ADRF5042BCCZN [ADI]

Nonreflective, 100 MHz to 44 GHz Silicon SP4T Switch;
ADRF5042BCCZN
型号: ADRF5042BCCZN
厂家: ADI    ADI
描述:

Nonreflective, 100 MHz to 44 GHz Silicon SP4T Switch

文件: 总12页 (文件大小:562K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Nonreflective, 100 MHz to 44 GHz  
Silicon SP4T Switch  
Data Sheet  
ADRF5042  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Ultrawideband frequency range: 100 MHz to 44 GHz  
Nonreflective 50 Ω design  
Low insertion loss  
1.8 dB up to 18 GHz  
2.8 dB up to 40 GHz  
3.2 dB up to 44 GHz  
High isolation  
50 dB up to 18 GHz  
39 dB up to 40 GHz  
35 dB up to 44 GHz  
High input linearity  
P0.1dB: 26 dBm typical  
IP3: 47 dBm typical  
EN  
V1  
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
GND  
RF2  
50Ω  
50Ω  
GND  
RFC  
GND  
VSS  
LS  
GND  
GND  
GND  
RF3  
50Ω  
50Ω  
GND  
High power handling  
24 dBm through path  
24 dBm terminated path  
All off state control  
Figure 1.  
Logic select control  
No low frequency spurs  
Settling time (0.1 dB final RF output): 30 ns  
24-terminal, 3 mm × 3 mm land grid array (LGA) package  
Pin compatible with ADRF5043, low frequency cutoff version  
APPLICATIONS  
Industrial scanners  
Test instrumentation  
Cellular infrastructure—millimeterwave (mmWave) 5G  
Military radios, radars, electronic counter measures (ECMs)  
Microwave radios and very small aperture terminals (VSATs)  
GENERAL DESCRIPTION  
The ADRF5042 is a nonreflective SP4T switch manufactured in  
the silicon on insulator (SOI) process.  
The ADRF5042 has enable and logic select controls to feature  
all off state and port mirroring, respectively.  
The ADRF5042 operates from 100 MHz to 44 GHz with an  
insertion loss of lower than 3.2 dB and an isolation of higher  
than 35 dB. The device has a RF input power handling  
capability of 24 dBm for both through and terminated paths.  
The ADRF5042 is pin compatible with the ADRF5043 low  
frequency cutoff version, which operates from 9 kHz to 44 GHz.  
The ADRF5042 comes in a 24-terminal, 3 mm × 3 mm, RoHS  
compliant, land grid array (LGA) package and can operate from  
−40°C to +105°C.  
The ADRF5042 requires a dual-supply voltage of +3.3 V and  
−3.3 V. The device employs CMOS- and low voltage transistor  
to transistor logic (LVTTL)-compatible controls.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2020 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
 
