ADRF6658 [ADI]

Wideband, Dual Rx Mixers with Integrated IF Amplifiers;
ADRF6658
型号: ADRF6658
厂家: ADI    ADI
描述:

Wideband, Dual Rx Mixers with Integrated IF Amplifiers

文件: 总31页 (文件大小:679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Wideband, Dual Rx Mixers  
with Integrated IF Amplifiers  
Data Sheet  
ADRF6658  
FEATURES  
GENERAL DESCRIPTION  
Wideband, dual-channel, active downconversion mixers  
Low distortion, fast settling, IF DGAs  
RF input frequency range: 690 MHz to 3.8 GHz  
Programmable baluns on RF inputs  
For RF = 1950 MHz, IF = 281 MHz, high linearity mode  
Voltage conversion gain, including IF filter loss:  
−5 dB to +26.5 dB  
Input IP3: 29 dBm at minimum DGA gain  
Input P1dB: 12 dBm at minimum DGA gain  
SSB NF: 13 dB at maximum DGA gain  
Output IP3: 40 dBm at maximum DGA gain  
Output P1dB: 19 dBm at maximum DGA gain  
Channel isolation: 52 dB  
Differential and single-ended LO input modes  
Differential IF output impedance: 100 Ω  
Flexible power-down modes for low power operation  
Power-up time after enabling channels: 100 ns, typical  
Programmable via a 3-wire serial port interface (SPI)  
Single 3.3 V supply  
The ADRF6658 is a high performance, low power, wideband,  
dual-channel radio frequency (RF) downconverter with  
integrated intermediate frequency (IF) digitally controlled  
amplifiers (DGAs) for wideband, low distortion base station  
radio receivers.  
The dual Rx mixers are doubly balanced Gilbert cell mixers  
with high linearity and excellent image rejection. Both mixers  
convert 50 Ω RF inputs to open-collector broadband IF outputs.  
Internal tunable baluns on the RF inputs enable suppression of  
RF signal harmonics and attenuation of out-of-band signals  
before the mixer inputs, reducing input reflections and out-of-  
band interference signals. A flexible local oscillator (LO)  
architecture allows the use of differential or single-ended LO  
signals.  
The dual-channel IF DGAs are based on the ADL5201 and  
ADL5202 and have a fixed, differential output impedance of  
100 Ω. The gain is adjustable over a 31.5 dB range with a 0.5 dB  
step size via the on-chip SPI, or through independent, 6-bit  
parallel ports that support latch functionality. Each channel,  
from the mixer inputs to the IF amplifier outputs, together with  
an LC interstage band-pass filter, achieves a maximum voltage  
conversion gain of 26.5 dB.  
High linearity mode: 440 mA  
Low power mode: 260 mA  
APPLICATIONS  
Cellular base stations and wireless infrastructure receivers  
(W-CDMA, TD-SCDMA, WiMAX, GSM, LTE, PCS, DCS, DECT)  
Active antenna systems  
PTP radio link down converters  
Wireless LANs and CATV equipment  
Fabricated with the Analog Devices, Inc., high speed SiGe  
process, the ADRF6658 is available in a compact, 7 mm ×  
7 mm, 48-lead LFCSP package, and operates over the −40°C to  
+105°C temperature range.  
FUNCTIONAL BLOCK DIAGRAM  
MIX OUT+ MIX OUT–  
A0 TO A5  
LOV  
DD  
MIX  
V
CH EN  
DGA IN– DGA IN+ LATCH  
DGA  
V
DV  
DD  
A
A
A
DD  
A
A
A
A
A
DD  
MIX RF  
A
IN  
IF OUT+  
LATCH A  
A
+22dB  
100  
IF OUT–  
A
MIXA  
0dB TO 31.5dB  
SDO  
DATA  
CLK  
LE  
LO  
LO  
+
CONTROL  
REGISTERS  
IN  
ADRF6658  
IN  
0dB TO 31.5dB  
LATCH B  
MIX RF  
B
IN  
MIXB  
IF OUT+  
B
+22dB  
100Ω  
IF OUT–  
B
MIX  
V
MIX OUT+ MIX OUT– CH EN DGA IN– DGA IN+  
LATCH  
B0 TO B5  
DGA V  
B DD  
AGND  
B
DD  
B
B
B
B
B
B
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2015 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADRF6658  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Register 5 ..................................................................................... 19  
Register 6 ..................................................................................... 20  
Register 7 ..................................................................................... 21  
Register 8 Through Register 12................................................ 22  
Register 13................................................................................... 23  
Register 14................................................................................... 24  
Register 15................................................................................... 25  
Applications Information.............................................................. 26  
Basic Connections...................................................................... 26  
Input Tuning ............................................................................... 26  
Register Initialization Sequence ............................................... 26  
Standard Register Settings......................................................... 27  
Readback ..................................................................................... 27  
Daisy-Chain Mode..................................................................... 28  
IF Filter ........................................................................................ 30  
Outline Dimensions....................................................................... 31  
Ordering Guide .......................................................................... 31  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Supplemental Information for Mixers and IF DGAs .............. 5  
Timing Specifications .................................................................. 6  
Absolute Maximum Ratings............................................................ 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Typical Performance Characteristics ........................................... 10  
Theory of Operation ...................................................................... 13  
Dual Mixer Cores ....................................................................... 13  
DGA Basic Structure.................................................................. 13  
Serial Input Shift Registers........................................................ 14  
Program Modes .......................................................................... 14  
Register Maps.................................................................................. 15  
Register 0 Through Register 4 .................................................. 18  
REVISION HISTORY  
11/15—Rev. 0 to Rev. A  
Changes to Features Section............................................................ 1  
Changes to Total Current, Low Power Mode Parameter,  
Table 1 ................................................................................................ 4  
Change to Figure 4 ........................................................................... 8  
Changes to Mixer A Enabled Section and Mixer B Enabled  
Section.............................................................................................. 23  
Changes to Figure 51 Caption ...................................................... 31  
1/15—Revision 0: Initial Version  
Rev. A | Page 2 of 31  
 
Data Sheet  
ADRF6658  
SPECIFICATIONS  
MIXAVDD = MIXBVDD = DVDD = LOVDD = DGAAVDD = DGABVDD = 3.3 V 5%; AGND = 0 V. TA = TMIN to TMAX. The operating  
temperature range = −40°C to +105°C. Parameters are measured on a standard test circuit with an IF filter; fRF = 1.95 GHz, RF input  
power (PRF) = −10 dBm, fLO = 2.231 GHz, LO input power (PLO) = 0 dBm, and fIF = 281 MHz, using standard register settings. For IP2 and  
IP3 measurements, fRF1 = 1.949 GHz and fRF2 = 1.951 GHz, maximum DGA gain, high linearity mode, unless otherwise noted. RSOURCE  
50 Ω, RLOAD = 100 Ω, differential.  
=
Table 1.  
Parameter  
Min  
Typ  
0
Max  
Unit  
Test Conditions/Comments  
OPERATING CONDITIONS  
RF Input Frequency  
LO Power Level  
690  
−6  
690  
3800  
+6  
4100  
MHz  
dBm  
MHz  
LO Frequency  
CHANNEL CHARACTERISTICS  
RF Input Return Loss  
−12  
dB  
Register 13, Bits[DB12:DB7] programmed  
according to RF frequency  
IF Output Return Loss  
IF Lower Cutoff Frequency1  
−10  
10  
dB  
MHz  
Within IF filter passband  
f−3dB, MIXxOUTy connected to DGAxINy through a  
dc block capacitor  
IF Upper Cutoff Frequency  
520  
MHz  
f−3dB, MIXxOUTy connected to DGAxINy through a  
dc block capacitor  
Voltage Conversion Gain  
Voltage Conversion Gain  
Input P1dB  
26.5  
−5  
dB  
dB  
Maximum DGA gain  
Minimum DGA gain  
High Linearity Mode  
Low Power Mode  
Second Order Input Intercept (IIP2)  
12  
4
49  
dBm  
dBm  
dBm  
Register 13, Bits[DB24:DB22] = 4  
Register 13, Bits[DB24:DB22] = 1  
PRF = 0 dBm per tone, minimum DGA gain, high  
linearity mode  
Third Order Input Intercept (IIP3)  
High Linearity Mode  
Low Power Mode  
SSB NF  
PRF = 0 dBm per tone, minimum DGA gain  
29  
17  
dBm  
dBm  
High linearity mode  
RF = 855 MHz  
RF = 1950 MHz  
12.8  
13  
dB  
dB  
RF = 3795 MHz  
14.4  
25  
dB  
dB  
With a 5 dBm Blocker  
LO to RF Leakage  
LO to IF Leakage  
RF to IF Leakage  
2 LO − 2 RF  
3 LO − 3 RF  
IF Output and LO Leakage  
Intermodulation Spur  
−30  
−40  
−50  
−55  
−55  
−100  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
Relative to IF output level  
−70  
fLO = 3.249 GHz, fRF = 3.5 GHz, IF DGA output power  
(PIFOUT) = 9 dBm, fSPUR = 237 MHz and 265 MHz  
Channel Isolation  
52  
dB  
fRF = 1.95 GHz, fLO = 2.231 GHz, maximum DGA gain  
Register 13, Bits[DB24:DB22] changing from 4 to 1  
Mixer V to I Bias Adjustment Effects  
Amplitude Variation  
Gain Step  
Gain Conformance Error  
Phase Conformance Error  
Output P1dB  
0.19  
0.5  
0.05  
0.5  
19  
40  
100  
−65  
−65  
dB  
dB  
dB  
Any two adjacent steps  
Degrees Any two adjacent steps  
dBm  
dBm  
Ω
dBc  
dBc  
Maximum DGA gain  
Maximum DGA gain  
Output IP3  
Differential Output Impedance  
Second Harmonic Level  
Third Harmonic Level  
At 2 V p-p  
At 2 V p-p  
Rev. A | Page 3 of 31  
 
