GAIN_PEAK  
0x00  
0x00  
R/W  
R/W  
DEMOD_  
DRIVER_  
COM_CTRL  
EN_ICMLOBIAS_Q  
EN_  
EN_ICMOBIAS_Q  
EN_DC_DAC_I  
EN_ICMOBIAS_I  
ICMLOBIAS_I  
0050  
0051  
0052  
DC_CTRL  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
EN_DC_DAC_Q  
ENB_DCCOMP_  
1P8_GEN  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
DC_COMP_I_  
CHAN_RF0  
CODE_DC_IDAC_RF0  
CODE_DC_QDAC_RF0  
DC_  
COMP_Q_  
CHAN_RF0  
0053  
0054  
DC_  
COMP_I_  
CHAN_RF1  
[7:0]  
[7:0]  
CODE_DC_IDAC_RF1  
CODE_DC_QDAC_RF1  
0x00  
0x00  
R/W  
R/W  
DC_  
COMP_Q_  
CHAN_RF1  
0060  
0070  
0080  
0090  
LPF_BW_SEL  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
RESERVED  
SEL_LPF_  
BW_LSB  
SEL_LPF_  
BW_MSB  
0x00  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
IF_AMP_  
CTRL  
EN_IFAMP_Q  
EN_IFAMP_I  
LO_CTRL  
RESERVED  
SEL_LODRV_  
PREDRVQ_POL  
SEL_LODRV_  
PREDRVI_POL  
RESERVED  
EN_LO_  
DIVIDER_  
CTRL  
RESERVED  
RESERVED  
EN_LODRV_  
PREDRVQ  
EN_LODRV_  
PREDRVI  
EN_LODRV_  
DRVQ  
EN_LODRV_DRVI  
EN_DIVPATH_  
QUADDIV  
EN_DIVPATH_  
BUF  
EN_IBIASGEN  
0092  
1021  
LO_PHASE_  
ADJ  
[7:0]  
[7:0]  
TRM_LODRV_CAPQ  
ARSTB_  
TRM_LODRV_CAPI  
0x00  
0xFF  
R/W  
R/W  
BLOCK_  
RESETS  
ARSTB_  
ARSTB_  
BLOCK_NDIV  
ARSTB_  
BLOCK_RDIV  
ARSTB_  
BLOCK_  
DSMOSTG  
ARSTB_BLOCK_  
DSMCORE  
ARSTB_  
BLOCK_  
DSMALL  
BLOCK_LKD  
BLOCK_  
AUTOCAL  
1109  
SIG_PATH_  
9_NORMAL  
[7:0]  
RESERVED  
TRM_MIXLODRV_DRV_POUT  
TRM_XLODRV_DRV_POUT  
RESERVED  
0x0A  
R/W  
Rev. A | Page 35 of 61  
 
 
ADRF6821  
Data Sheet  
Reg  
Addr  
(Hex)  
1200  
1201  
1202  
1203  
1204  
1205  
Name  
Bits  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
0x89  
0x01  
0x00  
0x00  
0x00  
0x00  
RW  
INT_L  
INT_DIV, Bits[7:0]  
INT_DIV, Bits[15:8]  
FRAC, Bits[7:0]  
FRAC, Bits[15:8]  
FRAC, Bits[23:16]  
PHASE, Bits[7:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
INT_H  
FRAC1_L  
FRAC1_M  
FRAC1_H  
SD_PHASE_  
L_0  
1206  
1207  
SD_PHASE_  
M_0  
[7:0]  
[7:0]  
PHASE, Bits[15:8]  
PHASE, Bits[23:16]  
MOD2, Bits[7:0]  
0x00  
0x00  
R/W  
R/W  
SD_PHASE_  
H_0  
1208  
1209  
120B  
120C  
120E  
1214  
MOD_L  
MOD_H  
SYNTH  
R_DIV  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
0x00  
0x00  
0x01  
0x03  
0x04  
0x48  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RESERVED  
MOD2, Bits[13:8]  
RESERVED  
PRE_SEL  
EN_FBDIV  
RDIV2_SEL  
RESERVED  
R_DIV  
DOUBLER_EN  
SYNTH_0  
RESERVED  
RESERVED  
RESERVED  
MULTI_FUNC_  
SYNTH_  
CTRL_0214  
LD_BIAS  
LDP  
RESERVED  
1215  
1217  
121C  
SI_BAND_0  
SI_VCO_SEL  
[7:0]  
[7:0]  
[7:0]  
SI_BAND_SEL  
0x00  
0x00  
0x20  
R/W  
R/W  
R/W  
SI_VCO_SEL  
VCO_  
TIMEOUT_L  
VCO_TIMOUT[7:0]  
VCO_BAND_DIV  
121D  
121E  
121F  
122A  
122C  
VCO_  
TIMEOUT_H  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
VCO_TIMEOUT[9:8]  
0x00  
0x14  
0x00  
0x02  
0x03  
R/W  
R/W  
R/W  
R/W  
R/W  
VCO_  
BAND_DIV  
VCO_FSM  
RESERVED  
DISABLE_  
RESERVED  
RESERVED  
CAL  
SD_CTRL  
RESERVED  
SD_EN_FRAC0  
SD_EN_OUT_  
OFF  
SD_SM_2  
RESERVED  
CP_HIZ  
MULTI_  
RESERVED  
FUNC_  
SYNTH_  
CTRL_022C  
122D  
MULTI_  
[7:0]  
EN_PFD_CP  
BLEED_POL  
RESERVED  
INT_ABP  
RESERVED  
BLEED_EN  
0x81  
R/W  
FUNC_  
SYNTH_  
CTRL_022D  
122E  
122F  
1233  
1234  
1235  
CP_CURR  
BICP  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
CP_CURRENT  
0x0F  
0x08  
0x00  
0x00  
0x00  
R/W  
R/W  
R/W  
R/W  
R/W  
BICP  
FRAC2_L  
FRAC2_H  
FRAC2, Bits[7:0]  
RESERVED  
FRAC2, Bits[13:8]  
MULTI_  
FUNC_  
RESERVED  
PHASE_ADJ_EN  
RESERVED  
SYNTH_  
CTRL_0235  
1240  
124D  
1401  
VCO_LUT_  
CTRL  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
RESERVED  
SI_VCO_FORCE_  
CAPSVCOI  
RESERVED  
SI_VCO_FORCE_  
VCO  
SI_VCO_  
FORCE_CAPS  
0x00  
0x00  
0x00  
R/W  
R
LOCK_  
DETECT  
RESERVED  
LOCK_DETECT  
MULTI_  
FUNC_CTRL  
SPI_1P8_3P3_  
CTRL  
RESERVED  
R/W  
140E  
1414  
1541  
LO_CNTRL2  
LO_CNTRL8  
[7:0]  
[7:0]  
[7:0]  
EN_BIAS_R  
MIX_OE  
RESERVED  
LO_OE  
REFBUF_EN  
USEEXT_LOI  
RESERVED  
OUT_DIVRATIO  
0xB3  
0x02  
0x00  
R/W  
R/W  
R
FRAC2_L_  
SLAVE  
FRAC2_SLV, Bits[7:0]  
1542  
1543  
1544  
1545  
FRAC2_H_  
SLAVE  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
RESERVED  
FRAC2_SLV, Bits[13:8]  
0x00  
0x00  
0x00  
0x00  
R
R
R
R
FRAC_L_  
SLAVE  
FRAC_SLV, Bits[7:0]  
FRAC_SLV, Bits[15:8]  
FRAC_SLV, Bits[23:16]  
FRAC_M_  
SLAVE  
FRAC_H_  
SLAVE2  
Rev. A | Page 36 of 61  
Data Sheet  
ADRF6821  
Reg  
Addr  
(Hex)  
Name  
Bits  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset  
RW  
1546  
PHASE_L_  
SLAVE  
[7:0]  
PHASE_SLV, Bits[7:0]  
0x00  
R
1547  
1548  
1549  
154A  
154B  
154C  
1583  
PHASE_  
M_SLAVE2  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
[7:0]  
PHASE_SLV, Bits[15:8]  
PHASE_SLV, Bits[23:16]  
INT_DIV_SLV, Bits[7:0]  
INT_DIV_SLV, Bits[15:8]  
R_DIV_SLV  
0x00  
0x00  
0x89  
0x01  
0x03  
0x00  
0x00  
R
PHASE_  
H_SLAVE3  
R
INT_DIV_  
L_SLAVE  
R
INT_DIV_  
H_SLAVE  
R
R_DIV_  
SLAVE  
RESERVED  
R
RDIV2_  
SEL_SLAVE  
RESERVED  
DSM_LAUNCH_DLY  
RDIV2_SEL_SLV  
R
DISABLE_  
CFG  
RESERVED  
DISABLE_  
FREQHOP  
DISABLE_  
DBLBUFFERING  
DISABLE_  
PHASEADJ  
R/W  
Rev. A | Page 37 of 61  
ADRF6821  
Data Sheet  
REGISTER DESCRIPTIONS  
Address: 0x0000, Reset: 0x00, Name: ADI_SPI_CONFIG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 ] SO FT RESET _ ( R/W )  
SOFTRESET_  
[ 0 ] SO FT RESET ( R/W )  
SOFTRESET  
[ 6 ] LSB_FIRST _ ( R/W )  
LSB_FIRST_  
[ 1] LSB_FIRST ( R/W )  
LSB_FIRST  
[ 5] ENDIAN_ ( R/W )  
ENDIAN_  
[ 2] ENDIAN ( R/W )  
ENDIAN  
[ 4 ] SDO ACT IVE_ ( R/W )  
SDOACTIVE_  
[ 3] SDO ACT IVE ( R/W )  
SDOACTIVE  
Table 19. Bit Descriptions for ADI_SPI_CONFIG  
Bits  
Bit Name  
Settings Description  
SOFTRESET_  
LSB_FIRST_  
ENDIAN_  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Access  
7
SOFTRESET_  
LSB_FIRST_  
ENDIAN_  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
6
5
4
SDOACTIVE_  
SDOACTIVE  
ENDIAN  
SDOACTIVE_  
SDOACTIVE  
ENDIAN  
3
2
1
LSB_FIRST  
SOFTRESET  
LSB_FIRST  
0
SOFTRESET  
Address: 0x0001, Reset: 0x00, Name: SPI_CONFIG_B  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7] SINGLE_INSTRUCTION (R/W)  
[0] MASTER_SLAVE_TRANSFER (R/W)  
Single Instruction  
Master Slave Transfer  
[6] CSB_STALL (R/W)  
[2:1] SOFT_RESET (R/W)  
CSB Stall  
Soft Reset  
[5] MASTER_SLAVE_RB (R/W)  
[4:3] RESERVED  
Master Slave RB  
Table 20. Bit Descriptions for SPI_CONFIG_B  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
SINGLE_INSTRUCTION  
CSB_STALL  
Single Instruction  
CSB Stall  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
6
5
MASTER_SLAVE_RB  
RESERVED  
Master Slave Readback (RB)  
Reserved  
[4:3]  
[2:1]  
0
SOFT_RESET  
Soft Reset  
MASTER_SLAVE_TRANSFER  
Master Slave Transfer  
Address: 0x0003, Reset: 0x01, Name: CHIPTYPE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] CHIPTYPE (R)  
Chip Type, Read Only  
Table 21. Bit Descriptions for CHIPTYPE  
Bits  
Bit Name Settings Description  
CHIPTYPE Chip Type, Read Only  
Reset  
0x1  
Access  
[7:0]  
R
Rev. A | Page 38 of 61  
 