ADRF5042  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................6  
Interface Schematics .....................................................................6  
Typical Performance Characteristics ..............................................7  
Insertion Loss, Return Loss, and Isolation ................................7  
Input Power Compression and Third-Order Intercept............9  
Theory of Operation ...................................................................... 10  
Application Information................................................................ 11  
Evaluation Board ........................................................................ 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Electrostatic Discharge (ESD) Ratings ...................................... 5  
Power Derating Curves................................................................ 5  
ESD Caution.................................................................................. 5  
REVISION HISTORY  
7/2020—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
Data Sheet  
ADRF5042  
SPECIFICATIONS  
Positive supply voltage (VDD) = 3.3 V, negative supply voltage (VSS) = −3.3 V, V1 pin voltage (V1) = 0 V or 3.3 V, V2 pin voltage (V2) = 0 V  
or 3.3 V, LS = 0 V or 3.3 V, EN = 0 V or 3.3 V, and TCASE = 25°C on a 50 Ω system, unless otherwise noted. RFx refers to RF1 to RF4. VCTL  
is the digital control inputs voltage.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
INSERTION LOSS  
f
100  
44,000  
MHz  
Between RFC and RFx (On)  
100 MHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
40 GHz to 44 GHz  
1.8  
2.2  
2.5  
2.8  
3.2  
dB  
dB  
dB  
dB  
dB  
ISOLATION  
Between RFC and RFx (Off)  
100 MHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
40 GHz to 44 GHz  
50  
46  
41  
39  
35  
dB  
dB  
dB  
dB  
dB  
RETURN LOSS  
RFC and RFx (On)  
100 MHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
40 GHz to 44 GHz  
100 MHz to 18 GHz  
18 GHz to 26 GHz  
26 GHz to 35 GHz  
35 GHz to 40 GHz  
40 GHz to 44 GHz  
16  
14  
13  
13  
14  
24  
22  
15  
12  
10  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RFx (Off)  
SWITCHING  
Rise and Fall Time  
On and Off Time  
Settling Time  
tRISE, tFALL  
tON, tOFF  
10% to 90% of RF output  
50% VCTL to 90% of RF output  
3
14  
ns  
ns  
0.1 dB  
0.05 dB  
50% VCTL to 0.1 dB of final RF output  
50% VCTL to 0.05 dB of final RF output  
30  
36  
ns  
ns  
INPUT LINEARITY1  
0.1 dB Power Compression  
1 dB Power Compression  
Third-Order Intercept  
P0.1dB  
P1dB  
IP3  
f = 500 MHz to 40 GHz  
f = 500 MHz to 40 GHz  
Two-tone input power = 15 dBm each tone,  
f = 500 MHz to 40 GHz, Δf = 1 MHz  
26  
27  
47  
dBm  
dBm  
dBm  
Second-Order Intercept  
IP2  
Two-tone input power = 15 dBm each tone,  
f = 10 GHz, Δf = 1 MHz  
120  
60  
dBm  
VIDEO FEEDTHROUGH2  
SUPPLY CURRENT  
Positive Supply Current  
Negative Supply Current  
DIGITAL CONTROL INPUTS  
Voltage  
mV p-p  
VDD, VSS pins  
IDD  
ISS  
370  
−100  
µA  
µA  
V1, V2, EN, LS pins  
Low  
High  
VINL  
VINH  
0
1.2  
0.8  
3.3  
V
V
Rev. 0 | Page 3 of 12  
 