ADRF6658  
Data Sheet  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
LOGIC INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINH/IINL  
Input Capacitance, CIN  
LOGIC OUTPUTS  
1.17  
−0.5  
3.6  
+0.63  
1
V
V
µA  
pF  
2
SDO (Pin 32)  
Output High Voltage, VOH  
Output High Current, IOH  
Output Low Voltage, VOL  
POWER SUPPLIES  
DVDD  
VLOGIC − 0.4  
V
µA  
V
VLOGIC selected with Register 5, Bit DB24  
500  
0.4  
IOL = 500 µA  
3.15  
3.3  
3.45  
V
MIXAVDD, MIXBVDD, DGAAVDD,  
DGABVDD, and LOVDD  
DVDD  
The voltages on these pins must equal DVDD  
External IFXOUT Pull-Up Supply  
DVDD  
V
Mixer Current in High Linearity  
Mode  
80  
mA  
Mixer V to I bias (Register 13, Bits[DB24:DB22]) = 4  
Mixer Current in Low Power Mode  
IF DGA Current  
40  
140  
mA  
mA  
Mixer V to I bias (Register 13, Bits[DB24:DB22]) = 1  
Per amplifier  
Total Current  
Dual Rx enabled  
High Linearity Mode  
Low Power Mode  
Low Power Sleep Mode  
Standby Mode  
440  
260  
450  
65  
550  
mA  
mA  
µA  
Mixer V to I bias (Register 13, Bits[DB24:DB22]) = 4  
Mixer V to I bias (Register 13, Bits[DB24:DB22]) = 1  
1000  
mA  
Both mixers and DGAs in standby mode  
From standby mode to normal operation  
TIMING2  
Channel Power-Up from Standby  
Mode After Changing State of  
CHAEN or CHBEN  
100  
400  
ns  
1 DC-coupled; lower cutoff frequency determined mostly by external components.  
2 Not tested in production; guaranteed by characterization.  
Rev. A | Page 4 of 31  
Data Sheet  
ADRF6658  
SUPPLEMENTAL INFORMATION FOR MIXERS AND IF DGAS  
MIXAVDD = MIXBVDD = DVDD = LOVDD = DGAAVDD = DGABVDD = 3.3 V 5%; AGND = 0 V. TA = TMIN to TMAX. The operating  
temperature range = −40°C to +105°C. Parameters are measured on a standard test circuit with an IF filter; fRF = 1.95 GHz, PRF =  
−10 dBm, fLO = 2.231 GHz, and fIF = 281 MHz, using standard register settings, maximum DGA gain, high linearity mode, unless  
otherwise noted. For IP2 and IP3 measurements, fRF1 = 1.949 GHz and fRF2 = 1.951 GHz, minimum DGA gain.  
Table 2.  
Parameter  
Min Typ  
Max Unit  
Test Conditions/Comments  
MIXER CHARACTERISTICS  
Voltage Conversion Gain  
Input P1dB  
7
dB  
High Linearity Mode  
Low Power Mode  
Second-Order Input Intercept (IIP2)  
Third-Order Input Intercept (IIP3)  
High Linearity Mode  
Low Power Mode  
12  
4
55  
dBm  
dBm  
dBm  
0 dBm per tone, minimum DGA gain  
0 dBm per tone, minimum DGA gain  
29  
17  
dBm  
dBm  
SSB NF  
RF = 1950 MHz  
12  
dB  
LO to RF Leakage  
LO to IF Leakage  
RF to IF Leakage  
IF DGAs  
Voltage Gain  
Gain Step  
Gain Conformance Error  
Phase Conformance Error  
Output P1dB  
Output IP3 (OIP3)  
Bandwidth  
−30  
−40  
−50  
dBm  
dBm  
dBc  
Relative to IF output level  
Any two adjacent steps  
22  
dB  
dB  
dB  
0.5  
0.05  
0.5  
19  
40  
520  
7
Degrees Any two adjacent steps  
dBm  
dBm  
MHz  
dB  
SSB NF  
Second Harmonic Level  
Third Harmonic Level  
−65  
−65  
dBc  
dBc  
At 2 V p-p  
At 2 V p-p  
Rev. A | Page 5 of 31  
 
ADRF6658  
Data Sheet  
TIMING SPECIFICATIONS  
MIXAVDD = MIXBVDD = DVDD = LOVDD = DGAAVDD = DGABVDD = 3.3 V 5% ; AG N D = 0 V. 1.8 V and 3.3 V logic levels used. TA = TMIN  
to TMAX, unless otherwise noted.  
Table 3.  
Parameter  
Symbol  
Min  
20  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Test Conditions/Comments  
LE Setup Time  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
DATA to CLK Setup Time  
DATA to CLK Hold Time  
CLK High Duration  
CLK Low Duration  
CLK to LE Setup Time  
LE Pulse Width  
10  
10  
25  
25  
10  
20  
CLK Low to SDO Output Valid  
20  
During readback  
Timing Diagram  
t4  
t5  
CLK  
t2  
t3  
DB3  
(CONTROL BIT C4)  
DB2  
(CONTROL BIT C3)  
DB1  
(CONTROL BIT C2)  
DB0 (LSB)  
(CONTROL BIT C1)  
DB31 (MSB)  
DB30  
DATA  
LE  
t7  
t1  
t6  
LE  
Figure 2. SPI Write Operation Timing Diagram  
CLK  
REGISTER 5: NEW DATA  
(NEW REGISTER ADDRESS IN READBACK ADDRESS FIELD)  
DATA  
LE  
NEXT OPERATION  
REGISTER 5: OLD DATA  
(OLD REGISTER ADDRESS IN READBACK ADDRESS FIELD)  
REGISTER 5: NEW DATA  
(NEW REGISTER ADDRESS IN READBACK ADDRESS FIELD)  
READBACK  
ADDRESS  
t8  
READ DATA  
FROM OLD  
REGISTER (MSB)  
READ DATA  
FROM OLD  
REGISTER  
READ DATA  
FROM OLD  
REGISTER (LSB)  
READ DATA  
FROM NEW  
REGISTER (MSB)  
READ DATA  
FROM NEW  
REGISTER (LSB)  
READ DATA  
FROM NEW  
REGISTER  
SDO  
Figure 3. SPI Readback Operation Timing Diagram  
Rev. A | Page 6 of 31  
 
 
Data Sheet  
ADRF6658  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Table 4.  
Parameter  
Rating  
Supply Voltage Pins1 to GND2  
Supply Voltage Pins1 to DVDD  
Digital Input Output (I/O) Voltage to GND −0.3 V to DVDD + 0.3 V  
Analog I/O Voltage to GND  
RF Input Power  
LO Input Power  
−0.3 V to +3.9 V  
−0.3 V to +0.3 V  
−0.3 V to DVDD + 0.3 V  
20 dBm  
10 dBm  
The ADRF6658 is a high performance RF integrated circuit,  
and it is ESD sensitive. Take proper precautions for handling  
and assembly.  
ESD Ratings  
Human Body Model (HBM)  
Field Induced Charged Device Model 500 V  
(FICDM)  
1.5 kV  
ESD CAUTION  
Operating Temperature Range  
Storage Temperature Range  
Maximum Junction Temperature  
−40°C to +105°C  
−65°C to +125°C  
150°C  
Thermal Resistance (θJA), with Exposed  
Pad Soldered  
27.26°C/W  
Reflow Soldering  
Peak Temperature  
Time at Peak Temperature  
260°C  
40 sec  
1 The supply voltage pins include MIXAVDD, DVDD, MIXBVDD, DGABVDD, LOVDD, and  
DGAAVDD  
.
2 GND = AGND = DGND = 0 V  
3 The digital I/O pins include LATCHA, CHAEN, CHBEN, LATCHB, B5 to B0, LE, CLK,  
DATA, SDO, and A0 to A5.  
Rev. A | Page 7 of 31  
 