Data Sheet  
ADRF6821  
Address: 0x0004, Reset: 0x13, Name: PRODUCT_ID_L  
7
6
5
4
3
2
1
0
0
0
0
1
0
0
1
1
[ 7 :0 ] PRO DUCT _ID[ 7 :0 ][ 7 :0 ] ( R)  
PRODUCT_ID  
Table 22. Bit Descriptions for PRODUCT_ID_L  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID, Bits[7:0]  
PRODUCT_ID  
0x13  
R
Address: 0x0005, Reset: 0x00, Name: PRODUCT_ID_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] PRO DUCT _ID[ 7 :0 ][ 15:8 ] ( R)  
PRODUCT_ID  
Table 23. Bit Descriptions for PRODUCT_ID_H  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PRODUCT_ID, Bits[15:8]  
PRODUCT_ID  
0x13  
R
Address: 0x000A, Reset: 0x00, Name: SCRATCHPAD  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] SCRAT CHPAD ( R/W )  
SCRATCHPAD  
Table 24. Bit Descriptions for SCRATCHPAD  
Bits  
Bit Name  
Settings Description  
Reset  
Access  
[7:0]  
SCRATCHPAD  
SCRATCHPAD  
0x0  
R/W  
Address: 0x000B, Reset: 0x00, Name: SPI_REV  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] SPI_REV (R)  
SPI Register Map Rev  
Table 25. Bit Descriptions for SPI_REV  
Bits  
Bit Name Settings Description  
SPI_REV SPI Register Map Rev  
Reset  
0x0  
Access  
[7:0]  
R
Address: 0x000C, Reset: 0x56, Name: VENDOR_ID_L  
7
6
5
4
3
2
1
0
0
1
0
1
0
1
1
0
[ 7 :0 ] VENDO R_ID[ 7 :0 ][ 7 :0 ] ( R)  
VEND O R_ID  
Table 26. Bit Descriptions for VENDOR_ID_L  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VENDOR_ID, Bits[7:0]  
VENDOR_ID  
0x456  
R
Rev. A | Page 39 of 61  
ADRF6821  
Data Sheet  
Address: 0x000D, Reset: 0x04, Name: VENDOR_ID_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[ 7 :0 ] VENDO R_ID[ 7 :0 ][ 15:8 ] ( R)  
VEND O R_ID  
Table 27. Bit Descriptions for VENDOR_ID_H  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
VENDOR_ID, Bits[15:8]  
VENDOR_ID  
0x456  
R
Address: 0x0020, Reset: 0x00, Name: MASTER_CONFIG  
Controls master enable, SPI mode, sleep mode, and the input word for the dc DAC.  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] RESERVED  
[0] SPI_18_33_SEL (R/W)  
3.3V SPI Output Level Selection  
[1] EN_ANALOG_MASTER (R/W)  
Master Enable  
Table 28. Bit Descriptions for MASTER_CONFIG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:2] RESERVED  
Reserved.  
0x0  
0x0  
0x0  
R
1
0
EN_ANALOG_MASTER  
SPI_18_33_SEL  
Master Enable. Master enable for the DPD analog blocks. Active high.  
3.3 V SPI Output Level Selection. The high level is 3.3 V, and the low level is 1.8 V.  
R/W  
R/W  
Address: 0x0030, Reset: 0x00, Name: RF_SWITCH  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 ] RESERVED  
[ 0 ] EN_SW ( R/W )  
RF SW Enable (0:off 1:on)  
[ 6 ] SEL_RFSW _SPI_CO NT RO L ( R/W )  
SPI Override for Pin Switch Selection  
[ 1 ] EN B_SW _1 P8 _GEN ( R/W )  
RF SW 1.8V Reference Enable (1:off  
0:on), Active Low  
[ 5] RFSW _SEL1 ( R/W )  
Select RF1 Input  
[ 2 ] RFSW _SEL0 _IN ( R)  
External RF Switch Status (RFSEL0)  
[ 4 ] RFSW _SEL0 ( R/W )  
Select RF0 Input  
[ 3 ] RFSW _SEL1 _IN ( R)  
External RF Switch Status (RFSEL1)  
Table 29. Bit Descriptions for RF_SWITCH  
Bits Bit Name  
Settings Description  
Reset Access  
7
6
5
RESERVED  
Reserved.  
0x0  
0x0  
0x0  
R
SEL_RFSW_SPI_CONTROL  
RFSW_SEL1  
SPI Override for Pin Switch Selection.  
R/W  
R/W  
Select RF1 Input. Software control for the RF channel selection (requires  
that SEL_RFSW_SPI_CONTROL is set to 1).  
0
1
Not selected (internal 50 Ω termination).  
RF channel selected (signal connected to signal path).  
4
3
RFSW_SEL0  
Select RF0 Input. Software control for the RF channel selection (requires  
that SEL_RFSW_SPI_CONTROL is set to 1).  
Not selected (internal 50 Ω termination).  
0x0  
0x0  
R/W  
R
0
1
RF channel selected (signal connected to signal path).  
RFSW_SEL1_IN  
External RF Switch Status (RFSEL1). Readback status of the external RF  
channel selection pin (RF_SEL1).  
0
1
Not selected (internal 50 Ω termination).  
RF channel selected (signal connected to signal path).  
Rev. A | Page 40 of 61  
Data Sheet  
ADRF6821  
Bits Bit Name  
Settings Description  
External RF Switch Status (RFSEL0). Readback status of the external RF  
Reset Access  
2
1
0
RFSW_SEL0_IN  
0x0  
0x0  
0x0  
R
channel selection pin (RF_SEL0).  
0
1
Not selected (internal 50 Ω termination).  
RF channel selected (signal connected to signal path).  
ENB_SW_1P8_GEN  
EN_SW  
RF SW 1.8 V Reference Enable (0: off and 1: on). Active low. Note that the  
input is active low; therefore, the default value of 0 enables this circuit.  
R/W  
R/W  
0
1
On.  
Off.  
RF SW Enable (0: off and 1: on). Enable for the RF channel switch. This  
must be enabled whenever RF Channel 1 or RF Channel 2 is used (either  
closed or set to open (that is, termination).  
0
1
Off.  
On.  
Address: 0x0031, Reset: 0x00, Name: DSA_CONTROL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 0 ] EN_DSA ( R/W )  
DSA Enable (0:off 1:on)  
[ 5:2] AT T EN_DSA ( R/W )  
DSA Attenuation Control  
0: 0 dB.  
[ 1 ] EN B_D SA_1 P8 _GEN ( R/W )  
DSA 1.8V Reference Enable (1:off 0:on),  
Active Low.  
1: 1 dB.  
10: 2 dB.  
...  
1101: 13 dB.  
1110: 14 dB.  
1111: 15 dB.  
Table 30. Bit Descriptions for DSA_CONTROL  
Bits  
[7:6]  
[5:2]  
Bit Name  
RESERVED  
ATTEN_DSA  
Settings Description  
Reset Access  
Reserved.  
0x0  
0x0  
R
DSA Attenuation Control. Controls the digital step attenuation in 1 dB steps.  
R/W  
0
1
0 dB.  
1 dB.  
10 2 dB.  
1101 13 dB.  
1110 14 dB.  
1111 15 dB.  
1
0
ENB_DSA_1P8_GEN  
EN_DSA  
DSA 1.8 V Reference Enable (1: off and 0: on). Active low.  
0x0  
R/W  
R/W  
DSA Enable (0: off and 1: on). This bit must be set to enable the RF digital step 0x0  
attenuator.  
Rev. A | Page 41 of 61  
ADRF6821  
Data Sheet  
Address: 0x0032, Reset: 0x00, Name: DEMOD_ENABLES  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 0 ] EN B_M IX_1 P8 _GEN ( R/W )  
MIX 1.8V Reference Enable (1:off 0:on),  
Active Low  
[ 5] EN_IM XBIAS_Q ( R/W )  
Q Channel Mixer Bias Current Enable  
(0:off 1:on)  
[ 1] EN_M IX_I ( R/W )  
I Channel Mixer Enable (0:off 1:on)  
[ 4 ] EN_IM XBIAS_I ( R/W )  
I Channel Mixer Bias Current Enable  
(0:off 1:on)  
[ 2 ] EN _M IX_Q ( R/W )  
Q Channel Mixer Enable (0:off 1:on)  
[ 3] EN_M IXIBIASGEN ( R/W )  
Mixer Bias Current Enable (0:off 1:on)  
Table 31. Bit Descriptions for DEMOD_ENABLES  
Bits  
[7:6]  
5
Bit Name  
Settings Description  
Reset Access  
RESERVED  
Reserved.  
0x0  
0x0  
R
EN_IMXBIAS_Q  
Q Channel Mixer Bias Current Enable (0: off and 1: on). Mixer bias current  
enable. This must be enabled whenever the mixer is enabled. The master  
mixer bias, EN_MIXBIASGEN, must also be enabled as well.  
R/W  
4
EN_IMXBIAS_I  
I Channel Mixer Bias Current Enable (0: off and 1: on). Mixer bias current  
enable. This must be enabled whenever the mixer is enabled. The master  
mixer bias, EN_MIXBIASGEN, must also be enabled as well.  
0x0  
R/W  
3
2
EN_MIXIBIASGEN  
EN_MIX_Q  
Mixer Bias Current Enable (0: off and 1: on). Master mixer bias current is  
enabled and must be enabled whenever the mixer is enabled.  
0x0  
0x0  
R/W  
R/W  
Q Channel Mixer Enable (0: off and 1: on). Enable for the mixer. For the mixer  
to correctly function, the following bits must also be enabled or set to 45:  
