ADRF5730BCCZN [ADI]

0.5 dB LSB, 6-Bit, Silicon Digital Attenuator, 100 MHz to 40 GHz;
ADRF5730BCCZN
型号: ADRF5730BCCZN
厂家: ADI    ADI
描述:

0.5 dB LSB, 6-Bit, Silicon Digital Attenuator, 100 MHz to 40 GHz

衰减器 射频 微波
文件: 总19页 (文件大小:635K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0.5 dB LSB, 6-Bit, Silicon Digital  
Attenuator, 100 MHz to 40 GHz  
Data Sheet  
ADRF5730  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Ultrawideband frequency range: 100 MHz to 40 GHz  
Attenuation range: 0.5 dB steps to 31.5 dB  
Low insertion loss with impedance match  
2.1 dB up to 18 GHz  
24 23 22 21 20 19  
2.9 dB up to 26 GHz  
4.8 dB up to 40 GHz  
1
18  
LE  
PS  
VDD  
2
3
4
5
6
17  
16  
15  
14  
13  
VSS  
SERIAL/  
PARALLEL  
INTERFACE  
Attenuation accuracy with impedance match  
(0.10 + 1.0% of attenuation state) up to 18 GHz  
(0.15 + 0.8% of attenuation state) up to 26 GHz  
(0.35 + 2.5% of attenuation state) up to 40 GHz  
Typical step error with impedance match  
0.18 dB up to 18 GHz  
GND  
GND  
ATTIN  
GND  
GND  
GND  
6-BIT DIGITAL  
ATTENUATOR  
ATTOUT  
GND  
7
8
9
10 11 12  
PACKAGE  
BASE  
0.23 dB up to 26 GHz  
GND  
0.51 dB up to 40 GHz  
Figure 1.  
High input linearity  
P0.1dB insertion loss state: 30 dBm  
P0.1dB other attenuation states: 27 dBm  
IP3: 50 dBm typical  
High RF input power handling: 27 dBm average, 30 dBm peak  
Tight distribution in relative phase  
No low frequency spurious signals  
SPI and parallel mode control, CMOS/LVTTL compatible  
RF settling time (0.1 dB of final RF output): 250 ns  
24-terminal, 4 mm × 4 mm LGA package  
Pin compatible with ADRF5720, low frequency cutoff version  
APPLICATIONS  
Industrial scanners  
Test and instrumentation  
Cellular infrastructure: 5G millimeter wave  
Military radios, radars, electronic counter measures (ECMs)  
Microwave radios and very small aperture terminals (VSATs)  
GENERAL DESCRIPTION  
The ADRF5730 is a silicon, 6-bit digital attenuator with 31.5 dB  
attenuation control range in 0.5 dB steps.  
The ADRF5730 is pin-compatible with the ADRF5720 low  
frequency cutoff version, which operates from 9 kHz to 40 GHz.  
This device operates from 100 MHz to 40 GHz with better than  
4.8 dB of insertion loss and excellent attenuation accuracy. The  
ADRF5730 has a radio frequency (RF) input power handling  
capability of 27 dBm average and 30 dBm peak for all states.  
The ADRF5730 RF ports are designed to match a characteristic  
impedance of 50 Ω. For wideband applications, impedance  
matching on the RF transmission lines can further optimize high  
frequency insertion loss, return loss, and attenuation accuracy  
characteristics. Refer to the Electrical Specifications section, the  
Typical Performance Characteristics section, and the Applications  
Information section for more details.  
The ADRF5730 requires a dual supply voltage of +3.3 V and  
−3.3 V. The device features serial peripheral interface (SPI), parallel  
mode control, and complementary metal-oxide semiconductor  
(CMOS)-/low voltage transistor to transistor logic (LVTTL)-  
compatible controls.  
The ADRF5730 comes in a 24-terminal, 4 mm × 4 mm, RoHS-  
compliant, land grid array (LGA) package and operates from  
−40°C to +105°C.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2018 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADRF5730  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Insertion Loss, Return Loss, State Error, Step Error, and  
Relative Phase ................................................................................8  
Input Power Compression and Third-Order Intercept......... 12  
Theory of Operation ...................................................................... 13  
Power Supply............................................................................... 13  
RF Input and Output ................................................................. 13  
Serial or Parallel Mode Selection ............................................. 13  
Serial Mode Interface................................................................. 14  
Using SEROUT........................................................................... 14  
Parallel Mode Interface.............................................................. 15  
Applications Information.............................................................. 16  
Evaluation Board........................................................................ 16  
Probe Matrix Board ................................................................... 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagram................................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
Power Derating Curves................................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Interface Schematics..................................................................... 7  
Typical Performance Characteristics ............................................. 8  
REVISION HISTORY  
7/2018—Revision 0: Initial Version  
Rev. 0 | Page 2 of 19  
 