 
ADRF6658  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
MIX  
V
1
2
3
4
5
6
7
8
9
36 IF OUT+  
A
A
DD  
35  
34 AGND  
33 LOV  
IF OUT–  
MIX RF  
A
A
IN  
AGND  
LATCH  
CH EN  
C
DV  
CH EN  
LATCH  
AGND  
A
DD  
32 SDO  
31 LO  
A
REG  
ADRF6658  
TOP VIEW  
(Not to Scale)  
IN+  
30  
LO  
DD  
IN–  
29 DATA  
28 CLK  
27 LE  
B
B
10  
11  
12  
MIX RF  
26 IF OUT–  
B
B
IN  
DD  
MIX  
V
25 IF OUT+  
B
B
NOTES  
1. CONNECT THE EXPOSED PAD TO GROUND THROUGH A  
LOW IMPEDANCE PATH, USING AN ARRAY OF VIAS FROM  
THE PAD TO THE PCB GROUND PLANE.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
MIXAVDD  
Supply for Mixer A. The voltage level on this pin must be equal to that on DVDD. Place decoupling capacitors  
to the ground plane as close as possible to this pin.  
2
3
4
MIXARFIN  
AGND  
LATCHA  
RF Input for Mixer A. This pin has an input impedance of 50 Ω.  
Analog Ground. This is a ground return path for MIXAVDD (Pin 1).  
Channel A Latch Buffer Control. This pin controls the latch buffer between the 6-bit parallel control port  
(Pin A0 to Pin A5) and the Channel A DGA.  
5
6
CHAEN  
CREG  
Channel A Enable. This pin provides external control of the power-down mode for Channel A.  
Internal Regulator Output. A capacitor of approximately 220 nF must be placed between this output and  
ground.  
7
DVDD  
Supply Connection for Digital Circuits. The voltage on this pin ranges from 3.15 V to 3.45 V. Place decoupling  
capacitors to the ground plane as close as possible to this pin.  
8
9
CHBEN  
LATCHB  
Channel B Enable. This pin provides external control of the power-down mode for Channel B.  
Channel B Latch Buffer Control. This pin controls the latch buffer between the 6-bit parallel control port  
(Pin B0 to Pin B5) and the Channel B DGA.  
10  
11  
12  
AGND  
MIXBRFIN  
MIXBVDD  
Analog Ground. This is a ground return path for MIXBVDD (Pin 12).  
RF Input for Mixer B. This pin has an input impedance 50 Ω.  
Supply for Mixer B. The voltage level on this pin must be equal to that on DVDD. Place decoupling capacitors  
to the ground plane as close as possible to this pin.  
13, 14  
MIXBOUT+,  
MIXBOUT−  
Differential Mixer B Outputs, 300 Ω Impedance. A pull-up inductor must be connected to each of these  
output pins. The values of the inductors depend on the IF frequency range.  
15  
16, 17  
AGND  
DGABIN−,  
DGABIN+  
Analog Ground. This is a ground return path for DGABVDD (Pin 18).  
Differential DGA B Inputs, 300 Ω Impedance.  
18  
DGABVDD  
Supply for DGA B. The voltage level on this pin must be equal to that on DVDD. Place decoupling capacitors  
to the analog ground plane as close as possible to this pin.  
19, 20, 21,  
22, 23, 24  
B5, B4, B3, B2,  
B1, B0  
6-Bit Parallel Control Ports for DGA B.  
25, 26  
IFBOUT+,  
IFBOUT−  
Channel B Differential IF Outputs, 100 Ω Resistance from DGA B. Requires a pull-up inductor dependent on  
IF frequency.  
27  
LE  
Latch Enable. When the LE input pin goes low, data is clocked into the 32-bit shift register on the CLK rising  
edge. Only the last 32 bits are retained. When the LE input pin goes high, the data stored in the shift register  
is loaded into one of the 16 registers, the relevant latch being selected by the four LSBs of the 32-bit word.  
Rev. A | Page 8 of 31  
 
Data Sheet  
ADRF6658  
Pin No.  
Mnemonic  
Description  
28  
CLK  
Serial Clock Input. Data is clocked into the 32-bit shift register on the CLK rising edge. This input is a high  
impedance CMOS input.  
29  
30  
DATA  
LOIN−  
Serial Data Input. The serial data input is loaded MSB first with the four LSBs control the destination for the  
data. This input is a high impedance CMOS input.  
Complimentary External Local Oscillator Input. In differential LO mode, this pin is one of the input pins of  
the differential input and must be ac-coupled. In single-ended LO mode, terminate this pin to ground with a  
capacitor.  
31  
LOIN+  
External Local Oscillator Input. In differential LO mode, this pin one of the input pins of the differential input.  
In single-ended LO mode, it is the input of the LO signal. AC couple this pin.  
32  
33  
SDO  
LOVDD  
Serial Data Output. This output is used to read back the register content.  
Power Supply for the LO Path. The voltage level on this pin must be equal to that on DVDD. Place  
decoupling capacitors to the ground plane as close as possible to this pin.  
34  
AGND  
Analog Ground. This is a ground return path for LOVDD (Pin 33).  
35, 36  
IFAOUT−,  
IFAOUT+  
Channel A Differential IF Outputs, 100 Ω Resistance from DGA A. Requires a pull-up inductor dependent on  
IF frequency.  
37, 38, 39,  
40, 41, 42  
A0, A1, A2, A3, 6-Bit Parallel Control Ports for DGA A.  
A4, A5  
43  
DGAAVDD  
Supply for DGA A. The voltage level on this pin must be equal to that on DVDD. Place decoupling capacitors  
to the analog ground plane as close as possible to this pin.  
44, 45  
DGAAIN+,  
DGAAIN−  
Differential DGA A Inputs, 300 Ω Impedance.  
46  
AGND  
Analog Ground. This is a ground return path for DGAAVDD (Pin 43).  
47, 48  
MIXAOUT−,  
MIXAOUT+  
Differential Mixer A Outputs, 300 Ω Impedance. A pull-up inductor must be connected to each of these  
output pins. The values of the inductors depend on the IF frequency range.  
49  
EP  
Exposed Pad. Connect the exposed pad to ground through a low impedance path, using an array of vias  
from the pad to the PCB ground plane.  
Rev. A | Page 9 of 31  
ADRF6658  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
30  
50  
45  
40  
35  
30  
25  
20  
15  
10  
DGA GAIN CODE: 63, +105°C  
DGA GAIN CODE: 63, +25°C  
DGA GAIN CODE: 63, –40°C  
25  
20  
15  
DGA GAIN CODE: 32, +105°C  
DGA GAIN CODE: 32, +25°C  
DGA GAIN CODE: 32, –40°C  
10  
5
BALUN CODE 0  
BALUN CODE 1  
BALUN CODE 2  
BALUN CODE 3  
BALUN CODE 4  
BALUN CODE 5  
BALUN CODE 6  
BALUN CODE 7  
DGA GAIN CODE: 0, +105°C  
DGA GAIN CODE: 0, +25°C  
DGA GAIN CODE: 0, –40°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 5. Power Gain vs. RF Frequency and Balun Codes  
Figure 8. Noise Figure vs. RF Frequency and DGA Gain Codes  
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
BALUN CODE 0  
BALUN CODE 1  
BALUN CODE 10  
BALUN CODE 11  
BALUN CODE 100  
BALUN CODE 101  
BALUN CODE 110  
BALUN CODE 111  
+105°C 3.6V  
+105°C 3.3V  
+105°C 3.0V  
+25°C 3.6V  
+25°C 3.3V  
+25°C 3.0V  
–40°C 3.6V  
–40°C 3.3V  
–40°C 3.0V  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 6. RF Input Return Loss vs. Frequency and Balun Codes  
Figure 9. Input P1dB (IP1dB) vs. RF Frequency, DVDD at Maximum Gain  
18  
30  
+105°C 3.6V  
+105°C 3.3V  
+105°C 3.0V  
+25°C 3.6V  
+25°C 3.3V  
+25°C 3.0V  
–40°C 3.6V  
–40°C 3.3V  
–40°C 3.0V  
25  
20  
15  
10  
5
16  
14  
12  
10  
8
DGA GAIN CODE: 0, +105°C  
DGA GAIN CODE: 0, +25°C  
DGA GAIN CODE: 0, –40°C  
DGA GAIN CODE: 32, +105°C  
DGA GAIN CODE: 32, +25°C  
DGA GAIN CODE: 32, –40°C  
0
–5  
–10  
–15  
–20  
DGA GAIN CODE: 63, +105°C  
DGA GAIN CODE: 63, +25°C  
DGA GAIN CODE: 63, –40°C  
6
0.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 10. IP1dB vs. RF Frequency and DVDD at Minimum Gain  
Figure 7. Power Conversion Gain vs. RF Frequency for  
DGA Gain Code = 0, 32, and 63  
Rev. A | Page 10 of 31  
 