EN_MIXBIAS_x, EN_MIXBIASGEN, EN_ICMOBIAS_x, and CODE_MIXER_OCM.  
1
0
EN_MIX_I  
I Channel Mixer Enable (0: off and 1: on). Enable for the mixer. For the mixer to 0x0  
correctly function the following bits must also be enabled or set to 45:  
EN_MIXBIAS_x, EN_MIXBIASGEN, EN_ICMOBIAS_x, and CODE_MIXER_OCM.  
R/W  
R/W  
ENB_MIX_1P8_GEN  
Mixer 1.8 V Reference Enable (0: off and 1: on). Active low.  
0x0  
Address: 0x0033, Reset: 0x00, Name: DEMOD_LO_COM_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] CO DE_M IXER_DRVR ( R/W )  
Mixer LO Common-Mode Control  
Table 32. Bit Descriptions for DEMOD_LO_COM_CTRL  
Bits  
Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0]  
CODE_MIXER_DRVR  
Mixer LO Common-Mode Control. Determines the dc level applied to the  
mixer LO driver LDO.  
Address: 0x0034, Reset: 0x00, Name: DEMOD_OUT_COM_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] CO DE_M IXER_O CM ( R/W )  
Mixer Output Stage Common-Mode  
Control  
Table 33. Bit Descriptions for DEMOD_OUT_COM_CTRL  
Bits  
Bit Name  
Settings Description  
Reset Access  
R/W  
[7:0]  
CODE_MIXER_OCM  
Mixer Output Stage Common-Mode Control. Determines the dc level applied 0x0  
to the mixer output LDO.  
Rev. A | Page 42 of 61  
Data Sheet  
ADRF6821  
Address: 0x003A, Reset: 0x20, Name: DEMOD_SPARES  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 1:0 ] M IXER_GAIN_PEAK ( R/W )  
Frequency Selective Gain Adjustment  
for the Mixer  
[ 5:4 ] Q _M IXER_GAIN_ADJ( R/W )  
Q Mixer Gain Adjustment  
[ 3:2] I_M IXER_GAIN_ADJ( R/W )  
I Mixer Gain Adjustment  
Table 34. Bit Descriptions for DEMOD_SPARES  
Bits  
[7:6]  
[5:4]  
Bit Name  
Settings Description  
Reset Access  
RESERVED  
Reserved.  
0x0  
R
Q_MIXER_GAIN_ADJ  
Q Mixer Gain Adjustment. Allows the individual mixer gains to be adjusted in 0x0  
0.2 dB steps (gains are adjusted relative to each other) to improve I/Q  
balance.  
R/W  
[3:2]  
[1:0]  
I_MIXER_GAIN_ADJ  
MIXER_GAIN_PEAK  
I Mixer Gain Adjustment. Allows the individual mixer gains to be adjusted in  
0.2 dB steps (gains are adjusted relative to each other) to improve I/Q  
balance.  
Frequency Selective Gain Adjustment for the Mixer. It compensates for the  
frequency dependent loss in RF front end. 0 for no compensation, and  
3 (decimal) for maximum compensation.  
0x0  
R/W  
R/W  
0x0  
Address: 0x0040, Reset: 0x00, Name: DEMOD_DRIVER_COM_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :4 ] RESERVED  
[ 3] EN_ICM LO BIAS_Q ( R/W )  
Q Channel LO Driver Common-Mode  
Control Enable (0:off 1:on)  
[ 0 ] EN_ICM O BIAS_I ( R/W )  
I Channel Mixer Common-Mode Control  
Enable (0:off 1:on)  
[ 1] EN_ICM O BIAS_Q ( R/W )  
Q Channel Mixer Common-Mode Control  
Enable (0:off 1:on)  
[ 2] EN_ICM LO BIAS_I ( R/W )  
I Channel LO Driver Common-Mode Control  
Enable (0:off 1:on)  
Table 35. Bit Descriptions for DEMOD_DRIVER_COM_CTRL  
Bits  
[7:4]  
3
Bit Name  
Settings Description  
Reset Access  
RESERVED  
Reserved.  
0x0  
0x0  
R
EN_ICMLOBIAS_Q  
Q Channel LO Driver Common-Mode Control Enable (0: off and 1: on). LO path  
driver LDO bias current. This must be enabled to turn on the LDO for the LO  
driver block which interfaces to the mixer.  
R/W  
2
1
0
EN_ICMLOBIAS_I  
EN_ICMOBIAS_Q  
EN_ICMOBIAS_I  
I Channel LO Driver Common-Mode Control Enable (0: off and 1: on). LO path  
driver LDO bias current. This must be enabled to turn on the LDO for the LO  
driver block which interfaces to the mixer.  
0x0  
0x0  
0x0  
R/W  
R/W  
R/W  
Q Channel Mixer Common-Mode Control Enable (0: off and 1: on). Mixer LDO  
bias current. This must be enabled to turn on the LDO for the mixer. This is  
required whenever the mixer is enabled.  
I Channel Mixer Common-Mode Control Enable (0: off and 1: on). Mixer LDO  
bias current. This must be enabled to turn on the LDO for the mixer. This is  
required whenever the mixer is enabled.  
Rev. A | Page 43 of 61  
ADRF6821  
Data Sheet  
Address: 0x0050, Reset: 0x00, Name: DC_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :3] RESERVED  
[ 0 ] ENB_DCCO M P_1P8 _GEN ( R/W )  
DC DAC 1.8V Reference Enable (1:off  
0:on), Active Low.  
[ 2] EN_DC_DAC_Q ( R/W )  
DC Compensation Q Channel Enable  
(0: off 1: on)  
[ 1] EN_DC_DAC_I ( R/W )  
DC Compensation I Channel Enable (0:  
off 1: on)  
Table 36. Bit Descriptions for DC_CTRL  
Bits  
[7:3]  
2
Bit Name  
Settings Description  
Reset Access  
RESERVED  
Reserved.  
0x0  
0x0  
R
EN_DC_DAC_Q  
DC Compensation Q Channel Enable (0: off and 1: on). Enables the dc  
compensation DAC.  
R/W  
1
0
EN_DC_DAC_I  
DC Compensation I Channel Enable (0: off and 1: on). Enables the dc  
compensation DAC.  
0x0  
0x0  
R/W  
R/W  
ENB_DCCOMP_1P8_GEN  
DC DAC 1.8 V Reference Enable (1: off and 0: on). Active Low.  
Address: 0x0051, Reset: 0x00, Name: DC_COMP_I_CHAN_RF0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CODE_DC_IDAC_RF0 (R/W)  
DC Compensation I Channel  
Table 37. Bit Descriptions for DC_COMP_I_CHAN_RF0  
Bits  
Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0]  
CODE_DC_IDAC_RF0  
DC Compensation I Channel. Controls the dc correction applied to the IF  
path. LSB is approximately ½ mV referred to the output. Value is signed  
magnitude notation. 0xFF is the most negative, and 0x7F is the most positive.  
Address: 0x0052, Reset: 0x00, Name: DC_COMP_Q_CHAN_RF0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CODE_DC_QDAC_RF0 (R/W)  
DC Compensation Q Channel  
Table 38. Bit Descriptions for DC_COMP_Q_CHAN_RF0  
Bits  
Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0]  
CODE_DC_QDAC_RF0  
DC Compensation Q Channel. Controls the dc correction applied to the IF  
path. LSB is approximately ½ mV referred to the output. Value is signed  
magnitude notation. 0xFF is the most negative, and 0x7F is the most positive.  
Address: 0x0053, Reset: 0x00, Name: DC_COMP_I_CHAN_RF1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CODE_DC_IDAC_RF1 (R/W)  
DC Compensation I Channel  
Table 39. Bit Descriptions for DC_COMP_I_CHAN_RF1  
Bits  
Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0]  
CODE_DC_IDAC_RF1  
DC Compensation I Channel. Controls the dc correction applied to the IF  
path. LSB is approximately ½ mV referred to the output. Value is signed  
magnitude notation. 0xFF is the most negative, and 0x7F is the most positive.  
Rev. A | Page 44 of 61  
Data Sheet  
ADRF6821  
Address: 0x0054, Reset: 0x00, Name: DC_COMP_Q_CHAN_RF1  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] CODE_DC_QDAC_RF1 (R/W)  
DC Compensation Q Channel  
Table 40. Bit Descriptions for DC_COMP_Q_CHAN_RF1  
Bits  
Bit Name  
Settings Description  
Reset Access  
[7:0]  
CODE_DC_QDAC_RF1  
DC Compensation Q Channel. Controls the dc correction applied to the IF  
path. LSB is approximately ½ mV referred to the output. Value is signed  
magnitude notation. 0xFF is the most negative, and 0x7F is the most positive.  
0x0  
R/W  
Address: 0x0060, Reset: 0x00, Name: LPF_BW_SEL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :2] RESERVED  
[ 0 ] SEL_LPF_BW _M SB ( R/W )  
MSB for LPF Bandwidth Select  
[ 1] SEL_LPF_BW _LSB ( R/W )  
LSB for LPF Bandwidth Select  