Data Sheet  
ADRF5730  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VDD = 3.3 V, VSS = −3.3 V, digital voltages = 0 V or VDD, case temperature (TCASE) = 25°C, and 50 Ω system, unless otherwise noted.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
INSERTION LOSS (IL)  
With Impedance Match  
100  
40,000 MHz  
See Figure 44  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
See Figure 43  
1.6  
2.1  
2.9  
3.8  
4.8  
dB  
dB  
dB  
dB  
dB  
Without Impedance Match  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
ATTIN and ATTOUT, all attenuation states  
See Figure 44  
1.6  
2.1  
2.7  
3.7  
5.2  
dB  
dB  
dB  
dB  
dB  
RETURN LOSS  
With Impedance Match  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
See Figure 43  
20  
19  
13  
11  
11  
dB  
dB  
dB  
dB  
dB  
Without Impedance Match  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
19  
18  
16  
13  
9
dB  
dB  
dB  
dB  
dB  
ATTENUATION  
Range  
Between minimum and maximum  
attenuation states  
Between any successive attenuation states  
Referenced to insertion loss  
See Figure 44  
31.5  
0.5  
dB  
dB  
Step Size  
Accuracy  
With Impedance Match  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
(0.10 + 0.6% of state)  
dB  
dB  
dB  
dB  
dB  
(0.10 + 1.0% of state)  
(0.15 + 0.8% of state)  
(0.20 + 2.0% of state)  
(0.35 + 2.5% of state)  
Without Impedance Match  
See Figure 43  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
(0.10 + 0.5% of state)  
(0.10 + 1.0% of state)  
(0.15 + 0.8% of state)  
(0.25 + 1.8% of state)  
(0.40 + 5.0% of state)  
dB  
dB  
dB  
dB  
dB  
Rev. 0 | Page 3 of 19  
 
 
 
ADRF5730  
Data Sheet  
Parameter  
Test Conditions/Comments  
Between any successive state  
See Figure 44  
Min  
Typ  
Max  
Unit  
Step Error  
With Impedance Match  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
See Figure 43  
0.11  
dB  
dB  
dB  
dB  
dB  
0.18  
0.23  
0.3  
0.51  
Without Impedance Match  
100 MHz to 10 GHz  
10 GHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
Referenced to insertion loss  
See Figure 44  
10 GHz  
18 GHz  
26 GHz  
35 GHz  
40 GHz  
See Figure 43  
10 GHz  
18 GHz  
26 GHz  
35 GHz  
40 GHz  
0.11  
0.19  
0.23  
0.26  
0.65  
dB  
dB  
dB  
dB  
dB  
RELATIVE PHASE  
With Impedance Match  
Without Impedance Match  
SWITCHING CHARACTERISTICS  
15  
30  
50  
75  
Degrees  
Degrees  
Degrees  
Degrees  
Degrees  
100  
15  
30  
50  
75  
110  
Degrees  
Degrees  
Degrees  
Degrees  
Degrees  
All attenuation states at input power = 10 dBm  
10% to 90% of RF output  
50% triggered control (CTL) to 90% of RF output  
Rise and Fall Time (tRISE and tFALL  
On and Off Time (tON and tOFF  
)
35  
125  
ns  
ns  
)
RF Amplitude Settling Time  
0.1 dB  
0.05 dB  
Overshoot  
Undershoot  
50% triggered CTL to 0.1 dB of final RF output  
50% triggered CTL to 0.05 dB of final RF output  
250  
350  
1
ns  
ns  
dB  
dB  
−2.5  
RF Phase Settling Time  
5°  
1°  
INPUT LINEARITY1  
0.1 dB Power Compression (P0.1dB)  
Insertion Loss State  
Other Attenuation States  
Third-Order Intercept (IP3)  
f = 5 GHz  
50% triggered CTL to 5° of final RF output  
50% triggered CTL to 1° of final RF output  
100 MHz to 30 GHz  
160  
180  
ns  
ns  
30  
27  
50  
dBm  
dBm  
dBm  
Two-tone input power = 14 dBm per tone,  
Δf = 1 MHz, all attenuation states  
DIGITAL CONTROL INPUTS  
LE, PS, D0, D1, D2, D3/SEROUT,2 D4/SERIN,  
D5/CLK pins  
Voltage  
Low (VINL)  
0
1.2  
0.8  
3.3  
V
V
High (VINH  
Current  
Low (IINL  
High (IINH  
)
)
<1  
33  
<1  
µA  
µA  
µA  
)
D0, D1, D2  
LE, PS, D3/SEROUT2, D4/SERIN, D5/CLK pins  
Rev. 0 | Page 4 of 19  
Data Sheet  
ADRF5730  
Parameter  
Test Conditions/Comments  
D3/SEROUT pin2  
Min  
Typ  
Max  
Unit  
DIGITAL CONTROL OUTPUT  
Voltage  
Low (VOUTL  
)
0
0.3  
V
High (VOUTH  
)
VDD 0.3  
V
Current (IOUTL, IOUTH  
SUPPLY CURRENT  
)
0.5  
mA  
VDD and VSS pins  
Positive Supply Current  
Negative Supply Current  
117  
−117  
µA  
µA  
RECOMMENDED OPERATING  
CONDITIONS  
Supply Voltage  
Positive (VDD)  
Negative (VSS)  
3.15  
−3.45  
0
3.45  
−3.15  
VDD  
V
V
V
Digital Control Voltage  
RF Input Power 3  
ATTIN  
f = 100 MHz to 30 GHz, TCASE = 85°C,4 all  
attenuation states  
Steady state average  
Steady state peak  
Hot switching average  
Hot switching peak  
Steady state average  
Steady state peak  
Hot switching average  
Hot switching peak  
27  
30  
24  
27  
18  
21  
15  
18  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
°C  
ATTOUT (Bidirectional Use)  
Case Temperature (TCASE  
)
−40  
+105  
1 Input linearity performance degrades over frequency, see Figure 30 and Figure 31.  
2 The D3/SEROUT pin is an input in parallel control mode and an output in serial control mode. See Table 5 for the pin function descriptions.  
3 For power derating over frequency, see Figure 2 to Figure 3. Applicable for all ATTIN and ATTOUT power specifications.  
4 For 105°C operation, the power handling degrades from the TCASE = 85°C specifications by 3 dB.  
TIMING SPECIFICATIONS  
See Figure 34, Figure 35, and Figure 36 for the timing diagrams.  
Table 2.  
Parameter  
Description  
Min  
70  
15  
Typ  
Max  
Unit  
tSCK  
tCS  
tCH  
tLN  
tLEW  
tLES  
tCKN  
tPH  
tPS  
Minimum serial period, see Figure 34  
Control setup time, see Figure 34  
Control hold time, see Figure 34  
LE setup time, see Figure 34  
Minimum LE pulse width, see Figure 34 and Figure 36  
Minimum LE pulse spacing, see Figure 34  
Serial clock hold time from LE, see Figure 34  
Hold time, see Figure 36  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
15  
10  
630  
0
10  
2
Setup time, see Figure 36  
Clock to output (SEROUT) time, see Figure 35  
tCO  
20  
Rev. 0 | Page 5 of 19  
 