Data Sheet  
ADRF6658  
40  
35  
30  
25  
20  
15  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
CHANNEL A  
CHANNEL B  
IIP3 DGA GAIN CODE: 0 IN TONE POW = –25dBm  
IIP3 DGA GAIN CODE: 24 IN TONE POW = –15dBm  
IIP3 DGA GAIN CODE: 32 IN TONE POW = –10dBm  
IIP3 DGA GAIN CODE: 41 IN TONE POW = –5dBm  
IIP3 DGA GAIN CODE: 63 IN TONE POW = 0dBm  
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
400  
500  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 11. IIP3 vs. RF Frequency  
Figure 14. Channel Isolation  
30  
20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3.3V –40°C  
3.3V 0°C  
3.3V +25°C  
3.3V +85°C  
3.3V +105°C  
3.6V –40°C  
3.6V 0°C  
3.6V +25°C  
3.6V +85°C  
3.6V +105°C  
3.0V –40°C  
3.0V 0°C  
3.0V +25°C  
3.0V +85°C  
3.0V +105°C  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
DGA0  
DGA24  
DGA32  
DGA41  
DGA63  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
150  
200  
250  
300  
350  
IF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
Figure 12. Power Conversion Gain vs. IF Frequency  
Figure 15. RF Feedthrough at Maximum Gain, Relative to IF Output Level  
0
50  
40  
3.0V –40°C  
3.0V 0°C  
3.0V +25°C  
3.0V +85°C  
3.0V +105°C  
3.3V –40°C  
3.3V 0°C  
3.3V +25°C  
3.3V +85°C  
3.3V +105°C  
3.6V –40°C  
3.6V 0°C  
3.6V +25°C  
3.6V +85°C  
3.6V +105°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
DGA0 IN TONEPOW = –25dBm +25°C 3.3V  
DGA24 IN TONEPOW = –15dBm +25°C 3.3V  
DGA32 IN TONEPOW = –10dBm +25°C 3.3V  
DGA41 IN TONEPOW = –5dBm +25°C 3.3V  
DGA63 IN TONEPOW = –0dBm +25°C 3.3V  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
50  
100  
150  
200  
250  
300  
350  
400  
450  
LO FREQUENCY (GHz)  
IF FREQUENCY (MHz)  
Figure 16. LO Feedthrough at Maximum Gain, Relative to IF Output Level  
Figure 13. OIP3 vs. IF Frequency  
Rev. A | Page 11 of 31  
ADRF6658  
Data Sheet  
0
–5  
LATCHx  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
IFxOUT  
5ns/DIV  
0
50  
100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 17. IF DGA Output Return Loss Measured Through Balun  
Figure 20. Gain Step Response, Maximum Gain to Minimum Gain  
16  
14  
12  
10  
8
REGISTER 14, A5 TO A0 OR B5 TO B0  
IFxOUT  
6
4
2
0
BIAS = 0  
BIAS = 1  
BIAS = 2  
BIAS = 3  
BIAS = 4  
BIAS = 5  
5ns/DIV  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
RF FREQUENCY (GHz)  
Figure 21. Gain Step Response, Minimum Gain to Maximum Gain  
Figure 18. IP1dB vs. RF Frequency and V to I Bias  
0.20  
0
CHxEN  
IFxOUT  
–0.20  
–0.40  
–0.60  
–0.80  
–1.00  
–1.20  
–1.40  
DEVIATION FROM IDEAL LEVEL  
STEP ACCURACY  
10ns/DIV  
0
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60 64  
DGA GAIN CODE  
Figure 22. Channel Enable Response  
Figure 19. DGA Step Accuracy  
Rev. A | Page 12 of 31  
Data Sheet  
ADRF6658  
THEORY OF OPERATION  
DUAL MIXER CORES  
DGA BASIC STRUCTURE  
The ADRF6658 provides two double balanced active mixers  
based on the Gilbert cell design. The RF inputs, LO inputs, and  
IF outputs of the mixers are all differential, providing maximum  
usable bandwidth at the input and output ports. The mixers are  
designed for a 50 Ω input impedance and a 300 Ω output  
impedance, with external RF chokes connected to the supply.  
In each channel, the ADRF6658 has a built-in, variable gain  
DGA. Each amplifier consists of a digitally controlled, passive  
attenuator of a 300 Ω differential input impedance followed by a  
highly linear transconductance amplifier with feedback. The  
output impedance of the gain amplifier is 100 Ω, differentially.  
The input impedance of the DGA block matches the output  
impedance of the internal mixer.  
Mixer RF Inputs  
The gain of each amplifier can be programmed independently,  
either via the DGA control bits in the serial control registers, or  
via an external, 6-bit parallel port. The choice of serial or  
parallel control is determined by the DGA control select bit, Bit  
DB22 in Register 7. Programming this bit to 0 allows the gain to  
be set by programming Register 14 (Bits[DB17:DB12] for  
Channel A, or Bits[DB11:DB6] for Channel B). When the DGA  
Control Select bit is set to 1, the gain is set by the binary value  
applied to the 6-bit, external parallel control interface (Pin A5  
through Pin A0 for Channel A, or Pin B5 through Pin B0 for  
Channel B).  
At the RF input of each channel (MIXARFIN and MIXBRFIN) of  
the ADRF6658, a tunable balun converts the single-ended input  
signal into differential form, to be fed into the mixer section.  
The tuning of the balun is controlled by the two sets of register  
bits: RF balun input cutoff (CIN) in Register 13, Bits[DB12:DB10],  
and RF balun output cutoff (COUT) in Register 13, Bits[DB9:DB7].  
Mixers Bias Circuit  
A band gap reference circuit generates the reference currents  
used by mixers. The bias current for the LO circuit of the  
mixers can be programmed via the mixer LO IBIAS bits in  
Register 13, Bits[DB26:DB25].  
EXTERNAL  
CONTROL  
PARALLEL  
PORT  
INTERNAL  
CONTROL  
REGISTER 14  
LATCH  
CONTROL  
RF Voltage to Current (V to I) Converter  
DGA  
The differential RF input signal, created in the internal balun  
from the external, single-ended RF signal provided to the  
MIXARFIN or MIXBRFIN pin, is applied to a V to I converter that  
converts the differential input voltage to output currents. The  
V to I converter provides a 50 Ω input impedance. The V to I  
section bias current can be adjusted up or down using the mixer  
V to I IBIAS bits in Register 13, Bits[DB24:DB22]. Adjusting the  
current up improves IIP3 and P1dB input, but degrades the SSB  
NF. Adjusting the current down improves the SSB NF but  
degrades IIP3 and the input P1dB. The conversion gain remains  
nearly constant over a wide range of mixer V to I IBIAS settings,  
allowing the device to be adjusted dynamically without  
affecting the conversion gain. A setting of 3 or 4 provides a  
good trade-off of IP3 and SSB NF.  
CONTROL  
SELECT  
MUX  
REGISTER 7  
LATCH  
ATTENUATOR  
0dB TO 31.5dB  
VOUT+  
VOUT–  
VIN+  
VIN–  
300Ω  
100Ω  
+22dB  
Figure 23. Simplified Schematic  
Input System  
The dc voltage level at the inputs of each amplifier is set to  
approximately 1.1 V by two independent internal voltage  
reference circuits. These reference circuits are not accessible and  
cannot be adjusted.  
Mixer Power-Down  
It is possible to power down either mixer by programming the  
relevant bits. For Channel A, program the Mixer A enable bit  
(Bit DB5 in Register 13). For Channel B, program the Mixer B  
Enable bit (Bit DB4 in Register 13). The mixers can be powered  
down independently.  
Power down each amplifier by setting Bit DB5 and Bit DB4.in  
Register 14. When powered down, the total current of each  
amplifier reduces to 10 μA (typical). The dc level at the inputs  
remains at approximately 1.6 V, regardless of the state of  
Bit DB5 and Bit DB4 in Register 14.  
Mixer Output  
The mixer load uses a pair of 150 Ω resistors connected to the  
positive supply. This provides a 300 Ω differential output resistance,  
which matches the input impedance of the internal IF DGA  
block. Pull the mixer outputs to the positive supply externally  
using a pair of RF chokes, or by using an output transformer  
with the center tap connected to the positive supply. The mixer  
outputs are dc-coupled, and they can operate up to  
approximately 500 MHz into a 300 Ω load.  
Rev. A | Page 13 of 31  
 
 
 