 
ADRF5042  
Data Sheet  
Parameter  
Current  
Low  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
IINL  
IINH  
3
6
µA  
µA  
High  
RECOMMENDED OPERATING  
CONDITONS  
Supply Voltage  
Positive  
Negative  
Digital Control Inputs Voltage  
RFx Input Power3  
Through Path  
VDD  
VSS  
VCTL  
PIN  
3.15  
−3.45  
0
3.45  
−3.15  
VDD  
V
V
V
f = 500 MHz to 44 GHz, TCASE = 85°C4  
Average  
Peak  
Average  
Peak  
Average  
Peak  
24  
24  
24  
24  
24  
24  
+105  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
°C  
Terminated Path  
Hot Switching  
Case Temperature  
TCASE  
−40  
1 For input linearity performance over frequency, see Figure 18 to Figure 21.  
2 Video feedthrough is the spurious dc transient measured at the RF ports in a 50 Ω test setup, without an RF signal present while switching the control voltage.  
3 For power derating over frequency, see Figure 2.  
4 For 105°C operation, the power handling degrades from the TCASE = 85°C specification by 3 dB.  
Rev. 0 | Page 4 of 12  
Data Sheet  
ADRF5042  
ABSOLUTE MAXIMUM RATINGS  
For recommended operating conditions, see Table 1.  
ELECTROSTATIC DISCHARGE (ESD) RATINGS  
The following ESD information is provided for handling of ESD  
sensitive devices in an ESD protected area only.  
Table 2.  
Parameter  
Rating  
Supply Voltage  
Positive  
Negative  
Digital Control Inputs1  
Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.  
−0.3 V to +3.6 V  
−3.6 V to +0.3 V  
−0.3 V to VDD + 0.3 V or 3.3 mA,  
whichever occurs first  
ESD Ratings for ADRF5042  
Table 4. ADRF5042, 24-Terminal LGA  
ESD Model  
Withstand Threshold (V)  
RFx Input Power (f2 = 500 MHz  
to 44 GHz, TCASE = 85°C3)  
Through Path  
Average  
Peak  
Terminated Path  
Average  
Peak  
Hot Switching  
Average  
HBM  
RFx Pins  
375  
Supply and Digital Control Pins  
2000  
26 dBm  
26 dBm  
POWER DERATING CURVES  
2
25 dBm  
25 dBm  
0
–2  
–4  
25 dBm  
25 dBm  
Peak  
–6  
Temperature  
Junction, TJ  
Storage Range  
Reflow  
–8  
135°C  
−65°C to +150°C  
260°C  
–10  
–12  
–14  
–16  
–18  
1 Overvoltages at digital control inputs are clamped by internal diodes.  
Current must be limited to the maximum rating given.  
2 For power derating over frequency, see Figure 2.  
3 For 105°C operation, the power handling degrades from the TCASE = 85°C  
specification by 3 dB.  
10k  
100k  
1M  
10M  
100M  
1G  
10G  
100G  
FREQUENCY (Hz)  
Figure 2. Power Derating vs. Frequency, Low Frequency Detail, TCASE = 85°C  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
ESD CAUTION  
THERMAL RESISTANCE  
Thermal performance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θJC is the junction to case bottom (channel to package bottom)  
thermal resistance.  
Table 3. Thermal Resistance  
Package Type  
1
θJC  
Unit  
CC-24-12  
Through Path  
Terminated Path  
468  
200  
°C/W  
°C/W  
1 θJC was determined by simulation under the following conditions: the heat  
transfer is due solely to thermal conduction from the channel through the  
ground pad to the PCB, and the ground pad is held constant at the  
operating temperature of 85°C.  
Rev. 0 | Page 5 of 12  
 
 
 
 
 
 
ADRF5042  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
19  
18  
17  
16  
15  
14  
13  
GND  
RF2  
EN  
V1  
GND  
GND  
GND  
RF3  
GND  
RFC  
GND  
VSS  
LS  
ADRF5042  
TOP VIEW  
(Not to Scale)  
GND  
NOTES  
1. THE EXPOSED PAD MUST BE CONNECTED  
TO THE RF AND DC GROUND.  
Figure 3. Pin Configuration (Top View)  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
EN  
V1  
GND  
Enable Input. See Table 6 for the truth table. See Figure 5 for the interface schematic.  
Control Input 1. See Table 6 for the truth table. See Figure 5 for the interface schematic.  
Ground. The GND pins must be connected to the RF and dc ground of the PCB.  
3, 5, 9, 11 to 13, 15 to  
17, 19 to 21, 23  
4
RFC  
RF Common Port. RFC is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is required  
when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic.  
6
7
8
10  
VSS  
LS  
VDD  
RF4  
Negative Supply Voltage.  
Logic Select Input. See Table 6 for the truth table. See Figure 5 for the interface schematic.  
Positive Supply Voltage.  
RF Throw Port 4. RF4 is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is required  
when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic.  
14  
18  
22  
24  
RF3  
RF2  
RF1  
RF Throw Port 3. RF3 is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is required  
when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic.  
RF Throw Port 2. RF2 is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is required  
when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic.  
RF Throw Port 1. RF1 is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is required  
when the RF line potential is equal to 0 V dc.  
Control Input 2. See Table 6 for the truth table. See Figure 5 for the interface schematic.  
Exposed Pad. The exposed pad must be connected to the RF and dc ground.  
V2  
EPAD  
INTERFACE SCHEMATICS  
VDD  
VDD  
RFC,  
RF1,  
RF2,  
RF3,  
RF4  
V1, V2,  
EN, LS  
Figure 4. RFC and RF1 to RF4 Pin Interface Schematic  
Figure 5. V1, V2, EN, and LS Pin Interface Schematic  
Rev. 0 | Page 6 of 12  
 