Table 41. Bit Descriptions for LPF_BW_SEL  
Bits  
[7:2]  
1
Bit Name  
Settings Description  
Reset Access  
RESERVED  
Reserved.  
0x0  
0x0  
0x0  
R
SEL_LPF_BW_LSB  
SEL_LPF_BW_MSB  
LSB for LPF Bandwidth Select. See the Theory of Operation section.  
MSB for LPF Bandwidth Select. See the Theory of Operation section.  
R/W  
R/W  
0
Address: 0x0070, Reset: 0x00, Name: IF_AMP_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :2] RESERVED  
[ 1 ] EN _IFAM P_Q ( R/W )  
[ 0 ] EN_IFAM P_I ( R/W )  
I Channel IF Amplifier Enable (0:off 1:on)  
Q Channel IF Amplifier Enable (0:off  
1:on)  
Table 42. Bit Descriptions for IF_AMP_CTRL  
Bits Bit Name  
Settings Description  
Reset Access  
[7:2] RESERVED  
Reserved.  
0x0  
0x0  
0x0  
R
1
0
EN_IFAMP_Q  
EN_IFAMP_I  
Q Channel IF Amplifier Enable (0: off and 1: on). IF output amplifier enable.  
I Channel IF Amplifier Enable (0: off and 1: on). IF output amplifier enable.  
R/W  
R/W  
Address: 0x0080, Reset: 0x00, Name: LO_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :3] RESERVED  
[ 0 ] RESERVED  
[ 2] SEL_LO DRV_PREDRVQ _PO L ( R/W )  
Invert Q Channel LO Polarity  
[ 1] SEL_LO DRV_PREDRVI_PO L ( R/W )  
Invert I Channel LO Polarity  
Table 43. Bit Descriptions for LO_CTRL  
Bits Bit Name  
Settings Description  
Reset Access  
[7:3] RESERVED  
Reserved.  
0x0  
R
2
1
0
SEL_LODRV_PREDRVQ_POL  
Invert Q Channel LO Polarity. Selects the polarity for the Q channel LO path. 0x0  
0: normal polarity.  
1: inverted polarity.  
R/W  
SEL_LODRV_PREDRVI_POL  
RESERVED  
Invert I Channel LO Polarity. Selects the polarity for the I channel LO path.  
0x0  
0x0  
R/W  
R/W  
0: normal polarity.  
1: inverted polarity.  
Reserved.  
Rev. A | Page 45 of 61  
ADRF6821  
Data Sheet  
Address: 0x0090, Reset: 0x00, Name: EN_LO_DIVIDER_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 ] RESERVED  
[ 0 ] EN_IBIASGEN ( R/W )  
LO Path Bias Current Enable (0:off 1:on)  
Both Paths  
[ 6 ] EN_LO DRV_PREDRVQ ( R/W )  
Q Channel LO PreDriver Enable (0:off  
1:on)  
[ 1] EN_DIVPAT H_BUF ( R/W )  
LO Divider Path Buffer Enable (0:off  
1:on)  
[ 5] EN_LO DRV_PREDRVI ( R/W )  
I Channel LO PreDriver Enable (0:off  
1:on)  
[ 2] EN_DIVPAT H_Q UADDIV ( R/W )  
LO Divider Path I/Q Divider Enable (0:off  
1:on)  
[ 4 ] EN_LO DRV_DRVQ ( R/W )  
Q Channel LO Driver Enable (0:off 1:on)  
[ 3] EN_LO DRV_DRVI ( R/W )  
I Channel LO Driver Enable (0:off 1:on)  
Table 44. Bit Descriptions for EN_LO_DIVIDER_CTRL  
Bits  
Bit Name  
Settings Description  
Reset Access  
7
RESERVED  
Reserved.  
0x0  
0x0  
R
6
EN_LODRV_PREDRVQ  
Q Channel LO Predriver Enable (0: off and 1: on). LO path mixer predriver  
enable. This must be enabled whenever LO path is enabled.  
R/W  
5
4
3
2
EN_LODRV_PREDRVI  
EN_LODRV_DRVQ  
EN_LODRV_DRVI  
I Channel LO Predriver Enable (0: off and 1: on). LO path mixer predriver  
enable. This must be enabled whenever LO path is enabled.  
0x0  
R/W  
R/W  
R/W  
R/W  
Q Channel LO Driver Enable (0: off and 1: on). LO path mixer driver enable. 0x0  
This must be enabled whenever LO path is enabled.  
I Channel LO Driver Enable (0: off and 1: on). LO path mixer driver enable.  
This must be enabled whenever LO path is enabled.  
0x0  
EN_DIVPATH_QUADDIV  
LO Divider Path I/Q Divider Enable (0: off and 1: on). Blocks required to be  
enabled in this path are: EN_DIVPATH_BUF, EN_LODRVR_DRVx,  
EN_LODRVR_PREDRVRx, EN_IBIASGEN, EN_ICMLOBIAS_x,  
CODE_MIXER_DRVR.  
0x0  
1
0
EN_DIVPATH_BUF  
EN_IBIASGEN  
LO Divider Path Buffer Enable (0: off and 1: on). Blocks required to be  
enabled in this path are: EN_DIVPATH_QUADDIV, EN_LODRVR_DRVx,  
EN_LODRVR_PREDRVRx, EN_IBIASGEN, EN_ICMLOBIAS_x,  
CODE_MIXER_DRVR.  
0x0  
0x0  
R/W  
R/W  
LO Path Bias Current Enable (0: off and 1) Both Paths.  
Address: 0x0092, Reset: 0x00, Name: LO_PHASE_ADJ  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :4 ] T RM _LO DRV_CAPQ ( R/W )  
Q Channel LO Phase Adjustment  
[ 3:0 ] T RM _LO DRV_CAPI ( R/W )  
I Channel LO Phase Adjustment  
Table 45. Bit Descriptions for LO_PHASE_ADJ  
Bits  
Bit Name  
Settings Description  
Reset Access  
[7:4]  
TRM_LODRV_CAPQ  
Q Channel LO Phase Adjustment. LO Quadrature Phase Adjust. Valid range is  
from 0x0 to 0xF. For no compensation or adjustment, both TRM_LODRV_CAPI  
and TRM_LODRV_CAPQ must be set to the same value.  
0x0  
R/W  
[3:0]  
TRM_LODRV_CAPI  
I Channel LO Phase Adjustment. LO Quadrature Phase Adjust. Valid range is  
from 0x0 to 0xF. For no compensation or adjustment, both TRM_LODRV_CAPI  
and TRM_LODRV_CAPQ must be set to the same value.  
0x0  
R/W  
Rev. A | Page 46 of 61  
Data Sheet  
ADRF6821  
Address: 0x1021, Reset: 0xFF, Name: BLOCK_RESETS  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
[ 7 ] RESERVED  
[ 0 ] ARST B_BLO CK_DSM ALL ( R/W )  
RSTB - Delta-Sigma Modulator Reference  
Counters, Core, Output Stage (+ N Divider)  
[ 6 ] ARST B_BLO CK_LKD ( R/W )  
RSTB - Lockdetect  
[ 1] ARST B_BLO CK_DSM CO RE ( R/W )  
RSTB - Delta-Sigma Modulator Core  
and Output Stage (+ N Divider)  
[ 5] ARST B_BLO CK_AUT O CAL ( R/W )  
RSTB - Autocalibration of Counters  
[ 4 ] ARST B_BLO CK_NDIV ( R/W )  
RSTB - N Divider  
[ 2] ARST B_BLO CK_DSM O ST G ( R/W )  
RSTB - Delta-Sigma Modulator Output  
Stage (and N Divider)  
[ 3] ARST B_BLO CK_RDIV ( R/W )  
RSTB - Reference Divider  
Table 46. Bit Descriptions for BLOCK_RESETS  
Bits Bit Name  
Settings Description  
Reset Access  
7
6
5
4
3
2
1
0
RESERVED  
Reserved.  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
ARSTB_BLOCK_LKD  
ARSTB_BLOCK_AUTOCAL  
ARSTB_BLOCK_NDIV  
ARSTB_BLOCK_RDIV  
ARSTB_BLOCK_DSMOSTG  
ARSTB_BLOCK_DSMCORE  
ARSTB_BLOCK_DSMALL  
RSTB – Lockdetect  
RSTB – Autocalibration of Counters  
RSTB – N Divider (integer divider)  
RSTB – Reference Divider  
RSTB – Delta-Sigma Modulator Output Stage (and N Divider)  
RSTB – Delta-Sigma Modulator Core and Output Stage (+N Divider)  
RSTB – Delta-Sigma Modulator Reference Counters, Core, Output Stage  
(+N Divider)  
Address: 0x1109, Reset: 0x0A, Name: SIG_PATH_9_NORMAL  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
1
0
[ 7 :5] RESERVED  
[ 0 ] RESERVED  
[ 4 :3] T RM _M IXLO DRV_DRV_PO UT ( R/W )  
LO Output to Mixer Power Level  
[ 2:1] T RM _XLO DRV_DRV_PO UT ( R/W )  
Auxiliary LO Output Power Level  
Table 47. Bit Descriptions for SIG_PATH_9_NORMAL  
Bits  
[7:5]  
[4:3]  
[2:1]  
0
Bit Name  
Settings Description  
Reset  
0x0  
Access  
R
RESERVED  
Reserved  
TRM_MIXLODRV_DRV_POUT  
TRM_XLODRV_DRV_POUT  
RESERVED  
LO Output to Mixer Power Level  
Auxiliary LO Output Power Level  
Reserved  
0x1  
R/W  
R/W  
R
0x1  
0x0  
Address: 0x1200, Reset: 0x89, Name: INT_L  
7
6
5
4
3
2
1
0
1
0
0
0
1
0
0
1
[7:0] INT_DIV[7:0] (R/W)  
Integer-N Word - Optionally Double  
Buffered.  
Table 48. Bit Descriptions for INT_L  
Bits  
Bit Name Settings Description  
Reset  
Access  
[7:0]  
INT_DIV,  
Bits[7:0]  
Integer-N Word—Optionally Double Buffered. Writing the LSB of the integer  
word normally causes an autotune event.  
0x189  
R/W  
Rev. A | Page 47 of 61  
ADRF6821  
Data Sheet  
Address: 0x1201, Reset: 0x01, Name: INT_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] INT_DIV[15:8] (R/W)  