ADRF6658  
Data Sheet  
Output Amplifier  
Gain Control  
The gain of the output amplifier is set to 22 dB when driving  
a 100 Ω load. The input resistance of this amplifier is set to  
300 Ω in matched condition, and its output resistance is set to  
100 Ω. If the load resistance is different from 100 Ω, use the  
following equations to determine the resulting gain and  
input/output resistances:  
The gain of each amplifier can be adjusted using the parallel  
control interface or the SPI. The gain step size is 0.5 dB. Each  
amplifier has a maximum gain of +22 dB (Code 0) to −9.5 dB  
(Code 63). LATCHA or LATCHB must be at or transitioned to  
logic high after programming through the parallel or serial  
interface for the gain change to take effect.  
AV = 0.15 × (3800)/RL  
The NF of each amplifier is approximately 4 dB at the maxi-  
mum gain setting, relative to a 300 Ω source. This represents  
approximately 22.5 nV√Hz noise referred to the amplifier  
output. The NF increases as the gain is reduced, and this increase  
is equal to the reduction in gain. The linearity of the device  
measured at the output is first-order independent of the gain  
setting. From −4 dB to +22 dB gain, OIP3 is approximately  
40 dBm into a 100 Ω load at 281 MHz (+1 dBm per tone). At  
gain settings below −4 dB, OIP3 drops to approximately 28 dBm.  
R
IN = (3800 + RL)/(1 + 0.15 × RL)  
S21 (Gain) = 2 × RIN/(RIN + 300) × AV  
OUT = (2000 + RS)/(1 + 0.09 × RS)  
R
where:  
Av is the voltage gain.  
RL is the load resistance.  
IN is the input resistance.  
S21 is the insertion gain.  
OUT is the output resistance.  
R
SERIAL INPUT SHIFT REGISTERS  
R
Data is clocked into the 32-bit shift register on each rising edge  
of CLK, MSB first. Data transfers from the shift register to one  
of sixteen latches on the rising edge of LE. The destination latch  
is determined by the state of the four control bits (C4, C3, C2,  
and C1) in the shift register. As shown in Figure 2, these are the  
four LSBs: DB3, DB2, DB1, and DB0. See Table 6 for the truth  
table for these bits. Figure 27 through Figure 42 describe the  
function of the control registers in the ADRF6658. The Register  
Maps section summarizes how to program the latches.  
Note that at the maximum attenuation setting, RS, as seen by  
the output amplifier, is the output resistance of the attenuator,  
which is 300 Ω. However, at minimum attenuation, RS is the  
source resistance connected to the DGA inputs of the device.  
The dc current to the outputs of each amplifier is supplied  
through two external chokes. The inductance of the chokes and  
the resistance of the load, in parallel with the output resistance  
of the device, adds a low frequency pole to the response. The  
parasitic capacitance of the chokes adds to the output capacitance  
of the device. This total capacitance, in parallel with the load  
and output resistance, sets the high frequency pole of the  
device. Generally, the larger the inductance of the choke, the  
higher its parasitic capacitance. Therefore, this trade-off must  
be considered when the value and type of the choke are  
selected.  
PROGRAM MODES  
Table 6 and Figure 27 through Figure 42 show how to set up the  
program modes in the ADRF6658.  
Table 6. Truth Table for Control Bits C4, C3, C2, and C1  
Control Bits  
C4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
C3  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
C2  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
C1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Register  
Register 0 (R0)  
Register 1 (R1)  
Register 2 (R2)  
Register 3 (R3)  
Register 4 (R4)  
Register 5 (R5)  
Register 6 (R6)  
Register 7 (R7)  
Register 8 (R8)  
Register 9 (R9)  
Register 10 (R10)  
Register 11 (R11)  
Register 12 (R12)  
Register 13 (R13)  
Register 14 (R14)  
Register 15 (R15)  
For an operation frequency of 45 MHz to 500 MHz when  
driving a 100 Ω load, 1.2 μH chokes with a self resonant  
frequency (SRF) of 375 MHz or higher are recommended (such  
as the 0805AF-122XJRB from Coilcraft). If higher value chokes  
are used, gain peaking may occur at the low frequency end of  
the pass band due to ac-coupling in the internal feedback path  
of the amplifier. The supply current of each amplifier takes  
about 80 mA through the two chokes combined in high linearity  
mode (Register 13, Bits[DB24:DB22] = 4). The current increases  
with temperature at approximately 2.5 mA per 10°C.  
Rev. A | Page 14 of 31  
 
 
 
Data Sheet  
ADRF6658  
REGISTER MAPS  
REGISTER 0  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
C4(0) C3(0) C2(0) C1(0)  
0
REGISTER 1  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(0) C3(0) C2(0) C1(1)  
0
REGISTER 2  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(0) C3(0) C2(1) C1(0)  
0
REGISTER 3  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(0) C3(0) C2(1) C1(1)  
0
REGISTER 4  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(0) C3(1) C2(0) C1(0)  
1
REGISTER 5  
READBACK  
ADDRES  
CONTROL BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RA2 RA1 SDL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RA4  
RA3  
C3(1) C2(0) C1(1)  
C4(0)  
Figure 24. Register Summary (Register 0 Through Register 5)  
Rev. A | Page 15 of 31  
 
ADRF6658  
Data Sheet  
REGISTER 6  
CONTROL BITS  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
0
0
0
1
0
0
0
0
0
DCE  
0
0
1
0
LOS  
0
0
1
0
PLB  
0
PLI  
0
0
0
0
0
C3(1) C2(1) C1(0)  
C4(0)  
REGISTER 7  
RESERVED  
RESERVED  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
DCS  
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
C3(1) C2(1) C1(1)  
C4(0)  
REGISTER 8  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(0) C1(0)  
REGISTER 9  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(1) C3(0) C2(0) C1(1)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
REGISTER 10  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
C4(1) C3(0) C2(1) C1(0)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 25. Register Summary (Register 6 Through Register 10)  
Rev. A | Page 16 of 31  
Data Sheet  
ADRF6658  
REGISTER 11  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
REGISTER 12  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(1) C2(0) C1(0)  
0
REGISTER 13  
MIXER  
LO  
IBIAS  
MIXER  
V TO I  
IBIAS  
MIXER  
V TO I  
RDAC  
MIXER  
V TO I  
CDAC  
RF BALUN  
INPUT  
CUT OFF  
RF BALUN  
OUTPUT  
CUT OFF  
RESERVED  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
MB5 MB4 MB3 MB2 MB1 MR4 MR3 MR2 MR1 MC5 MC4 MC3 MC2 MC1 IC3  
IC2  
IC1 OC3 OC2 OC1  
0
MAE MBE  
C4(1)  
0
0
C3(1) C2(0) C1(1)  
REGISTER 14  
DGA A  
GAIN  
DGA B  
GAIN  
RESERVED  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
1
0
0
1
0
0
0
1
0
0
0
AG6 AG5 AG4 AG3 AG2 AG1 BG6 BG5 BG4 BG3 BG2 BG1 DAE DBE  
C4(1)  
1
0
C3(1) C2(1) C1(0)  
REGISTER 15  
RESERVED  
RESERVED  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DLP MSB  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
C3(1) C2(1) C1(1)  
C4(1)  
Figure 26. Register Summary (Register 11 Through Register 15)  
Rev. A | Page 17 of 31  
ADRF6658  
Data Sheet  
REGISTER 0 THROUGH REGISTER 4  
Program Register 0 through Register 4 with the assigned values as shown in the register maps, Figure 27 through Figure 31.  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
C4(0) C3(0) C2(0) C1(0)  
0
0
Figure 27. Register 0 (R0), Hexadecimal Code = 0x00000010  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(0) C3(0) C2(0) C1(1)  
0
Figure 28. Register 1 (R1), Hexadecimal Code = 0x00000001  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(0) C3(0) C2(1) C1(0)  
0
0
Figure 29. Register 2 (R2), Hexadecimal Code = 0x00000002  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(0) C3(0) C2(1) C1(1)  
0
Figure 30. Register 3 (R3), Hexadecimal Code = 0x00000003  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(0) C3(1) C2(0) C1(0)  
1
Figure 31. Register 4 (R4), Hexadecimal Code = 0x38000004  
Rev. A | Page 18 of 31  
 
 
 
Data Sheet  
ADRF6658  
SDO Output Level  
REGISTER 5  
Bit DB24 changes the logic level of the SDO output. When  
programmed to 0, the SDO output is compatible with a 1.8 V  
logic. When set to 1, the SDO output uses 3.3 V as the high  
level.  
Control Bits  
Program Register 5 by setting Bits[C4:C1] to 0101. Figure 32  
shows the input data format for programming this register.  
Readback Address  
The readback address bits, Bits[DB31:DB28], determine which  
register content is read on the SDO output. Readback  
functionality is explained in the Readback section.  
READBACK  
ADDRESS  
CONTROL BITS  
RESERVED  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RA2 RA1  
0
0
0
SDL  
SDL  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RA4  
RA3  
C3(1) C2(0) C1(1)  
C4(0)  
SDO OUTPUT  
LOGIC LEVEL  
0
1
1.8V  
3.3V  
RA4 RA3 RA2 RA1  
READBACK ADDRESS  
REGISTER 0  
REGISTER 1  
REGISTER 2  
REGISTER 3  
REGISTER 4  
REGISTER 5  
REGISTER 6  
REGISTER 7  
REGISTER 8  
REGISTER 9  
REGISTER 10  
REGISTER 11  
REGISTER 12  
REGISTER 13  
REGISTER 14  
REGISTER 15  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Figure 32. Register 5 (R5)  
Rev. A | Page 19 of 31  
 