 
 
 
Data Sheet  
ADRF5042  
TYPICAL PERFORMANCE CHARACTERISTICS  
INSERTION LOSS, RETURN LOSS, AND ISOLATION  
VDD = 3 . 3 V, V SS = −3.3 V, VCTL = 0 V or 3.3 V, and TCASE = 25°C on a 50 Ω system, unless otherwise noted. Measured on the evaluation board.  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
RF1  
RF2  
RF3  
RF4  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
50  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
50  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 6. Insertion Loss for RFC to RFx On vs. Frequency  
Figure 9. Insertion Loss for RFC to RF1 On vs. Frequency  
over Various Temperatures  
0
–5  
0
–5  
RF1  
RF2  
RF3  
RF4  
RFC  
RF1  
RF2  
RF3  
RF4  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 7. Return Loss for RFC and RFx On vs. Frequency  
Figure 10. Return Loss for RFx Off vs. Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RF2  
RF3  
RF4  
RF1  
RF3  
RF4  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 8. Isolation for RFC to RFx Off vs. Frequency, RFC to RF1 Path On  
Figure 11. Isolation for RFC to RFx Off vs. Frequency, RFC to RF2 Path On  
Rev. 0 | Page 7 of 12  
 
 
ADRF5042  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RF1  
RF2  
RF3  
RF1  
RF2  
–10  
RF4  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Isolation for RFC to RFx Off vs. Frequency, RFC to RF3 Path On  
Figure 15. Isolation for RFC to RFx Off vs. Frequency, RFC to RF4 Path On  
0
0
RF1 TO RF2  
RF1 TO RF2  
RF1 TO RF3  
RF1 TO RF3  
–10  
–10  
RF1 TO RF4  
RF1 TO RF4  
RF2 TO RF3  
RF2 TO RF3  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RF2 TO RF4  
RF2 TO RF4  
RF3 TO RF4  
RF3 TO RF4  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. Channel to Channel Isolation vs. Frequency, RFC to RF1 Path On  
Figure 16. Channel to Channel Isolation vs. Frequency, RFC to RF2 Path On  
0
0
RF1 TO RF2  
RF1 TO RF2  
RF1 TO RF3  
–10  
RF1 TO RF3  
RF1 TO RF4  
RF2 TO RF3  
RF2 TO RF4  
RF3 TO RF4  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
RF1 TO RF4  
RF2 TO RF3  
RF2 TO RF4  
–20  
RF3 TO RF4  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 14. Channel to Channel Isolation vs. Frequency, RFC to RF3 Path On  
Figure 17. Channel to Channel Isolation vs. Frequency, RFC to RF4 Path On  
Rev. 0 | Page 8 of 12  
Data Sheet  
ADRF5042  
INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT  
VDD = 3 . 3 V, V SS = − 3 . 3 V, VCTL = 0 V or 3.3 V, and TCASE = 25°C on a 50 Ω system, unless otherwise noted. Measured on the evaluation board.  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
0
5
10  
15  
20  
25  
30  
35  
40  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 18. Input P0.1dB vs. Frequency over Various Temperatures  
Figure 20. Input P0.1dB vs. Frequency, Low Frequency Detail  
over Various Temperatures  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
25  
20  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
25  
20  
0
5
10  
15  
20  
25  
30  
35  
40  
10k  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (GHz)  
FREQUENCY (Hz)  
Figure 19. Input IP3 vs. Frequency over Various Temperatures  
Figure 21. Input IP3 vs. Frequency, Low Frequency Detail  
over Various Temperatures  
Rev. 0 | Page 9 of 12  
 
 
 