Integer-N Word - Optionally Double  
Buffered.  
Table 49. Bit Descriptions for INT_H  
Bits Bit Name Settings Description  
Reset  
Access  
[7:0] INT_DIV,  
Bits[15:8]  
Integer-N Word—Optionally Double Buffered. Writing the LSB 0x189  
of the integer word normally causes an autotune event.  
R/W  
Address: 0x1202, Reset: 0x00, Name: FRAC1_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC[ 7 :0 ] ( R/W )  
FRAC-N Word - Optionally Double Buffered  
Table 50. Bit Descriptions for FRAC1_L  
Bits Bit Name  
Settings Description  
FRAC-N Word – Optionally Double Buffered. Lower 8 bits of 24-bit FRAC value.  
Reset Access  
[7:0] FRAC, Bits[7:0]  
0x0  
R/W  
Address: 0x1203, Reset: 0x00, Name: FRAC1_M  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC[ 15:8 ] ( R/W )  
FRAC-N Word - Optionally Double Buffered  
Table 51. Bit Descriptions for FRAC1_M  
Bits Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0] FRAC, Bits[15:8]  
FRAC-N Word – Optionally Double Buffered. Lower 8 bits of 24-bit FRAC value.  
Address: 0x1204, Reset: 0x00, Name: FRAC1_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC[ 23:16 ] ( R/W )  
FRAC-N Word - Optionally Double Buffered  
Table 52. Bit Descriptions for FRAC1_H  
Bits Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0] FRAC, Bits[23:16]  
FRAC-N Word – Optionally Double Buffered. Lower 8 bits of 24-Bit FRAC value.  
Rev. A | Page 48 of 61  
Data Sheet  
ADRF6821  
Address: 0x1205, Reset: 0x00, Name: SD_PHASE_L_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE[7:0] (R/W)  
Sigma-Delta Phase Word  
Table 53. Bit Descriptions for SD_PHASE_L_0  
Bits  
Bit Name  
Settings Description  
Reset Access  
[7:0]  
PHASE,  
Bits[7:0]  
Sigma-Delta Phase Word. If phase adjust mode is enabled (PHASE_ADJ_EN = 1), the  
phase in the DSM is incremented by this amount on each phase adjustment trigger.  
The phase adjustment trigger can be caused by the SPI via a write to the LSB of this  
register (provided DISABLE_PHASEADJ = 0) or from the GPI port. The value is  
represented as an unsigned 24-bit fractional number, in units of VCO cycles. It,  
therefore, has a resolution of 21 µ°. For example, to adjust the phase by 5° of the  
fundamental VCO, program this word to (5°/360°) × 224 = 233,017. This process can  
be done repetitively to effectively recede by multiple VCO cycles or to embed the  
PLL itself inside the phase or frequency control loops under some other supervisory  
control. The phase adjust feature cannot be done any faster than once every five PFD  
cycles and by no more than 180° on any individual adjustment.  
0x0  
R/W  
Address: 0x1206, Reset: 0x00, Name: SD_PHASE_M_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE[15:8] (R/W)  
Sigma-Delta Phase Word  
Table 54. Bit Descriptions for SD_PHASE_M_0  
Bits  
Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0]  
PHASE,  
Bits[15:8]  
Sigma-Delta Phase Word. If phase adjust mode is enabled (PHASE_ADJ_EN = 1), the  
phase in the DSM is incremented by this amount on each phase adjustment trigger.  
The phase adjustment trigger can be caused by the SPI via a write to the LSB of this  
register (provided DISABLE_PHASEADJ = 0) or from the GPI port. The value is  
represented as an unsigned 24-bit fractional number, in units of VCO cycles. It,  
therefore, has a resolution of 21 µ°. For example, to adjust the phase by 5° of the  
fundamental VCO, program this word to (5°/360°) × 224 = 233,017. This process can be  
done repetitively to effectively recede by multiple VCO cycles or to embed the PLL  
itself inside the phase or frequency control loops under some other supervisory  
control. The phase adjust feature cannot be done any faster than once every five PFD  
cycles and by no more than 180° on any individual adjustment.  
Address: 0x1207, Reset: 0x00, Name: SD_PHASE_H_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE[23:16] (R/W)  
Sigma-Delta Phase Word  
Table 55. Bit Descriptions for SD_PHASE_H_0  
Bits Bit Name  
Settings Description  
Reset Access  
0x0 R/W  
[7:0] PHASE,  
Bits[23:16]  
Sigma-Delta Phase Word. If phase adjust mode is enabled (PHASE_ADJ_EN = 1), the  
phase in the DSM is incremented by this amount on each phase adjustment trigger.  
The phase adjustment trigger can be caused by the SPI via a write to the LSB of this  
register (provided DISABLE_PHASEADJ = 0) or from the GPI port. The value is  
represented as an unsigned 24-bit fractional number, in units of VCO cycles. It,  
therefore, has a resolution of 21 µ°. For example, to adjust the phase by 5° of the  
fundamental VCO, program this word to (5°/360°) × 224 = 233,017. This process can  
be done repetitively to effectively recede by multiple VCO cycles or to embed the  
PLL itself inside the phase or frequency control loops under some other supervisory  
control. The phase adjust feature cannot be done any faster than once every five PFD  
cycles, and by no more than 180° on any individual adjustment.  
Rev. A | Page 49 of 61  
ADRF6821  
Data Sheet  
Address: 0x1208, Reset: 0x00, Name: MOD_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] M O D2[ 7 :0 ][ 7 :0 ] ( R/W )  
MOD2 word.  
Table 56. Bit Descriptions for MOD_L  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
MOD2, Bits[7:0]  
MOD2 word; lower bits  
0x0  
R/W  
Address: 0x1209, Reset: 0x00, Name: MOD_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 5:0 ] M O D2[ 7 :0 ][ 13:8 ] ( R/W )  
MOD2 word.  
Table 57. Bit Descriptions for MOD_H  
Bits  
[7:6]  
[5:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
RESERVED  
Reserved  
MOD2, Bits[13:8]  
MOD2 word; upper bits  
0x0  
R/W  
Address: 0x120B, Reset: 0x01, Name: SYNTH  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[ 7 :2] RESERVED  
[ 0 ] EN_FBDIV ( R/W )  
Enable Feedback Divider  
[ 1] PRE_SEL ( R/W )  
Prescaler Select  
0: Disable 2x Prescaler.  
1: Enable 2x Prescaler.  
Table 58. Bit Descriptions for SYNTH  
Bits  
[7:2]  
1
Bit Name  
RESERVED  
PRE_SEL  
Settings  
Description  
Reserved.  
Reset  
0x0  
0x0  
Access  
R
Prescaler Select  
R/W  
0
1
Disable 2× Prescaler  
Enable 2× Prescaler  
0
EN_FBDIV  
Enable Feedback Divider  
0x1  
R/W  
Address: 0x120C, Reset: 0x03, Name: R_DIV  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7] RESERVED  
[6:0] R_DIV (R/W)  
R Divider Word  
Table 59. Bit Descriptions for R_DIV  
Bits  
7
Bit Name  
RESERVED  
R_DIV  
Settings  
Description  
Reserved.  
R Divider Word. Lower 8 bits of 10-bit reference R divider word.  
Reset  
0x0  
Access  
R
[6:0]  
0x3  
R/W  
Rev. A | Page 50 of 61  
Data Sheet  
ADRF6821  
Address: 0x120E, Reset: 0x04, Name: SYNTH_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
1
0
0
[ 7 :4 ] RESERVED  
[ 0 ] RDIV2_SEL ( R/W )  
Reference Divide by 2  
[ 3] DO UBLER_EN ( R/W )  
Reference Doubler Enable - Optionally  
Double-Buffered  
0: Reference Divide by 2 Disabled.  
1: Reference Divide by 2 Enabled.  
[ 2:1] RESERVED  
Table 60. Bit Descriptions for SYNTH_0  
Bits  
[7:4]  
3
Bit Name  
Settings  
Description  
Reset  
Access  
R
RESERVED  
DOUBLER_EN  
RESERVED  
RDIV2_SEL  
Reserved  
0x0  
0x0  
0x2  
0x0  