 
ADRF5730  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
POWER DERATING CURVES  
2
Parameter  
Rating  
Positive Supply Voltage  
Negative Supply Voltage  
Digital Control Input Voltage  
−0.3 V to +3.6 V  
−3.6 V to +0.3 V  
−0.3 V to VDD + 0.3 V  
0
–2  
–4  
RF Input Power1 (f = 100 MHz to  
30 GHz, TCASE = 85°C2)  
–6  
ATTIN  
–8  
Steady State Average  
Steady State Peak  
Hot Switching Average  
Hot Switching Peak  
ATTOUT  
Steady State Average  
Steady State Peak  
Hot Switching Average  
Hot Switching Peak  
Temperature  
28 dBm  
31 dBm  
25 dBm  
28 dBm  
–10  
–12  
–14  
–16  
19 dBm  
22 dBm  
16 dBm  
19 dBm  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
100G  
FREQUENCY (Hz)  
Figure 2. Power Derating vs. Frequency, Low Frequency Detail, TCASE = 85°C  
2
0
–2  
Junction (TJ)  
Storage  
Reflow  
135°C  
−65°C to +150°C  
260°C  
–4  
Continuous Power Dissipation (PDISS  
)
0.5 W  
–6  
ESD Sensitivity  
–8  
Human Body Model (HBM)  
ATTIN and ATTOUT Pins  
Digital Pins  
500 V  
2000 V  
1250 V  
–10  
–12  
–14  
Charged Device Model (CDM)  
1 For power derating over frequency, see Figure 2 and Figure 3. Applicable for  
all ATTIN and ATTOUT power specifications.  
–16  
26 28 30 32 34 36 38 40 42 44 46 48 50  
2 For 105°C operation, the power handling degrades from the TCASE = 85°C  
specifications by 3 dB.  
FREQUENCY (GHz)  
Figure 3. Power Derating vs. Frequency, High Frequency Detail, TCASE = 85°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θJC is the junction to case bottom (channel to package bottom)  
thermal resistance.  
Table 4. Thermal Resistance  
Package Type  
θJC  
Unit  
CC-24-5  
100  
°C/W  
Rev. 0 | Page 6 of 19  
 
 
 
 
 