ADRF5042  
Data Sheet  
THEORY OF OPERATION  
The ADRF5042 requires a positive supply voltage applied to the  
VDD pin and a negative supply voltage applied to the VSS pin.  
Bypassing capacitors are recommended on the supply lines to  
minimize RF coupling.  
The insertion loss path conducts the RF signal between the  
selected RF throw port and the RF common port. The switch  
design is bidirectional with equal power handling capabilities.  
The RF input signal can be applied to the RFC port or the  
selected RF throw port. The isolation paths provide high loss  
between the insertion loss path and the unselected RF throw  
ports that are terminated to internal 50 Ω resistors.  
All of the RF ports (RFC, RF1 to RF4) are dc-coupled to 0 V,  
and no dc blocking is required at the RF ports when the RF line  
potential is equal to 0 V. The RF ports are internally matched to  
50 Ω. Therefore, external matching networks are not required.  
The ideal power-up sequence is as follows:  
The ADRF5042 integrates a driver to perform logic functions  
internally and to provide the user with the advantage of a  
simplified CMOS-/LVTTL-compatible control interface. The  
driver features four digital control input pins (EN, LS, V1, and  
V2) that control the state of the RFx paths (see Table 6).  
1. Connect GND to ground.  
2. Power up VDD and VSS. Powering up VSS after VDD  
avoids current transients on VDD during ramp up.  
3. Apply a control voltage to the digital control inputs (EN,  
LS, V1, and V2). Applying a control voltage to the digital  
control inputs before the VDD supply can inadvertently  
forward bias and damage the internal ESD protection  
structures. Use a series 1 kΩ resistor to limit the current  
flowing into the control pin in such cases. If the control  
pins are not driven to a valid logic state (that is, controller  
output is in high impedance state) after VDD is powered  
up, it is recommended to use a pull-up or pull-down  
resistor.  
The logic select input (LS) allows the user to define the control  
input logic sequence for the RF path selections. The logic level  
applied to the V1 and V2 pins determines which RFx port is in  
the insertion loss state while the other three paths are in the  
isolation state.  
When the EN pin is logic high, all four RFx paths are in  
isolation state regardless of the logic state of LS, V1, V2. RFx  
ports are terminated to internal 50 Ω resistors, and RFC  
becomes reflective.  
4. Apply an RF input signal.  
The ideal power-down sequence is the reverse order of the  
power-up sequence.  
Table 6. Control Voltage Truth Table  
Digital Control Inputs  
RFx Paths  
EN  
LS  
V1  
V2  
RFC to RF1  
RFC to RF2  
RFC to RF3  
RFC to RF4  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
Low  
Low  
High  
High  
Low  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Low  
High  
High  
Low or high  
High  
Low or high  
High Low or high  
Rev. 0 | Page 10 of 12  
 
 
Data Sheet  
ADRF5042  
APPLICATION INFORMATION  
All RF traces are routed on the top copper layer, whereas the  
inner and bottom layers are grounded planes that provide a  
solid ground for the RF transmission lines. The top dielectric  
material is 8 mil Rogers RO4003, offering optimal high  
frequency performance. The middle and bottom dielectric  
materials provide mechanical strength. The total board  
thickness is 62 mil, which allows 2.4 mm RF launchers to be  
connected at the board edges.  
EVALUATION BOARD  
All measurements in this data sheet are measured on the  
ADRF5042-EVALZ evaluation board. Figure 24 shows the  
simplified application circuit for ADRF5042-EVALZ evaluation  
board. See the ADRF5042-EVALZ user guide for more  
information on using the evaluation board.  
The design of the ADRF5042-EVALZ board serves as a layout  
recommendation. The Gerber files of the ADRF5042-EVALZ  
evaluation board are available at www.analog.com/EVAL-  
ADRF5042.  
The RF transmission lines were designed using a coplanar  
waveguide (CPWG) model, with a trace width of 14 mil and a  
ground clearance of 7 mil to have a characteristic impedance of  
50 Ω. The RF transmission lines are tapered at the RFC or RFx  
pin transition, as shown in Figure 23. For optimal RF and  
thermal grounding, arrange as many plated through vias as  
possible around the transmission lines and under the exposed  
pad of the package.  
The ADRF5042-EVALZ is a 4-layer evaluation board. The outer  
copper (Cu) layers are 0.5 oz (0.7 mil) plated to 1.5 oz (2.2 mil)  
and are separated by dielectric materials. Figure 22 shows the  
cross sectional view of the evaluation board stackup.  
G = 7mil  
W = 14mil  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
T = 2.2mil  
H = 8mil  
RO4003  
0.5oz Cu (0.7mil)  
0.5oz Cu (0.7mil)  
1.5oz Cu (2.2mil)  
Figure 22. Evaluation Board Stackup, Cross Sectional View  
Figure 23. RF Trasmission Lines  
CMOS/  
LVTTL  
EN  
V1  
1
2
3
4
5
6
7
19  
50Ω  
RF2  
18  
17  
16  
15  
14  
13  
CMOS/  
LVTTL  
50Ω  
ADRF5042  
RFC  
TOP VIEW  
(Not to Scale)  
–3.3V  
50Ω  
VSS  
LS  
RF3  
100pF  
CMOS/  
LVTTL  
100pF  
Figure 24. Application Circuit  
Rev. 0 | Page 11 of 12  
 