Reference Doubler Enable—Optionally Double Buffered  
Reserved  
R/W  
R/W  
R/W  
[2:1]  
0
Reference Divide by 2  
0
1
Reference Divide by 2 Disabled  
Reference Divide by 2 Enabled  
Address: 0x1214, Reset: 0x48, Name: MULTI_FUNC_SYNTH_CTRL_0214  
7
6
5
4
3
2
1
0
0
1
0
0
1
0
0
0
[7:6] LD_BIAS (R/W)  
Lock Detect Bias  
00: 40uA.  
[2:0] RESERVED  
01: 30uA.  
10: 20uA.  
11: 10uA.  
[5:3] LDP (R/W)  
Lock Detect Precision  
000: Check 1024 Consecutive PFD Cycles  
for Lock.  
001: Check 2048 Consecutive PFD Cycles.  
010: Check 4096 Consecutive PFD Cycles.  
011: Check 8192 Consecutive PFD Cycles.  
Table 61. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_0214  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:6]  
LD_BIAS  
Lock Detect Bias  
00 40 µA.  
01 30 µA.  
10 20 µA.  
11 10 µA.  
0x1  
0x1  
0x0  
R/W  
R/W  
R/W  
[5:3]  
[2:0]  
LDP  
Lock Detect Precision  
000 Check 1024 Consecutive PFD Cycles for Lock.  
001 Check 2048 Consecutive PFD Cycles.  
010 Check 4096 Consecutive PFD Cycles.  
011 Check 8192 Consecutive PFD Cycles.  
Reserved.  
RESERVED  
Address: 0x1215, Reset: 0x00, Name: SI_BAND_0  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] SI_BAND_SEL ( R/W )  
Manually Programmed VCO Band  
Table 62. Bit Descriptions for SI_BAND_0  
Bits Bit Name  
Settings Description  
Reset Access  
[7:0] SI_BAND_SEL  
Manually Programmed VCO Band.  
0x0  
R/W  
Rev. A | Page 51 of 61  
ADRF6821  
Data Sheet  
Address: 0x1217, Reset: 0x00, Name: SI_VCO_SEL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :4 ] RESERVED  
[ 3:0 ] SI_VCO _SEL ( R/W )  
Manual VCO Core Select  
Table 63. Bit Descriptions for SI_VCO_SEL  
Bits  
[7:4]  
[3:0]  
Bit Name  
RESERVED  
SI_VCO_SEL  
Settings Description  
Reset Access  
Reserved  
0x0  
0x0  
R
Manual VCO Core Select  
R/W  
Address: 0x121C, Reset: 0x20, Name: VCO_TIMEOUT_L  
7
6
5
4
3
2
1
0
0
0
1
0
0
0
0
0
[ 7 :0 ] VCO _T IM EO UT [ 7 :0 ] ( R/W )  
Main VCO Calibration Timeout  
Table 64. Bit Descriptions for VCO_TIMEOUT_L  
Bits Bit Name  
[7:0] VCO_TIMEOUT[7:0]  
Settings Description  
Reset Access  
0x20 R/W  
Main VCO Calibration Timeout. This value sets what a timing unit is in the  
VCO calibration. It is represented in a number of phase frequency detector  
(PFD) periods. For example, 32 is 32 PFD cycles. At a 30.72 MHz PFD rate, this  
timer represents an approximately 1 µs period. It is recommended that the user  
program this value, depending on their PFD rate, to represent approximately  
1 µs to 2 µs. A longer value than necessary leads to longer autocalibration times,  
and shorter values may risk autotune accuracy due to insufficient settling times.  
Address: 0x121D, Reset: 0x00, Name: VCO_TIMEOUT_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :2] RESERVED  
[ 1:0 ] VCO _T IM EO UT [ 9 :8 ] ( R/W )  
Main VCO Calibration Timeout  
Table 65. Bit Descriptions for VCO_TIMEOUT_H  
Bits Bit Name  
Settings Description  
Reset Access  
[7:2] RESERVED  
[1:0] VCO_TIMEOUT[9:8]  
Reserved.  
0x0  
0x0  
R
R/W  
Main VCO Calibration Timeout. This value sets what a timing unit is in the  
VCO calibration. It is represented in a number of PFD periods. For example,  
32 is 32 PFD cycles. At a 30.72 MHz PFD rate, this timer represents an  
approximately 1 µs period. It is recommended that the user program this value,  
depending on their PFD rate, to represent approximately 1 µs to 2 µs. A longer  
value than necessary leads to longer autocalibration times, and shorter values  
may risk autotune accuracy due to insufficient settling times.  
Address: 0x121E, Reset: 0x14, Name: VCO_BAND_DIV  
7
6
5
4
3
2
1
0
0
0
0
1
0
1
0
0
[ 7 :0 ] VCO _BAND_DIV ( R/W )  
AFC Measurement Resolution  
Table 66. Bit Descriptions for VCO_BAND_DIV  
Bits Bit Name  
[7:0] VCO_BAND_DIV  
Settings Description  
Reset Access  
0x14 R/W  
AFC Measurement Resolution. This value sets how long a single automatic  
frequency calibration (AFC) measurement cycle lasts. The AFC measurement  
lasts 16 × VCO_BAND_DIV. It is required that the user program this value,  
depending on their PFD rate, to represent approximately 10 µs. A longer value  
than necessary leads to longer autocalibration times, and shorter values may  
risk autotune accuracy due to insufficient frequency measurement resolution.  
Address: 0x121F, Reset: 0x00, Name: VCO_FSM  
Rev. A | Page 52 of 61  
Data Sheet  
ADRF6821  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 ] RESERVED  
[ 5:0 ] RESERVED  
[ 6 ] DISABLE_CAL ( R/W )  
Disable VCO Automatic Level Control  
(ALC) and Automatic Frequency Control  
(AFC) Calibration  
0: Power Down Synthesizer.  
1: Power Up Synthesizer.  
Table 67. Bit Descriptions for VCO_FSM  
Bits  
Bit Name  
Settings Description  
Reset Access  
7
RESERVED  
DISABLE_CAL  
Reserved.  
0x0  
0x0  
R
6
Disable VCO Automatic Level Control (ALC) and Automatic Frequency Control  
(AFC) Calibration. The PLL does not reset the calibration machine or trigger a new  
calibration if set to 1 on a frequency hop to maintain ALC and capacitor positions.  
R/W  
0
1
Power-Down Synthesizer.  
Power-Up Synthesizer.  
Reserved.  
[5:0]  
RESERVED  
0x0  
R/W  
Address: 0x122A, Reset: 0x02, Name: SD_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[ 7 :6 ] RESERVED  
[ 0 ] RESERVED  
[ 5] SD_EN_FRAC0 ( R/W )  
Sigma-Delta Enable with FRAC =  
[ 1 ] SD _SM _2 ( R/W )  
Loss of Lock (LOL) Enabled  
0
[ 4 ] SD _EN _O UT _O FF ( R/W )  
Sigma-Delta Enable, Output Off  
[ 3:2] RESERVED  
Table 68. Bit Descriptions for SD_CTRL  
Bits  
[7:6]  
5
Bit Name  
Settings Description  
Reset Access  
RESERVED  
Reserved.  
0x0  
0x0  
R/W  
R/W  
SD_EN_FRAC0  
Sigma-Delta Enable with FRAC = 0. The DSM normally recognizes a FRAC value  
of all 0, and disables itself. Setting this mode can keep the DSM running even  
when a zero FRAC is presented.  
4
SD_EN_OUT_OFF  
Sigma-Delta Enable, Output Off. Keeps the DSM core enabled and clocking but  
ignores the output of the DSM and instead multiplexes the N divider setpoint  
from the double buffer data directly.  
0x0  
R/W  
[3:2]  
1
RESERVED  
SD_SM_2  
RESERVED  
Reserved.  
0x0  
R
Loss of Lock (LOL) Enabled. Enables the CSP/LOL circuit. Recommend Reserved 1. 0x1  
Reserved. 0x0  
R/W  
R/W  
0
Address: 0x122C, Reset: 0x03, Name: MULTI_FUNC_SYNTH_CTRL_022C  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7:2] RESERVED  
[1:0] CP_HIZ (R/W)  
Charge Pump Tristate  
0: Charge Pump Tristate Mode 0.  
1: Charge Pump Tristate Mode 1.  
2: Charge Pump Tristate Mode 2.  
3: Charge Pump Tristate Mode 3.  
Table 69. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_022C  
Bits  
[7:2]  
[1:0]  
Bit Name  
RESERVED  
CP_HIZ  
Settings  
Description  
Reset  
0x0  
Access  
Reserved  
R
Charge Pump Tristate  
0x3  
R/W  
0
1
2
3
Charge Pump Tristate Mode 0  
Charge Pump Tristate Mode 1  
Charge Pump Tristate Mode 2  
Charge Pump Tristate Mode 3  
Rev. A | Page 53 of 61  
ADRF6821  
Data Sheet  
Address: 0x122D, Reset: 0x81, Name: MULTI_FUNC_SYNTH_CTRL_022D  
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
1
[7] EN_PFD_CP (R/W)  
[0] BLEED_EN (R/W)  
Enable Phase Detector and Charge  
Pump  
Bleed Enable  
[1] RESERVED  