 
ADRF6658  
Data Sheet  
Local Oscillator Input Buffer Standby Mode  
REGISTER 6  
Bit DB15 controls the standby mode of the buffer on the LO  
input when both channels are disabled by pins CHAEN and  
CHBEN. In this case, if the LOIN standby bit is programmed to  
0, the buffer on the LO input is in low power mode. When this  
bit is set to 1 while both channels are disabled, the buffer on the  
LO input works in normal mode, ensuring a shorter time of  
return to normal operation mode after any of the channels are  
enabled.  
Control Bits  
Program Register 6 by setting Bits[C4:C1] to 0110. Figure 33  
shows the input data format for programming this register.  
Daisy-Chain Enable  
To enable daisy-chain mode for programming multiple devices,  
set Bit DB20 to 1. This feature is described in detail in the  
Daisy-Chain Mode section. Programming this bit to 0 disables  
this feature.  
Bit DB8 controls the power up of the LO buffer. If DB8 is set to  
0, the LO buffer is disabled.  
Bit DB10 provides direct control of the LO buffer power modes.  
Set this bit to 1 for normal mode, and 0 for standby mode.  
In normal operation mode, the LO input buffer typically  
consumes about 20 mA. In standby mode, this current is  
reduced to 6 mA.  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1
0
0
0
1
0
0
0
0
0
DCE  
0
0
1
0
LOS  
0
0
1
0
PLB  
0
PLI  
0
0
0
0
0
C3(1) C2(1) C1(0)  
C4(0)  
POWER-UP LO  
BUFFER  
DAISY-CHAIN  
ENABLE  
LOIN BUFFER  
STANDBY  
PU LO IN  
DCE  
LOS  
0
1
DISABLED  
0
1
DISABLED  
ENABLED  
0
1
LOW POWER MODE  
ENABLED FOR NORMAL OPERATION  
ENABLED FOR NORMAL OPERATION  
POWER UP LO  
BUFFER BIAS (BAND-GAP)  
PU LO BIAS  
0
1
DISABLED  
ENABLED FOR NORMAL OPERATION  
Figure 33. Register 6 (R6)  
Rev. A | Page 20 of 31  
 
 
Data Sheet  
ADRF6658  
DGA Control Select  
REGISTER 7  
Bit DB22 selects the mode of control for the IF DGA. When this  
bit is programmed to 0, the gain of each DGA block is set by  
value of the relevant fields in Register 14: Bits[DB17:DB12] set  
the DGA A gain for Channel A, and Bits[DB11:DB6] set the  
DGA B gain for Channel B. When Bit DB22 in Register 7 is set  
to 1, the gain is controlled by the external parallel ports: Pin A5  
through Pin A0 for Channel A, and Pin B5 through Pin B0 for  
Channel B.  
Control Bits  
Program Register 7 by setting Bits[C4:C1] to 0111. Figure 34  
shows the input data format for programming this register.  
RESERVED  
RESERVED  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
DCS  
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
C3(1) C2(1) C1(1)  
C4(0)  
DGA CONTROL  
SELECT  
DCS  
0
1
GAIN SET BY SPI REGISTER  
GAIN SET BY EXTERNAL PINS  
Figure 34. Register 7 (R7)  
Rev. A | Page 21 of 31  
 
 
ADRF6658  
Data Sheet  
REGISTER 8 THROUGH REGISTER 12  
Program Register 8 through Register 12 with the assigned values as shown in the register maps, Figure 35 through Figure 39.  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(0) C1(0)  
Figure 35. Register 8 (R8), Hexadecimal Code = 0x00000008  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1)  
C1(1)  
C3(0) C2(0)  
0
Figure 36. Register 9 (R9), Hexadecimal Code = 0x00000009  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1)  
C1(0)  
C3(0) C2(1)  
0
Figure 37. Register 10 (R10), Hexadecimal Code = 0x0000000A  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(0) C2(1) C1(1)  
0
Figure 38. Register 11 (R11), Hexadecimal Code = 0x0000000B  
CONTROL  
BITS  
RESERVED  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C4(1) C3(1) C2(0) C1(0)  
0
Figure 39. Register 12 (R12), Hexadecimal Code = 0x0000000C  
Rev. A | Page 22 of 31  
 
 
 
Data Sheet  
ADRF6658  
RF Balun Input Cutoff  
REGISTER 13  
Bits[DB12:DB10] select the input cutoff frequency of the balun  
on the RF mixer input.  
Control Bits  
Program Register 13 by setting Bits[C4:C1] to 1101. This  
register controls the built in phase-locked loop (PLL)  
synthesizer. Figure 40 shows the input data format for  
programming this register.  
RF Balun Output Cutoff  
Bits[DB9:DB7] select the output cutoff frequency of the balun  
on the RF mixer input.  
Mixer LO Bias Current  
Mixer A Enabled  
Bits[DB26:DB25] set the value of the bias current of the mixer  
LO inputs.  
Bit DB5 powers up or switches off the mixer in Channel A. This  
option enables power saving if the mixer is not being used in  
the circuit.  
Mixer V to I Converter Bias Current  
Bits[DB24:DB22] set the value of the V to I converter bias  
current (IBIAS) used on the mixer LO input.  
Switching off Mixer A changes the supply current for this mixer  
from 80 mA to 5 mA.  
Mixer V to I CDAC  
Mixer B Enabled  
Bits[DB17:DB13] set the value of CDAC bits that determines  
the capacitance component in the distortion correction circuit.  
These bits optimize the linearity correction in the mixer V to I  
converter as a function of RF frequency.  
Bit DB4 powers up or switches off the mixer in Channel B. This  
option enables power saving if the mixer is not being used in  
the circuit.  
Switching off Mixer B changes the supply current for this mixer  
from 80 mA to 5 mA.  
MIXER  
V TO I  
CDAC  
RF BALUN  
INPUT  
CUT OFF  
RF BALUN  
OUTPUT  
CUT OFF  
MIXER  
LO  
IBIAS  
MIXER  
V TO I  
IBIAS  
RESERVED  
RESERVED  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
0
0
0
0
MB5 MB4 MB3 MB2 MB1  
0
0
0
0
MC5 MC4 MC3 MC2 MC1 IC3  
IC2  
IC1 OC3 OC2 OC1  
0
MAE MBE  
0
C3(1) C2(0) C1(1)  
C4(1)  
IC3  
0
IC2  
0
IC1  
0
RF BALUN INPUT CUT-OFF  
ABOVE 1.78GHz  
MIXER LO  
BIAS CURRENT  
MIXER B  
MB5 MB4  
MBE  
ENABLED  
DISABLED  
ENABLED  
0
0
1
1
0
1
0
1
200µA  
0
0
1
1.40GHz TO 1.78GHz  
1.18GHz TO 1.40GHz  
1.03GHz TO 1.18GHz  
0.91GHz TO 1.03GHz  
0.84GHz TO 0.91GHz  
0.77GHz TO 0.84GHz  
BELOW 0.77GHz  
0
1
0
1
0
300µA  
0
1
1
500µA  
1
0
0
700µA  
1
0
1
MIXER A  
ENABLED  
MAE  
1
1
0
1
1
1
0
1
DISABLED  
ENABLED  
MIXER VOLTAGE-TO-CURRENT  
CONVERTER BIAS CURRENT  
MB3 MB2 MB1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1
1
0
1
0
1
0
1
0.5mA  
MIXER VOLTAGE-TO-CURRENT  
MC5 MC4 MC3 MC2 MC1 CDAC  
1.0mA  
OC3 OC2 OC1 RF BALUN OUTPUT CUT-OFF  
1.5mA  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.7mA  
ABOVE 1.78GHz  
1
1.40GHz TO 1.78GHz  
1.18GHz TO 1.40GHz  
1.03GHz TO 1.18GHz  
0.91GHz TO 1.03GHz  
0.84GHz TO 0.91GHz  
0.77GHz TO 0.84GHz  
BELOW 0.77GHz  
2.0mA  
0
0
0
1
0
2
2.3mA  
0
0
0
1
1
3
RESERVED  
RESERVED  
...  
1
...  
1
...  
1
...  
0
...  
1
...  
29  
30  
31  
1
1
1
1
0
1
1
1
1
1
Figure 40. Register 13 (R13)  
Rev. A | Page 23 of 31  
 