 
 
 
 
ADRF5042  
Data Sheet  
OUTLINE DIMENSIONS  
3.10  
3.00 SQ  
2.90  
1.60  
REF  
PIN 1  
INDICATOR  
AREA  
0.40  
BSC  
PIN 1  
INDICATOR  
(C0.225 ×0.45°)  
19  
1
20  
24  
18  
1.50 BSC  
SQ  
2.40  
REF  
EXPOSED  
PAD  
6
7
13  
12  
0.250  
0.200  
0.150  
TOP VIEW  
BOTTOM VIEW  
0.125 REF  
0.125 REF  
0.325  
0.275  
0.225  
0.808  
0.738  
0.668  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.530 REF  
SIDE VIEW  
SECTION OF THIS DATA SHEET.  
0.248  
0.208  
0.168  
SEATING  
PLANE  
Figure 25. 24-Terminal Land Grid Array [LGA]  
3 mm × 3 mm Body and 0.738 mm Package Height  
(CC-24-12)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
CC-24-12  
CC-24-12  
Marking Code  
ADRF5042BCCZN  
ADRF5042BCCZN-R7  
ADRF5042-EVALZ  
24-Terminal Land Grid Array [LGA]  
24-Terminal Land Grid Array [LGA]  
Evaluation Board  
042  
042  
1 Z = RoHS Compliant Part.  
©2020 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D23793-7/20(0)  
Rev. 0 | Page 12 of 12  
 
 

相关型号:

ADRF5042BCCZN-R7

Nonreflective, 100 MHz to 44 GHz Silicon SP4T Switch
ADI

ADRF5043

Nonreflective, 9 kHz to 44 GHz Silicon SP4T Switch
ADI

ADRF5043-EVALZ

Nonreflective, 9 kHz to 44 GHz Silicon SP4T Switch
ADI

ADRF5043BCCZN

Nonreflective, 9 kHz to 44 GHz Silicon SP4T Switch
ADI

ADRF5043BCCZN-R7

Nonreflective, 9 kHz to 44 GHz Silicon SP4T Switch
ADI

ADRF5044

100 MHz to 30 GHz, Silicon, SP4T Switch
ADI

ADRF5044-EVALZ

100 MHz to 30 GHz, Silicon, SP4T Switch
ADI

ADRF5044BCCZN

100 MHz to 30 GHz, Silicon, SP4T Switch
ADI

ADRF5044BCCZN-R7

100 MHz to 30 GHz, Silicon, SP4T Switch
ADI

ADRF5045

9 kHz to 30 GHz, Silicon, SP4T Switch
ADI

ADRF5045-EVALZ

9 kHz to 30 GHz, Silicon, SP4T Switch
ADI

ADRF5045BCCZN

9 kHz to 30 GHz, Silicon, SP4T Switch
ADI