[6] BLEED_POL (R/W)  
Selects the Bleed Polarity  
[2] INT_ABP (R/W)  
Integer-N ABP Select  
[5:3] RESERVED  
Table 70. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_022D  
Bits  
Bit Name  
EN_PFD_CP  
BLEED_POL  
RESERVED  
INT_ABP  
Settings  
Description  
Reset  
0x1  
0x0  
0x0  
0x0  
0x0  
0x1  
Access  
R/W  
R/W  
R
7
Enable Phase Detector and Charge Pump.  
Selects the Bleed Polarity.  
Reserved.  
6
[5:3]  
2
Integer-N ABP Select. Shortens the reset delay of the PFD by four inverters.  
R/W  
R
1
RESERVED  
BLEED_EN  
Reserved.  
0
Bleed Enable.  
R/W  
Address: 0x122E, Reset: 0x0F, Name: CP_CURR  
7
6
5
4
3
2
1
0
0
0
0
0
1
1
1
1
[7:4] RESERVED  
[3:0] CP_CURRENT (R/W)  
Main Charge Pump Current  
Table 71. Bit Descriptions for CP_CURR  
Bits  
[7:4]  
[3:0]  
Bit Name  
Settings  
Description  
Reset  
Access  
R
RESERVED  
CP_CURRENT  
Reserved  
0x0  
0xF  
Main Charge Pump Current  
R/W  
Address: 0x122F, Reset: 0x08, Name: BICP  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
[7:0] BICP (R/W)  
Binary Scaled Bleed Current  
Table 72. Bit Descriptions for BICP  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
R/W  
[7:0]  
BICP  
Binary Scaled Bleed Current  
0x8  
Address: 0x1233, Reset: 0x00, Name: FRAC2_L  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC2[ 7 :0 ] ( R/W )  
FRAC2 Word for Exact Frequency Mode  
- Optionally Double Buffered  
Table 73. Bit Descriptions for FRAC2_L  
Bits  
Bit Name  
Settings  
Description  
FRAC2 Word for Exact Frequency Mode—Optionally Double Buffered  
Reset  
0x0  
Access  
[7:0]  
FRAC2, Bits[7:0]  
R/W  
Rev. A | Page 54 of 61  
Data Sheet  
ADRF6821  
Address: 0x1234, Reset: 0x00, Name: FRAC2_H  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 5:0 ] FRAC2[ 13:8 ] ( R/W )  
FRAC2 Word for Exact Frequency Mode  
- Optionally Double Buffered  
Table 74. Bit Descriptions for FRAC2_H  
Bits  
[7:6]  
[5:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
R
RESERVED  
Reserved  
FRAC2, Bits[13:8]  
FRAC2 Word for Exact Frequency Mode—Optionally Double Buffered  
0x0  
R/W  
Address: 0x1235, Reset: 0x00, Name: MULTI_FUNC_SYNTH_CTRL_0235  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:2] RESERVED  
[0] RESERVED  
[1] PHASE_ADJ_EN (R/W)  
DSM Phase Adjust Enable  
Table 75. Bit Descriptions for MULTI_FUNC_SYNTH_CTRL_0235  
Bits Bit Name  
Settings Description  
Reset Access  
[7:2] RESERVED  
Reserved.  
0x0  
0x0  
R
1
PHASE_ADJ_EN  
DSM Phase Adjust Enable. If 1, a phase-adjust trigger causes a phase shift in the  
Δ-Σ by the amount programmed in the phase word. The phase trigger is either  
caused by a write to the LSB of the phase word or through a general-purpose  
input (GPI) trigger. See GPI1_FUNC_SEL for more information.  
R/W  
0
RESERVED  
Reserved.  
0x0  
R
Address: 0x1240, Reset: 0x00, Name: VCO_LUT_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :5] RESERVED  
[ 0 ] SI_VCO _FO RCE_CAPS ( R/W )  
Force the SPI to Cap-Select at the Output  
of the Look Up Table (LUT)  
[ 4 ] SI_VCO _FO RCE_CAPSVCO I ( R/W )  
Manual VCO Capacitor Select  
[ 1] SI_VCO _FO RCE_VCO ( R/W )  
Force the VCO Select and the Output  
of the Look Up Table (LUT) from SI_VCO_SEL  
[ 3:2] RESERVED  
Table 76. Bit Descriptions for VCO_LUT_CTRL  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved  
0x0  
0x0  
0x0  
0x0  
R
4
SI_VCO_FORCE_CAPSVCOI  
Manual VCO Capacitor Select  
Reserved  
R/W  
R/W  
R/W  
[3:2] RESERVED  
1
SI_VCO_FORCE_VCO  
Force the VCO Select and the Output of the Look Up Table (LUT) from  
SI_VCO_SEL  
0
SI_VCO_FORCE_CAPS  
Force the SPI to Capacitor Select at the Output of the Look Up Table (LUT)  
0x0  
R/W  
Address: 0x124D, Reset: 0x00, Name: LOCK_DETECT  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] RESERVED  
[0] LOCK_DETECT (R)  
State of the Lock Detect Signal  
Table 77. Bit Descriptions for LOCK_DETECT  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RESERVED  
Reserved  
R
R
LOCK_DETECT  
State of the Lock Detect Signal  
Rev. A | Page 55 of 61  
0x0  
ADRF6821  
Data Sheet  
Address: 0x1401, Reset: 0x00, Name: MULTI_FUNC_CTRL  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:5] RESERVED  
[3:0] RESERVED  
[4] SPI_1P8_3P3_CTRL (R/W)  
SPI Supply Control  
0: 1.8V Read Back.  
1: 3.3V Read Back.  
Table 78. Bit Descriptions for MULTI_FUNC_CTRL  
Bits  
[7:5]  
4
Bit Name  
Settings  
Description  
Reserved  
Reset  
0x0  
Access  
R
RESERVED  
SPI_1P8_3P3_CTRL  
SPI Supply Control  
1.8 V Read Back  
3.3 V Read Back  
Reserved  
0x0  
R/W  
0
1
[3:0]  
RESERVED  
0x0  
R
Address: 0x140E, Reset: 0xB3, Name: LO_CNTRL2  
7
6
5
4
3
2
1
0
1
0
1
1
0
0
1
1
[7] EN_BIAS_R (R/W)  
[4:0] RESERVED  
Enable the Resistor Bias  
[5] REFBUF_EN (R/W)  
[6] RESERVED  
Reference Buffer Enable  
Table 79. Bit Descriptions for LO_CNTRL2  
Bits Bit Name Settings Description  
Reset Access  
7
EN_BIAS_R  
Enable the Resistor Bias. Selects the resistor bias instead of the band gap based bias  
for the LO path.  
0x1  
R/W  
6
5
RESERVED  
Reserved.  
0x0  
R/W  
R/W  
R/W  
REFBUF_EN  
Reference Buffer Enable.  
Reserved.  
0x1  
[4:0] RESERVED  
0x13  
Rev. A | Page 56 of 61  
Data Sheet  
ADRF6821  
Address: 0x1414, Reset: 0x02, Name: LO_CNTRL8  
Recommended register for use to control the LO path from a single spot. By programming this register, the individual blocks enable and  
configuration bits are set appropriately.  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
0
[ 7 ] M IX_O E ( R/W )  
[ 4 :0 ] O UT _DIVRAT IO ( R/W )  
Output Path Divide Ratio  
1: /1.  
Mix Output Enable  
[ 6 ] LO _O E ( R/W )  
LO Path Output Enable  
10: /2.  
100: /4.  
1000: /8.  
10000: /16.  
[ 5] USEEXT _LO I ( R/W )  
Use External LO Path  
Table 80. Bit Descriptions for LO_CNTRL8  
Bits  
Bit Name  
Settings Description  
Reset Access  
7
MIX_OE  
Mix Output Enable. When disabled (OE = 0), mute = 1, or DIVRATIO = 0, the mute  
depth is selected via GEN_MUTE_DEPTH. Note that the mute depth can be  
artificially restricted if the other output path is still enabled and relies on a shared  
branch of the LO chain.  
0x0  
R/W  
6
LO_OE  
LO Path Output Enable. When disabled (OE = 0), MUTE = 1, or DIVRATIO = 0, the  
mute depth is selected via GEN_MUTE_DEPTH. Note that the mute depth can be  
artificially restricted if the other output path is still enabled and relies on a shared  
branch of the LO chain.  
0x0  
R/W  
5
USEEXT_LOI  
Use External LO Path.  
0x0  
0x2  
R/W  
R/W  
[4:0]  
OUT_DIVRATIO  
Output Path Divide Ratio. Sets the divide ratio from the fundamental VCOs or the  
external input path to the output paths. Nominally, the internal VCO range is  
4 GHz to 8 GHz.  
0
1
Mute  
/1.  
10 /2.  
100 /4.  
1000 /8.  
10000 /16.  
Address: 0x1541, Reset: 0x00, Name: FRAC2_L_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC2_SLV[ 7 :0 ] ( R)  
FRAC2 Word Double Buffered Value  
Table 81. Bit Descriptions for FRAC2_L_SLAVE  
Bits  
Bit Name  
Settings  
Description  
FRAC2 Word Double Buffered Value  
Reset  
Access  
[7:0]  
FRAC2_SLV, Bits[7:0]  
0x0  
R
Address: 0x1542, Reset: 0x00, Name: FRAC2_H_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :6 ] RESERVED  