 
ADRF6658  
Data Sheet  
DGA Channel A Gain Control  
REGISTER 14  
Bits[DB11:DB6] set the gain in the DGA block in Channel B if  
the DCS bit (Register 7, Bit DB22) bit is 0. The gain is set by the  
value of the programmed attenuator in the DGA block in  
Channel B. The maximum value of the gain is +22 dB, and the  
minimum value is −9.5 dB. Figure 41 shows the corresponding  
values of the programmed gain and the binary word written to  
Bits[DB11:DB6].  
Control Bits  
Program Register 14 by setting Bits[C4:C1] to 1110. This  
register controls the built in PLL synthesizer. Figure 41 shows  
the input data format for programming this register.  
DGA Channel A Gain Control  
Bits[DB17:DB12] set the gain in the DGA block in Channel A if  
the DGA control select bit (DCS, Register 7, Bit DB22) bit is 0.  
The gain is set by the value of the programmed attenuator in the  
DGA block in Channel A. The maximum value of the gain is  
+22 dB, and the minimum value is −9.5 dB. Figure 41 shows the  
corresponding values of the programmed gain and the binary  
word written to Bits[DB17:DB12]. LATCHA must be at logic  
low for the gain to change, and the new gain value is latched  
into the DGA when LATCHA goes high.  
DGA Channel A Enable  
Bit DB5 powers up or powers down the DGA block in  
Channel A. To reduce the device power consumption, power  
down the DGA block in Channel A if not in use.  
DGA Channel B Enable  
Bit DB4 powers up or powers down the DGA block in Channel B.  
To reduce the device power consumption, power down the  
DGA block in Channel B if not in use.  
DGA A  
GAIN  
DGA B  
GAIN  
RESERVED  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
AG6 AG5 AG4 AG3 AG2 AG1 BG6 BG5 BG4 BG3 BG2 BG1 DAE DBE  
1
0
1
0
0
1
0
0
0
1
0
0
0
0
C3(1) C2(1) C1(0)  
C4(1)  
DIGITALLY CONTROLLED GAIN  
AMPLIFIER IN CHANNEL B—ENABLE  
DIGITALLY CONTROLLED GAIN  
AMPLIFIER IN CHANNEL A—GAIN VALUE  
DBE  
AG6 AG5 AG4 AG3 AG2 AG1  
0
1
DISABLED  
ENABLED  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
22.0dB  
21.5dB  
21.0dB  
20.5dB  
...  
... ... ... ... ... ...  
DIGITALLY CONTROLLED GAIN  
AMPLIFIER IN CHANNEL A—ENABLE  
DAE  
1
1
1
1
1
1
1
1
1
1
0
1
–9.0dB  
–9.5dB  
0
1
DISABLED  
ENABLED  
GAIN DECREASED BY 0.5dB STEP  
DIGITALLY CONTROLLED GAIN  
AMPLIFIER IN CHANNEL B—GAIN VALUE  
BG6 BG5 BG4 BG3 BG2 BG1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
22.0dB  
21.5dB  
21.0dB  
20.5dB  
...  
... ... ... ... ... ...  
1
1
1
1
1
1
1
1
1
1
0
1
–9.0dB  
–9.5dB  
GAIN DECREASED BY 0.5 dB STEP  
Figure 41. Register 14 (R14)  
Rev. A | Page 24 of 31  
 
 
Data Sheet  
ADRF6658  
Mixer Standby Mode  
REGISTER 15  
DB14 determines whether a mixer enters a low power mode or  
completely shuts off when the channel is disabled using  
Register 13, Bits DB4 and DB5. When DB14 is 0, the mixer is  
powered down. When DB14 is 1, the mixer stays in a low power  
mode. The band gap reference for the mixer bias circuit remains  
on in either case.  
Control Bits  
Program Register 15 by setting Bits[C4:C1] to 1111. This  
register controls the built in DGA block.  
Figure 42 shows the input data format for programming this  
register.  
DGAs—Low Power Mode  
When set to 1, Bit DB16 enables the DGA low power mode.  
When programmed to 0, both DGA blocks work in normal  
mode.  
In normal mode, the typical current used by each DGA block is  
approximately 140 mA. In low power mode, this current  
reduces to 23 mA.  
RESERVED  
RESERVED  
CONTROL BITS  
DB31 DB30 DB29 DB28 DB27 DB26 DB25 DB24 DB23 DB22 DB21 DB20 DB19 DB18 DB17 DB16 DB15 DB14 DB13 DB12 DB11 DB10 DB9 DB8 DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
DLP MSB  
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
C3(1) C2(1) C1(1)  
C4(1)  
MSM MIXER STANDBY MODE  
0
1
MIXER TURNED OFF WHEN CHANNE L ENABLE = 0  
MIXER IN LOW POWER WHEN CHANNEL ENABLE = 0  
DIGITALLY CONTROLLED GAIN  
AMPLIFIERS—LOW POWER MODE  
DLP  
0
1
DISABLED  
ENABLED  
Figure 42. Register 15 (R15)  
Rev. A | Page 25 of 31  
 
 
ADRF6658  
Data Sheet  
APPLICATIONS INFORMATION  
1µF  
3.3V  
3.3V  
3.3V  
3.3V  
3.3V  
IN  
OUT  
IF FILTER  
1µF  
C5  
0.1µF  
C6  
0.1µF  
LATCHA  
IN2 OUT2  
A
C7  
0.1µF  
C8  
0.1µF  
C12  
0.1µF  
3.3V  
CHAEN  
6
C13  
0.1µF  
A0 TO A5  
LOVDD  
MIXAVDD  
MIXAOUT+ MIXAOUT–  
DGAAIN–  
DGAAIN+  
DGAAVDD  
DVDD  
1µF 1µF  
37 42  
33  
1
48  
47  
5
45  
44  
4
43  
7
LATCHA  
C16  
1µF  
MUX  
RFIN  
A
IFAOUT+  
IFAOUT–  
MIXARFIN  
36  
35  
2
+22dB  
100  
LATCH A  
C17  
1µF  
SPI  
MIXA  
INTERFACE  
0dB TO 31.5dB  
SDO  
32  
DATA  
29  
28  
27  
LOIN  
LOIN  
+
31  
30  
CONTROL  
REGISTERS  
CLK  
LE  
ADRF6658  
0dB TO 31.5dB  
LATCH B  
RFINB  
C19  
1µF  
MIXBRFIN  
11  
MIXB  
IFBOUT+  
IFBOUT–  
25  
26  
+22dB  
100Ω  
C18  
1µF  
CREG  
6
MUX  
LATCHB  
1µF 1µF  
12  
13  
14  
8
16  
17  
9
18  
3, 10, 15, 34, 46, EP  
19 24  
DGABVDD  
DGABIN+  
B0 TO B5  
MIXBVDD  
MIXBOUT+  
MIXBOUT–  
DGABIN–  
AGND  
C14  
0.1µF  
6
3.3V  
CHBEN  
C10  
C9  
0.1µF  
0.1µF  
1µF  
1µF  
B
LATCHB  
24 TO 19  
3.3V  
IN2 OUT2  
IF FILTER  
3.3V  
3.3V  
IN  
OUT  
C15  
0.1µF  
Figure 43. Basic Connections  
BASIC CONNECTIONS  
REGISTER INITIALIZATION SEQUENCE  
The basic connections for the ADRF6658 are shown in Figure 43.  
At initial power-up, after applying correct voltages to the supply  
pins, the ADRF6658 registers load in the following sequence:  
INPUT TUNING  
1. Register 15  
2. Register 14  
3. Register 13  
4. Register 12  
5. Register 11  
6. Register 10  
7. Register 9  
8. Register 8  
9. Register 7  
10. Register 6  
11. Register 5  
12. Register 4  
13. Register 3  
14. Register 2  
15. Register 1  
16. Register 0  
Conversion gain and input return loss can be optimized for an  
input frequency range  
IIP3 Optimization  
Input IP3 can be optimized by writing to the Mixer CDAC bits  
(Register 13, Bits[DB17:DB13]). Examples of optimum settings  
are listed in Table 7.  
Table 7. IIP3 Optimization Settings  
RF  
IIP3 for IF DGA at  
CDAC, Bits[DB17:DB13] Minimum Gain  
Frequency  
(MHz)  
(Decimal Value)  
(dBm)  
750  
900  
1950  
2700  
3800  
26  
25  
12  
10  
3
36  
32  
29  
25  
26  
Rev. A | Page 26 of 31  
 
 
 
 
 
 
Data Sheet  
ADRF6658  
STANDARD REGISTER SETTINGS  
Figure 44. Register Settings for Standard Test Configuration  
CLK  
REGISTER 5: NEW DATA  
(NEW REGISTER ADDRESS IN READBACK ADDRESS FIELD)  
DATA  
LE  
NEXT OPERATION  
REGISTER 5: OLD DATA  
(OLD REGISTER ADDRESS IN READBACK ADDRESS FIELD)  
REGISTER 5: NEW DATA  
(NEW REGISTER ADDRESS IN READBACK ADDRESS FIELD)  
READBACK  
ADDRESS  
READ DATA  
FROM OLD  
REGISTER (MSB)  
READ DATA  
FROM OLD  
REGISTER  
READ DATA  
FROM OLD  
REGISTER (LSB)  
READ DATA  
FROM NEW  
REGISTER (MSB)  
READ DATA  
FROM NEW  
REGISTER  
READ DATA  
FROM NEW  
REGISTER (LSB)  
SERIAL DATA  
OUTPUT  
Figure 45. Timing Diagram for Readback Operation  
The data from new Register N, where N = 0 to 15, is available  
on the SDO output during the next write operation to the  
device after setting the correct register number by programming  
the readback address (Bits[DB31:DB28] in Register 5), as shown  
in Figure 45. To read the register values without changing the  
device settings, write a special no operation (NOP) command to  
the device. The format for this command is all zeros (0x00000000).  
Writing all zeros to Register 0 does not change any settings in  
this register due to the internal detection circuit, but allows the  
clock signal to be provided to the device so that readback can be  
performed.  
READBACK  
The address of the register that is read back is written to the  
readback address in Register 5, Bits[DB31:DB28].  
After initialization of the device, the readback address stores a  
number from 0 to 15, depending on the value written to  
Bits[DB31:DB28] in Register 5. If the readback is performed  
after initialization but before a new value is written to the  
readback address field, the data read on the serial data output  
pin (the SDO pin) during the time of next write to the device  
(for example, during a new value write to Register 5) is the data  
stored in the register pointed to by the previous value of the  
readback address field. This is shown in Figure 45.  
Rev. A | Page 27 of 31  
 