 
Data Sheet  
ADRF5730  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
24 23 22 21 20 19  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
LE  
PS  
VDD  
VSS  
ADRF5730  
GND  
GND  
ATTIN  
GND  
GND  
TOP VIEW  
GND  
(Not to Scale)  
ATTOUT  
GND  
7
8
9
10 11 12  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED  
TO THE RF AND DC GROUND OF THE PCB.  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
LE  
PS  
Latch Enable Input. See the Theory of Operation section for more information.  
Parallel or Serial Control Interface Selection Input. See the Theory of Operation section for more  
information.  
3, 4, 6 to 13, 15, 16  
5
GND  
ATTIN  
Ground. These pins must be connected to the RF and dc ground of the PCB.  
Attenuator Input. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is  
necessary when the RF line potential is equal to 0 V dc.  
14  
ATTOUT  
Attenuator Output. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is  
necessary when the RF line potential is equal to 0 V dc.  
17  
18  
19  
20  
21  
22  
VSS  
VDD  
D0  
D1  
D2  
Negative Supply Input.  
Positive Supply Input.  
Parallel Control Input for 0.5 dB Attenuator Bit. See the Theory of Operation section for more information.  
Parallel Control Input for 1 dB Attenuator Bit. See the Theory of Operation section for more information.  
Parallel Control Input for 2 dB Attenuator Bit. See the Theory of Operation section for more information.  
D3/SEROUT Parallel Control Input for 4 dB Attenuator Bit (D3).  
Serial Data Output (SEROUT). See the Theory of Operation section for more information.  
23  
24  
D4/SERIN  
D5/CLK  
EPAD  
Parallel Control Input for 8 dB Attenuator Bit (D4).  
Serial Data Input (SERIN). See the Theory of Operation section for more information.  
Parallel Control Input for 16 dB Attenuator Bit (D5).  
Serial Clock Input (CLK). See the Theory of Operation section for more information.  
Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.  
INTERFACE SCHEMATICS  
VDD  
VDD  
VDD  
VDD  
LE, PS, D3/SEROUT,  
D4/SERIN, D5/CLK  
D0, D1, D2  
100kΩ  
Figure 5. Digital Input Interface (LE, PS, D3/SEROUT, D4/SERIN, D5/CLK)  
Figure 7. Digital Input Interface (D0, D1, D2)  
ATTIN,  
ATTOUT  
Figure 6. ATTIN and ATTOUT Interface  
Rev. 0 | Page 7 of 19  
 
 
 
ADRF5730  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSERTION LOSS, RETURN LOSS, STATE ERROR, STEP ERROR, AND RELATIVE PHASE  
VDD = 3.3 V, VSS = −3.3 V, digital voltages = 0 V or VDD, TCASE = 25°C, and a 50 Ω system, unless otherwise noted. Measured on probe  
matrix board using ground signal ground (GSG) probes close to the RF pins. See the Applications Information section for details on  
evaluation and probe matrix boards.  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
+105°C  
+85°C  
+25°C  
–40°C  
+105°C  
+85°C  
+25°C  
–40°C  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Insertion Loss vs. Frequency over Temperature with Impedance Match  
Figure 11. Insertion Loss vs. Frequency over Temperature Without Impedance  
Match  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–10  
–15  
–20  
–25  
–30  
–35  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Normalized Attenuation vs. Frequency for All States at Room  
Figure 12. Normalized Attenuation vs. Frequency for All States at Room  
Temperature, with Impedance Match  
Temperature Without Impedance Match  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
–45  
–50  
–45  
–50  
STATE 31.5dB  
STATE 31.5dB  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 10. Input Return Loss vs. Frequency (Major States Only) with Impedance  
Match  
Figure 13. Input Return Loss vs. Frequency (Major States Only) Without  
Impedance Match  
Rev. 0 | Page 8 of 19  
 
