ADRF5019-EVALZ [ADI]

Silicon, SPDT Switch, Nonreflective, 100 MHz to 13 GHz;
ADRF5019-EVALZ
型号: ADRF5019-EVALZ
厂家: ADI    ADI
描述:

Silicon, SPDT Switch, Nonreflective, 100 MHz to 13 GHz

光电二极管
文件: 总12页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Silicon, SPDT Switch, Nonreflective,  
100 MHz to 13 GHz  
Data Sheet  
ADRF5019  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Nonreflective 50 Ω design  
Low insertion loss: 0.8 dB at 8 GHz  
High isolation: 45 dB at 8 GHz  
High input linearity  
GND  
GND  
RFC  
GND  
1
2
3
4
12  
V
DD  
P1dB: 39 dBm  
IP3: 60 dBm typical  
High power handling  
35 dBm insertion loss path  
27 dBm hot switching  
ESD rating: 2 kV (Class 2) HBM  
No low frequency spurious  
0.05 dB RF settling time: 375 ns  
0.1 dB RF settling time: 300 ns  
16-lead, 3 mm × 3 mm LFCSP  
Pin-compatible with HMC1118, low frequency cutoff version  
50Ω  
50Ω  
ADRF5019  
11 LS  
10  
9
V
V
CTRL  
SS  
PACKAGE  
BASE  
GND  
Figure 1.  
APPLICATIONS  
Test instrumentation  
Microwave radios and very small aperture terminals (VSATs)  
Military radios, radars, and electronic counter measures (ECMs)  
Fiber optics and broadband telecommunications  
GENERAL DESCRIPTION  
The ADRF5019 is a nonreflective, single pole, double throw  
(SPDT) RF switch manufactured in a silicon process.  
The ADRF5019 can also operate with a single positive supply  
voltage (VDD) applied. The negative supply voltage (VSS) is tied  
to ground. Even in single-supply operation mode, the ADRF5019  
can cover the 100 MHz to 13 GHz operating frequency and  
maintain good power handling performance. See the  
Applications Information section for more details.  
The ADRF5019 operates from 100 MHz to 13 GHz with better  
than 0.8 dB insertion loss and 45 dB of isolation at 8 GHz. The  
ADRF5019 has a nonreflective design, and the RF ports are  
internally terminated to 50 Ω.  
The ADRF5019 is pin-compatible with the HMC1118, the low  
frequency cutoff version, which operates from 9 kHz to 13.0 GHz.  
The ADRF5019 switch requires a dual supply voltage of +3.3 V  
and −2.5 V and positive control voltage inputs. This switch  
employs complementary metal-oxide semiconductor (CMOS)-  
compatible and low voltage transistor transistor logic (LVTTL)-  
compatible controls.  
The ADRF5019 comes in a 16-lead, lead frame chip scale  
package (LFCSP) and operates from −40°C to +105°C.  
Rev. 0  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rightsof third parties that may result fromits use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks andregisteredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
©2019 Analog Devices, Inc. All rights reserved.  
Technical Support  
www.analog.com  
 
 
 
 
ADRF5019  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characterics ..................................................7  
Insertion Loss, Return Loss, and Isolation ................................7  
Input Compression and Input Third-Order Intercept .............8  
Theory of Operation ...................................................................... 10  
RF Input and Output ................................................................. 10  
Power Supply............................................................................... 10  
Applications Information.............................................................. 11  
Layout Considerations............................................................... 11  
Board Layout............................................................................... 11  
RF and Digital Controls ............................................................ 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Electrical Specifications............................................................... 3  
Absolute Maximum Ratings............................................................ 5  
Thermal Resistance ...................................................................... 5  
Power Derating Curves................................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Interface Schematics..................................................................... 6  
REVISION HISTORY  
8/2019—Revision 0: Initial Version  
Rev. 0 | Page 2 of 12  
 