 
 
ADRF6658  
Data Sheet  
of the controller as well as simplifying the layout by removing  
multiple selection lines. The daisy chain also removes the necessity  
of connecting the data input of each slave device directly to the  
controller data output. To use the daisy chain, all slave devices  
must use the same SPI protocol.  
DAISY-CHAIN MODE  
In a system with one controller using the SPI for programming  
multiple devices, a dedicated signal for selecting a chip is used  
to address each device. In the ADRF6658, the function of chip  
select input is performed by the LE pin. As the number of  
devices increases, so does the number of lines used for device  
selection. Additionally, as both clock and data lines are routed  
from the controller outputs to the relevant inputs of each  
device, the layout become more complex. Using more outputs  
on the controlling device for the simple selection of different  
devices may become unacceptable due to the limited number of  
the controller outputs. In extreme situations, in a system with a  
numerous devices, additional controllers may be necessary to  
assure the correct addressing of each device.  
Figure 46shows a traditional solution using multiple signals for  
selecting each device; Figure 47 shows a system using a daisy chain.  
Writing to N independent devices in a traditional system  
demands programming each of the devices in sequence. As each  
write operation ends at a different time, so do the changes to the  
device settings. This may be a drawback for applications requiring  
synchronized changes to multiple devices. When using daisy-chain  
functionality, all slave devices must be programmed at the same  
time. To write to selected devices only, write an NOP command  
(0x00000000) to the devices requiring unchanged configuration.  
This command does not change any internal register settings  
of the device to which it is written.  
To simplify the system, an alternative solution is the daisy-chain  
function, enabled by programming Bit DB20 in Register 6 of the  
ADRF6658. The daisy-chain function allows propagation of the  
signal through a string of slave devices, saving multiple outputs  
CONTROLLER  
(MICROCONTROLLER,  
DSP)  
CLK  
DATA OUT  
DEV. 1  
CLK  
DATA  
LE  
DEV. 2  
CLK  
DATA  
LE1  
LE2  
LE3  
SDO  
DEV. 3  
LE  
CLK  
SDO  
DATA  
LE  
SDO  
DATA IN  
Figure 46. System with Traditional Multiple Chip Select  
CONTROLLER  
(MICROCONTROLLER,  
DSP)  
CLK  
DATA OUT  
DEV. 1  
CLK  
DATA  
LE  
DEV. 2  
CLK  
DATA  
LE  
SDO  
DEV. 3  
CLK  
DATA  
LE  
SDO  
LE  
SDO  
DATA IN  
Figure 47. System with Daisy-Chain Functionality  
Rev. A | Page 28 of 31  
 
 
 
Data Sheet  
ADRF6658  
Writing to a single, 32-bit register in each of the N devices with  
daisy chain functionality enabled is possible by writing N × 32 bits  
while the LE signal is kept low, then raising the LE signal. As  
new register settings are written to the device on the rising edge of  
the LE signal, the programmed register in multiple devices are  
updated at the same time. Figure 48 shows the timing diagram  
for writing to multiple devices.  
devices. In daisy-chain mode, the data is written to or read from  
all the devices in sequence, as shown in Figure 49.  
The data from the new Register M, where M = 0 to 15, is available  
on the SDO output during the next write operation to the device  
after setting the correct register number by programming the read-  
back address (Bits[DB31:DB28] in Register 5), as shown in  
Figure 49. To avoid changing the register settings when read-  
back is performed, an NOP command (0x00000000) can be  
used as the next operation.  
During readback on a single device, the data available on the  
SDO output shows the content of the registers which addresses  
are currently stored in the readback address fields of the relevant  
CLK  
DATA  
LE  
DEVICE N DATA  
DEVICE 1 DATA  
LE  
Figure 48. Timing Diagram for Writing to Multiple Devices Using Daisy-Chain Functionality for N Devices  
CLK  
DEVICE N: REGISTER 5  
(NEW READBACK ADDRESS)  
DEVICE 1: REGISTER 5  
(NEW READBACK ADDRESS)  
DEVICE N: NEXT OPERATION  
DATA  
LE  
DEVICE 1: NEXT OPERATION  
READBACK  
ADDRESS  
IN DEVICE N  
OLD REGISTER ADDRESS IN READBACK ADDRESS FIELD  
DEVICE N  
NEW REGISTER ADDRESS IN READBACK ADDRESS FIELD  
DEVICE N  
...  
...  
...  
...  
READBACK  
ADDRESS  
IN DEVICE 1  
OLD REGISTER ADDRESS IN READBACK ADDRESS FIELD  
DEVICE 1  
NEW REGISTER ADDRESS IN READBACK ADDRESS FIELD  
DEVICE 1  
READ DATA  
DEVICE N, OLD REGISTER  
READ DATA  
DEVICE 1, OLD REGISTER  
READ DATA  
DEVICE N, NEW REGISTER  
READ DATA  
DEVICE 1, NEW REGISTER  
SDO  
Figure 49. Timing Diagram for Readback from Multiple Devices Using Daisy-Chain Functionality for N Devices  
Rev. A | Page 29 of 31  
 
 
ADRF6658  
Data Sheet  
The filter design is optimized to produce the best flatness and  
stop-band rejection at the presence of device parasitics, using  
standard Electronic Industries Association (EIA) E24 values,  
also known as standard 5% values.  
IF FILTER  
The IF filter used in the ADRF6658 evaluation is of a fifth order  
Butterworth design, shown in Figure 50, with a center frequency of  
281 MHz and a bandwidth of 200 MHz.  
L16  
24nH  
L18  
27nH  
C16  
13pF  
C18  
11pF  
C14  
C10  
L10  
C12  
3.3pF  
L12  
L14  
150nH  
6.8pF  
82nH  
3.9pF  
120nH  
MIX OUT+  
DGA IN+  
A
A
C11  
6.8pF  
C13  
3.3pF  
C15  
3.9pF  
L11  
82nH  
L13  
120nH  
L15  
150nH  
MIX OUT–  
DGA IN–  
A
A
L17  
24nH  
L19  
27nH  
C17  
13pF  
C19  
11pF  
Figure 50. IF Filter  
Rev. A | Page 30 of 31  
 
Data Sheet  
ADRF6658  
OUTLINE DIMENSIONS  
7.00  
BSC SQ  
0.30  
0.23  
0.18  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
48  
37  
36  
1
0.50  
BSC  
EXPOSED  
PAD  
4.25  
4.10 SQ  
3.95  
12  
13  
25  
24  
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
SECTION OF THIS DATA SHEET.  
COPLANARITY  
0.08  
0.20 REF  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-220-WKKD.  
Figure 51. 48-Lead Lead Frame Chip Scale Package [LFCSP]  
7 mm × 7 mm Body and 0.75 mm Package Height  
(CP-48-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range Package Description  
Package Option  
CP-48-5  
CP-48-5  
ADRF6658BCPZ  
ADRF6658BCPZ-RL7 −40°C to +105°C  
EV-ADRF6658SD1Z  
−40°C to +105°C  
48-Lead Lead Frame Chip Scale Package [LFCSP], Tray  
48-Lead Lead Frame Chip Scale Package [LFCSP], 7” Tape and Reel  
Evaluation Board  
1 Z = RoHS Compliant Part.  
©2015 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D12223-0-11/15(A)  
Rev. A | Page 31 of 31  
 
 

相关型号:

ADRF6658BCPZ

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6658BCPZ-RL7

Wideband, Dual Rx Mixers with Integrated IF Amplifiers
ADI

ADRF6701

2050 MHz to 3000 MHz Quadrature Modulator
ADI

ADRF6701-EVALZ

400 MHz to 1250 MHz Quadrature Modulator
ADI

ADRF6701ACPZ

RF/Microwave Modulator/Demodulator, 750 MHz - 1160 MHz RF/MICROWAVE I/Q MODULATOR, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD-2, LFCSP_VQ, CP-40-1, 40 PIN
ADI

ADRF6701ACPZ-R7

400 MHz to 1250 MHz Quadrature Modulator
ADI

ADRF6702

2050 MHz to 3000 MHz Quadrature Modulator
ADI

ADRF6702-EVALZ

1200 MHz to 2400 MHz Quadrature Modulator
ADI

ADRF6702ACPZ

1200 MHz to 2400 MHz Quadrature Modulator with 1550 MHz to 2150 MHz Frac-N PL
ADI

ADRF6702ACPZ-R7

1200 MHz to 2400 MHz Quadrature Modulator
ADI

ADRF6703

2050 MHz to 3000 MHz Quadrature Modulator
ADI

ADRF6703ACPZ-R7

1550 MHz TO 2650 MHz Quadrature Modulator with 2100 MHz TO 2600 MHz Fractional-N PLL & Integrated VCO
ADI