 
Data Sheet  
ADRF5730  
0
0
–5  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
–5  
STATE 31.5dB  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
STATE 0dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
–45  
–50  
STATE 31.5dB  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. Output Return Loss vs. Frequency (Major States Only) with  
Impedance Match  
Figure 17. Output Return Loss vs. Frequency (Major States Only) Without  
Impedance Match  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.2  
–0.4  
–0.6  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
–0.8  
–1.0  
–0.8  
–1.0  
STATE 31.5dB  
STATE 31.5dB  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 15. Step Error vs. Frequency (Major States Only) with Impedance  
Match  
Figure 18. Step Error vs. Frequency (Major States Only) Without Impedance  
Match  
0.8  
0.6  
0.8  
5GHz  
20GHz  
35GHz  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
5GHz  
20GHz  
35GHz  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
–1.2  
–1.4  
ATTENUATION STATE (dB)  
ATTENUATION STATE (dB)  
Figure 16. Step Error vs. Attenuation State over Frequency with Impedance  
Match  
Figure 19. Step Error vs. Attenuation State over Frequency Without  
Impedance Match  
Rev. 0 | Page 9 of 19  
ADRF5730  
Data Sheet  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
–0.5  
–0.5  
–1.0  
–1.5  
STATE 0dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
–1.0  
–1.5  
STATE 31.5dB  
STATE 31.5dB  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 20. State Error vs. Frequency (Major States Only) with Impedance  
Match  
Figure 23. State Error vs. Frequency (Major States Only) Without Impedance  
Match  
2.5  
2.5  
5GHz  
20GHz  
35GHz  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
5GHz  
20GHz  
35GHz  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
ATTENUATION STATE (dB)  
ATTENUATION STATE (dB)  
Figure 21. State Error vs. Attenuation State over Frequency with Impedance  
Match  
Figure 24. State Error vs. Attenuation State over Frequency Without  
Impedance Match  
120  
120  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
STATE 31.5dB  
STATE 31.5dB  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. Relative Phase vs. Frequency (Major States Only) with Impedance  
Match  
Figure 25. Relative Phase vs. Frequency (Major States Only) Without  
Impedance Match  
Rev. 0 | Page 10 of 19  
Data Sheet  
ADRF5730  
120  
100  
80  
60  
40  
20  
0
120  
5GHz  
20GHz  
35GHz  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
5GHz  
20GHz  
35GHz  
100  
10GHz  
25GHz  
40GHz  
15GHz  
30GHz  
45GHz  
80  
60  
40  
20  
0
ATTENUATION STATE (dB)  
ATTENUATION STATE (dB)  
Figure 27. Relative Phase vs. Attenuation State over Frequency  
Without Impedance Match  
Figure 26. Relative Phase vs. Attenuation State over Frequency  
with Impedance Match  
Rev. 0 | Page 11 of 19  
ADRF5730  
Data Sheet  
INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT  
35  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
5
0
STATE 31.5dB  
STATE 31.5dB  
0
0
10  
20  
30  
40  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 28. Input P0.1dB vs. Frequency (Major States Only)  
Figure 30. Input P0.1dB vs. Frequency (Major States Only), Low Frequency  
Detail  
80  
80  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
10  
0
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
STATE 0dB  
STATE 1dB  
STATE 4dB  
STATE 16dB  
STATE 0.5dB  
STATE 2dB  
STATE 8dB  
10  
0
STATE 31.5dB  
STATE 31.5dB  
0
5
10  
15  
20  
25  
30  
35  
40  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 29. Input IP3 vs. Frequency (Major States Only)  
Figure 31. Input IP3 vs. Frequency (Major States Only), Low Frequency Detail  
Rev. 0 | Page 12 of 19  
 
 
 
Data Sheet  
ADRF5730  
THEORY OF OPERATION  
The ADRF5730 incorporates a 6-bit fixed attenuator array that  
offers an attenuation range of 31.5 dB in 0.5 dB steps. An  
integrated driver provides both serial and parallel mode control  
of the attenuator array (see Figure 32).  
RF INPUT AND OUTPUT  
Both RF ports (ATTIN and ATTOUT) are dc-coupled to 0 V.  
No dc blocking is required at the RF ports when the RF line  
potential is equal to 0 V.  
Note that when referring to a single function of a multifunction  
pin in this section, only the portion of the pin name that is  
relevant is mentioned. For full pin names of the multifunction  
pins, refer to the Pin Configuration and Function Descriptions  
section.  
The RF ports are internally matched to 50 Ω. Therefore,  
external matching components are not required. For wideband  
applications, use impedance matching to improve insertion loss,  
return loss, and attenuation accuracy performance at high  
frequencies. See the Impedance Matching section.  
POWER SUPPLY  
The ADRF5730 supports bidirectional operation at a lower  
power level. The power handling of the ATTIN and ATTOUT  
ports are different. Therefore, the bidirectional power handling is  
defined by the ATTOUT port. Refer to the RF input power  
specifications in Table 1.  
The ADRF5730 requires a positive supply voltage applied to the  
VDD pin and a negative supply voltage applied to the VSS pin.  
Bypassing capacitors are recommended on the supply lines to  
filter high frequency noise.  
The power-up sequence is as follows:  
SERIAL OR PARALLEL MODE SELECTION  
1. Connect GND.  
2. Power up VDD.  
The ADRF5730 can be controlled in either serial or parallel mode  
by setting the PS pin to high or low, respectively (see Table 6).  
3. Power up VSS.  
Table 6. Mode Selection  
4. Apply the digital control inputs. The relative order of the  
digital control inputs is not important. However, powering  
the digital control inputs before the VDD supply can  
inadvertently forward bias and damage the internal ESD  
protection structures.  
PS  
Control Mode  
Low  
High  
Parallel  
Serial  
5. Apply an RF input signal to ATTIN or ATTOUT.  
The power-down sequence is the reverse order of the power-up  
sequence.  
Table 7. Truth Table  
Digital Control Input1  
D5  
D4  
D3  
D2  
D1  
D0  
Attenuation State (dB)  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
Low  
Low  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
Low  
High  
Low  
Low  
High  
Low  
Low  
Low  
High  
Low  
Low  
Low  
High  
Low  
Low  
High  
Low  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
Low  
Low  
Low  
High  
0 (reference)  
0.5  
1.0  
2.0  
4.0  
8.0  
16.0  
31.5  
1 Any combination of the control voltage input states shown in Table 7 provides an attenuation equal to the sum of the bits selected.  
Rev. 0 | Page 13 of 19  
 