Data Sheet  
ADRF5019  
SPECIFICATIONS  
ELECTRICAL SPECIFICATIONS  
VDD = 3.3 V, VSS = −2.5 V, LS = 3.3 V, VCTRL = 0 V or 3.3 V, and TCASE = 25°C in a 50 Ω system, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
FREQUENCY RANGE  
f
100  
13,000  
MHz  
INSERTION LOSS  
IL  
Between RFC and RF1 or RFC and RF2 (On)  
100 MHz to 3 GHz  
100 MHz to 8 GHz  
100 MHz to 10 GHz  
100 MHz to 13 GHz  
0.6  
0.8  
1.0  
1.5  
dB  
dB  
dB  
dB  
RETURN LOSS  
RL  
Between RFC and RF1 or RFC and RF2 (On)  
100 MHz to 3 GHz  
100 MHz to 8 GHz  
100 MHz to 13 GHz  
100 MHz to 3 GHz  
100 MHz to 8 GHz  
100 MHz to 13 GHz  
26  
22  
9
26  
14  
5
dB  
dB  
dB  
dB  
dB  
dB  
RF1 or RF2 (Off)  
ISOLATION  
Between RFC and RF1 or RCF and RF2 (Off)  
100 MHz to 3 GHz  
100 MHz to 8 GHz  
100 MHz to 10 GHz  
100 MHz to 13 GHz  
50  
45  
35  
25  
dB  
dB  
dB  
dB  
SWITCHING CHARACTERISTICS  
Dual Supply  
VDD = 3.3 V, VSS = −2.5 V  
10% to 90% of RF output  
50% of triggered digital control input voltage  
(VCTL) to 90% of RF output  
Rise Time and Fall Time  
On Time and Off Time  
tRISE, tFALL  
tON, tOFF  
35  
150  
ns  
ns  
RF Settling Time  
0.1 dB  
0.05 dB  
50% of triggered VCTL to 0.1 dB of final RF output  
50% of triggered VCTL to 0.05 dB of final RF output  
VDD = 3.3 V, VSS = 0 V  
300  
375  
ns  
ns  
Single Supply  
Rise Time and Fall Time  
On Time and Off Time  
INPUT LINEARITY1  
Dual Supply  
tRISE, tFALL  
tON, tOFF  
10% to 90% of RF output  
50% of triggered VCTL to 90% of RF output  
100 MHz to 13 GHz  
180  
285  
ns  
ns  
VDD = 3.3 V, VSS = −2.5 V  
Input Compression  
0.1 dB  
1 dB  
P0.1dB  
P1dB  
38  
39  
dBm  
dBm  
Intermodulation Distortion  
Input Third-Order Intercept  
IIP3  
Two tone input power = 12 dBm each tone,  
Δf = 1 MHz  
60  
dBm  
Single Supply  
VDD = 3.3 V, VSS = 0 V  
Input Compression  
0.1 dB  
1 dB  
P0.1dB  
P1dB  
25  
28  
dBm  
dBm  
Intermodulation Distortion  
Input Third-Order Intercept  
IIP3  
Two tone input power = 12 dBm each tone,  
Δf = 1 MHz  
55  
dBm  
SUPPLY CURRENT  
VDD pin and VSS pin  
Positive Supply Current  
Negative Supply Current  
IDD  
ISS  
20  
0.5  
µA  
µA  
Rev. 0 | Page 3 of 12  
 