[ 5:0 ] FRAC2_SLV[ 13:8 ] ( R)  
FRAC2 Word Double Buffered Value  
Table 82. Bit Descriptions for FRAC2_H_SLAVE  
Bits  
[7:6]  
[5:0]  
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RESERVED  
Reserved  
R
R
FRAC2_SLV, Bits[13:8]  
FRAC2 Word Double Buffered Value  
0x0  
Rev. A | Page 57 of 61  
ADRF6821  
Data Sheet  
Address: 0x1543, Reset: 0x00, Name: FRAC_L_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC_SLV[ 7 :0 ][ 7 :0 ] ( R)  
FRAC-N Word Double Buffered Value  
Table 83. Bit Descriptions for FRAC_L_SLAVE  
Bits Bit Name Settings Description  
[7:0] FRAC_SLV, Bits[7:0] FRAC-N Word Double Buffered Value. Lower 8 bits of 24-Bit FRAC value.  
Reset Access  
0x0  
R
Address: 0x1544, Reset: 0x00, Name: FRAC_M_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC_SLV[ 7 :0 ][ 15:8 ] ( R)  
FRAC-N Word Double Buffered Value  
Table 84. Bit Descriptions for FRAC_M_SLAVE  
Bits Bit Name Settings Description  
[7:0] FRAC_SLV, Bits[15:8] FRAC-N Word Double Buffered Value. Lower 8 bits of 24-Bit FRAC value.  
Reset Access  
0x0  
R
Address: 0x1545, Reset: 0x00, Name: FRAC_H_SLAVE2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :0 ] FRAC_SLV[ 7 :0 ][ 23:16 ] ( R)  
FRAC-N Word Double Buffered Value  
Table 85. Bit Descriptions for FRAC_H_SLAVE2  
Bits Bit Name Settings Description  
[7:0] FRAC_SLV, Bits[23:16] FRAC-N Word Double Buffered Value. Lower 8 bits of 24-Bit FRAC value.  
Reset  
Access  
0x0  
R
Address: 0x1546, Reset: 0x00, Name: PHASE_L_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_SLV[7:0] (R)  
Sigma-Delta Phase Word  
Table 86. Bit Descriptions for PHASE_L_SLAVE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PHASE_SLV, Bits[7:0]  
Sigma-Delta Phase Word. Lower 8 bits of 24-bit SD phase word.  
0x0  
R
Address: 0x1547, Reset: 0x00, Name: PHASE_M_SLAVE2  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_SLV[15:8] (R)  
Sigma-Delta Phase Word  
Table 87. Bit Descriptions for PHASE_M_SLAVE2  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PHASE_SLV, Bits[15:8]  
Sigma-Delta Phase Word. Lower 8 bits of 24-bit SD phase word.  
0x0  
R
Rev. A | Page 58 of 61  
Data Sheet  
ADRF6821  
Address: 0x1548, Reset: 0x00, Name: PHASE_H_SLAVE3  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:0] PHASE_SLV[23:16] (R)  
Sigma-Delta Phase Word  
Table 88. Bit Descriptions for PHASE_H_SLAVE3  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[7:0]  
PHASE_SLV, Bits[23:16]  
Sigma-Delta Phase Word. Lower 8 bits of 24-bit SD phase word.  
0x0  
R
Address: 0x1549, Reset: 0x89, Name: INT_DIV_L_SLAVE  
7
6
5
4
3
2
1
0
1
0
0
0
1
0
0
1
[7:0] INT_DIV_SLV[7:0] (R)  
Integer-N Word - Double Buffered  
Readback Value  
Table 89. Bit Descriptions for INT_DIV_L_SLAVE  
Bits Bit Name  
Settings Description  
Reset Access  
0x189  
[7:0] INT_DIV_SLV,  
Bits[7:0]  
Integer-N Word – Double Buffered Readback Value. Readback Data from the N  
divider setpoint (NSETPOINT) double buffer output.  
R
Address: 0x154A, Reset: 0x01, Name: INT_DIV_H_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
[7:0] INT_DIV_SLV[15:8] (R)  
Integer-N Word - Double Buffered  
Readback Value  
Table 90. Bit Descriptions for INT_DIV_H_SLAVE  
Bits  
Bit Name  
Settings Description  
Integer-N Word – Double Buffered Readback Value. Readback Data from the  
SETPOINT double buffer output.  
Reset Access  
[7:0]  
INT_DIV_SLV,  
Bits[15:8]  
0x189  
R
N
Address: 0x154B, Reset: 0x03, Name: R_DIV_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
1
1
[7] RESERVED  
[6:0] R_DIV_SLV (R)  
R Divider Word  
Table 91. Bit Descriptions for R_DIV_SLAVE  
Bits  
Bit Name  
RESERVED  
R_DIV_SLV  
Settings  
Description  
Reset  
Access  
7
Reserved.  
0x0  
0x3  
R
R
[6:0]  
R Divider Word. Lower 8 bits of 10-bit reference R divider word.  
Rev. A | Page 59 of 61  
ADRF6821  
Data Sheet  
Address: 0x154C, Reset: 0x00, Name: RDIV2_SEL_SLAVE  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[7:1] RESERVED  
[0] RDIV2_SEL_SLV (R)  
Reference Divide by 2  
0: Reference Divide by 2 Disabled.  
1: Reference Divide by 2 Enabled.  
Table 92. Bit Descriptions for RDIV2_SEL_SLAVE  
Bits  
[7:1]  
0
Bit Name  
Settings  
Description  
Reset  
0x0  
Access  
RESERVED  
Reserved.  
R
R
RDIV2_SEL_SLV  
Reference Divide by 2  
0x0  
0
1
Reference Divide by 2 Disabled  
Reference Divide by 2 Enabled  
Address: 0x1583, Reset: 0x00, Name: DISABLE_CFG  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
[ 7 :5] RESERVED  
[ 0 ] DISABLE_PHASEADJ( R/W )  
Disable the Phase Adjust from the SPI  
Register  
[ 4 :3] DSM _LAUNCH_DLY ( R/W )  
Delay the DSM Clock Launch.  
[ 1] DISABLE_DBLBUFFERING ( R/W )  
If Double Buffering Is Disabled, a R_DIV  
Write Resets Rdivider  
[ 2] DISABLE_FREQ HO P ( R/W )  
Disable the Generation of Frequency  
Hop from the SPI Register  
Table 93. Bit Descriptions for DISABLE_CFG  
Bits Bit Name  
Settings Description  
Reset Access  
[7:5] RESERVED  
Reserved.  
0x0  
0x0  
0x0  
0x0  
0x0  
R
[4:3] DSM_LAUNCH_DLY  
Delay the DSM Clock Launch.  
R/W  
R/W  
R/W  
R/W  
2
1
0
DISABLE_FREQHOP  
Disable the Generation of the Frequency Hop from the SPI Register.  
If Double Buffering Is Disabled, a R_DIV Write Resets RDIVIDER.  
Disable the Phase Adjust from the SPI Register.  
DISABLE_DBLBUFFERING  
DISABLE_PHASEADJ  
Rev. A | Page 60 of 61  
Data Sheet  
ADRF6821  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
8.10  
8.00 SQ  
7.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
AREA  
PIN 1  
INDICATOR AREA OPTIONS  
(SEE DETAIL A)  
43  
56  
1
42  
0.50  
BSC  
*
6.80  
EXPOSED  
PAD  
6.70 SQ  
6.60  
29  
14  
28  
15  
0.45  
0.40  
0.35  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
6.50 REF  
0.20 MIN  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.203 REF  
*
COMPLIANT TO JEDEC STANDARDS MO-220-WLLD-5  
WITH EXCEPTION TO EXPOSED PAD DIMENSION.  
Figure 66. 56-Lead Lead Frame Chip Scale Package [LFCSP]  
8 mm × 8 mm Body and 0.75 mm Package Height  
(CP-56-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
Package Description  
Package Option  
ADRF6821ACPZ  
ADRF6821ACPZ-RL7  
ADRF6821-EVALZ  
−40°C to +105°C  
−40°C to +105°C  
56-Lead Lead Frame Chip Scale Package [LFCSP]  
56-Lead Lead Frame Chip Scale Package [LFCSP], Reel  
Evaluation Board  
CP-56-16  
CP-56-16  
1 Z = RoHS Compliant Part.  
©2017–2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14807-0-8/18(A)  
Rev. A | Page 61 of 61  
 
 

相关型号:

ADRF6850BCPZ

100 MHz to 1000 MHz Integrated Broadband Receiver
ADI

ADRF6850BCPZ-R7

100 MHz to 1000 MHz Integrated Broadband Receiver
ADI

ADRS30L

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADRS30M

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADRS30Z

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADRS40L

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADRS40M

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADRS40Z

DISH AVALANCHE AUTOMOTIVE RECTIFIER
MIC

ADRV9002

Dual Narrow-Band and Wideband RF Transceiver
ADI

ADRV9002BBCZ

Dual Narrow-Band and Wideband RF Transceiver
ADI

ADRV9002BBCZ-RL

Dual Narrow-Band and Wideband RF Transceiver
ADI

ADRV9004

Dual Narrow-Band and Wideband RF Transceiver
ADI