 
 
 
 
 
ADRF5730  
Data Sheet  
D0  
D1  
D2  
D3  
D4  
D5  
SERIN  
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D
Q
D Q  
SEROUT  
CLK  
PS  
PARALLEL OR SERIAL SELECT  
6-BIT OR 8-BIT LATCH  
LE  
RF  
INPUT  
RF  
OUTPUT  
0.5dB  
1dB  
2dB  
4dB  
8dB  
16dB  
Figure 32. Simplified Circuit Diagram  
SERIAL MODE INTERFACE  
USING SEROUT  
The ADRF5730 supports a 3-wire SPI: serial data input (SERIN),  
clock (CLK), and latch enable (LE). The serial control interface  
is activated when PS is set to high.  
The ADRF5730 also features a serial data output, SEROUT.  
SEROUT outputs the serial input data at the 8th clock cycle, and  
can control a cascaded attenuator using a single SPI bus. Figure 35  
shows the serial out timing diagram.  
The ADRF5730 attenuation states can be controlled using 6-bit  
or 8-bit SERIN data. If an 8-bit word is used to control the state  
of the attenuator, the first two bits, D7 and D6, are don’t care  
bits. It does not matter if these two bits are held low or high, or  
if they are omitted altogether. Only Bits[D0:D5] set the state of  
the attenuator.  
When using the attenuator in a daisy-chain operation, 8-bit  
SERIN data must be used due to the 8 clock cycle delay between  
SERIN and SEROUT.  
It is optional to use a 1 kΩ resistor between SEROUT on the  
first attenuator and SERIN of the next attenuator to filter the  
In serial mode, the SERIN data is clocked most significant bit  
(MSB) first on the rising CLK edges into the shift register. Then,  
LE must be toggled high to latch the new attenuation state into  
the device. LE must be set to low to clock new SERIN data into  
the shift register as CLK is masked to prevent the attenuator  
value from changing if LE is kept high. See Figure 34 in  
conjunction with Table 2 and Table 7.  
signal (see Figure 33).  
4
3
2
1
WITHOUT 1kΩ  
WITH 1kΩ  
0
0
50  
100 150 200 250 300 350 400 450 500  
TIME (ns)  
Figure 33. Using a Resistor on SEROUT  
Rev. 0 | Page 14 of 19  
 
 
 
 
Data Sheet  
ADRF5730  
[FIRST IN]  
[LAST IN]  
LSB  
PS  
X
OPTIONAL OPTIONAL  
MSB  
D5  
tCS tCH  
D[7:0]  
NEXT WORD  
SERIN  
X
D7  
D6  
D4  
D3  
D2  
D1  
D0  
X
X
tLN  
tLEW  
tCKN  
CLK  
LE  
tSCK  
tLES  
Figure 34. Serial Control Timing Diagram  
PS  
X
SERIN  
X
D5  
D4  
D3  
D2  
D1  
D0  
X
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
CLK  
LE  
SEROUT  
X
D5  
D4  
D3  
D2  
D1  
D0  
X
tCO  
Figure 35. Serial Output Timing Diagram  
Latched Parallel Mode  
PARALLEL MODE INTERFACE  
To enable latched parallel mode, the LE pin must be kept low  
when changing the control voltage inputs (D0 to D5) to set the  
attenuation state. When the desired state is set, LE must be  
toggled high to transfer the 6-bit data to the bypass switches of  
the attenuator array, and then toggled low to latch the change  
into the device until the next desired attenuation change (see  
Figure 36 in conjunction with Table 2).  
The ADRF5730 has six digital control inputs, D0 (LSB) to D5  
(MSB), to select the desired attenuation state in parallel mode, as  
shown in Table 7. The parallel control interface is activated when  
PS is set to low.  
There are two modes of parallel operation: direct parallel and  
latched parallel.  
Direct Parallel Mode  
PS  
X
To enable direct parallel mode, the LE pin must be kept high.  
The attenuation state is changed by the control voltage inputs  
(D0 to D5) directly. This mode is ideal for manual control of the  
attenuator.  
tPS  
tPH  
D5 TO D0  
LE  
X
X
tLEW  
Figure 36. Latched Parallel Mode Timing Diagram  
Rev. 0 | Page 15 of 19  
 
 
 