 
ADRF5019  
Data Sheet  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DIGITAL CONTROL INPUTS  
VCTRL pin and LS pin  
Voltage  
Low  
High  
VINL  
VINH  
0
2
0.8  
3.3  
V
V
Current  
Low and High Current  
RECOMMENDED OPERATING CONDITONS  
Supply Voltage  
IINL, IINH  
<1  
µA  
Positive  
Negative  
Digital Control Input Voltage  
RF Input Power, Dual Supply2  
Insertion Loss Path  
VDD  
VSS  
VCTL  
PIN  
3.0  
−2.75  
0
3.6  
−2.25  
VDD  
V
V
V
VDD = 3.3 V, VSS = −2.5 V, f = 2 GHz, TCASE = 85°C3  
RF signal is applied to RFC or through  
connected RF1 or RF2  
35  
dBm  
Isolation Path  
Hot Switching  
RF signal is applied to the terminated RF1 or RF2  
27  
27  
dBm  
dBm  
RF signal is present at RFC while switching  
between RF1 and RF2  
VDD = 3.3 V, VSS = 0 V, f = 2 GHz, TCASE = 85°C3  
RF signal is applied to RFC or through  
connected RF1 or RF2  
RF Input Power, Single Supply2  
Insertion Loss Path  
PIN  
27  
dBm  
Isolation Path  
Hot Switching  
RF signal is applied to the terminated RF1 or RF2  
RF signal is present at RFC while switching  
between RF1 and RF2  
22  
22  
dBm  
dBm  
Case Temperature  
TCASE  
−40  
+105  
°C  
1 For input linearity performance vs. frequency, see Figure 13 to Figure 20.  
2 For power derating vs. frequency, see Figure 2 and Figure 3. Power derating is applicable for insertion loss path, terminated path, and hot switching power  
specifications.  
3 For operation at 105°C, the power handling degrades from the TCASE = 85°C specification by 3 dB.  
Rev. 0 | Page 4 of 12  
Data Sheet  
ADRF5019  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
POWER DERATING CURVES  
5
Parameter  
Rating  
Positive Supply Voltage  
Negative Supply Voltage  
Digital Control Inputs  
Voltage  
−0.3 V to +3.7 V  
−2.8 V to +0.3 V  
0
–5  
−0.3 V to VDD + 0.3 V  
3 mA  
Current  
RF Input Power, Dual Supply1 (VDD = 3.3 V,  
–10  
–15  
–20  
–25  
V
SS = −2.5 V, f = 2 GHz at TCASE = 85°C2)  
Insertion Loss Path  
Isolation Path  
Hot Switching  
37 dBm  
28 dBm  
30 dBm  
TERMINATED  
HOT SWITCHING  
THROUGH  
RF Input Power, Dual Supply1 (VDD = 3.3 V,  
VSS = 0 V, f = 2 GHz at TCASE = 85°C2)  
0.01  
0.1  
1
10  
100  
1000  
10000  
Insertion Loss Path  
Isolation Path  
Hot Switching  
RF Input Power Under Unbiased  
Condition (VDD, VSS = 0 V)  
Temperature  
28 dBm  
23 dBm  
23 dBm  
23 dBm  
FREQUENCY (MHz)  
Figure 2. Power Derating vs. Frequency, Low Frequency Detail,  
CASE = 85°C  
T
5
Junction, TJ  
Storage Range  
Reflow  
Electrostatic Discharge (ESD) Sensitivity  
Human Body Model (HBM)  
135°C  
−65°C to +150°C  
260°C  
0
–5  
2 kV (Class 2)  
–10  
–15  
–20  
–25  
1 For power derating vs. frequency, see Figure 2 and Figure 3. Power derating  
is applicable for insertion loss path, terminated path, and hot switching power  
specifications.  
2 For operation at 105°C, the power handling degrades from the TCASE = 85°C  
specification by 3 dB.  
TERMINATED  
HOT SWITCHING  
THROUGH  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
0
1
2
3
4
4
6
7
8
9
10 11 12 13  
FREQUENCY (GHz)  
Figure 3. Power Derating vs. Frequency, High Frequency Detail,  
CASE = 85°C  
T
ESD CAUTION  
THERMAL RESISTANCE  
Thermal resistance is directly linked to printed circuit board  
(PCB) design and operating environment. Careful attention to  
PCB thermal design is required.  
θJC is the junction to case bottom (channel to package bottom)  
thermal resistance.  
Table 3. Thermal Resistance  
Package Type  
θJC  
Unit  
CP-16-38  
Through Path  
Terminated Path  
106  
100  
°C/W  
°C/W  
Rev. 0 | Page 5 of 12  
 
 
 
 
 
 
ADRF5019  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADRF5019  
GND  
GND  
RFC  
GND  
1
2
3
4
12  
V
DD  
11 LS  
TOP VIEW  
(Not to Scale)  
10  
9
V
V
CTRL  
SS  
NOTES  
1. EXPOSED PAD. THE EXPOSED PAD MUST BE  
CONNECTED TO THE RF AND DC GROUND  
OF THE PCB.  
Figure 4. Pin Configuration (Top View)  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1, 2, 4 to 6, 8, 13, 15, 16 GND  
Ground. These pins must be connected to the RF and dc ground of the PCB.  
3
RFC  
RF Common Port. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is  
required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.  
7
RF2  
RF Throw Port 2. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is  
required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.  
9
VSS  
Negative Supply Voltage Pin. See Figure 8 for the interface schematic.  
10  
11  
12  
14  
VCTRL  
LS  
VDD  
RF1  
Control Input Pin. See Figure 6 for interface schematic. See Table 5 for the truth table.  
Logic Select Input Pin. See Figure 6 for the interface schematic. See Table 5 for the truth table.  
Positive Supply Voltage Pin. See Figure 7 for the interface schematic.  
RF Throw Port 1. This pin is dc-coupled to 0 V and ac matched to 50 Ω. No dc blocking capacitor is  
required when the RF line potential is equal to 0 V dc. See Figure 5 for the interface schematic.  
EPAD  
Exposed Pad. The exposed pad must be connected to the RF and dc ground of the PCB.  
INTERFACE SCHEMATICS  
V
DD  
RFC, RF1, RF2  
CLAMP  
GND  
GND  
Figure 7. VDD Pin Interface Schematic  
Figure 5. RFC, RF1, and RF2 Pin Interface Schematic  
V
SS  
V
DD  
V
DD  
CLAMP  
V
, LS  
CTRL  
GND  
GND  
Figure 6. Digital Pins Interface Schematic  
Figure 8. VSS Pin Interface Schematic  
Rev. 0 | Page 6 of 12  
 
 
 
 
 
 
Data Sheet  
ADRF5019  
TYPICAL PERFORMANCE CHARACTERICS  
INSERTION LOSS, RETURN LOSS, AND ISOLATION  
VDD = 3.3 V, V SS = −2.5 V, VCTRL and LS = 0 V or VDD, and TCASE = 25°C in a 50 Ω system, unless otherwise noted.  
0
0
–10  
–20  
–30  
–40  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–50  
–60  
–70  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
–80  
CASE  
CASE  
CASE  
CASE  
RFC TO RF1  
RFC TO RF2  
–90  
–100  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 9. Insertion Loss vs. Frequency over Temperature  
Figure 11. Isolation Between RFC and RFx Ports vs. Frequency  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–5  
–10  
–15  
–20  
–25  
–30  
–35  
RF1, RF2 ON  
RF1, RF2 OFF  
RFC  
RF1 ON  
RF2 ON  
–90  
–100  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Isolation Between RF1 and RF2 Ports vs. Frequency  
Figure 10. Return Loss vs. Frequency  
Rev. 0 | Page 7 of 12  
 
 
ADRF5019  
Data Sheet  
INPUT COMPRESSION AND INPUT THIRD-ORDER INTERCEPT  
VDD = 3.3 V, VCTRL and LS = 0 V or VDD, and TCASE = 25°C in a 50 Ω system, unless otherwise noted. All of the large signal performance  
parameters are measured on the ADRF5019-EVALZ evaluation board.  
40  
40  
35  
30  
25  
35  
30  
25  
20  
15  
10  
20  
15  
10  
0.1dB COMPRESSION POINT  
1dB COMPRESSION POINT  
0.1dB COMPRESSION POINT  
1dB COMPRESSION POINT  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. P0.1dB and P1dB Input Compression vs. Frequency, VSS = −2.5 V  
Figure 16. P0.1dB and P1dB Input Compression vs. Frequency, VSS = 0 V  
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
20  
15  
0.1dB COMPRESSION POINT  
1dB COMPRESSION POINT  
0.1dB COMPRESSION POINT  
1dB COMPRESSION POINT  
10  
0.01  
10  
0.01  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 17. P0.1dB and P1dB Input Compression vs. Frequency (Low  
Frequency Detail), VSS = 0 V  
Figure 14. P0.1dB and P1dB Input Compression vs. Frequency (Low  
Frequency Detail), VSS = −2.5 V  
40  
40  
35  
30  
25  
20  
35  
30  
25  
20  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
T
T
T
T
= +105°C  
= +85°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
15  
10  
15  
10  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 18. P1dB Input Compression Point vs. Frequency over Temperature  
(Low Frequency Detail), VSS = 0 V  
Figure 15. P1dB Input Compression Point vs. Frequency over Temperature,  
SS = −2.5 V  
V
Rev. 0 | Page 8 of 12  
 