 
ADRF5730  
Data Sheet  
APPLICATIONS INFORMATION  
Thru calibration can be used to calibrate out the board loss effects  
from the ADRF5730-EVALZ evaluation board measurements to  
determine the device performance at the pins of the IC. Figure 39  
shows the typical board loss for the ADRF5730-EVALZ evaluation  
board at room temperature, the embedded insertion loss, and the  
de-embedded insertion loss for the ADRF5730.  
0
EVALUATION BOARD  
The ADRF5730-EVALZ is a 4-layer evaluation board. The top  
and bottom copper layer are 0.5 oz (0.7 mil) plated to 1.5 oz  
(2.2 mil) and are separated by dielectric materials. The stackup  
for this evaluation board is shown in Figure 37.  
G = 6mil  
W = 16mil  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
RO4003  
1.5oz Cu (2.2mil)  
T = 2.2mil  
H = 12mil  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
1.5oz Cu (2.2mil)  
–8  
THRU LOSS  
EMBEDDED INSERTION LOSS  
–9  
DE-EMBEDDED INSERTION LOSS  
–10  
Figure 37. Evaluation Board Stackup  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
All RF and dc traces are routed on the top copper layer, whereas  
the inner and bottom layers are grounded planes that provide a  
solid ground for the RF transmission lines. The top dielectric  
material is 12 mil Rogers RO4003, offering optimal high  
frequency performance. The middle and bottom dielectric  
materials provide mechanical strength. The overall board  
thickness is 62 mil, which allows 2.4 mm RF launchers to be  
connected at the board edges.  
Figure 39. Insertion Loss vs. Frequency  
Figure 38 shows the actual ADRF5730 evaluation board with  
component placement.  
Two power supply ports are connected to the VDD and VSS test  
points, TP1 and TP2, and the ground reference is connected to  
the GND test point, TP4. On the supply traces, VDD and VSS, a  
100 pF bypass capacitor is used to filter high frequency noise.  
Additionally, unpopulated components positions are available  
for applying extra bypass capacitors.  
All the digital control pins are connected through digital signal  
traces to the 2 × 9-pin header, P1. There are provisions for a  
resistor capacitor (RC) filter that helps eliminate dc-coupled  
noise. The ADRF5730 was evaluated without an external RC  
filter, the series resistors are 0 Ω, and shunt capacitors are  
unpopulated on the evaluation board.  
Figure 38. Evaluation Board, Top View  
The RF input and output ports (ATTIN and ATTOUT) are  
connected through 50 Ω transmission lines to the 2.4 mm RF  
launchers, J1 and J2, respectively. These high frequency RF  
launchers are connected by contact and are not soldered onto  
the board.  
The RF transmission lines are designed using a coplanar  
waveguide (CPWG) model, with a trace width of 16 mil and  
ground clearance of 6 mil to have a characteristic impedance of  
50 Ω. For optimal RF and thermal grounding, as many through  
vias as possible are arranged around transmission lines and  
under the exposed pad of the package.  
A thru calibration line connects the unpopulated J3 and J4  
launchers. This transmission line is used to estimate the loss of  
the PCB over the environmental conditions being evaluated.  
The ADRF5730-EVALZ does not have high frequency  
impedance matching implemented on the RF transmission  
lines. For more details on the impedance matched circuit, refer  
to the Impedance Matching portion of the Probe Matrix Board  
section.  
The schematic of the ADRF5730-EVALZ evaluation board is  
shown in Figure 40.  
Rev. 0 | Page 16 of 19  
 
 
 
 
 
Data Sheet  
ADRF5730  
R5  
P1  
R6  
D3_SEROUT  
D4_SERIN  
D2  
D1  
0
R4  
0
PS  
LE  
1
3
5
7
2
6
4
8
10  
12  
14  
16  
18  
R7  
D5_CLK  
D4_SERIN  
D3_SEROUT 9  
D2  
D1  
D0  
0
R8  
0
R3  
0
D0  
D5_CLK  
0
11  
13  
15  
17  
VDD  
R2  
0
25  
C1  
100pF  
LE  
PS  
EPAD  
VSS  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
LE  
VDD  
VSS  
87759-1850  
R1  
0
AGND  
PS  
C2  
100pF  
GND  
GND  
ATTIN  
GND  
GND  
ADRF5730  
GND  
ATTOUT  
GND  
J3  
DNI  
J4  
DNI  
J1  
J2  
THRU CAL  
ATTIN  
ATTOUT  
Figure 40. Evaluation Board Schematic  
Table 8. Evaluation Board Components  
Component  
Default Value  
Description  
C1, C2  
100 pF  
Capacitor, C0402 package  
J1 to J4  
P1  
R1 to R11  
TP1, TP2, TP4  
U1  
Not applicable  
Not applicable  
0 Ω  
Not applicable  
ADRF5730  
2.4 mm end launch connector (Southwest Microwave: 1492-04A-5)  
2 × 9-pin header  
Resistor, 0402 package  
Through-hole mount test point  
ADRF5730 digital attenuator, Analog Devices, Inc.  
Rev. 0 | Page 17 of 19  
 
ADRF5730  
Data Sheet  
The probe matrix board includes a thru reflect line (TRL)  
PROBE MATRIX BOARD  
calibration kit, allowing board loss de-embedding. The actual  
board duplicates the same layout in matrix form to assemble  
multiple devices at one time. All S-parameters were measured  
on this board.  
The probe matrix board is a 4-layer board. Similar to the evaluation  
board, the probe matrix board also uses a 12 mil Rogers RO4003  
dielectric. The top and bottom copper layers are 0.5 oz (0.7 mil)  
plated to 1.5 oz (2.2 mil). The RF transmission lines are designed  
using a CPWG model with a width of 16 mil and ground  
spacing of 6 mil to have a characteristic impedance of 50 Ω.  
Impedance Matching  
Impedance matching at the RF pins can improve insertion loss,  
return loss, and attenuation accuracy at high frequencies. Figure 43  
and Figure 44 show the difference in the transmission lines at  
the ATTIN and ATTOUT pins.  
Figure 41 and Figure 42 show the cross sectional view and the  
top view of the board, respectively. Measurements are made  
using GSG probes at close proximity to the RF pins. Unlike the  
evaluation board, probing reduces reflections caused by  
mismatch arising from connectors, cables, and board layout,  
resulting in a more accurate measurement of the device  
performance.  
The dimensions of the 50 Ω lines are 16 mil trace width and  
6 mil gap. To implement this impedance matched circuit, the  
pad length is extended by 5 mil (from 17 mil to 22 mil). The  
calibration reference kit does not include the 5 mil matching  
line and, therefore, the measured insertion loss includes the  
losses of the matching circuit.  
G = 6mil  
W = 16mil  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
RO4003  
1.5oz Cu (2.2mil)  
T = 2.2mil  
H = 12mil  
0.5oz Cu (0.7mil)  
6
17  
16  
0.5oz Cu (0.7mil)  
1.5oz Cu (2.2mil)  
10  
6
Figure 41. Probe Matrix Board Stackup  
Figure 43. Without Impedance Match  
22  
10  
16  
Figure 44. With Impedance Match  
Figure 42. Probe Matrix Board Top View  
Rev. 0 | Page 18 of 19  
 
 
 
 
 
 
Data Sheet  
ADRF5730  
OUTLINE DIMENSIONS  
4.10  
4.00  
3.90  
0.30  
0.25  
0.20  
0.35  
0.30  
0.25  
CHAMFERED  
PIN 1 (0.2 × 45°)  
PIN 1  
CORNER AREA  
24  
19  
18  
1
2.50  
2.40 SQ  
2.30  
2.50 REF  
SQ  
EXPOSED  
PAD  
13  
6
0.50  
BSC  
12  
7
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
0.125  
BSC  
0.375  
BSC  
0.85  
0.75  
0.65  
FOR PROPER CONNECTION OF  
THE EXPOSED PADS, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.530 REF  
SECTION OF THIS DATA SHEET.  
0.240  
0.220  
0.200  
Figure 45. 24-Terminal Land Grid Array [LGA]  
4 mm × 4 mm Body and 0.75 mm Package Height  
(CC-24-5)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADRF5730BCCZN  
ADRF5730BCCZN-R7  
ADRF5730-EVALZ  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
24-Terminal Land Grid Array [LGA]  
24-Terminal Land Grid Array [LGA]  
Evaluation Board  
CC-24-5  
CC-24-5  
1 Z = RoHS Compliant Part.  
©2018 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D15958-0-7/18(0)  
Rev. 0 | Page 19 of 19  
 
 

相关型号:

ADRF5730BCCZN-R7

Silicon Digital Attenuator
ADI

ADRF5731

2 dB LSB, 4-Bit, Silicon Digital Attenuator,
ADI

ADRF5731-EVALZ

2 dB LSB, 4-Bit, Silicon Digital Attenuator,
ADI

ADRF5731BCCZN

2 dB LSB, 4-Bit, Silicon Digital Attenuator,
ADI

ADRF5731BCCZN-R7

2 dB LSB, 4-Bit, Silicon Digital Attenuator,
ADI

ADRF6510

30 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI

ADRF6510-ACPZ-R71

IC SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32, Consumer IC:Other
ADI

ADRF6510-ACPZ-WP

SPECIALTY CONSUMER CIRCUIT, QCC32
ADI

ADRF6510-ACPZ-WP1

IC SPECIALTY CONSUMER CIRCUIT, QCC32, 5 X 5 MM, ROHS COMPLIANT, MO-220VHHD-2, LFCSP-32, Consumer IC:Other
ADI

ADRF6510-EVALZ

30 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI

ADRF6510ACPZ-R7

30 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI

ADRF6510ACPZ-WP

30 MHz Dual Programmable Filters and Variable Gain Amplifiers
ADI