 
Data Sheet  
ADRF5019  
70  
70  
65  
60  
55  
50  
45  
40  
35  
30  
65  
60  
55  
50  
45  
40  
35  
30  
T
T
T
= +105°C  
= +25°C  
= –40°C  
T
T
T
= +105°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
25  
20  
25  
20  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 19. Input IP3 vs. Frequency over Temperature, VSS = −2.5 V  
Figure 21. Input IP3 vs. Frequency over Temperature, VSS = 0 V  
70  
70  
65  
60  
55  
50  
65  
60  
55  
50  
45  
40  
35  
30  
45  
40  
35  
30  
T
T
T
= +105°C  
= +25°C  
= –40°C  
T
T
T
= +105°C  
= +25°C  
= –40°C  
CASE  
CASE  
CASE  
CASE  
CASE  
CASE  
25  
20  
25  
20  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Figure 20. Input IP3 vs. Frequency over Temperature (Low Frequency Detail),  
SS = −2.5 V  
Figure 22. Input IP3 vs. Frequency over Temperature (Low Frequency Detail),  
SS = 0 V  
V
V
Rev. 0 | Page 9 of 12  
 
ADRF5019  
Data Sheet  
THEORY OF OPERATION  
The ADRF5019 integrates a driver to perform logic functions  
internally and to provide the user with the advantage of a  
simplified positive voltage control interface. The driver features  
two digital control input pins (VCTRL and LS) that control the  
state of the RF paths, determining which RF port is in the  
insertion loss state and which path is in the isolation state (see  
Table 5).  
POWER SUPPLY  
The ADRF5019 requires a positive supply voltage applied to the  
DD pin and a negative supply voltage applied to the VSS pin.  
V
Bypassing capacitors are recommended on the supply lines to  
filter high frequency noise.  
The ideal power-up sequence is as follows:  
1. Connect to GND.  
RF INPUT AND OUTPUT  
2. Power up the VDD and VSS voltages. Power up VSS after VDD  
to avoid current transients on VDD during ramp up.  
3. Power up the digital control inputs. The order of the digital  
control inputs is not important. However, powering the  
digital control inputs before the VDD voltage supply can  
inadvertantly forward bias and damage the internal ESD  
protection structures. To avoid this damage, use a series  
1 kΩ resistor to limit the current flowing into the control  
pin. Use pull-up or pull-down resistors if the controller  
output is in a high impedance state after the VDD voltage is  
powered up and the control pins are not driven to a valid  
logic state.  
The RF ports (RFC, RF1, and RF2) are dc-coupled to 0 V, and  
no dc blocking is required at the RF ports when the RF line  
potential is equal to 0 V.  
The RF ports are internally matched to 50 Ω. Therefore,  
external matching networks are not required.  
The ADRF5019 is bidirectional with equal power handling  
capabilities. An RF input signal (RFIN) can be applied to the  
RFC port or to the RF1 port or the RF2 port.  
The insertion loss path conducts the RF signal between the  
selected RF throw port and the RF common port. The isolation  
path provides high loss between the insertion loss path and the  
unselected RF throw port, which is nonreflective, by using an  
internal 50 Ω termination resistor.  
4. Apply an RF input signal to RFC, RF1, or RF2.  
The ideal power-down sequence is the reverse order of the  
power-up sequence.  
Single-Supply Operation  
The ADRF5019 can operate with a single positive supply voltage  
applied to the VDD pin and VSS pin connected to ground.  
However, some performance degradations can occur in the  
input compression and input third-order intercept.  
Table 5. Control Voltage Truth Table  
Digital Control Inputs  
RF Paths  
LS  
VCTRL  
Low  
High  
Low  
RF1 to RFC  
RF2 to RFC  
High  
High  
Low  
Low  
Insertion loss (on)  
Isolation (off)  
Isolation (off)  
Isolation (off)  
Insertion loss (on)  
Insertion loss (on)  
Isolation (off)  
High  
Insertion loss (on)  
Rev. 0 | Page 10 of 12  
 
 
 
Data Sheet  
ADRF5019  
APPLICATIONS INFORMATION  
LAYOUT CONSIDERATIONS  
RF AND DIGITAL CONTROLS  
All measurements in this data sheet are measured on the  
ADRF5019-EVALZ evaluation board. The design of the  
ADRF5019-EVALZ board serves as a layout recommendation  
for ADRF5019 application.  
The RF transmission lines use a coplanar waveguide (CPWG)  
model with a width of 18 mil and a ground spacing (G) of 13 mil  
and have a characteristic impedance of 50 Ω. For optimal RF  
and thermal grounding, as many plated through vias as possible  
are arranged around the transmission lines and under the  
exposed pad of the package.  
See the ADRF5019-EVALZ user guide for more information on  
using the evaluation board.  
The RF input and output ports (RFC, RF1, and RF2) are  
connected through 50 Ω transmission lines to the SMA  
launchers. On the VDD and VSS supply traces, a 100 pF bypass  
capacitor filters high frequency noise.  
BOARD LAYOUT  
The ADRF5019-EVALZ is a 4-layer board. The outer copper  
(Cu) layers are 0.7 mil to 2.2 mil plated and are separated by  
dielectric materials. Figure 23 shows the ADRF5019-EVALZ  
board stack up.  
Figure 24 shows the simplified application circuit for the  
ADRF5019.  
The board layout and stackup shown in Figure 23 are used to  
make the measurements included in this data sheet.  
RF1  
G = 13mil  
W = 18mil  
V
DD  
100pF  
1.5oz Cu (2.2mil)  
1.5oz Cu (2.2mil)  
RO4350  
1.5oz Cu (2.2mil)  
T = 2.2mil  
H = 10mil  
1
2
3
4
12  
11  
10  
9
GND  
GND  
RFC  
GND  
V
DD  
0.5oz Cu (0.7mil)  
LS  
LS  
ADRF5019  
U1  
V
RFC  
V
CTRL  
CTRL  
V
V
SS  
SS  
100pF  
GND  
0.5oz Cu (0.7mil)  
1.5oz Cu (2.2mil)  
RF2  
Figure 24. Simplified Application Circuit  
Figure 23. ADRF5019-EVALZ Stack Up  
All RF and dc traces are routed on the top copper layer. The  
inner and bottom layers are ground planes that provide a solid  
ground for the RF transmission lines. The top dielectric material  
(H) is 10 mil Rogers RO4350, which allows optimal RF  
performance. The middle and bottom dielectric layers provide  
mechanical strength. The overall evaluation board thickness is  
approximately 62 mil, which allows Subminiature Version A  
(SMA) connectors to be connected at the board edges.  
Rev. 0 | Page 11 of 12  
 
 
 
 
 
 
ADRF5019  
Data Sheet  
OUTLINE DIMENSIONS  
DETAIL A  
(JEDEC 95)  
3.10  
3.00 SQ  
2.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
AREA  
PIN 1  
IONS  
INDICATOR AR EA OP T  
(SEE DETAIL A)  
13  
16  
0.50  
BSC  
12  
1
EXPOSED  
PAD  
1.92  
1.70 SQ  
1.48  
9
4
5
8
*
0.35  
0.30  
0.25  
0.20 MIN  
BOTTOM VIEW  
TOP VIEW  
SIDE VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.95  
0.85  
0.75  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
*
COMPLIANT WITH JEDEC STANDARDS MO-220-VEED-4  
WITH THE EXCEPTION OF PACKAGE EDGE TO LEAD EDGE.  
Figure 25. 16-Lead Lead Frame Chip Scale Package [LFCSP]  
3 mm × 3 mm Body and 0.85 mm Package Height  
(CP-16-38)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADRF5019BCPZN  
ADRF5019BCPZN-R7  
ADRF5019-EVALZ  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option Marking Code  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
16-Lead Lead Frame Chip Scale Package [LFCSP]  
Evaluation Board  
CP-16-38  
CP-16-38  
S4Z  
S4Z  
1 Z = RoHS Compliant Part.  
©2019 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D21247-0-8/19(0)  
Rev. 0 | Page 12 of 12  
 
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY